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2 CHRISTIAN MERCAT1. IntrodutionRiemann surfaes theory was a major ahievment of XIXth enturymathematis, setting the framework where modern omplex analysisbloomed. Nowadays, surfaes are intensively used in omputer sienefor numeri omputations, ranging from visualization to pattern reog-nition and approximation of partial di�erential equations. A lot ofthese omputations involve, at the ontinuous level, analyti funtions.But very few algorithms are about this spei�ity, although analytifuntions form a relatively small vetor spae among the spae of fun-tions, problems are usually rudely disretized in a way that doesn'ttake advantage of analytiity.The theory of disrete Riemann surfaes aims at �lling this gap andsetting the theoretial framework in whih the notion of disrete ana-lytiity is set on solid grounds.Most of the results in this paper are a straightforward appliationof the ontinuous theory [1, 2℄ together with the results in [3, 4, 5℄,to whih we refer for details. We de�ne the disrete period matrix,whih is twie as large as in the ontinuous ase: the periods of aholomorphi form on the graph and on its dual are in general di�erent,but the ontinuous limit theorem, given a re�ning sequene of ritialmaps, ensures that they onverge to the same value. The main tool isthe same as in the ontinuous ase, the Riemann bilinear relations.2. Disrete Riemann surfaes2.1. Disrete Hodge theory. We reall in this setion basi de�ni-tions and results from [4℄ where the notion of disrete Riemann surfaeswas de�ned. We are interested in disrete surfaes given by a ellulardeomposition } of dimension two, where all faes are quadrilaterals(a quad-graph [6, 7, 8℄). Its verties and diagonals de�ne, up to ho-motopy and away from the boundary, two dual ellular deompositions� and ��: The edges in ��1 are dual to edges in �1, faes in ��2 aredual to verties in �0 and vie-versa. Their union is denoted the double� = � t ��. A disrete onformal struture on � is a real positivefuntion � on the unoriented edges satisfying �(e�) = 1=�(e). It de�nesa genuine Riemann surfae struture on the disrete surfae: Choosea length Æ and realize eah quadrilateral by a lozenge whose diagonalshave a length ratio given by �. Gluing them together provides a atriemannian metri with oni singularities at the verties, hene a on-formal struture [9℄. It leads to a straightforward disrete version ofthe Cauhy-Riemann equation. A funtion on the verties is disrete



DISCRETE RIEMANN SURFACES 3x y x0y0
Figure 1. The verties and diagonals of a quadrilateralde�ne a pair of dual edges.

2. The fae dual to a vertex.1. Dual edges.0. The vertex dual to a fae.F � ee� vv1v2 vn
Figure 2. Duality.holomorphi i� for every quadrilateral (x; y; x0; y0) 2 }2,(2.1) f(y0)� f(y) = i �(x; x0) (f(x0)� f(x)) :We reall elements of de-Rham ohomology, doubled in our ontext:The omplex of hains C(�) = C0(�) � C1(�) � C2(�) is the ve-tor spae span by verties, edges and faes. It is equipped with aboundary operator � : Ck(�)! Ck�1(�), null on verties and ful�lling�2 = 0. The kernel ker � =: Z�(�) of the boundary operator are thelosed hains or yles. Its image are the exat hains. It provides thedual spaes of forms, alled ohains, Ck(�) := Hom(Ck(�); C ) with a



4 CHRISTIAN MERCATx y x0y0 `(x; x0)`(y; y0)
Figure 3. The disrete Cauhy-Riemann equation.oboundary d : Ck(�)! Ck+1(�) de�ned by Stokes formula:Z(x;x0) df := f (�(x; x0)) = f(x0)� f(x); ZZF d� := I�F �:A oyle is a losed ohain and we note � 2 Zk(�).These spaes are equipped with the anonial salar produt, weigthedaording to � on edges and averaged on the graph and its dual:(�; �) := 12 Xe2�1 �(e)�Ze ���Ze �� :Duality of omplexes allows us to de�ne a Hodge operator � on formsby � : Ck(�) ! C2�k(�)C0(�) 3 f 7! �f : ZZF �f := f(F �);C1(�) 3 � 7! �� : Ze �� := ��(e�)Ze� �;(2.2) C2(�) 3 ! 7! �! : (�!)(x) := ZZx� !:It ful�lls �2 = (�IdCk)k. The endomorphism � := �d � d � � � d � dis the usual disrete Laplaian: Its formula on a funtion at a vertexx 2 �0 with neighbours x1; : : : ; xV 2 �0 is the usual weighted averaged



DISCRETE RIEMANN SURFACES 5di�erene: (�(f)) (x) = VXk=1 �(x; xk) (f(x)� f(xk)) :The spae of harmoni forms is de�ned as its kernel .The Hodge star and the laplaian are real operators. Sine �2 = �Idon funtions, it is natural to onsider them on omplexi�ed ohains.The disrete holomorphi forms are speial omplex harmoni forms:a 1-form(2.3) � 2 C1(�) is holomorphi i� d� = 0 and � � = �i�;that is to say if it is losed and of type (1; 0). Let d0, resp. d00 theompositions of the exterior derivative with the projetion on the spaeof (1; 0), resp. (0; 1)-forms, Eq. (2.3) is equivalent to d0� = 0. We willnote � 2 
1(�). A funtion f : �0 ! C is holomorphi i� df isholomorphi, whih is equivalent to (2.1) and we note f 2 
0(�).In the ompat ase, � � d � is the adjoint d� of the oboundaryoperator d and the Hodge theorem orthogonally deomposes forms intoexat, oexat and harmoni,Ck(�) = Im d �? Im d� �? Ker �;harmoni forms are the losed and o-losed ones, and harmoni 1-formare the orthogonal sum of holomorphi and anti-holomorphi ones:Ker � = Ker d \Ker d� = Ker d0 �? Ker d00:2.2. Wedge produt. We onstrut a wedge produt on } suh that� the anonial weighted hermitian salar produt reads as ex-peted (�; �) = ZZ � ^ ���;� and the oboundary operator d} on }, is a derivation for thisprodut ^ : Ck(})� C l(})! Ck+l(}).



6 CHRISTIAN MERCATIt is de�ned by the following formulae, for f; g 2 C0(}), �; � 2 C1(})and ! 2 C2(}):(f � g)(x) :=f(x) � g(x) for x 2 }0;(2.4) Z(x;y) f � � :=f(x) + f(y)2 Z(x;y) � for (x; y) 2 }1;(2.5) ZZ(x1;x2;x3;x4)� ^ � :=14 4Xk=1 Z(xk�1;xk) � Z(xk;xk+1)� � Z(xk+1;xk) � Z(xk;xk�1)�;(2.6) ZZ(x1;x2;x3;x4)f � ! :=f(x1)+f(x2)+f(x3)+f(x4)4 ZZ(x1;x2;x3;x4)!(2.7) for (x1; x2; x3; x4) 2 }2:A form on } an be averaged into a form on �: This map A fromC�(}) to C�(�) is the identity for funtions and de�ned by the followingformulae for 1 and 2-forms:Z(x;x0) A(�}) := 120B� Z(x;y) +Z(y;x0)+Z(x;y0)+ Z(y0;x0)1CA�};(2.8) ZZx� A(!}) := 12 dXk=1 ZZ(xk;yk;x;yk�1)!};(2.9)where notations are made lear in Fig. 4. The mapA is neither injetivenor surjetive in the non simply-onneted ase, so we an neither de�nea Hodge star on } nor a wedge produt on �. Its kernel on 1-forms isKer (A) = Vet (d}"), where " is the bionstant, +1 on � and �1 on ��.But d�A = Ad} so it arries oyles on } to oyles on �. Its imageare these oyles of � verifying that their holonomies along yles of� only depend on their homology on the ombinatorial surfae. Givena 1-oyle � 2 Z1(�) with suh a property, a orresponding 1-oyle� 2 Z1(}) is built in the following way: Choose an edge (x0; y0) 2 }1;for an edge (x; y) 2 }1 with x and x0 on the same leaf of �, hoosetwo paths �x;x0 and �y0 ;y on the double graph �, from x to x0 and y0to y respetively, and de�ne(2.10) Z(x;y) � := Z�x;x0 �+ Z�y0;y � � I[℄ �



