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Introduction

Since their discovery [1], carbon nanotubes (CNT) have attracted many scientists attention.

Unique electronic properties have been demonstrated for their use in molecular electronics and integrated electronic devices [START_REF] Collins Ph | Nanotubes for electronics[END_REF]. Many CNT applications now turn to use their excellent mechanical properties as nanoswitches [START_REF] Cumings | [END_REF](for binary memory device), motors [4], actuators [5,[START_REF] Lu | Elastic properties of carbon nanotubes and nanoropes[END_REF] or material reinforcement [START_REF] Zhang | Strong, transparent, multifunctional, carbon nanotube sheets[END_REF]. As expected for one of the strongest bond as the C-C covalent in plane graphite bond, CNT have a high Young modulus, up to 1 TPa ( 1012 P, as compared to diamond value 1.2 TPa) [START_REF] Treacy | Exceptionally high young's modulus observed for individual carbon nanotubes[END_REF][START_REF] Wong | Nanobeam mechanics : elasticity, strength and toughness of nanorods and nanotubes[END_REF][START_REF] Lu | Elastic properties of carbon nanotubes and nanoropes[END_REF][START_REF] Salvetat | Elastic and shear moduli of single-walled carbon nanotube ropes[END_REF] and they can endure severe structural distortion up to the ability to buckle elastically. Besides those excellent properties, inserting CNT into MEMS or NEMS may face new diculties as the control of their anchoring to the structure, or else the loss of mechanical properties [11]. As an example, the excellent mechanical properties of CNT may be lost if the nanotubes are not properly anchored to the moving device. In this paper, we investigate the mechanical properties of CNT anchored to atomic force microscopy (AFM) probes. In this context, the mechanical behavior of the CNT is the result of a competition between volume forces, the elastic contribution, and surface forces, the adhesive contribution.Only two forces are considered to describe the tube interaction with surfaces, an elastic repulsive one as the nanotube bends over the surface and an attractive adhesive one, giving analytical expressions for the dynamical AFM signals. The model expressions are compared to many experimental signals for multi-wall and single-wall CNT.

Experiment

The single-wall (or double-wall here after called single-wall for clarity) CNT probes are fabricated directly on commercial silicon tips by hot lament chemical vapor deposition, whereas the multi-wall CNT are grown on a lament and then welded to commercial silicon tips for atomic force microscopy (AFM), following procedures already published [START_REF] Stevens | Improved fabrication approach for carbon nanotube probe devices[END_REF]13]. The cantilever/tip oscillators are NCL from Nanosensors, they have resonance frequency in the range of 150-200 kHz, cantilever stiness of 10 to 50N.m -1 , quality factors Q of about 500 in air and 2000 at 8mbar when very far from the surface (some microns at least). They have been selected for their well dened harmonic behavior. An example of a multi-wall CNT anchored on a commercial pyramidal tip is given in gure 1. The curves are recorded under vacuum (around 8 mbar) to reduce the surface contamination and to increase the quality factor, thus increasing the energy sensitivity of the experiment.

To compare the experimental data to the model, the frequency shifts are normalized with the resonance frequency without interaction with the surface, the piezo ceramic displacement is transformed to nanotube-surface displacement by setting the onset of frequency shift variation at a distance D=A (A being the oscillation amplitude), see gure 2.

Figure 2: Scheme of the equivalent oscillator in the two extremal positions when oscillating at an amplitude A. D is the distance between the oscillator equilibrium position and the surface.

The dissipated energy per oscillation cycle is E = πγωA 2 , with ω = 2πν the oscillator pulsation and ν its frequency. When the tip touches the surface, a simple sum rule is usually applied to describe the total dissipated energy:

E tot = E 0 + E int
with E tot the total mean dissipated energy, E 0 the mean dissipated energy without interaction with the surface and E int the energy dissipated due to the contact between the CNT and the surface. The corresponding damping coecient γ tot writes:

γ tot = γ 0 + γ int
with γ 0 = kc ωQ the damping of the oscillator without interaction (k c is the cantilever stiness) and γ int the damping coecient due to interaction.

