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We present a method to extract polyhedral structures from a three-dimensional set of
points, even if these structures are embedded in a perturbed background. The method
is based on a family of affine diagrams which is an extension of the Voronoi diagram.
These diagrams, namely anisotropic diagrams, are defined by using a parameterized
distance whose unit ball is an ellipsoidal one. The parameters, upon which depends this
distance, control the elongation and the orientation of the associated ellipsoidal ball. The
triangulations, dual to the anisotropic diagrams, have the property to connect points that
are not neighbors in the Voronoi diagram. Based on these triangulations, we define a
family of three-dimensional anisotropic α-shapes. Unlike Euclidean α-shapes, anisotropic
ones allow us to detect linear and planar structures in a given direction. The detection of
more general polyhedral structures is obtained by merging several anisotropic α-shapes
computed for different orientations.

Keywords: Alpha-Shapes; Computational Morphology; Delaunay Triangulation; Inter-
polation; Structure Detection.

1. Introduction

The development of range data acquisition methods which are fast, precise and inex-

pensive, facilitates the emergence of many problems, such as surface reconstruction

and segmentation 1,2,3,4,5, meshes simplification 6, extraction and recognition of

features 7, and so on. In this article, we study the problem of detecting linear, pla-

nar and more general polyhedral structures, from a three-dimensional set of points.

The existing methods, based on neighborhood graphs and related to the Voronoi

diagram, are especially conceived for set of points having certain density conditions.
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When patterns are curves or surfaces, these conditions can be established explic-

itly 8,9,10. In several situations, these methods solve with efficiency the problem of

extracting a shape from a set of points. However, they are unsuited when patterns

are represented by low density set of points embedded into a perturbed background.

This is explained by the fact that these methods are conceptually based on den-

sity analysis and do not integrate the morphological aspect of the structures to be

detected.

To deal with these cases, we combine an anisotropic analysis with the shape

of the patterns that must be extracted from the set of points. The analysis based

on anisotropy is employed in situations such as the detection of two-dimensional

linear structures 11, the reconstruction of surfaces by local interpolation 12 or the

generation of anisotropic meshes using curved anisotropic Voronoi diagrams 13. The

method we develop concerns the extraction of polyhedral structures from a three-

dimensional set of points, even if these structures are embedded in a perturbed

background. It is based on a family of anisotropic α-shapes, which we define as an

extension of the Euclidean one 14. The family of Euclidean α-shapes is a general-

ization of the convex hull of a set of points P . It describes the shape of P at several

levels of detail. For a given value of α, the α-shape is a set of edges and triangles,

of P . Two or three points of P form an edge or a triangle if a ball of radius α

touches them without containing any other point. The α-shapes are sub-graphs of

the Delaunay triangulation, and can be computed from the Voronoi diagram.

Our extension of α-shapes replaces the balls of radius α by ellipsoidal balls,

parameterized by an orientation and an elongation. These parameters control the

morphological aspect of structures to be detected. The global size of the ellipsoidal

balls is given by α. When the orientation and the elongation are fixed, and α varies

from +∞ to zero, the associated anisotropic α-shapes first detect global structures,

then more linear structures appear in the direction given by the orientation of

the ellipsoidal balls. If the ellipsoidal balls are sufficiently elongated or flat, the

detected structures approximate parts of straight lines or planes. The significant

structures are those having enough components. More generally, when the size of

the ellipsoidal balls is known, polyhedral features can be extracted following these

steps: first, we compute anisotropic α-shapes in several orientations, then in each

computed shape, we extract structures by deleting the non-significant ones. Finally,

the obtained structures are merged.

As for α-shapes, anisotropic α-shapes are related to particular triangulations

of the set of points and to their dual diagrams. We call them anisotropic triangu-

lations and diagrams. They are also defined using ellipsoidal balls, and they can

connect points that are not neighbors in the Delaunay triangulation. Moreover, the

whole anisotropic concepts are linked to the Delaunay triangulation by an affine

transformation. This allows to compute the anisotropic concepts directly from the

Delaunay triangulation of the transformed set of points.