DISCRETE RIEMANN SURFACES 7where [℄ = [�x;x0 + (x0; y0)+ �y0;y +(y; x)℄ is the lass of the full ylein the homology of the surfae. Changing the base points hange � bya multiple of d}".It follows in the ompat ase that the dimensions of the harmoniforms on } (the kernel of �A) modulo d", as well as the harmoniforms on � with same holonomies on the graph and on its dual, aretwie the genus of the surfae, as expeted. Unfortunately, the spaeIm A = H? � Im d is not stable by the Hodge star �. We ould never-theless de�ne holomorphi 1-forms on } but their dimension would bemuh smaller than in the ontinuous, namely the genus of the surfae.Critiality provides onditions whih ensure that the spae �Im A is\lose" to Im A.x xx1x2 y2y1 yd xd(2.8) (2.9)yy0 x0
Figure 4. Notations.We onstrut an heterogeneous wedge produt for 1-forms: with�; � 2 C1(�), de�ne � ^ � 2 C1(}) by(2.11) ZZ(x;y;x0;y0)� ^ � := 120B� Z(x;x0)�Z(y;y0)� + Z(y;y0)�Z(x0;x)�1CA :It veri�es A(�}) ^A(�}) = �} ^ �}, the �rst wedge produt beingbetween 1-forms on � and the seond between forms on }. The usualsalar produt on ompatly supported forms on � reads as expeted:(2.12) (�; �) = 12 Xe2�1 �(e)�Ze ���Ze ��� = ZZ}2 � ^ ���



8 CHRISTIAN MERCAT2.3. Energies. The L2 norm of the 1-form df , alled the Dirihletenergy of the funtion f , is the mean of the usual Dirihlet energies oneah independant graph:ED(f) := 12kdfk2 = 12 (df; df) = 14 X(x;x0)2�1 �(x; x0) jf(x0)� f(x)j2(2.13) = ED(f j�) + ED(f j��)2 :Harmoni maps minimize this energy among funtions ful�lling ertainboundary onditions.The onformal energy of a map measures its onformality defet, itis null on holomorphi funtions:(2.14) EC(f) := 14kdf � i � dfk2:It is related to the Dirihlet energy through the same formula as in theontinuous:EC(f) = 14 (df � i � df; df � i � df)= 14kdfk2 + 14k�i � dfk2 + 12Re(df; �i � df)= 12kdfk2 + 12ImZZ�2 df ^ df= ED(f) �A(f)(2.15)where the area of the image of the appliation f in the omplex planehas the same formula(2.16) A(f) = i2 ZZ�2 df ^ dfas in the ontinuous ase sine, for a fae (x; y; x0; y0) 2 �2, the algebraiarea of the oriented quadrilateral �f(x); f(x0); f(y); f(y0)� is given byZZ(x;y;x0;y0)df ^ df = i Im�(f(x0)� f(x))(f(y0)� f(y))�= �2iA�f(x); f(x0); f(y); f(y0)�:3. Period matrixWe use the onvention of Farkas and Kra [1℄, hapter III, to whih werefer for details. Consider (}; �) a disrete ompat Riemann surfae.



DISCRETE RIEMANN SURFACES 93.1. Intersetion number, on � and on }. For a given simple (real)yle C 2 Z1(�), we onstrut a harmoni 1-form �C suh that HA �Counts the algebrai number of times A ontains an edge dual to anedge of C: It is the solution of a Neumann problem on the surfae utopen along C (see [3℄ for details). It follows from standard homologytehnique that �C depends only on the homology lass of C (all theyles whih di�er from C by an exat yle �A) and an be extendedlinearly to all yles as �� : H1(�)! C1(�); it ful�lls, for a losed form�,(3.1) IC � = ZZ} �C ^ �;and a basis of the homology provides a dual basis of harmoni formson �. Beware that if the yle C 2 Z1(�) is purely on �, then thisform �C j� = 0 is null on �.The intersetion number between two yles A;B 2 Z1(�) is de�nedas(3.2) A �B := ZZ} �A ^ �B:It is obviously linear and antisymmetri, it is an integer number forinteger yles. Let's stress again that the intersetion of a yle on �with another yle on � is always null. A yle C 2 Z1(}) de�nesa pair of yles on eah graph C� 2 Z1(�), C�� 2 Z1(��) whih arehomologous to C on the surfae, omposed of portions of the boundaryof the faes on � dual to the verties of C. They are uniquely de�nedif we require that they lie \to the left" of C as shown in Fig.5. Bythe proedure (2.10) applied to �C� + �C�� , we onstrut a 1-oyle�C 2 Z1(}) unique up to d", and sine 8�; d"^� = 0, Eq. (3.2) de�nesan intersetion number on Z1(}). Unlike the intersetion number on �,this one has all the usual expeted properties. In partiular Eq. (3.2)holds for A;B 2 Z1(}).3.2. Canonial dissetion, fundamental polygon. The omplex} being onneted, onsider a maximal tree T � }1, that is to say Tis a Z2-homologially trivial hain and every edge added to T forms ayle. A anonial dissetion or ut-system � of the genus g disreteRiemann surfae } is given by a set of oriented edges (ek)1�k�2g suhthat the yles � � (T [ ek) form a basis of the homology group H1(})verifying, for 1 � k; ` � g(3.3) �k � �` = 0; �k+g � �`+g = 0; �k � �`+g = Æk;`:



10 CHRISTIAN MERCAT
Figure 5. A path C on } de�nes a pair of paths C�and C�� on its left.They atually form a basis of the fundamental group �1(}) and thede�ning relation among them is (noted multipliatively)(3.4) gYk=1�k�k+g��1k ��1k+g = 1:The onstrution of suh a basis is standard and we won't repeat theproedure. What is less standard is the interpretation of Eq. (3.4) interms of the boundary of a fundamental domain, disretization intro-dues some subtleties (that an safely be skept in �rst instane). Weend up with the familiar 2g � 2g intersetion numbers matrix on }.Considering T [ ek as a rooted graph, we an prune it of all itspending branhes, leaving a simple losed loop ��k , attahed to theorigin O by a simple path �k (see Fig. 6), yielding the yle �k. Thesethree yles are deformation retrat of one another, ��k � �k � T [ ekhene are equal in homology.In the ontinuous ase, a basis of the homology an be realized by2g simple ars, transverse to one another and meeting only at the basepoint. It de�nes an isometri model of the surfae as a fundamentaldomain homeomorphi to a dis and bordered by 4g ars to identifypairwise. In the disrete ase, by de�nition, the set }n� of the ellular