The proportionality between the Damping signal and damping coecient gives:

Damp tot Damp 0 = γ tot γ 0 = E tot E 0
and thus :

γ int = Damptot Damp 0 -1 γ 0 E int = Damptot Damp 0 -1 E 0 (1) 
Equation 1 will be used to derive the mean energy dissipated from the Damping signal and experimental parameters.

Material and Method

The description of the mechanical behavior of the CNT squeezed between the tip apex and the surface is based on two main assumptions :

-the cantilever spring constant is much larger than the CNT one;

-the contact stiness, governed by the contact area between the CNT free end and the surface, is also much larger than the CNT bending stiness.

In these experiments, the typical CNT bending stiness of SWNT and MWNT vary between 10 -4 and a few 10 -2 N m -1 . Therefore, the rst constraint is always easily satised, as the cantilever spring constant is larger than 10 N m -1 . The contact stiness between a tip and a surface scales with the reduced Young modulus [START_REF] Landau | Theory of elasticity[END_REF] that here we note G and with the the diameter of the contact area between the tip and the surface φ. Even with a soft material and a very small contact area, for instance a polystyrene substrate with G = 1GPa and a contact diameter of 1 nm, the contact stiness reaches a value of 1 N.m -1 that remains very large compared to the CNT bending one. However, as shown below, to pull o the CNT from the surface it is necessary to consider another CNT spring constant related to the extension of the CNT rather than the bending stiness. Typical values of this pull o spring constant vary between 0.05 and 0.1 N m -1 thus are also much smaller than any reasonable values of the contact stiness.

Therefore, the experimental measurements only contain information on the mechanical properties of the CNT squeezed between the cantilever and the surface, including the elastic response and the adhesion between the part of the tube touching the surface.

To introduce the model we proceed in two steps. First, a general approach in which the forces acting on the oscillator are decomposed into Fourier coecients : this part may be applied for many dierent systems. Somehow, the derivation is similar to the one employed by U. Dürig [START_REF] Dürig | Interaction sensing in dynamic force microscopy[END_REF]. Then, we focus on the specic CNT case, and two spring constants are introduced, one to account for the repulsive elastic response of the bending nanotube, the second to account for the pull o force required to unstick the nanotube from the surface.

Least action principle and Fourier analysis of the force

To take into account the interaction between the tip and the surface, the interaction Lagrangian L i is added to the Lagrangian of the harmonic oscillator [START_REF] Nony | Nonlinear dynamical properties of an oscillating tipcantilever system in the tapping mode[END_REF]:

L = 1 2 m Ż2 - 1 2 mω 2 0 Z 2 + F Z cos ωt -γ 0 Z Ż + L i
where Z is the oscillator instantaneous displacement with the equilibrium position, m its eective mass, F the intensity of the force acting on it, and L i the interaction Lagrangian with the force calculated along the physical path Z :

L i = F i (Z) Z
To include dissipation process into the Lagrangian description [START_REF] Goldstein | Classical Mechanics[END_REF], the underscored variables are not varied during the minimization [START_REF] Nony | Nonlinear dynamical properties of an oscillating tipcantilever system in the tapping mode[END_REF][START_REF] Couturier | Noncontact atomic force microscopy: Stability criterion and dynamical responses of the shift of frequency and damping signal[END_REF].

We then consider an harmonic solution , Z (t) = A cos (ωt + φ) , and apply the least action principle to get :

     mω 2 0 ω 2 ω 2 0 -1 A = - 2 T T 0 F i (Z) cos (ωt + φ) dt F = γ 0 Aω + 2 T T 0 F i (Z) sin (ωt + φ) dt (2) 
Let's dene the Fourier coecients for the interaction force in the phase space : θ = ωt , and a time origin when the elongation is at its maximal value

     f i = 1 π π -π F i (θ) cos (θ) dθ g i = 1 π π -π F i (θ) sin (θ) dθ (3) 
Using the approximation for a pulsation close to its resonance free value