This article is organized as follows: first we recall the geometrical concepts re-

lated to α-shapes, then we present the general anisotropic concepts, finally we apply
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anisotropic α-shapes to detect sampled polyhedral structures.

2. Related geometrical concepts

2.1. The Voronoi diagram and the Delaunay triangulation

Let P = {p1, . . . , pn} be a finite three-dimensional set of points. Let d2(p, q) be the

Euclidean distance between two points p and q. The Voronoi cell V (pi, P ) of pi ∈ P

is the set of points p ∈ R
3 such that d(p, pi) ≤ d(p, pj), for all pj ∈ P . The Voronoi

diagram of P , denoted by V (P ), is the set of the Voronoi cells V (pi, P ). From a

morphological point of view, V (P ) is generated using a unit ball as a structuring

element. For two points p and q, let bq(p) be the open ball, centered in p, and of

radius d2(p, q). Then the Voronoi cell of pi corresponds to the set of points p ∈ R
3

such that there exists an open ball bpi
(p) with bpi

(p) ∩ P = ∅.
Two points are neighbors in V (P ) if the intersection of their cells is not empty.

The graph obtained by connecting the points of P to their neighbors is the dual

of V (P ), called the Delaunay triangulation of P and noted D(P ). Recall that a

k-simplex, noted s(T ), is a convex polytope which vertices T are k + 1 affinely

independent points. A 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex

is a triangle and a 3-simplex is a tetrahedron. Then D(P ) is a graph formed with

k-simplicies, 0 ≤ k ≤ 3, circumscribed to the boundary of an open ball which is

empty of points of P . Each k-simplex s(T ) of D(P ) is the dual of the intersection

of the k + 1 cells V (pi, P ), pi ∈ T .

2.2. Euclidean α-shapes

Let b(α), 0 < α < +∞, be an open ball of radius α, b(α) is a point if α = 0

and a half-space if α = +∞. The α-shape of P , denoted by Fα(P ), is the set of

k-simplicies s(T ), k = 1, 2 and T ⊂ P , such that there exists an open ball b(α) with

b(α) ∩ P = ∅ and T ⊂ ∂b(α), where ∂b(α) is the boundary of b(α). The α-shape

of P is a sub-graph of the Delaunay triangulation 14. For k = 1 or 2, a k-simplex

s of D(P ) is an element of Fα(P ) if and only if αmin(s) ≤ α ≤ αmax(s), where

αmin(s) and αmax(s) are two positive real numbers that can be computed from

V (P ). Indeed, αmin(s) corresponds to the minimum distance from a vertex of s to

the Voronoi dual element of s. And αmax(s) corresponds to the maximum distance.

Through the values of α, the family of α-shapes describes the set of points

at several levels of detail. The behavior of this family is illustrated in Fig. 1 on

a set of samples of straight lines, embedded in a perturbed background. When

α = +∞, Fα(P ) corresponds to the convex hull of P . When α decreases from +∞
to 0, Fα(P ) extracts more detailed structures. Finally, when α = 0, Fα(P ) is equal

to P . In Fig. 1, the α-shapes cannot extract the original structures of Fig. 1(1).

This is because some points of the background are always inside the balls, of radius

α, circumscribing two successive points of a structure. In the sequel, we present a

method that replaces the balls by ellipsoidal ones. Then, if the ellipsoidal balls are
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(1) (2) (3)

(4) (5) (6)

Fig. 1. Spectrum of the α-shapes. (1) A set of points A, sampling 5 straight lines of R3. (2) The
set A is embedded in a random background, uniformly distributed. (3) F+∞(P ) = conv(P ).
(4) F10(P ). (5) F5(P ). (6) F1(P ).

sufficiently thin and elongated, they do not enclose any point of the background,

and the suitable linear structures can be detected. The same reasoning can be

performed for planar structures.