DISCRETE RIEMANN SURFACES 112: 3:1: Figure 6. 1. A maximal rooted tree in a quadrilateraldeomposition of the torus. 2. An additional edge de�nesa rooted yle �1, pruned of its dangling trees. 3. Its un-rooted version, the simple loop ��1 .omplex minus the edges taking part into the yles basis is homeomor-phi to a dis hene the surfae is realized as a polygonal fundamentaldomain M whose boundary edges are identi�ed pairwise.But it is sometimes impossible to hoose a basis of the homologyverifying (3.3) by simple disrete yles whih are transverse to oneanother. For instane, if the path �k is not empty, the yle �k isnot even simple. Moreover, some edges may belong to several yles.In this ase, the edges on the boundary of this fundamental polygonan not be assigned a unique element of the basis or its inverse, andtherefore an not be grouped into only 4g ontinuous paths to identifypairwise but more than 4g.In fat, the information ontained into the basis � is more thansimply this polygon, the set of edges omposing the onatenated yle(3.5) (�1;�g+1;��11 ;��1g+1;�2; : : : ;��1g ;��12g )enodes a ellular omplex M+ whih is not a ombinatorial surfaeand onsists of the fundamental polygon M plus some dangling trees,orresponding to the edges whih belong to more than one yle orpartiipate more than one in a yle (the paths �k), as exempli�edin Fig.7. By onstrution, the edge ek belongs to the yle �k only,hene these trees are in fat without branhes, simple paths whoseonly leaf is the base point O. To retrieve the surfae, the edges of thisstruture M+ are identi�ed group-wise, an edge partiipating k timesin yles will have [k=2℄+2 representatives to identify together, two onthe fundamental polygon and the rest as edges of dangling trees.Eliminating repetition, that is to say looking at (3.5) not as a se-quene of edges but as a simpli�ed yle (or a simpli�ed word in edges),thinsM+ intoM, pruning away the dangling paths. The fundamental



12 CHRISTIAN MERCAT1: 2: 3:Figure 7. Three di�erent fundamental polygons of adeomposition of the torus (g = 1) by three quadrilat-erals: 1. The standard fundamental domain where the4g paths are not adapted to }. 2. M+ is omposed ofedges of } omposing 4g ars (whih may have portionsin ommon) to identify pairwise, eah edge orrespondsto an element of the basis � or its inverse, exept foredges of \dangling trees" whih are assoiated with twosuh elements. 3. M is omposed of edges of } ompos-ing more than 4g ars to identify pairwise, there is noorrespondene with a basis of yles.polygon boundary loses its struture as 4g ars to be identi�ed pairwise,in general a basis yle will be disonneted around the fundamentaldomain and a given edge an not be assigned to a partiular yle.This peuliarity gives a more omplex yet well de�ned meaning to theontour integral formula for a 1-form � de�ned on the boundary edgesof M+,(3.6) I�M � = 2gXk=1 I�k � + I��1k �:This basis gives rise to yles �� and ��� whose homology lasses forma basis of the group for eah respetive graph, that we ompose into�� de�ned by ��k = ��k ; ��k+g = ���k ;(3.7) ��k+2g = ���k+g; ��k+3g = ��k+g ;for 1 � k � g so that while the intersetion numbers matrix on } isgiven by the 2g � 2g matrix(3.8) (�k � �`)k;` = � 0 I�I 0� ;



DISCRETE RIEMANN SURFACES 13the intersetion numbers matrix on � is the 4g � 4g matrix with thesame struture(3.9) (��k � ��̀)k;` = � �� �� �0BB� 0 0 I 00 0 0 I�I 0 0 00 �I 0 01CCA ������ :3.3. Bilinear relations.Proposition 3.1. Given a anonial dissetion �, for two losed forms�; �0 2 Z1(}),(3.10) ZZ} � ^ �0 = gXj=1  I�j � I�j+g�0 � I�j+g� I�j �0! ;for two losed forms �; �0 2 Z1(�),(3.11) ZZ} � ^ �0 = 2gXj=1  I��j � I��j+2g�0 � I��j+2g� I��j �0! :Proof 3.1. Eah side is bilinear and depends only on the ohomol-ogy lasses of the forms. Deompose the forms onto the ohomologybasis (�k). On �, use Eq (3.15) for the LHS and the duality propertyEq. (3.14) for the RHS. On }, use their ounterparts. }Notie that for a harmoni form � 2 H1(�), the form �� is losed aswell, therefore its norm is given by(3.12) � 2 H1(�) =) k�k2= 2gXj=1  I�j � I�j+2g��� � I�j+2g� I�j ���! :3.4. Basis of harmoni forms, basis of holomorphi forms. Wede�ne ��, the basis of real harmoni 1-forms, dual to the homologybasis ��, as desribed in Se. 3.1,��k := ���k+2g and��k+2g := ����k for 1 � k � 2g(3.13)whih verify I��k �` = Æk;`;I��k+2g �`+2g = Æk;`;(3.14)



14 CHRISTIAN MERCATand dually, the intersetion matrix elements are given by(3.15) ��k � ��̀ = ZZ} ��k ^ ��̀ = (��k ;� � ��̀):On }, the elements �}k := ��k+g and �}k+g := ���k for 1 � k � g,de�ned up to d", verify A(�}k ) = ��k + ��k+g, A(�}k+g) = ��k+2g + ��k+3gand form a basis of the ohomology on } dual to � as well,�}k := ��}k+g and�}k+g := ���}k for 1 � k � g;(3.16)they ful�ll the �rst identity in Eq.(3.15) but the seond is meaninglessin general sine � an not be de�ned on }. We will drop the mention� when no onfusion is possible.Proposition 3.2. The matrix of inner produts on �,(3.17)(�k; �`)k;` = ZZ} �k^���` = (+ H�k+2g ��`; 1 � k � 2g;� H�k�2g ��`; 2g < k � 4g: =: �A DB C�is a real symmetri positive de�nite matrix.Proof 3.2. It is real beause the forms are real, and symmet-ri beause the salar produt (2.12) is skew symmetri. De�nitionEq. (3.13) and Eq. (3.1) lead to the integral formulae. Positivity fol-lows from the bilinear relation Eq. (3.11): for � = P4gk=1 �k �k, with�k 2 C; P4gk=1 j�kj2 > 0,k�k2 = 2gXj=1 "Z�j � Z�2g+j ��� � Z�2g+j � Z�2j ���#= 4gXk;`=1 �k ��` 2gXj=1 "Z�j �k Z�2g+j ��` � Z�2g+j �k Z�2j ��`#= 4gXk;`=1 �k ��` (�k; �`) > 0:(3.18) }The form �k is supported by only one of the two graphs � or ��,the form ��k is supported by the other one, and the wedge produt�� ^ �0� = 0 is null for two 1-forms supported by the same graph.Therefore the matries A and C are g � g-blok diagonal and B is



DISCRETE RIEMANN SURFACES 15anti-diagonal.(3.19)A = �A� 00 A��� ; B = � 0 B��;�B�;�� 0 � ; C = �C�� 00 C�� :The matries of intersetion numbers (3.9) and of inner produts di�eronly by the Hodge star �. Beause � preserves harmoni forms and theinner produt, we get its matrix representation in the basis �,(3.20) � = ��D A�C B�and beause �2 = �1,B2 � C �A+ I = 0(3.21) A �B = tB �A(3.22) C � tB = B � C:(3.23)On }, while the Hodge star � an not be de�ned, we an obviouslyonsider the following positive salar produt on the lasses of losedforms modulo d", to whih the set (�}k ) belong:(�}; �}) := �A(�}); A(�})�= X(x;y;x0;y0)2}2�=�(x;x0); ��=�(y;y0)0BBB�t R(x ;y ) �R(y ;x0) �R(x0;y0) �R(y0;x ) �1CCCA �0BB�+�+�� +���� ����� ��+��+���� +�+�� ��+�� ���������� ��+�� +�+�� +������+�� ����� +���� +�+��1CCA �0BBB�R(x ;y ) ��R(y ;x0) ��R(x0;y0) ��R(y0;x ) ��1CCCA :and it yields(3.24) (�}k ; �}̀)k;` = � A� +A�� tB��� + tB���B��� +B��� C� + C�� � ;whih, in general, an not be understood as the periods of a set offorms on } along the basis �.Let's deompose the spae of harmoni forms into two orthogonalsupplements,(3.25) H1(�) = H1k �? H1?where the �rst vetor spae are the harmoni forms whose holonomieson one graph are equal to their holonomies on the dual, that is to say(3.26) H1k := Vet (�k + �k+g; 1 � k � g or 2g < k � 3g):De�nition (3.13) and Eq. (3.1) imply that(3.27) H1? = Vet (��k � ��k+g; 1 � k � g or 2g < k � 3g):