ω 2 ω 2 0 -1 2 ∆ω ω 0 and F = γωA in equation 2 gives:    ∆ω ω 0 = - 1 2kA f i γ = γ 0 + γ i (4) 
with

γ i = 1 Aω 0 g i 3.
2 Application to the carbon nanotubes interacting with the surface : resonance frequency shift and dissipation

A simple model has been built, based on continuum mechanical model of a beam pinned at one end approaching toward a surface and bending while gliding over it. The experiment may lead to rather complicate relationships between the force and nanotube displacement in both attractive and repulsive regime. However, let assume a linear relationship between force and position for repulsive and attractive interaction, corresponding to compression (in repulsive regime) and elongation (in attractive regime) of the CNT interacting with the surface, as depicted in gure 3. The slope of the force curves denes two nanotube stiness : an equivalent repulsive one k r for the elastic repulsive force and an equivalent attractive one for the extension part.Therefore, other parameters that may be relevant will not be considered here, for instance, the inuence of the nanotube angle as respect to the surface as developed by other authors [START_REF] Snow | Single-wall carbon nanotube atomic force microscope probes[END_REF][START_REF] Solares | Inuence of the carbon nanotube probe tilt angle on the eective stiness and image quality in tapping mode atomic force microscopy[END_REF][START_REF] Kutana | Amplitude response of single-wall carbon nanotube probes during tapping mode atomic force microscopy : modeling and experiment[END_REF] or else change of the contact area as a function of the vertical displacement.

The presence of an adhesive interaction breaks the time reversal as schemed by the arrows of gure 3 and induces dissipation as described in reference [START_REF] Dürig | Interaction sensing in dynamic force microscopy[END_REF]. As the system stiness is not innite, adhesion hysteresis occurs that is governed by the softer element, in the present experiment the carbon nanotube [START_REF] Maugis | Subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement[END_REF]. This kind of cycle with mechanical elements of nite stiness is known also in other areas, as for instance the adsorption-desorption of atoms on surface leading to similar dissipation. The shadowed area shown in gure 3 gives the adhesion hysteresis of the nanotube on the surface.

Using those equivalent stiness with a force threshold necessary to unstick will enable to get nal analytical relationships between the oscillator resonance frequency shift and the nanotube movement. 

Vertical forces acting on the nanotube in intermittent contact

• Forces expressions Following gure 3, the time or equivalently the phase limits for the two forces are set :

F i (θ) = -k r (A cos (θ) -D) f or -θ r ≤ θ ≤ θ r -k a (A cos (θ) -D) f or θ r ≤ θ ≤ θ ∆ (5) 
where the phases θ r and θ ∆ are linked to the duration of the compression and extension phase respectively of the nanotube :

θ r = arccos (d) θ ∆ = arccos (d -δ)
A plot of the force variation within one oscillation period in intermittent contact is given in gure 4. Far from the surface, on the left side of the curve, the force on the CNT is null up to the rst touch with the surface which happens at -θ r , then the CNT is compressed. On the way back from the surface (corresponding to ωt > 0 ), the CNT is compressed again up to θ r , then it is extended up to the time θ ∆ .

• Relative frequency shift due to repulsive interactions According to equations 3 , 4 and 5 , the relative pulsation shift ∆ω r due to the elastic repulsive force is :

∆ω r ω 0 = 1 2πk c k r arccos (d) -d √ 1 -d 2 (6) 
This expression is identical to the one obtained without using development in Fourier coecients [START_REF] Dietzel | Mechanical properties of a carbon nanotube xed at a tip apex: A frequency-modulated atomic force microscopy study[END_REF][START_REF] Dietzel | Mechanical properties of carbon-nanotube tips and nanoneedles: A frequency modulation-atomic force microscope comparative study[END_REF]. Figure 5a shows the variation of the relative repulsive frequency shift as a function of the normalized distance for two CNT bending stiness k r . As expected, when the CNT moves towards the surface (corresponding to decreasing d), its interaction time with the surface increases leading to increasing frequency shift. • Relative frequency shift due to attractive interactions

The same calculation can be done to predict the contribution of the attractive force on the relative pulsation shift ∆ω a_i :