3. Anisotropic concepts

3.1. Global anisotropy

Let R = (rij)1≤i,j≤3 be a rotation matrix. Let E = {e1, e2, e3} be a set of three

real positive numbers. The anisotropy is formalized by the matrix:

Q =





e1r11 e1r12 e1r13
e2r21 e2r22 e2r23
e3r31 e3r32 e3r33



 . (1)

Using this anisotropy, the distance between two points of R3 is defined by:

dQ(p, q) =
√

(Q(p− q))tQ(p− q), (2)

where the notation At represents the transpose matrix of the matrix A. It can be

viewed as performing, a non-uniform scaling along the axes of a rotated orthog-

onal system, on p and q before taking the Euclidean distance (d2). Let τ be the
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transformation such that τ(p) = Qp, for all p ∈ R
3. Then from equality (2) we

have:

dQ(p, q) = d2(τ(p), τ(q)). (3)

Balls associated to the distance dQ are ellipsoidal balls whose direction axes are

given by R−1 and elongation ratio along these axes by E. Let bQ(p, α) be an open

ellipsoidal ball, centered at p, bounded by the ellipsoid ∂bQ(p, α) of radius α > 0.

Then the semi-axes of bQ(p, α) have lengths αλi, with λi = 1/ei for i = 1, 2, 3.

The effect of the transformation τ , on the set of points of Fig. 1, is illustrated

(1) (2)

Fig. 2. (1) The set of points of Fig. 1 embedded in a perturbed background, and the semi-axes of
a given ellipsoidal ball. (2) The set of points transformed by τ .

by Fig. 2. The major axis of the ellipsoidal ball of reference is in the direction of a

sampled linear structure. The points in the direction of this major axis are closer

to each others, compared to their repartition in the initial set.

3.2. Anisotropic diagrams and triangulations

For a fixed anisotropy Q, let VQ(pi, P ) be the anisotropic cell of pi ∈ P . It is the set

of points p ∈ R
3 such that dQ(p, pi) ≤ dQ(p, pj), for all pj ∈ P . Based on distance

dQ, the equidistant set of points between two points is a plane. It follows that the

union of the anisotropic cells defines an affine diagram 15. We call it the anisotropic

diagram of P and we note it VQ(P ). From a morphological point of view, VQ(P )

is generated by ellipsoidal balls that have both the same orientation and the same

elongation ratio.

The dual of VQ(P ), obtained by connecting the points of P to their neighbors,

is the anisotropic triangulation of P , which we note DQ(P ). It defines a set of k-

simplicies s(T ), 0 ≤ k ≤ 3, such that s(T ) is the dual of the intersection of the k+1

anisotropic cells VQ(pi, P ), for all pi ∈ T .
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(1) (2)

Fig. 3. (1) The Delaunay triangulation. (2) An anisotropic triangulation with its associated ellip-
soidal ball.

While varying the orientation and the elongation ratio, the families of

anisotropic diagrams and triangulations extend the Voronoi diagram and the De-

launay triangulation. Indeed, when E = {1, 1, 1}, ellipsoidal balls become balls,

and VQ(P ) becomes V (P ) (respectively DQ(P ) becomes D(P )). An example of

an anisotropic triangulation of a set of points is presented in Fig. 3(2) with its

structuring element.

3.3. Anisotropic α-shapes

Let bQ(α) be an open ellipsoidal ball of radius α if 0 < α < +∞, a point if α = 0

and a half-space if α = +∞. Let ∂bQ(α) be its boundary. And let Fk,α,Q(P ) be the

set of k-simplicies s(T ), T ⊂ P , such that b(α) ∩ P = ∅ and T ⊂ ∂bQ(α). Then,

we define the anisotropic α-shape of P , denoted by Fα,Q(P ), as the union of the

sets F1,α,Q(P ) and F2,α,Q(P ). For a given α and through different values of Q, the

family of anisotropic α-shapes extends the Euclidean ones. When E = {1, 1, 1},
bQ(α) becomes b(α), and then Fα,Q(P ) becomes Fα(P ). Moreover, the anisotropic

α-shapes are sub-graphs of the anisotropic triangulations.