16 CHRISTIAN MERCATThese elements in the basis (�k+�k+g; ; �k��k+g) for 1 � k � g and2g < k � 3g, are represented by the following invertible matrix:(3.28) 0BB�I 0 tB��� � tB��� A� �A��0 I C� � C�� B��� �B���0 0 tB��� + tB��� A� +A��0 0 C� + C�� B��� +B���1CCA :It implies in partiular that the lower right g � g blok is invertible,therefore so is Eq. (3.24).3.5. Period matrix.Proposition 3.3. The matrix � = C�1 � (i�B) is the period matrixof the basis of holomorphi forms(3.29) �k := (i� �) 2gX̀=1 C�1k;` �`+2gin the anonial dissetion �, that is to say(3.30) I�k �` = (Æk;` for 1 � k � 2g;�k�2g;` for 2g < k � 4g;and � is symmetri, with a positive de�nite imaginary part.The proof is essentially the same as in the ontinuous ase [1℄ andwe inlude it for ompleteness.Proof 3.3. Let !j := �j + i � �j for 1 � j � 4g. These holomorphiforms ful�llPk;j := 12(!k; !j) = (�k; �j) + i (�k;� � �j)(3.31) = (�i R�j+2g !k; 1 � j � 2g;i R�j�2g !k; 2g < j � 4g:(3.32)P is the period matrix of the forms (!) in the homology basis �. The�rst 2g forms (!j)1�j�2g are a basis of holomorphi forms. It has theright dimension and they are linearly independent:2gXj=1 (�j + i�j)(�j + i � �j) = 2gXj=1  (�j + 2gXk=1 �k Bj;k)�j + 2gXk=1 �k Cj;k �2g+j!+i 2gXj=1  (�j + 2gXk=1 �k Bj;k)�j + 2gXk=1 �k Cj;k �2g+j!(3.33)is null, for �; � 2 R only when � = � = 0 beause C is positivede�nite. Similarly for the last 2g forms. The hange of basis i C�1 on



DISCRETE RIEMANN SURFACES 17them provides the basis of holomorphi forms (�). The last 2g rows ofP is the 2g � 4g matrix (B � i I; C) hene the periods of (�) in � aregiven by (I;�). }The �rst identity in Eq.(3.30) uniquely de�nes the basis � and aholomorphi 1-form is ompletely determined by whether its periodson the �rst 2g yles of �, or their real parts on the whole set.Notie that beause C is g�g blok diagonal and B is anti-diagonal,� is deomposed into four g�g bloks, the two diagonal matries formi C�1 and are pure imaginary, the other two form �C�1 � B and arereal.(3.34) � = ��i� �r�r� �i� = � i C�1�� �C�1�� �B��;��C�1� �B�;�� i C�1� � :Therefore the holomorphi forms �k are real on one graph and pureimaginary on its dual,1 � k � g ) �k 2 C1R(�) � i C1R(��)(3.35) g < k � 2g ) �k 2 C1R(��)� i C1R(�):We will all(3.36) �� = �r +�i�the period matrix on the graph � the sum of the real periods of �k,1 � k � g, on �, with the assoiated pure imaginary periods on thedual ��, and similarly for �k, g < k � 2g, the period matrix on ��.It is natural to ask how lose �� and ��� are from one another, andwhether their mean an be given an interpretation. Critiality [3, 4℄answers partially the issue:Theorem 3.1. In the genus one ritial ase, the period matries ��and ��� are equal to the period matrix �� of the underlying surfae �.For higher genus, given a re�ning sequene (}k; �k) of ritial mapsof �, the disrete period matries ��k and ���k onverge to the periodmatrix ��.Proof 3.1. The genus one ase is postponed to Se. 3.6. The on-tinuous limit omes from tehniques in [3, 4℄, developed in [5℄ whihprove that, given a re�ning sequene of ritial maps, any holomorphifuntion an be approximated by a sequene of disrete holomorphifuntions. Taking the real parts, this implies as well that any harmonifuntion an be approximated by disrete harmoni funtions. In par-tiular, the disrete solutions fk to a Dirihlet or Neumann problem ona simply onneted set onverge to the ontinuous solution f beausethe latter an be approximated by disrete harmoni funtions gk and



18 CHRISTIAN MERCATthe di�erene fk � gk being harmoni and small on the boundary, on-verge to zero. In partiular, eah form in the basis (�}̀), provides asolution to the Neumann problem Eq. (3.16) and a similar proedure,detailed afterwards, de�ne a onverging sequene of forms �}̀, yieldingthe result. }We an try to repliate the work done on � on the graph }. Aproblem is that A� + A� and C� + C� need not be positive de�nite.Moreover, the Hodge star � doesn't preserve the spae (A(�}k )) of har-moni forms with equal holonomies on the graph and on its dual, sowe an not de�ne the analogue of �+ i � � on }. We �rst investigatewhat happens when we an partially de�ne these analogues:Assume that for 2g < k � 3g, the holonomies of ��k on � are equalto the holonomies of ��k+g on ��, that is to say C� = C�� =: 12C} andD��� = D��� =: 12D}. It implies that the transposes ful�ll B��� =B��� =: 12B} as well. We an then de�ne �}k�g 2 Z1(}) suh thatA(�}k�g) = ��k+g, uniquely up to d". The last g olumns t(B}; C}) ofthe matrix of salar produt Eq. (3.24) are related to their periods inthe homology basis �} in a way similar to Eq. (3.17). By the samereasoning as before, the forms(3.37) �}k = gX̀=1 C�1} k;` ��}̀+g � i�}̀+g� ; 1 � k � gverify A(�}k ) = �k+�k+g2 and have periods on �} given by the identityfor the �rst g yles and the following g� g matrix, mean of the periodmatries on the graph and on its dual:(3.38) �} = C�1} (i�B}) = �� +���2 :The same reasoning applies when the periods of the forms ��k onthe graph and on its dual are not equal but lose to one another. In theontext of re�ning sequenes, we said that the basis (�}̀), onverges tothe ontinuous basis of harmoni forms de�ned by the same Neumannproblem Eq. (3.16). Therefore(3.39) C� � C�� = o(1); B��� �B��� = o(1):A harmoni form �k+g = o(1) on �� an be added to ��k+g suh thatthere exists �}k�g 2 Z1(}) with A(�}k�g) = ��k+g+�k+g, yielding forms�}k , verifying A(�}k ) = 12(�k + �k+g) + o(1) and whose period matrix is�} + o(1). Sine the periods of �k onverge to the same periods as itsontinuous limit, this period matrix onverges to the period matrix ��of the surfae. Whih is the laim of Th. 3.1.



