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ABSTRACT

1D-mosaics have been introduced as a tool for structuring
and navigation in video content. These objects can be con-
sidered as the spatio-temporal signatures of the video shots.
Our work aims at grouping automatically the video shots
into scenes using these signatures. The original method is
based on the tree-structured lattice vector quantization of
the 1D-mosaics. Because of the hierarchical structure of
the code-books, they can be compared progressively, and
lattice use is time efficient. Indexing retrieval results are
given for two video sequences, and different mosaics are
successively compared to each other in order to assess the
presented scheme’s effectiveness.

1. CONTEXT OF THE WORK

The work takes place in the context of tools design for struc-
turing and browsing through digital video documents.
The storage and the search of documents in multimedia in-
formation systems assume that structuring and indexing of
videos have been done before. MPEG7 [1] requires a struc-
tural decomposition of video documents into segments wich
can be represented as semantic entities: objects, shots, sce-
nes. Indexing should be done to characterize their content,
movement, color, texture. The standard defines the video
segment descriptors but not the way of performing the struc-
tural description. Moreover the future success of multime-
dia services of home intelligent devices depends on a neat
navigation system. A clever structuring of video is essential
to a good navigation.
Research in the field of video document structuring assumes
a hierarchical decomposition of documents which shows
such structural units as ”scene”, ”shot”, ”object” or ”event”.
We propose in this paper a method to structure video doc-
uments by grouping shots into scenes for browsing, from
a navigation interface, through the video. Scenes are de-
fined here as grouping of shots which share common color
set. Spatio-temporal maps (or mosaics) have been intro-

duced [2]. These static images give a global view of a video
scene inside one shot, they are especially attractive in case
of panoramic camera motions. We focus on 1-D mosaics
which integrate spatio-temporal images and can play the
role of spatio-temporal color signatures of video shots. Ex-
actly we use them for clustering video segments into higher
order entities such as video scenes.

2. 1-D MOSAIC

An image can be represented by a set of ”1-D projections”
using a Radon-like projective transform called Mojette pro-
jection [3] and integrating image signal along direction de-
fined by a given angle. For each direction of projection, an
1-D mosaic can be built, interested readers may refer to [4]
and [5] for more details on the 1D-mosaics creation. It cor-
responds to a ”spatio-temporal” 1-D signal. The latter is ob-
tained by motion-based compensation of projections of all
the frames of the video sequence, into the coordinate system
associated with the projection of a specific reference frame.
Hence in a video sequence, motion has to be estimated first
for mosaic construction.
Affine models of apparent motions in 2-D image plane have
proved to be interesting in the characterization of typical
forms of video shootings. We use a 3 parameters motion
model with shift and zoom factor despite its incomplete-
ness, as it allows for characterization of most frequent situ-
ations in video such as pan, traveling, ”zoom in” and ”zoom
out”. This motion model is specifically in the focus of our
attention, as there exists a simple relationship between the
2-D motion model in image plane and 1-D motion model in
the 1-D projective Radon transform domain we use for 1-D
representation of video.
For a given shot, by using the motion parameters, we com-
pensate each 1-D projection into the referential of the first
1-D projection (which corresponds to the first image of the
shot). Note however that although this first image of the shot
is taken as a reference, the whole frames in the considered



shot are used while computing the 1D-mosaic. We show in
figure 1(a) some frames of a shot taken from the video se-
quence ”Tympanon” (SFRS, ”Service du Film de Recherche
Scientifique”). In figure 1 (b) each line of the picture repre-
sents a motion-based compensated 1-D projection into the
referential of the top 1-D projection. Then to get the final
1-D mosaic, each column of this picture is reduced using
a median filter. Figure 1(c) shows the corresponding 1-D
mosaic. We can see that the 1-D mosaic is like a color sig-
nature of the shot. Thus, from these color signatures, our
goal becomes to group shots into scenes.

(a) Some frames of a shot (zoom in)
of the sequence ”Tympanon” (SFRS)

(b) Motion-based compensated 1D projections

(c) The corresponding 1-D mosaic

Fig. 1. Example of a 1D-mosaic construction.