Observation 1 If s is a simplex of Fα,Q(P ) then it is a simplex of DQ(P ).

Proof. Let bQ(c, α) be an open ellipsoidal ball of radius α centered at c. Let s(T ) be

a simplex of Fα,Q(P ). By definition of the anisotropic α-shape, there exists bQ(c, α)

such that bQ(c, α) ∩ P = ∅ and T ⊂ ∂bQ(c, α). This is equivalent to the following

property:

∀pi ∈ T, ∀pj ∈ P, dQ(c, pi) ≤ dQ(c, pj). (4)
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From the definition of the anisotropic cells, (4) ⇔ c ∈ ∩pi∈TVQ(pi, P ). Then

∩pi∈TVQ(pi, P ) 6= ∅, and thus s(T ) is a simplex of DQ(P ).

3.4. Relations between the anisotropic concepts and the Euclidean

ones

Recall that τ is the transformation represented by the matrix Q. Let τ−1 be the

inverse of τ and let τ(P ) be the set of points τ(pi), for all pi ∈ P . Let s(T ) be

a k-simplex of vertices T = {p0, . . . , pk}. Then s(τ(T )) represents the simplex of

vertices τ(T ) = {τ(p0), . . . , τ(pk)}. The anisotropic concepts are related to the

Euclidean ones by the transformation τ . Therefore, given parameters α and Q, the

anisotropic α-shape can be computed from the Euclidean one. These relationships

are formalized by the following observation.

Observation 2 (i) v is a point of V (τ(pi), τ(P )) if and only if τ−1(v) is a point

of VQ(pi, P ). (ii) For α ∈ R
+, s(T ) is a simplex of Fα,Q(P ) if and only if s(τ(T ))

is a simplex of Fα(τ(P )).

Proof. (i) Let v be a point of V (τ(pi), τ(P )). From the definition of V (τ(pi), τ(P )),

d2(τ(pi), v) ≤ d2(τ(pj), v) for all τ(pj) ∈ τ(P ). We observe that τ−1(τ(p)) = p

for all p ∈ R
3. From the equality (3), this is equivalent to dQ(pi, τ

−1(v)) ≤
dQ(pj , τ

−1(v)) for all pj ∈ P . This means that τ−1(v) is a point of VQ(pi, P ).

(ii) Let s(T ) be a simplex of Fα,Q(P ). According to the definition of Fα,Q(P ), there

exists an open ellipsoidal ball bQ(c, α) such that bQ(c, α)∩P = ∅ and T ⊂ ∂bQ(c, α).

These properties are equivalent to the property (4). According to equality (3), we

have (4) ⇔ ∀pi ∈ T, ∀pj ∈ P, d2(τ(c), τ(pi)) < d2(τ(c), τ(pj)), d2(τ(c), τ(pi)) = α.

So there exists an open ball b(τ(c), α) such that b(τ(c), α) ∩ τ(P ) = ∅ and

τ(T ) ⊂ ∂b(τ(c), α). Thus, from the definition of the Euclidean α-shape, s(τ(T ))

is a simplex of Fα(τ(P )).

Based on this observation, the algorithm, which computes Fα,Q(P ), works in two

main steps:

• We compute V (τ(P )) and its dual D(τ(P )).

• For each simplex s(τ(T )) of D(τ(P )), if s(τ(T )) is a simplex of Fα(τ(P )), we

retain s(T ) as a simplex of Fα,Q(P ).

4. Detection of structures

4.1. Detection of structures in a given direction

The anisotropic α-shapes detect structures, like straight lines and planes. The pa-

rameters α, E and R control the shape and the orientation of the ellipsoidal balls.