DISCRETE RIEMANN SURFACES 19In the paper [10℄, R. Costa-Santos and B. MCoy de�ne a periodmatrix on a speial ellular deomposition � of a surfae by squares.They don't onsider the dual graph ��. Their period matrix is equal toone of the two diagonal bloks of the double period matrix we onstrutin this ase. They don't have to onsider the o�-diagonal bloks beausethe problem is so symmetri that their period matrix is pure imaginary.3.6. Genus one ase. Critiality solves partially the problem of hav-ing two di�erent g�g period matries instead of one sine they onvergeto one another in a re�ning sequene. However, on a genus one riti-al torus, the situation is simpler: The overall urvature is null and aritial map is everywhere at. Therefore the ellular deomposition isthe quotient of a periodi ellular deomposition of the plane by twoindependant periods. They an be normalized to (1; � ). The ontinu-ous period matrix is the 1�1-matrix � . A basis of the two dimensionalholomorphi 1-forms is given by the real and imaginary parts of dZ on� and �� respetively, and the reverse. The disrete period matrix isthe 2� 2 matrix �Im � Re �Re � Im �� and the period matries on the graphand on its dual are both equal to the ontinuous one.For illustration purposes, the whole onstrution, of a basis of har-moni forms, then projeted onto a basis of holomorphi forms, yieldingthe period matrix, an be heked expliitely on the ritial maps of thegenus 1 torus deomposed by square or triangular/hexagonal latties:Consider the ritial square (retangular) lattie deomposition of atorus } = (Zei� +Ze�i�)=(2p ei � +2q e�i �), with horizontal parameter� = tan � and vertial parameter its inverse. Its modulus is � = qpe2 i �.The two dual graphs � and �� are isomorphi. An expliit harmoniform ��1 is given by the onstant 1=2p on horizontal and downwardsedges of the graph � and 0 on all the other edges. Its holonomies are1 and 0 on the p, resp. q yles. Considering 1=2q and the dual graph,we onstrut in the same fashion ��2 ; ���1 ; ���2 . The matrix of innerproduts is(3.40) (�k; �`)k;` = 1sin 2� 0BB� qp os 2�qp os 2�os 2� pqos 2� pq 1CCA



20 CHRISTIAN MERCATusing �+1=�2 = 1= sin 2� and ��1=�2 = �1= tan 2� so that the periodmatrix is(3.41) � = qp �i sin 2� os 2�os 2� i sin 2�� :Therefore there exists a holomorphi form whih has the same periodson the graph and on its dual, it is the average of the two half formsof Eq. (3.30) and its periods are (1; qpe2 i �) along the p, resp. q yles,yielding the ontinuous modulus. This holomorphi form is simply thenormalized fundamental form dZpe�i � .In the ritial triangular/hexagonal lattie, we just point out to theneessary hek by onentrating on a tile of the torus, omposed of twotriangles, pointing up and down respetively. We show that there existsan expliit holomorphi form whih has the same shift on the graphand on its dual, along this tile. Let ��; �n and �= the three parametersaround a given triangle. Critiality ours when �� �n+�n �=+�= �� =1. The form whih is 1 on the rightwards and South-West edges and0 elsewhere is harmoni on the triangular lattie. Its pure imaginaryompanion on the dual hexagonal lattie exhibits a shift by i �n in thehorizontal diretion and i (�n + ��) in the North-East diretion alongthe tile. Dually, on the hexagonal lattie, the form whih is �n �� alongthe North-East and downwards edges and 1 � �n �� along the South-East edges, is a harmoni form. Its shift in the horizontal diretion is1, in the North-East diretion 0, and its pure imaginary ompanion onthe triangular lattie exhibits a shift by i �n in the horizontal diretionand i (�n + ��) in the North-East diretion along the tile as before.Hene their sum is a holomorphi form with equal holonomies on thetriangular and hexagonal graphs and the period matrix it omputes isthe same as the ontinuous one. This simply amounts to pointing outthat the fundamental form dz an be expliitely expressed in terms ofthe disrete onformal data.4. Critiality and integrable systemThis theory an be viewed as the simplest (it is linear) of a series ofintegrable theories [8℄. We will present its quadrati ounterpart, whihleads to another version of disrete analyti funtions, based on irlepatterns. Along the way, we will see how disrete exponentials anddisrete polynomials emerge due to integrable systems theory piees oftehnology named the B�aklund or Darboux transform [8℄.



DISCRETE RIEMANN SURFACES 214.1. Critiality. Until now, everything has been purely ombinato-rial, there was no referene to an underlying geometry and no ontin-uous limit. Critiality is what links ombinatoris and geometry, andwhat gives a meaning to approximation theorems.De�nition 4.1. A disrete onformal map (}; �) is ritial if thereexists a disrete holomorphi map Z suh that the quadrilateral faes}2 an be simultaneously embedded into rhombi in the omplex plane.Beause of the Gauss-Bonnet theorem, it is not possible to globallyembed a ompat surfae into the plane, therefore we allow for an atlasof loal ritial maps with a �nite number of �xed loal oni singu-larities. When a ontinuous limit is taken, their number, angle andposition should not hange, and the theorem of isolated singularitieshelps us wipe them out as inessential.It is a simple alulation to hek that if Z is a ritial map, anydisrete holomorphi funtion f 2 
(}) gives rise, through (2.5) to aholomorphi 1-form fdZ.For a holomorphi funtion f , the equality f dZ � 0 is equivalent tof = � " for some � 2 C with " the bionstant "(�) = +1, "(��) = �1.Following DuÆn [11, 12℄, we introdue theDe�nition 4.2. For a holomorphi funtion f , de�ne on a at simplyonneted map U the holomorphi funtions fy, the dual of f , and f 0,the derivative of f , by the following formulae:(4.1) fy(z) := "(z) �f(z);where �f denotes the omplex onjugate, " = �1 is the bionstant, and(4.2) f 0(z) := 4Æ2 �Z zO fydZ�y + � ";de�ned up to ".It is an immediate alulation [4℄ to hek the followingProposition 4.3. The derivative f 0 ful�lls(4.3) d f = f 0 dZ:4.2. �� operator. For holomorphi or anti-holomorphi funtions, dfis, loally on eah pair of dual diagonals, proportional to dZ, resp. d �Z ,we de�ne � and �� operators (not to be onfused with the boundaryoperator on hains) that deompose the exterior derivative into holo-morphi and anti-holomorphi parts yieldingdf ^ df = �j�f j2 + j��f j2� dZ ^ d �Z



22 CHRISTIAN MERCATwhere the derivatives naturally live on faes:In the ontinuous theory, for any derivable funtion f on the omplexplane, the derivatives � = ddx + i ddy and �� = ddx � i ddy with respet toz = x+ i y and �z = x� i y yieldf(z + z0) = f(z0) + z(�f)(z0) + �z(��f)(z0) + o(jzj):These derivatives an be seen as a limit of a ontour integral over asmall loop  around z0:(�f)(z0) = lim!z0 i2A()I fd�z; (��f)(z0) = � lim!z0 i2A()I fdZ;whih leads to the following de�nitions in the disrete setup:� : C0(}) ! C2(})f 7! �f = �(x; y; x0; y0) 7! i2A(x;y;x0;y0) I(x;y;x0;y0) fd �Z�;�� : C0(}) ! C2(})f 7! ��f = �(x; y; x0; y0) 7! � i2A(x;y;x0;y0) I(x;y;x0;y0) fdZ�:A holomorphi funtion f veri�es ��f � 0 and (with Z(u) noted simplyu) �f(x; y; x0; y0) = f(y0)� f(y)y0 � y = f(x0)� f(x)x0 � x :Notie that the statement f = �R �f dz� has no meaning, � is not aderivation endomorphism in the spae of funtions on the verties ofthe double.On the other hand, these di�erential operators an be extended(see [6℄) into operators (the Kasteleyn operator) �20; ��20 : C2(}) !C0(}) simply by transposition, �20 = �t�02, leading to endomorphismsof C0(})�C2(}). They are suh that their omposition, restrited tothe verties }0, gives bak the laplaian:� = 12 �� Æ �� + �� Æ �� :Furthermore, the double derivative �20 Æ �02 is a well de�ned endo-morphism of C0(}).