∆ω a_i ω 0 = 1 2πk c k a 2 arccos (d -δ) -arccos (d) + d √ 1 -d 2 -(d + δ) 1 -(d -δ) 2 (7) 
where δ is the normalized distance necessary to unstick from the sample : δ = ∆ to the elastic bending force is due to the limited interaction time τ ∆ of the attractive force as compared to the constantly increasing interaction time of the elastic force. Increasing the normalized sticking distance δ value increases the attractive contribution as expected for longer interaction time τ ∆ , but also shrinks the size of the intermittent contact domain given by 2A -∆. Note that, when the elastic spring constant of the NT is large may be small and the adhesive contribution to the frequency shift becomes negligible leading to an intermittent contact size of 2A [START_REF] Dietzel | Mechanical properties of a carbon nanotube xed at a tip apex: A frequency-modulated atomic force microscopy study[END_REF] .

• Dissipation

As said above, the mechanical cycle leads to a dissipated energy given by the triangular shadowed area in Fig. 3:

E adh = 1 2 k a ∆ 2 (8) 
It is thus constant all over the intermittent contact domain and does not depend on the oscillation amplitude A.

Vertical forces acting on the nanotube in permanent contact

• Forces expressions due to the attractive and repulsive interactions Compared to the set of equations 5, the dierence is the time during which the equivalent attractive spring constant acts over the oscillation period:

F i (θ) = -k r (A cos (θ) -D) f or -θ r ≤ θ ≤ θ r -k a (A cos (θ) -D) f or -π ≤ θ ≤ θ r and θ r ≤ θ ≤ π (9)
In opposition to the intermittent contact case, the attractive force is now exerted twice on the CNT within an oscillation period as depicted in Fig. 6. No change happens for the repulsive force, the expression of the repulsive frequency shift is thus the same as the one given in the equation 6. On the contrary, the attractive contribution increases as soon as the CNT does not unstick from the surface with an instantaneously doubling of the attractive force during the oscillation cycle Fig. 6. The relative frequency shift∆ω a_p becomes :

∆ω a_p ω 0 = 1 2πk c k a π -arccos (d) + d √ 1 -d 2 (10) 
The result given by the equation 10 (permanent contact) can be readily compared to the one given by the equation equation 7 (intermittent contact) by setting δ = d. One gets the result :

∆ω a_i ω 0 d=δ = 1 2 ∆ω a_p ω 0 d=δ (11) 
Equality 11 shows that the frequency shift must jump to a higher value at the transition from the intermittent contact to the permanent one.

The jump can be understood with the help of the plot shown in gure 6: the supplementary attractive force in permanent contact has a phase shift of π as respect to the initial intermittent contact one of gure 4. This phase lag inverses the attractive contribution to the frequency shift. A similar conclusion had been found earlier [START_REF] Boisgard | Hysteresis generated by attractive interaction: Oscillating behavior of a vibrating tip-microlever system near a surface[END_REF] for an attractive van der Waals force on a vibrating tip.

• Dissipation

As soon as the nanotube becomes unable to pull o the surface, the asymmetry in force in each oscillation cycle vanishes, and no additional energy will be dissipated. 

Summary -table

ω 0 = 1 2πkc k r arccos (d) -d √ 1 -d 2 + ka 2 arccos (d -δ) -arccos (d) + d √ 1 -d 2 -(d + δ) 1 -(d -δ) 2 E int = 1 2 k a ∆ 2 per- manent ∆ω ω 0 = 1 2πkc k r arccos (d) -d √ 1 -d 2 + k a π -arccos (d) + d √ 1 -d 2 E int = 0
Table 1: Final expressions of the pulsation shifts and dissipation obtained from the model including the elastic bending force and the pull o force.

Figure 7 presents the theoretical curves calculated from the expressions given in the table 1.

The three regime domains are highlighted :

1. no interaction for d > 1: no frequency shift , no added dissipation 2. intermittent contact regime for -0.8 < d < 1 : rst negative frequency shift due to main attractive force then increasing repulsive contribution ; contact dissipated energy due to adhesion hysteresis.