If R is chosen, when α decreases from a fixed large value and specific values of

E increase from one, the shape of the associated ellipsoidal ball varies from the
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(1) P (2) F20,Q(P ), λ3 = 2 (3) F10,Q(P ), λ3 = 6

(4) F3,Q(P ), λ3 = 8 (5) F1,Q(P ), λ3 = 10 (6)F0.5,Q(P ), λ3 = 12

(7) F6,Q(P ), λ3 = 8 (8) F1,Q(P ), λ3 = 10 (9) F0.5,Q(P ), λ3 = 12

Fig. 4. Spectrum of anisotropic α-shapes for the sampled linear structures of Fig. 4. From (2) to
(6), the orientation is fixed, and one of the three parameters λi increases while the value of α

decreases. The examples (7), (8) and (9) show the same results for another orientation.

ball to finer elongated balls. In these situations, the behavior of the anisotropic

α-shape is as follows: first, it detects global structures as the convex hull of the

set of points. Then finer and localized structures appear gradually in the direction

given by R and E. This behavior is illustrated in Fig. 4 and Fig. 5. The example

of Fig. 4 shows several anisotropic α-shapes of the set of points of Fig. 1. Two

different orientations is considered, one from Fig. 4(2) to Fig. 4(6), and the other

from Fig. 4(7) to Fig. 4(9). An adequate choice of the parameters α and E is illus-

trated in Fig. 4(6) and Fig. 4(9), where the suitable linear structures are detected,
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(1) P (2) F30,Q(P ), λ3 = 3

(3) F15,Q(P ), λ2 = 2, λ3 = 6 (4) F6,Q(P ), λ2 = 4, λ3 = 12

(5) F2,Q(P ), λ2 = 6, λ3 = 16 (6) F40(P )

(7) F30(P ) (8) F20(P )

Fig. 5. Spectrum of anisotropic α-shapes. (1) Sampled planes (120 points) embedded in a random
perturbed background (150 points). From (2) to (5), two of the three parameters λi increase while
the orientation is fixed and the value of α decreases. From (6) to (8), the Euclidean α-shapes
cannot detect planar structures due to the influence of some background points.

with some non-significant ones. The same behavior is observed in Fig. 5 on samples

of planar structures, embedded in a perturbed background. In Fig. 5(7), 5(8) and

5(9), the Euclidean α-shapes cannot detect the planar structures. This is due to
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the interaction between the sampled points and their background neighbors. In the

sequel, we analyze the relation between the pair (α, Q) and the detection of linear

or planar structures.

4.1.1. The case of straight lines

Let {pi, pi+1, . . . , pj} ⊆ P be a set of ordered points on a straight linear structure

L. Let us suppose that the Euclidean distance between two consecutive sampled

points is d. Also, let us suppose that no background points lie on L: d2(p, L) 6= 0

for all p ∈ P − {pi, . . . , pj}. Then, we have the following result:

Observation 3 There exists a pair (α, Q) such that the line segment [pi+l, pi+l+1]

is a 1-simplex of Fα,Q(P ), for all l = 0, . . . , j − i− 1.

Proof. Let R = (u1, u2, u3) be an orthonormal basis such that L has direction

vector collinear to u1. Let pi+l and pi+l+1 be two successive sampled points of

L. Let c be the middle of the segment [pi+l, pi+l+1]. Let us consider the ellip-

soidal ball bQ(c, α) of radius αλ1 in the direction of u1, and α in the others

(λ2 = λ3 = 1). Let p be the point of P \ {pi+l, pi+l+1} having the smallest dis-

tance dQ from c. Then [pi+l, pi+l+1] is isolated from any background point if it is

a simplex of F1,α,Q(P ) that satisfies the following properties: (i) α < dQ(c, p) and

(ii) αλ1 = d/2. The condition (i) guarantees that q 6∈ bQ(c, α) and q 6∈ ∂bQ(c, α),

for all q ∈ P \ {pi+l, pi+l+1}. The condition (ii) guarantees that {pi+l, pi+l+1} ⊂
∂bQ(c, α). Consequently, an adequate choice of the parameters α and E, that verify

the conditions (i) and (ii) is λ1 = d/2α and α = min(d/2, dQ(c, p) − ǫ). Where

ǫ ∈ (0, dQ(c, p)) is a fixed constant introduced to satisfy the condition (i). Thus

bQ(c, α) is determined such that [pi+l, pi+l+1] is a 1-simplex of Fα,Q(P ).