DISCRETE RIEMANN SURFACES 234.3. Disrete exponential.De�nition 4.4. For a onstant � 2 C , the disrete exponential exp(:�:Z)is the solution of exp(:�:O) = 1d exp(:�:Z) = � exp(:�:Z) dZ:(4.4)We de�ne its derivatives with respet to the ontinuous parameter �:(4.5) Z :k: exp(:�:Z) := �k��k exp(:�:Z):The disrete exponential on the square lattie was de�ned by Lelong-Ferrand [13℄, generalized in [14℄ and studied independently in [6, 15℄.For j�j 6= 2=Æ, an immediate hek shows that it is a rational frationin � at every point: For the vertex x =P Æ ei �k ,(4.6) exp(:�:x) =Yk 1 + �Æ2 ei �k1 � �Æ2 ei �kwhere (�k) are the angles de�ning (Æ ei �k), the set of (Z-images of) }-edges between x and the origin. Beause the map is ritial, Eq. (4.6)only depends on the end points (O;x). It is a generalization of a wellknown formula, in a slightly better version,(4.7) exp(�x) = �1 + �xn �n +O(�2 x2n ) =  1 + �x2n1� �x2n !n +O(�3 x3n2 )to the ase when the path from the origin to the point x = Pn1 xn =P Æ ei �k is not restrited to straight equal segments but to a generalpath of O(jxj=Æ) segments of any diretions.The integration with respet to � gives an interesting analogue ofZ :�k: exp(:�:Z). It is de�ned up to a globally de�ned disrete holo-morphi map. One way to �x it is to integrate from a given �0 ofmodulus 2=Æ, whih is not a pole of the rational fration, along a paththat doesn't ross the irle of radius 2=Æ again.Proposition 4.5. For point-wise multipliation, at every point x 2 }0,(4.8) exp(:�:x) � exp(:� �:x) = 1:The speialization at � = 0 de�nes monomials:(4.9) Z :k: = Z :k: exp(:�:Z)j�=0



24 CHRISTIAN MERCATwhih ful�ll Z :k: = k R Z :k�1: dZ. The anti-linear duality y maps ex-ponentials to exponentials:(4.10) exp(:�:)y = exp(: 4Æ2�� :):In partiular, exp(:1:) = 1y = " is the bionstant.Proof 4.5. The �rst assertion is immediate.The derivation of (4.4) with respet to � yields(4.11)d �k��k exp(:�:Z) = �� �k��k exp(:�:Z) + k �k�1��k�1 exp(:�:Z)� dZwhih implies (4.9).Derivation of exp(:�:)y gives,�exp(:�:)y�0 = 4Æ2 �Z zO exp(:�:) dZ�y + � "(4.12) = 4Æ2 �exp(:�:)� 1� �y + � "= 4Æ2�� exp(:�:)y + � "with �; � some onstants, so that the initial ondition exp(:�:O)y = 1at the origin and the di�erene equation d exp(:�:)y = 4Æ2�� exp(:�:)y dZyields the result. �Note that it is natural to de�ne exp(:�: (x � x0)) := exp(:�:x)exp(:�:x0) as afuntion of x with x0 a �xed vertex. It is simply a hange of origin.But apart on a lattie where addition of verties or multipliation byan integer an be given a meaning as maps of the lattie, there is noeasy way to generalize this onstrution to other disrete holomorphifuntions suh as exp(:�: (x+ n y)) with x; y 2 }0 and n 2Z.4.4. Series. The series P1k=0 �k Z:k:k! , wherever it is absolutely onver-gent, oinide with the rational fration (4.6): Its value at the origin is1 and it ful�lls the de�ning di�erene equation (4.4). Using Eq. (4.9),a Taylor expansion of exp(:�: x) at � = 0 gives bak the same result.We are now interested in the rate of growth of the monomials.Diret analysis gives an estimate of Z :k::



DISCRETE RIEMANN SURFACES 25Proposition 4.6. For x 2 }, at a ombinatorial distane d(x;O) ofthe origin, and any k 2 N,(4.13) ����Z :k:(x)k! ���� � ��+ 1� � 1�d(x;O)�� Æ2�k ;for any � > 1 arbitrarily lose to 1.Corollary 4.7. The series P1k=0 �k Z:k:k! is absolutely onvergent forj�j < 2Æ .Proof 4.6. It is proved by double indution, on the degree k and on theombinatorial distane to the origin.For k = 0, it is valid for any x sine �+1��1 = 1+ 2��1 > 1, with equalityonly at the origin.Consider x 2 } a neighbor of the origin, Z(x) = Æ ei �, then animmediate indution gives for k � 1,(4.14) Z :k:(x)k! = 2�Æ ei �2 �kwhih ful�lls the ondition Eq. (4.13) for any k � 1 beause �+1��1 �k > 2.This was done merely for illustration purposes sine it is suÆient tohek that the ondition holds at the origin, whih it obviously does.Suppose the ondition is satis�ed for a vertex x up to degree k, andfor its neighbor y, one edge further from the origin, up to degree k� 1.Then,(4.15) Z :k:(y)k! = Z :k:(x)k! + Z :k�1:(x) + Z :k�1:(y)(k � 1)! Z(y)� Z(x)2in absolute value ful�lls����Z :k:(y)k! ���� � ��+ 1� � 1�d(x;O)�� Æ2�k�1��� Æ2�+�1 + �+ 1� � 1� Æ2�= �� + 1�� 1�d(x;O)�� Æ2�k �1 + 2�� 1�(4.16) = �� + 1�� 1�d(y;O)�� Æ2�k ;thus proving the ondition for y at degree k. It follows by indutionthat the ondition holds at any point and any degree. �



26 CHRISTIAN MERCAT4.5. Basis. The disrete exponentials form a basis of disrete holo-morphi funtions on a �nite ritial map: given any set of pair-wisedi�erent reals f�kg of the right dimension, the assoiated disrete expo-nentials will form a basis of the spae of disrete holomorphi funtions.See [8℄ for the formula(4.17) f(x) = 12i� Z g(�) exp(: � : x) d�for a ertain �xed ontour  in the spae of parameters �, and thede�nition of g(�) as a �xed ontour integral in } involving f .The polynomials however don't form a basis in general: the ombi-natorial surfae has to ful�ll a ertain ondition alled \ombinatorialonvexity". A quadrilateral, when traversed from one side to its oppo-site, de�ne a unique hain of quadrilaterals, that we all a \train-trak".The ondition we ask is that two di�erent train-traks have di�erentslopes.On a ombinatorially onvex set, the disrete polynomials form abasis as well.4.6. Continuous limit. In a ritial map, where quadrilaterals aremapped to rhombi of side Æ, identifying a vertex x with its image Z(x).The ombinatorial distane d}(x;O) is related to the modulus jxjthrough(4.18) d}(x;O)sin �m4 � jxjÆ � d}(x;O)where �m is the minimum of all rhombi angles. When the rhombidon't atten, the ombinatorial distane and the modulus (over Æ) areequivalent distanes.Lemma 4.8. Let (ABCD) be a four sided polygon of the Eulideanplane suh that its diagonals are orthogonal and the verties angles arein [�; 2���℄ with � > 0. Let (M;M 0) be a pair of points on the polygon.There exists a path on (ABCD) from M to M 0 of minimal length `.Then MM 0` � sin �4 :It is a straightforward study of a several variables funtion. If thetwo points are on the same side, MM 0 = ` and sin � � 1. If they areon adjaent sides, the extremal position with MM 0 �xed is when thetriangleMM 0P , with P the vertex of (ABCD) between them, is isoel.The angle in P being less than �, MM 0` � sin �2 > sin�2 : If the pointsare on opposite sides, the extremal on�guration is given by Fig. 8.2.,where MM 0` = sin�4 .�



DISCRETE RIEMANN SURFACES 27� MM 01. M;M 0 on adjaent sides. � �M 0M2. M;M 0 on opposite sides.Figure 8. The two extremal positions.A funtion f : }0 ! C on the ombinatorial surfae an be extendedto a funtion on the image of the ritial map in the omplex planef̂ : U ! C by stating that f̂ (Z(x)) = f(x) for the image of a vertex,and extend it linearly on the segments [Z(x); Z(y)℄ image of an edge,and harmonially inside eah rhombus.Theorem 4.1. Let (}k) a sequene of simply onneted ritial maps,U the non empty intersetion of their images in the omplex plane anda holomorphi funtion f : U ! C . If the sequene of minimum anglesare bounded away from 0 and the sequene of rhombi side lengths (Æk)onverge to 0, then the funtion f an be approximated by a sequeneof disrete holomorphi funtions fn 2 
(}k) onverging to f . Theonvergene is not only pointwise but C1 on the intersetion of im-ages. Conversely a onverging sequene of disrete holomorphi fun-tions onverges to a ontinuous holomorphi funtion, in partiular thedisrete polynomials and disrete exponentials with �xed parameters.Corollary 4.9. On a Riemann surfae, any 1-form an be approx-imated by a sequene of disrete holomorphi 1-forms on a re�ningsequene of ritial maps with �xed oni singularities.The proof relies on the onvergene of polynomials seen as iteratedprimitives of the onstant funtion.Lemma 4.10. Given a sequene of disrete holomorphi funtions (fk)on a re�ning sequene of ritial maps, onverging to a holomorphifuntion f , the sequene of primitives (R fk dZ) onverges to R f(z) dz.Moreover, in the ompat ase, if the onvergene of the funtions is oforder O(Æ2k), it stays this way for the primitives.Proof 4.10. Suppose that we are given a sequene of at vertiesOk 2 }k where the fae ontaining the �xed at origin O 2 U isadjaent to Ok. For a given integer k, let bFk the ontinuous pieewise



28 CHRISTIAN MERCATharmoni extension of the disrete primitive ROk fk dZ to U . We wantto prove that for any x 2 U , the following sequene tends to zero(4.19) �����( bFk(x)� bFk(O))� Z xO f(z) dz�����k2N :For eah integer k onsider a vertex xk 2 }0 on the boundary of thefae of }2 ontaining x.We deompose the di�erene (4.19) into three parts, inside the faeontaining the origin O and its neighbor Ok, similarly for x and xk,and purely along the edges of the graph }k itself.j� bFk(x) � bFk(O)�� Z xO f(z) dzj =����( bFk(x)� bFk(xk)) + Z xkOk fk dZ + ( bFk(O) � bFk(Ok))� Z xO f(z) dz����� ���� bFk(x)� bFk(xk)� Z xxk f(z) dz����+ ����Z xkOk fk dZ � Z xkOk f(z) dz����+���� bFk(Ok)� bFk(O)� Z OkO f(z) dz���� :(4.20)On the fae of } ontaining x, the primitive � 7! R �xk f(z) dz is a holo-morphi, hene harmoni funtion as well as � 7! bFk(�). By the maxi-mum priniple, the harmoni funtion � 7! bFk(�)� bFk(xk)�R �xk f(z) dzreahes its maximum on that fae, along its boundary. The di�ereneof the disrete primitive along the boundary edge (xk; y) 2 }1 at thepoint � = (1 � �)xk + � y is equal by de�nition to(4.21) bFk((1� �)xk + � y) � bFk(xk) = �(y � xk)fk(xk) + fk(y)2 :The holomorphi f is di�erentiable with a bounded derivative on U ,so averaging the �rst order expansions at xk and y, we getZ �xk f(z) dz = �(y � xk)f(xk) + f(y)2 + (y � xk)2�2f 0(xk) + (1 � �)2f 0(y)4+o �(� � xk)3�+ o �(� � y)3�= �(y � xk)f(xk) + f(y)2 +O(Æ2k)(4.22)therefore(4.23) j bFk(x)� bFk(xk)� Z xxk f(z) dzj = O(Æ2k):



DISCRETE RIEMANN SURFACES 29Similarly for the term around the origin.By de�nition of bfk, the 1-form bfk(z) dz along edges of the graph }is equal to the disrete form fkdZ so that R xkOk fk dZ = R xkOk bfk(z) dz ona path along } edges. Therefore the di�erene(4.24) ����Z xkOk fk dZ � Z xkOk f(z) dz���� � Z xkOk ���� bfk(z)� f(z)� dz���is of the same order as the di�erene jfk(z)� f(z)j times the length`(k) of a path on }k from Ok to xk. This length is bounded as `(k) �4sin �m jxk�Okj. Sine we are interested in the ompat ase, this lengthis bounded uniformly and the di�erene (4.24) is of the same order asthe point-wise di�erene. We onlude that the sequene of disreteprimitives onverges to the ontinuous primitive and if the limit forthe funtions was of order O(Æ2), it remains of that order. }The disrete polynomials of degree less than three agree point-wisewith their ontinuous ounterpart, Z :2:(x) = Z(x)2.A simple indution then gives the followingCorollary 4.11. The disrete polynomials onverge to the ontinuousones, the limit is of order O(Æ2k).Whih implies the main theorem:Proof 4.1. On the simply onneted ompat set U , a holomorphifuntion f an be written, in a loal map z as a series,(4.25) f(z) =Xk2Nakzk:Therefore, by a diagonal proedure, there exists an inreasing integersequene (N(n))n2N suh that the sequene of disrete holomorphipolynomials onverge to the ontinuous series and the onvergene isC1.(4.26) 0�N(n)Xk=0 akZ :k:1An2N! f: }4.7. Cross-ratio preserving maps. One the isometry Z is ho-sen, holomorphiity of a funtion f an be written on a quadrilateral(x; y; x0; y0) 2 }2, writing x = Z(x) for a vertex x 2 }0, as(4.27) f(y0)� f(y)f(x0)� f(x) = y0 � yx0 � x



30 CHRISTIAN MERCATand f is understood as a diagonal ratio preserving map, and eah valueat a orner vertex an be linearly solved in terms of the three others.A quadrati version is given by the ross-ratio preserving maps: Afuntion f is said to be quadrati holomorphi i�(4.28) (f(y)� f(x)) (f(y0)� f(x0))(f(x)� f(y0)) (f(x0)� f(y)) = (y � x) (y0 � x0)(x� y0) (x0 � y) :A rhombi tiling gives rise to two sets of isoradial irle patterns: aset of irles of ommon radius Æ, whose enters are the verties of �and intersetions are the verties of �� and vie-versa. Two interestingfamilies of ross-ratio preserving maps are given by irle patterns withthe same ombinatoris and intersetion angles as one of these two irlepatterns. �!Figure 9. A irle pattern with presribed angles as aross ratio preserving map.x yy0 x0� �0' ' q = e�2(�+�0)= e�2'Figure 10. The ross-ratio q is given by the intersetion angles.A hange of oordinates helps understanding diagonal ratio preserv-ing maps as a linearized version of the ross-ratio preserving maps. We