3. permanent contact regime for d < -0.8: decreasing frequency and no additional energy dissipated.

Note the frequency jump and vanishing of the dissipated energy happen at the same vertical location. The attractive force with the distance necessary to unstick ∆ reduces the size of the intermittent contact domain from 2A (as reported previously [START_REF] Dietzel | Mechanical properties of a carbon nanotube xed at a tip apex: A frequency-modulated atomic force microscopy study[END_REF] when non attractive force was considered) to 2A -∆.

Amplitude inuence

In contrary to the pure elastic case [START_REF] Dietzel | Mechanical properties of a carbon nanotube xed at a tip apex: A frequency-modulated atomic force microscopy study[END_REF], the presence of the normalized distance δ in the attractive parts (table 1) predicts change in the frequency shift as a function of the oscillation amplitude (gure 8). Varying the oscillation amplitude corresponds to change of the adhesive interaction time within the oscillation cycle : the smaller the amplitude, the larger the adhesive interaction time in the oscillation period. Thus the balance between the volume elastic repulsive force and the surface adhesive force can be experimentally nely tuned by changing the oscillation amplitude.

As shown in gure 8, when δ increases (corresponding to small amplitudes), the elastic bending contribution on the frequency shift can disappear up to the point where only the frequency jump remains. 1. no interaction : rst the CNT does not interact with the surface, the resonance frequency is the oscillator free one, the frequency shift is null and no additional dissipation occurs.

2. intermittent contact: the frequency rst decreases due to the attractive interaction then increases as the bending of the NT increases. The dissipated energy varies only slightly during the intermittent regime and exhibits a weak dependence on the oscillation amplitude.

3. permanent contact: the transition between the two regimes is marked by the rapid frequency increase and, simultaneously, by a vanishing dissipated energy.

Note also that the size of the intermittent regime domain reduces as the oscillation amplitude decreases.

Frequency shifts

The frequency shifts displayed in gure 9b are tted with the expressions given in table 1. For the four amplitudes, the calculated values are in good agreement with the overall experimental frequency variations . The parameters are the normalized stiness k r /k c and k a /k c as the distance ∆ is an experimental value given by the location of the frequency jump at the transition between the intermittent and permanent regime : ∆ ≈ 75 nm.

The normalized equivalent stiness values for the dierent amplitudes are kr kc ≈ 0.0015 and ka kc ≈ 0.003.Those stiness ratio are coherent with the assumption that the nanotube should display the softest stiness as compared to the cantilever and the contact stiness. Assuming a value of the cantilever stiness of 30N.m -1 gives a bending stiness of k r ≈ 0.04 N.m -1 and k a ≈ 0.1 N.m -1 . The k r value is of the same order of magnitude than the CNT bending stiness assuming the CNT to be a cylinder : k b = πE r 4 L 3 ≈ 0.08 N.m -1 . The pull o force can be evaluated : F adh = k adh ∆ ≈ 7.5 nN. This value can be compared to values obtained with other studies. Walkeajärvi et al [START_REF] Walkeajärvi | Bending of multiwalled carbon nanotubes over gold lines[END_REF] calculated an adhesive force between multi-wall CNT with smaller radius (3-13 nm) and lithographically fabricated gold lines of 0.2 to 2.3 nN , values similar but slightly inferior than the one obtained here.

Assuming a nanotube gliding along the graphite surface, we can consider the adhesion force of a tube on a surface [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF] :

F adh = H √ r 12 √ 2d 5/2 c
L c with d c = 0.165 nm the smallest distance between the nanotube and the surface, H = 5.10 -20 J the Hamaker constant and L c the contact length between the nanotube and the plane surface. The value of F adh gives a contact length of about 6 nm.