4.1.2. The case of planar structures

Let P ′ ⊆ P be a finite set of points, regularly sampled on a planar structure L. Let

p, p′ and p′′ three points of P ′. As illustrated in Fig. 6, suppose that L is sampled

such that d2(p, p
′) = d in the direction given by the line l1 and d2(p, p

′′) = h in

the direction given by the line l2, with d ≤ h. Consider the triangle s(T ) of vertices

T = {p, p′, p′′}. Then s(T ) has a unique circumscribed ellipse of least area centered

at its centroid c, namely the Steiner ellipse of s(T ) 16. Assume that no points of P \T
lie on or inside the Steiner ellipse. Under these conditions, we have the following

result:

Observation 4 There exists a pair (α,Q) such that the triangle s(T ) is a 2-simplex

of Fα,Q(P ).

Proof. Let s(T ) be the triangle of vertices T = {p, p′, p′′}. Let R = (u1, u2, u3) be

a direct orthonormal basis such that u1 is the vector pp′. Let u2 be the unit vector
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2

l1

l2
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x

u

Fig. 6. A sampled planar structure and Steiner circumellipse of triangle pp′p′′. Its center is the

triangle centroid, its semi axes are a2 and a3.

in the plane supported by s(T ) such that the angle between u1 and u2 is π/2. Now

consider the Steiner ellipse of s(T ). Let a1 and a2 be its major and minor semi-axes

respectively. In the 2-dimensional basis (u1, u2), a1 makes an angle θ with u1, see

Fig. 6. The parameters a1, a2 and θ can be expressed by:

a1 =
1

3

√

A+ 2
√
B (5)

a2 =
1

3

√

A− 2
√
B (6)

θ = tan−1

(

1

2hd

(

(a2 − b2)2 + d2

(

2d2 − a2 − b2 + 2
√
B

))

)

(7)

whereA = a2+b2+d2, B = a4+b4+d4−a2b2−b2d2−a2d2, a2 = (d−x)2+h2 and b2 =

x2 + h2. Let bQ(c, α) be the ellipsoidal ball of orientation Ru3
(θ)R, where Ru3

(θ)

represents the rotation of an angle θ about u3. Let p be the point of P \T having the

smallest distance dQ from c. Then s(T ) is isolated from any background points if

it is a 2-simplex of Fα,Q(P ) that satisfies the following properties: (i) α < dQ(c, p),

(ii) αλ1 = a1 and αλ2 = a2. The condition (i) guarantees that q 6∈ bQ(c, α) and

q 6∈ ∂bQ(c, α), for all q ∈ P \ T . The condition (ii) guarantees that T ⊂ ∂bQ(c, α).

Consequently, an adequate choice of the parameters α and E, which verify the

conditions (i) and (ii), is λ1 = a1/α, λ2 = a2/α and α = min(dQ(c, p) − ǫ, a1).

Where ǫ ∈ (0, dQ(c, p)) is a small constant introduced to satisfy the condition (i).

Thus bQ(c, α) is determinated such that s(T ) is a 2-simplex of Fα,Q(P ).

The observations 3 and 4 show that, when a linear or planar structure is regularly

sampled, there exists a value α such that the anisotropic α-shape detects the struc-

ture. Moreover, the detection of linear structures uses the set of 1-simplicies F1,α,Q,

and the detection of planar structures uses the set of 2-simplicies F2,α,Q.
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4.2. Removing non-significant structures

For an adequate choice of the pair of parameters (α,Q), the anisotropic α-shape

detects the suitable structures. It also detects several structures joining some points

of the background, see Fig. 4(6,9) and Fig. 5(4). These last structures, characterized

by a low number of connected points, are called non-significants. To delete the non-

significant structures, the sets Fk,α,Q(P ) are filtered by analyzing their connected

components.