DISCRETE RIEMANN SURFACES 31will say that the funtion w : }2 ! C solves the Hirota system if,around a fae (x; y; x0; y0) 2 }2,(4.29)(y�x)w(x)w(y)+(x�y0)w(y0)w(x)+(y0�x0)w(x0)w(y0)+(x0�y)w(y)w(x0) = 0:This is to be understood as a quadrati version of the Morera theoremH f dz = 0 and w is a half of the derivative of a holomorphi funtion:Proposition 4.12. If w solves the Hirota system, then the funtionf : }2 ! C de�ned up to an additive onstant by(4.30) f(y)� f(x) = (y � x)w(x)w(y)is quadrati holomorphi.Proof 4.12. The funtion f is well de�ned beause the assoiated1-form is losed by de�nition of the Hirota system. The funtion wdisappears in the ross-ratio of f , leaving the original ross-ratio. }Conversely, a quadrati holomorphi funtion de�nes a solution to theHirota system, unique up to multipliation by � on �, 1=� on ��. Con-erning irle patterns families, w is real on the enters and unitary onthe intersetions, and enodes the variation of radius, resp. of diretionof the image of the irle:(4.31) f(y)� f(x) = r(x)ei�(y)(y � x):Proposition 4.13. The logarithmi derivative of the Hirota systemassoiated to a family of ross-ratio preserving maps is a diagonal ratiopreserving map.In other words, for (1 + �g)w to ontinue solving the Hirota systemat �rst order, the deformation g must satisfy(4.32) g(y0)� g(y)g(x0)� g(x) = f(y0) � f(y)f(x0) � f(x) :Proof 4.13. The � ontribution of the loseness ondition (4.29) for(1 + �g)w gives(g(x) + g(y)) f(x) f(y) (y � x) + (g(y) + g(x0)) f(y) f(x0) (x0 � y)+(g(x0) + g(y0))w(x0)w(y0) (y0 � x0) + (g(y0) + g(x))w(y0)w(x) (x� y0) = 0;whih reads, refering to f : g(y0)� g(y)g(x0)� g(x) = f(y0) � f(y)f(x0) � f(x) : }



32 CHRISTIAN MERCAT4.8. Baeklund transformation. The Baeklund transformation isa way to assoiate, to a given solution of an integrable problem, a familyof deformed solutions. The two problems under onsideration here arethe linear and quadrati holomorphiity onstraints on eah fae. Theyare given by a linear, resp. quadrati algebrai relation between thefour values of a solution at the verties of eah fae. These relationsinvolve only values supported by the edges of the rhombus, whih areequal on opposite sides, namely the omplex label y � x = x0 � y0.The Baeklund transformation is de�ned by imposing suh onstraintsover new virtual faes added over eah edge, with \vertial edges" la-belled by a omplex onstant �:De�nition 4.14. Given a linear holomorphi funtion f 2 
(}), om-plex numbers u; � 2 C , its Baeklund transformation f� = Bu�(f) isde�ned by f�(0) = u;f�(x)� f(y)f�(y)� f(x) = � + x� y� + y � x:(4.33)Given a quadrati holomorphi funtion f , omplex numbers u; � 2 C ,its Baeklund transformation f� = Bu�(f) is de�ned byf�(0) = u;f�(y)� f�(x)f�(x)� f(x) f(x)� f(y)f(y)� f�(y) = (y � x)2�2 :(4.34)The right hand sides are the values respetively of the diagonal ratioand ross-ratio of a parallelogram faes of sides (y � x) and � seen as\over" the edge (x; y) 2 }1. x0x0�y0�xx� y y0y��q = (y�x)2�2i � = y�x+�x�y+�Figure 11. The fae (x�; y�; x0�; y0�) \over" the fae(x; y; x0; y0) 2 }2.



DISCRETE RIEMANN SURFACES 33Proposition 4.15. This transformation is well de�ned in the ritialase.This ondition, alled three dimensional onsisteny is an overdeter-mination onstraint: if the ube \over" the fae (x; y; x0; y0) 2 }2 issplit into two hexagons along the yle (y; x0; y0; y0�; x�; y�), one an seethat, given values at these six verties, the values at the enters of eahhexagons, namely at x0� and at x are overdetermined.y x0 y0y0�x�y� x0��y x0 y0y0�x�y� xFigure 12. The ube split into two hexagons yieldingequivalent ompatibility onstraints.Therefore only ertain values at the six verties are allowed, de�nedby two algebrai relations between them. The ompatibility onditionis that these two algebrai relations are equivalent. It is a simple om-putation to hek it is the ase for ritial maps.This transformation veri�es(4.35) Bf(O)��1 (Bu�(f)) = ffor any (u; �). It is an analyti transformation in all the parameterstherefore its derivative is a linear map between the tangent spaes, thatis to say between diagonal ratio preserving maps,(4.36) dBu�(f) : 
(f) ! 
(Bu�(f)) :It is not injetive and I de�ne the disrete exponential at f as beingthe diretion of this 1-dimensional kernel. It an be haraterized as aderivative with respet to the initial value at the origin:(4.37) expu(:�:f) := ��vBv��1 (Bu�(f)) jv=f(O) 2 ker (dBu�(f))beause Bu� �Bv��1(g)� = g for all �; g and v.As in the disrete exponential ase, the value of the Baeklund trans-formation at a given vertex is the image of values at neighbouringverties by a homography. These homographies an be enoded as



34 CHRISTIAN MERCATBu�(f)Bu��1(g)expu(:�:f) := ��vBv��1(g)jv=uBv��1(g) f = Bu��1(g) g = Bu�(f)
Figure 13. The disrete exponential expu(:�:f) is thekernel of the linear transformation dBu�(f) (here u =f(O)).projetive operators L(e;�) 2 GL2(C )[�℄ lying on the edges e 2 }2,alled a zero urvature representation:(4.38)L((x; y);�) =  � + y � x �2(y � x)(f(x) + f(y))0 �+ x� y ! for the linear ase,(4.39)L((x; y);�) =  1 �(y � x)w(y)��(y � x)=w(x) w(y)=w(x) ! for the Hirota system.Then we de�ne [16℄ the moving frame 	 : }2 ! GL2(C )(�) by a pre-sribed value at the origin and reursively by 	(y;�) = L((x; y);�)	(x;�)and its logarithmi derivative with respet to �(4.40) A(e;�) = d	(e;�)d� 	�1(e;�)is meromorphi in � for eah edge e. We all f , resp. w isomonodromiif the positions and orders of the poles don't depend on the edge e. Thetwo points disrete Green funtion (the disrete logarithm) G(O;x),inverse of the Laplaian in the sense that(4.41) �G(O; �) = ÆO;�an be onstruted as the unique isomonodromi solution with somepresribed data [8℄, whih allows us to give an expliit formula for it,reovering results of Kenyon [15℄: an integral over a loop in the spae



DISCRETE RIEMANN SURFACES 35of disrete exponentials:(4.42) G(O;x) = � 18�2 i IC exp(:�:x) log Æ2�� d�where the integration ontour C ontains all the possible poles of therational fration exp(:�: x) but avoids the half line through �x. It isreal (negative) on half of the verties and imaginary on the others.Beause of the logarithm, this imaginary part is multivalued.
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