Dissipation

From k adh and ∆ values given by the frequency shifts, the dissipated energy due to the mechanical hysteresis can also be evaluated : E dissipated = 1 2 k adh ∆ 2 ≈ 1710 eV . This value has to be compared to the experimental interaction energy. Disregarding other processes as inuence of the friction force, we concentrate on the height of the rst energy jump at d = D A = 1. This height is : E int ≈ 1790 -2090 eV , again an experimental value in good agreement with calculated one. This means that rst, the values get from the model could be meaning-full despite the crude assumptions and, second, conrms the main origin of energy dissipation : adhesive mechanical instability [START_REF] Dürig | Interaction sensing in dynamic force microscopy[END_REF][START_REF] Dietzel | Mechanical properties of a carbon nanotube xed at a tip apex: A frequency-modulated atomic force microscopy study[END_REF] as opposed to viscoelastic processes [START_REF] Boisgard | Analysis of mechanisms inducing damping in dynamic force microscopy : Surface viscoelastic behavior and stochastic resonance process[END_REF][START_REF] Dubourg | Probing viscosity at the nanometer scale in a polymer melt with an oscillating tip[END_REF] 

Frequency shifts

Here again the calculated values are in good agreement with the experimental frequency shifts (gure 10) using the observed pull o length ∆ ≈ 30 nm and the parameters kr kc ≈ 4.10 -5

and ka kc ≈ 0.002. With the cantilever stiness k c ≈ 30N.m -1 , it gives k r ≈ 1.10 -4 N.m -1 and k a ≈ 6.10 -2 N.m -1 . The bending stiness is again of the same order than the calculated bending stiness k b = πE r 4 L 3 ≈ 4.10 -4 N.m -1 . The adhesive force is : F adh = k adh ∆ ≈ 1.8 nN , thus a smaller value than for the MWCNT. Whittaker et al [START_REF] Whittaker | Measurement of the adhesion force between carbon nanotubes and a silicon dioxide substrate[END_REF] performed adhesion measurements of single-wall CNT embedded in silicon dioxide trenches, they obtained values around 10nN.

This value is larger than the one obtained here, but the length of the CNT embedded in the structure could explain the dierence.

Assuming again a nanotube gliding along the graphite surface, we evaluate a contact length of about 7 nm , a value slightly larger than the multi-wall CNT one.

Dissipation

The calculated value gives an amount of additional dissipated energy E diss = 1 2 k adh ∆ 2 ≈ 170 eV , thus one order of magnitude smaller than for the multi-wall CNT. The experimental dissipation energy remains roughly constant during the intermittent contact regime, except for the highest amplitude where probably a second nanotube is involved in the contact with the surface. The height of the plateau varies from 120 to 230 eV , thus the calculated value is close to the experimental ones. There is a good agreement between the calculated curves 8 and experimental ones 11. At the amplitude of 38 nm, the negative part of the frequency shift vanishes, the frequency shift becomes positive as soon as the CNT touches the surface. When the amplitude gets even lower, the intermittent domain disappears. As soon as the CNT touches the surface, it is unable to unstick. In other words, the elastic force is unable to overcome the adhesive force. As shown with these experimental data, it is easy to nd the threshold amplitude below which the bending elasticity gives a negligible contribution, in turn has a weak eect, if any, on the contrast of an AFM image. As a consequence, it is of primary importance to determine the balance between the two forces in order to better understand the AFM images..

Conclusion

In recorded in approach curves done with multi and single-wall carbon nanotubes. As expected, a smaller equivalent stiness is found for the single-wall as opposed to the multi-wall nanotube.

The equivalent attractive stiness and the distance necessary to unstick enable adhesion force evaluation with values comparable to other studies. Thus this model may be a way not only to understand AFM images but also to quantify dierent CNT mechanical behaviors.

This understanding and quantication of the CNT-probe properties should help to nd good conditions to image complex sample. As the CNT behavior strongly depends on its boundary conditions on both the tip and surface, it could help to nd a protocol to ensure its xation to a support when the anchoring is not reached.

In spite of the excellent agreement between the theoretical description and the experimental values, a more exhaustive analysis must include several other parameters. In particular, the crude assumption used cannot allow to understand the increase of the dissipated energy during the intermittent contact. Further developments should include a tangential force component like friction, and a change of the contact area as a function of the vertical displacement. The inuence of the angle between the surface and the nanotube probe is under study: nanotubes with a large angle as respect to the tip axis usually have a small repulsive stiness value.