(1) (2) (3) (4)

Fig. 7. F1,α,Q(P ) with (1) nbc = 1 and (2) nbc = 2 where dashed segments are deleted ; and for
F2,α,Q(P ) with (3) nbc = 1 and (4) nbc = 3, 4 where grey triangles are deleted.

Formally, a k-simplex is h-connected if it is incident to h (k + 1)-simplicies. For

a fixed value k (1 or 2), a set of k-simplicies {si, si+1, . . . , sj} is a path of length l

in Fk,α,Q(P ) if and only if the four following properties are verified:

(i) sz is a k-simplex of Fk,α,Q(P ) such that sz∩sz+1 6= ∅, for all z = i, i+1, . . . , j−1

(ii) for all (k − 1)-simplex s ⊂ sz, s is 1-connected or 2-connected

(iii) there exists no k-simplex s in Fk,α,Q(P ) such that {si, . . . , sj}∪s verifies prop-

erties (i) and (ii)

(iv) the number of elements of {si, . . . , sj} is i− j + 1 = l.

The property (i) guarantees that the path represents a connected structure. The

property (ii) ensures that the path has no ramifications. And the properties (iii)

and (iv) ensure that the length l of the path is maximal.

A path is non-significant in Fk,α,Q(P ) if and only if the length of the path is less

than a fixed threshold nbc. To delete the non-significant paths in a set Fk,α,Q(P ),

the algorithm is as follows: for l = 1, . . . , nbc, the non-significant paths, and the 0-

simplicies that become 0-connected, are iteratively deleted. The action of the filter

is illustrated in Fig. 7 for k = 1 and 2. It can remove two kinds of non-significant

structures: artifacts on the surface of a structure and small connex structures. Fig. 8

shows another example of the action of the filter on 2-simplicies.

4.3. Detection of polyhedral structures

For given parameters k, α and E, the family of filtered anisotropic α-shapes of a

set of points P , through various orientations R, is suitable to detect dot patterns

having a polyhedral shape. In this way, we propose a general algorithm which works
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Fig. 8. Example of removing non-significant paths of 2-simplicies.

in three main steps. We use the matrix Q (see equation (1)) to compute the global

anisotropy on the whole set of points P . In Q, R is represented by a composition

of matrices of rotation, parameterized by Euler angles:

R = R(θ, ψ, φ) = Rz(θ)Rx(ψ)Ry(φ), (8)

where Ra(r) is the matrix of rotation of an angle r around the a-axis. The coeffi-

cients of R are given by:

r11 = cosφ cos θ − sinφ sin θ sinψ

r12 = − sin θ cosψ

r13 = cos θ sinφ+ cosφ sin θ sinψ

r21 = cosφ sin θ + cos θ sinφ sinψ

r22 = cos θ cosψ

r23 = sinφ sin θ − cosφ cos θ sinψ

r31 = − sinφ cosψ

r32 = sinψ

r33 = cosφ cosψ

with θ, φ, ψ ∈ (−π/2, π/2]. The different orientations can be computed by several

methods. In order to cover the three-dimensional space uniformly, we sample the

surface of a cube by a uniform grid. Let C be the box of extremities (1, 1, 1)t

and (−1,−1, 0)t. The surface of the box without the XY -plane, denoted by ∂C \
XY , is sampled uniformly along the axes of the Euclidean frame, with a distance

m1 between two successive samples. This gives a finite set of orientations Rm1 =

{R(0, ψi, φi), i = 1, . . . , l}, where each orientation corresponds to a line OM where

M is a sample of ∂C\XY , and O is the origin of the Euclidean frame. This sampling

method, illustrated by Fig. 9, is sufficient for extracting linear structures. In the

case of planar structures, the spectrum of orientations is computed from Rm1. For

each orientation R(0, ψi, φi) in Rm1, the angle θ ∈ (−π/2, π/2] is divided in m2



Preprint submitted to International Journal of Image and Gaphics

14 S. Bougleux, M. Melkemi and A. Elmoataz

m1 = 0.6 m1 = 0.4 m1 = 0.3 m1 = 0.1

Fig. 9. Spectrum of orientations

angles θj = θj−1 + π/m2, with j = 1, . . . ,m2 and θ0 = −π/2. This gives a set

Rm1,m2 = {R(θj, ψi, φi), i = 1, . . . , l, j = 1, . . . ,m2}.
With the previous notations, the parameter of elongation must be given by