3. TREE-STRUCTURED LATTICE VECTOR
QUANTIZATION

3.1. Vector Quantization

VQ (from now VQ means vector quantizer as well as vec-
tor quantization) has been investigated extensively [6]. Let
x(n): x = (x(1), . . . , x(k)) be a k-component source vec-
tor. A VQ of dimension k and size L is defined as a func-
tion that maps a vector x into one of L reproduction vec-
tors y1, . . . , yL belonging to IRk. The set of reproduction
vectors or codewords, is the code-book. This chart im-
plicitly determines a partition of IRk in L non-overlapping
Voronoı̈ regionsCi typically defined by the equation (where

Lp(x) =
∑k
i=1 |xi|p is the norm):

Ci =

{
x ∈ IRk;Q(x) = yi,
if L2(x− yi) ≤ L2(x− yj), ∀j 6= i

}

Thus a VQ combines both functions: an encoder that, from
the input vector x, generates the index i specified byQ(x); a
decoder that, from this index and by listing the code-book,
generates the corresponding reproduction vector yi. In a
transmission or storage context, a binary word or index is
assigned to each codeword yi, and the goal consists in, for
a given rate (resp. distorsion), to minimise the distorsion
introduced when coding the source (resp. rate).

3.2. Lattice Vector Quantization

The most promising method introduced for the VQ is cer-
tainly lattice vector quantization (LVQ) [7], for which the
code-book is not calculated. It is defined as a particular sub-
set of regularly arranged points in a k-dimensional space,
centered in zero (lattice [8]). When designing a LVQ, the
difficulty is not the same as a LBG-type algorithm [9] which
has computationally expensive encoding and code-book stor-
age, but lies with the choice of lattice, its truncation and la-
beling of the remaining points.
In [10, 11], motivated by video coding applications, we in-
troduced the tree-structured lattice VQ (TSLVQ) for which
lattice use is easier.

3.3. Tree-Structured Lattice Vector Quantization

The TSLVQ is based on a lattices embedding strategy. Na-
mely a source vector is projected into a first truncated lat-
tice; to get a finer quantization stage, another lower scale
truncated lattice is embedded into the Voronoı̈ cell where
lies the input vector; this lattice embedding operation can
be repeated. Figure 2 illustrates the resulting multi-stages
quantization procedure using successive scaling, translating
and rounding operators.
We only detail now the TSVQ scheme used in order to com-
pare the 1-D mosaics (for more general information see
[11]). The support lattice is ZZn for which Conway and
Sloane determined fast quantizing and decoding algorithms
[12] and because it permits an optimal lattice embedding.
Considering figure 2 we have:

• F = (b ∗ ρ)/
√
L2 max the first scaling factor used

to project the input vector x into the first truncated
lattice, L2 max is the maximal L2 norm of x, b = 3,
and ρ = 0.5 the packing radius of ZZn;

• b = 3: the scaling factor used to project the vector
into the next truncated lattice and to get a finer quan-
tization;



• yj : the reproduction vector of the truncated lattice at
the j-th stage.

The final value of the reproduction vector associated with
x will be: y = (1/F ) ∗∑j(yj/bj−1) where j points out
the number of the stages. The code-book has a B-ary tree
structure where B corresponds to the number of points of
the basic truncated lattice. Each lattice point (i.e each re-
production vector) and its Voronoı̈ cell are associated with a
tree node. The 0 vector and the whole source space are asso-
ciated with the root tree. The possible children of a node are
the points of the lattice which is embedded into the parent
Voronoı̈ cell. A stage in the tree corresponds with a scale in
the lattice hierarchy: the deeper is the tree, the finer is the
resolution. The final code-book is the set of terminal nodes
or leaves.
Figure 8 (a) illustrates this code-book design. The source




Fig. 2. TSLVQ principle.

vectors are the pixels of a 1-D mosaic. The vector dimen-
sion k = 3 corresponds to the RGB components of a color
pixel. The maximal norm of a vector is then L2 max =
3 ∗ 2552. The number of points in the basic truncated lattice
equals to B = 33, and the code-book has 3 stages.

4. SCENES COMPARISON

A 1D-mosaic is calculated for each shot of the video. We
assume that similar shots have similar 1D-mosaics and our
goal becomes to automatically group them. To achieve an
efficient and fast comparison between the 1D-mosaics, we
handle with their vector quantized representations.

4.1. Code-books comparison

We compare directly the code-books to detect the close 1D-
mosaics. Because of the tree-structure of these code-books
and the LVQ use, a progressive and fast search can be per-
formed. The comparison method between a ”reference” 1D-
mosaic with a set of ”candidate” 1D-mosaics follows:

• the reference code-book is completely constructed from
the reference 1D-mosaic with 3 stages;

• then considering one by one each candidate code-book:
its first stage is calculated and compared with the first
stage of the reference code-book. If they are close
enough, the second stage of the candidate code-book
is added and compared with the second stage of the
reference code-book. The principle is the same with
the third code-books stages.