Figure 1 :

 1 Figure 1: Scanning electron microscopy image of a tip/cantilever on which an multi-wall CNT has been welded at the tip apex (lighter circle).

Figure 3 :

 3 Figure 3: Scheme of the forces acting on the nanotube against CNT displacement when interacting with the surface : during the approach, only elastic repulsion when the nanotube touches the surface (elastic spring constant k r ); and during the retract elastic repulsion then an attractive force to unstick from the surface during the distance until it reaches the force threshold F adh (spring constant k a ).

Figure 4 :

 4 Figure 4: Variation of the force acting on the CNT with the phase variable θ = ωt during one oscillation period for intermittent contact. Stiness values are k r = 0.0001 N.m -1 and k a = 0.001 N.m -1 .

Figure 5 :

 5 Figure 5: Relative frequency shift variation with normalized distance d. Fig.a : relative frequency shift for elastic repulsive interaction (according equation 6) for two CNT stiness values : 0.001k c and 0.002k C . Fig.b : relative frequency shift variation (expression 7) for attractive adhesive interaction with equivalent adhesive stiness of 0.01k c and 0.02k c . Fig.c : relative frequency shift variation (expression 7) with normalized distance for attractive adhesive interaction with an equivalent adhesive stiness of 0.01k c and two normalized sticking distances δ = ∆ A : 0.1A and 0.2A .

Figure 6 :

 6 Figure 6: Variation of the force acting on the CNT with the phase variable θ = ωt during one period for permanent contact

Figure 7 :

 7 Figure 7: Theoretical variation of relative frequency shift and dissipation obtained from the model. The parameters values are kr kc = 0.0001, ka kc = 0.001 and δ = 0.2 for the normalized pulsation. To obtain the energy dissipated value, the cantilever stiness is 30 N.m -1 and the oscillation amplitude is 200 nm.

Figure 8 :Figures 9b and c present experimental relative frequency shifts ∆ν ν 0 Figure 9 :

 809 Figure 8: Plot of the theoretical relative pulsation shift against the normalized distance d for dierent values of δ. The parameter values are : k r /k c = 0.0001; k a /k c = 0.001; and δ = 0.1; 0.49; 0.87; 1.35; 1.73. Changing δ = ∆ A value can be done experimentally by changing

  Figure 9b : Experimental relative frequency shift (color dots) compared to model expressions (black solid lines) for four oscillation amplitudes.Figure 9c: corresponding interaction energy dissipated. The three regimes predicted by the model are clearly identied both in the frequency shifts and dissipated energies. From the right to the left :

  .

Figure 10 Figure 10 :

 1010 Figure10presents data obtained from a single CNT directly grown on a Si tip. The three domains corresponding to the dierent regimes (from the right to the left : no interaction, intermittent contact and permanent contact) can be again distinguished unambiguously both in the frequency shift and interaction dissipated energy.

4. 3 Figure 11 :

 311 Figure 11: Data recorded on a MWCNT. Fig.9a : MEB image of the MWCNT of approximately 2 µm long and 50nm diameter. Fig.9b: Variation of the normalized experimental pulsation with normalized distance for four amplitudes.

  this paper we have presented a comparative study of the mechanical properties of SWNT and MWNT xed at an AFM tip apex. Since the beginning of the development of the CNT synthesis, CNT have been considered as excellent materials to use as a nanoprobe. Consequently, the obvious main goal of the present work is to improve a little more our basic understanding of the CNT behaviors at a tip apex. Beside a systematic experimental study of the CNT properties, a rather crude, but analytical, model was developed. The model includes two spring constants, one related to the elastic bending of the NT, the second to the pull o force required to unstick the NT. The calculated values are in excellent agreement with the experimental results
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presents the nal pulsation shift and dissipation expressions in the intermittent and permanent contact of the CNT with the surface. Those expressions are obtained by adding the repulsive and attractive contributions.
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