E = {1, 1, 1/λ3} if k = 1, and E = {1, 1/λ2, 1/λ3} if k = 2. In addition, let

nbc > 1 be the minimum number of components of significant structures. Then, the

algorithm that detects polyhedral structures is organized as follows:

• Let A be Rm1 if k = 1 or Rm1,m2 if k = 2.

• Let F be a set of k-simplicies, initially empty. For each orientation R(θ, ψ, φ) in

A, the matrix Q is computed with R(θ, ψ, φ) and E, then Fk,α,Q(P ) is computed

(section 3.4) and filtered with the parameter nbc (section 4.2). The filtered set of

k-simplicies is added to F .

• The resultant graph corresponds to the set F .

The first step computes the spectrum of orientations. For specific applications,

this spectrum can be fixed and computed by other methods. In our experiments, we

have fixed m1 = 0.3 and m2 = π/12. The second step corresponds to the detection

process, illustrated by Fig. 10 and Fig. 11 in the case of k = 2, and in Fig. 12 in the

case of k = 1. These synthetic examples show the detection of sampled structures

in a perturbed background. The detection of planar structures in a set of sampled

shapes is illustrated by Fig. 13 and Fig. 14. The set of k-simplicies F obtained in

the third step can include some non-significant paths, introduced by the union of

the filtered anisotropic α-shapes . These bad paths can also be removed from F by

the filter (Fig. 14(2)).

5. Conclusion

In this article we showed the adequacy of a family of graphs to detect regularities in

a three-dimensional set of points. This family, that we have called the anisotropic

α-shapes, is an extension of the Euclidean α-shapes. Each anisotropic α-shape, is

generated by an ellipsoidal ball, parameterized by an elongation ratio and an orien-

tation. From an algorithmic point of view, anisotropic α-shapes can be computed

from the Delaunay triangulation. We also proposed an algorithm, based on a spec-

trum of anisotropic α-shapes, that is suitable to detect linear and planar structures
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(1) (2)

(3) (4)

(3) (4)

Fig. 10. Detection of planar structures with parameters α = 1, λ2 = 4, λ3 = 8 and nbc = 20. (1) A
sampled polyhedral structure S (190 points). (2) S is embedded in a random perturbed background
(800 points). This gives the set P . (3) An anisotropic α-shape of P . (3) The anisotropic α-shape,
obtained in (3), is filtered. (4) and (5) show examples of anisotropic α-shapes that are composed
of non-significant structures.

in a set of points. It incorporates a method for removing non-significant details

(perturbations or small parts of patterns).

The ongoing work is to construct extensions based on more complex geometric
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(1) (2)

Fig. 11. Detection of planar structures with parameters α = 1, λ2 = 4, λ3 = 8 and nbc = 20.
(1) The result of the algorithm, obtained from the set of points of Fig. 10. (2) The non-significant
structures in (1) are deleted according to the filtering method.

(1) (2)

(3) (4) (5)

Fig. 12. Detection of linear structures (k = 1) with parameters α = 1, λ3 = 10 and nbc = 4. (1) A
set of sample points (50 points). (2) The set is embedded in a random background (1500 points).
(3) An example of a suitable anisotropic α-shape. (4) Non-significant structures in (3) have been
removed. (5) The final detected structures.

elements than balls or ellipsoidal balls. These extensions will be employed to detect
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(1) (2)

(3)

Fig. 13. Detection of planar structures. (1) A set P of sampled points (|P | = 4102). (2) An
Euclidean α-shape of P . (3) The detected planar structures in P with nbc = 400 and λ2 = λ3 = 20.

patterns which are more complex than linear and planar structures. In data analysis,

these methods can be used efficiently to extract patterns when the directions are

known.
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