Because of the time efficiency of this process, a large set
of candidates can be handled. Two code-books at the i-th
quantization stage are considered close if one of these crite-
ria is satisfied:

• they share a lot of Voronoı̈ cells:

NV (i) =
]Vc(i)

]Vt(i)
≥ NVth(i) (1)

where ]Vc(i) is the number of common reproduction
vectors between the reference code-book and the can-
didate, and ]Vt(i) is the total reproduction vectors
considering the both code-books. For our experiments
we use typical thresholds as NVth(1) = 60%,
NVth(2) = 50%, and NVth(3) = 40% for the three
successive quantization stages.

• the shared cells contain almost all the vector source:

NSref (i) =
]Sref (i)
]Sref

≥ NSrefth(i) and

NScand(i) = ]Scand(i)
]Scand

≥ NScandth(i)

(2)
where ]Sref (i) (resp. ]Scand(i)) is the number of
reference (resp. candidate) source vectors inside the
common Voronoı̈ cells, and ]Sref (resp. ]Scand) is
the total number of reference (resp. candidate) source
vectors. We use typicallyNSrefth(i) = NScandth(i)
= 50% for i = 1, 40% for i = 2 and 30% for i = 3.

4.2. Reduced mosaics comparison

If two code-books are close enough (at a given quantiza-
tion stage), the next step consists in comparing the colors
order between the two corresponding vector-quantized 1D-
mosaics. In practice a similarity coefficient is calculated
from simplified versions of the 1D-mosaics. The similar-
ity is assessed by using the editing distance principle [13].
The simplified version of a vector-quantized 1D-mosaic is
obtained, when scanning from left to right the mosaic, by
merging the successive pixels with identical values, i.e. if
the full mosaic presents successive identical values, these
latters are copied (just once) in the reduced form of the mo-
saic. Equation 3 details the editing distance implementa-
tion between two (vector-quantized and reduced) mosaics
blocks:

d(br, bt) =
]Identical values

]br values
(3)

where the editing distance d(br, bt), between the block of
pixels br of the reference reduced mosaic and a correspond-
ing block of pixels bt of the reduced tested mosaic, is given
by the ratio between the number of identical pixels values
and the reference block size. The complete editing distance
computation steps (considering all the mosaics blocks) are
given in figure 3 with a block length equals to 4 pixels. This
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(a) Matching between the tested mosaic (bottom)
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(b) Editing distance computation between two blocks.

(c) Block matching process.

Fig. 3. Block comparison and editing distance computation.

editing distance computation is performed block by block.
For a given block size, once an editing distance is computed
between the two first blocks, the process is iteratively re-
peated to the next blocks on the mosaic’s right hand side.
In the presented example (see figure 3(c)), when a first ref-
erence mosaic block has been successfully matched with a
tested mosaic’s block (by providing a high editing distance),
the next right hand side block is considered. The tested mo-
saic block is then shifted (pixel by pixel) towards the end
of the reference mosaic and an editing distance is computed
for each single step. When several successive blocks get a
high similarity coefficient, their overall editing distance is
computed (mean value of the editing distances), the set of
blocks presenting the highest similarity is kept intact while
the other sets of blocks presenting a lower mean editing dis-
tance are discarded. An important feature of the editing dis-
tance in this context lies in its ability to consider both the
apparition and suppression of new values in the tested se-
quences, i.e. for each block comparison, several modified
reference blocks are computed and compared, each modi-
fied version taking into account a possible value shift. For
each block matching process the current block is considered
as matched if the corresponding editing distance is above a
predefined threshold (empirically set here to 0.6).

5. EXPERIMENTAL RESULTS

We present in this section two distinct results sets (denoted
as set A and set B). The first one will present a straight-
forward case, where only one mosaic clearly appears as the
best candidate for a good matching with the reference (Fig-
ures 4). In the second set, several mosaics appear to be good
candidates to match the reference sequence.

5.1. Code-books comparison

A similarity indicator I has been introduced to represent the
classification results:

I =

3∑

i=1

(
I(i)× 33

2
+ 33× (i− 1)

)
(4)

where i represents the quantization stage (see also defini-
tions at the equations 1 and 2):

I(i) = NV (i) ∗ (NSref (i) +NScand(i)) (5)

The indicator I aims at classifying the mosaics code-books
into 3 regions according to their similarity with the refer-
ence mosaic code-book, and considering the 3 (possible)
stages of the code-books comparison: the deeper is the code-
books comparison, the higher is I .
Figures 4 and 5 illustrate the result for the two considered
sets, when comparing 70 candidates 1D-mosaics code-books
with a reference mosaic code-book (the shots are from the
video sequence ”Tympanon”, SFRS). Figure 4 clearly shows
that only one mosaic code-book matches the reference. The
reference mosaic code-book evidently gets a hundred per-
cent rate. On the contrary, in figure 5, many mosaics code-
books can be considered as good candidates.

Fig. 4. Comparison of a 1D-mosaic code-book with 70 others (set
A).

The two closest 1D-mosaics in figure 4 are shown in fig-
ure 6, and their corresponding code-books are represented
in figure 8. Considering the second results set (i.e. set B),
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Fig. 5. Comparison of a 1D-mosaic code-book with 70 others (set
B).

the reference mosaic is given in figure 7 (a) along with its
two closest mosaics, figures 7 (b) and 7 (c), and finally, the
corresponding code-books are given in figure 9. Vertical
axis in figures 6 and 7 (right sub-figures) represents the dif-
ferent quantized versions of the 1D-mosaics corresponding
to the three different stages of quantization (as denoted in
fig. 7 (a)). In figures 8 and 9, the three axis represent the
Red, Green and Blue pixels’ values.

(a) Reference mosaic (set A)

(b) Candidate mosaic (set A)

Fig. 6. TSLVQ of 1D-mosaics: from top to bottom each picture
shows the original 1D-mosaic and its quantized version using a
code-book with three, two or one stage.

5.2. Reduced mosaics comparison

The code-books comparison achieves a quick sort between
the 1D-mosaics : for a reference 1D-mosaic we get a set
of candidates. The next step consists in performing a finer
comparison between these candidates.
As previously detailed, the vector quantized 1D-mosaics
are first reduced in order to be compared. This process is
depicted in figure 10. This figure both shows a full 1D-
mosaics comparison (10 (a)) and a reduced 1D-mosaics com-

(a) Reference 1D-mosaic (set B)

(b) First candidate 1D-mosaic (set B)

(c) Second candidate 1D-mosaic (set B)

Fig. 7. TSLVQ of 1D-mosaics: each sub-figure presents both
the motion based compensated 1-D projection (left sub-figure, see
figure 1 for details) and its vector quantized versions (right sub-
figure).

(a) Reference Code-book (set A)

(b) Candidate Code-book (set A)

Fig. 8. Code-books design (set A): the source vectors are the
black dots, the red line symbolises the 1D-mosaic pixels scan.
The Voronoı̈ cells and the reproduction vectors are represented by
three different size cubes corresponding to the different quantiza-
tion stages.

parison (10 (b)). Each sub-figure shows both the reference
1D-mosaic (top mosaic) and the considered candidate (bot-
tom mosaic). Figure 10 clearly shows how successive pixels
of the full 1D-mosaics are merged to provide the reduced
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(a) Reference Code-book (set B)
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(b) First candidate code-book (set B)
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(c) Second candidate code-book (set B)

Fig. 9. Code-books design (set B): the source vectors are the
black dots, the red line symbolises the 1D-mosaic pixels scan.
The Voronoı̈ cells and the reproduction vectors are represented by
three different size cubes corresponding to the different quantiza-
tion stages.

form of the 1D-mosaics. The editing distance computation
between these reduced 1D-mosaics leads to determine sim-
ilar shots. Based on the previously given editing distance
computation (with a selection threshold set to 0.6), for a
given reference shot (two images of this shot are given in
figure 11 (a)), a set of 8 similar shots have been found, see
figure 11 (b). Although a few shots appears to be different
from the reference, most of the obtained shots closely match
the request.

6. CONCLUSION

We have introduced a new tool for grouping video shots
into scenes and hyper-scenes. The original method is based
on the TSLVQ of 1D-mosaics, the comparison between the
code-books followed by a sequences comparison. The tree
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(b) Reduced 1D-mosaics comparison.

Fig. 10. 1D-mosaics comparison: a green (respectively red) line
symbolizes the beginning (respectively end) of a matched block.

(a) Two images of the reference shot.

(b) Closest shots.

Fig. 11. Video browsing results.

structure of the code-books allows a hierarchical and pro-



gressive search of the similarity. Because of the lattices
use, the method is computationally inexpensive. For similar
code-books, reduced mosaics are computed and compared
by using the editing distance principle. This technique has
been successfully assessed here for two video sequences.
An evident strength of the presented technique lies in the
use of very small mosaics data to efficiently retrieve simi-
lar shots among an important video shots set. Due to both
its rapidity and the small amount of stored information, the
proposed technique is perfectly suitable for important video
databases context. Evidently, a more efficient descriptor
could be obtained by computing more 1D-mosaics from the
video sequence (i.e. different Mojette Projection angles),
nevertheless, an important power of the presented results
lies in the use of only a very reduced data set (1D-mosaic)
to summarize a full video.
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