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Abstract

In this paper, we consider the problem of curve reconstamcfrom a finite planar set of points. To solve this

problem, we propose to use a family of neighborhood graptisided in the Gabriel graph. The neighborhood

that we use is thg-neighborhood, initially defined in the context of circlaseds-skeletons, but applied to edges

of the Voronoi diagram. This family of graphs includes thealocrust. This formulation enables us to design

effective algorithms to reconstruct curves, by using as iargknowledge that the curves to be reconstructed
are without intersections. We show, through several exaspphat the proposed algorithms improve the results
obtained with the local crust, when the set of points is of density.

1. Introduction

Reconstruct the shape of objects from a finite set of paihtmeasured on the boundary of the objects, is an
important step in many application areas, such as compigieny image analysis, or shape modeling. In this ar-
ticle, the set of points is supposed to be a sample of simple curveRdfcurves without intersections), and the
reconstruction consists in finding a polygonal interpolatof P, topologically equivalent to the sampled curves.

Among the methods which solve the problem of curve recoattmy, the ones based on neighborhood graphs
are known to be efficient, both in practice and theory. Allledrn provide an adequate interpolation if the set
of points P is a sufficiently dense sample of the curves. Conceptuadiightborhood graphs connect the points
of P that are close relatively to a given measure. The neighloakhwhich allows to generate the edges, can be
interpreted as the structuring element of the graphs. Wwiosks on curve reconstruction, based on neighborhood
graphs, were inspired by point cloud clustering and deSoripnethods. The main graphs used by these meth-
ods are the Gabriel graph, thenearest neighbors graphs, the minimum spanning treeglive neighborhood
graph, or the Delaunay triangulation (see [20] for a recantey of these methods).

An important class of these graphs allows to describe thpesb&the point cloud at several levels of detalils,



by using an union and/or an intersection of discs as a stingtelement. Two points aP are connected by an
edge if the neighborhood of the edge does not contain anyspoi. Among these graphs, one can distinguish
the family of a-shapes [10], which is generated with empty discs of radiusnd the family of3-skeletons [16],
which is formed with two empty discs of same radius and locales3. Extensions of these two descriptors were
proposed by using-neighborhood graphs [21]. Since the Delaunay triangutais generated with the empty
discs of maximum radius, it includes most of the graphs meeti above. While the neighborhood of these
graphs is defined by using a global parameter, the neighbdrbbthe A-shapes [19, 18], is defined by using a
set of control pointsA. The edges of this family of graphs are generated by discsyeofipoints of P U A. The
A-shapes are also subgraphs of the Delaunay triangulatibe.cfioice of control paints is related to the medial
axis of the shapes to be reconstructed. As the medial axibeapproximated by a subset of the edges of the
Voronoi diagram [6], the vertices of the Voronoi diagram go®d candidates for the st

In the context of simple closed curve reconstruction, alamdoncept has been proposed to define the crust
of P [1]. The crust is a particular case of tleshapes, wherd corresponds to the whole set of Voronoi vertices.
It always gives a reconstruction topologically equivalenthe sampled curves, B is sufficiently dense and if the
curves are twice differentiable (or smooth) [1]. The caltioh of the crust requires to compute the Voronoi dia-
gram of P, as well as the Delaunay triangulation®fJ A. In order to improve the complexity of this calculation,
a local version of the crust, called the local crust, has eposed in [13], and studied beforehand in another
form in [2]. It only requires to compute the Delaunay triatagion of P, and provides equivalent results to those
obtained with the crust. Moreover, the Voronoi edges, withed Delaunay edges do not belong to the local crust,
approximate the medial axis of the reconstructed curvels Tl8s subgraph of the Voronoi diagram Bfis called
the anti-crust ofP.

Other curve reconstruction methods use neighborhood grapthis the case of the methods using e
shapes [4], thegg-skeletons [1] or the minimum spanning tree [11]. In [7], tle@rest neighbors crust is proposed
as an alternative to the crust and the local crust. Due tosiradde effects when the sampled curves are open or
non-smooth, the ideas in [7] have been modified by incorpwyadarameters that control the sharpness of corners
and the local density [8, 9]. These ideas have also beendeden take into account curves with intersections [17].

The principal objective of this paper is to describe a hidvaal family of graphs which is generated by a struc-
turing element defined on the edges of the Voronoi diagram.wouk takes as a starting point two properties of
the local crust and the anti-crust that we demonstratetlyithe local crust is a subgraph of the Gabriel graph.
Secondly, the edges of the anti-crust are generated by @Gbgel discs that are circumscribed to Voronoi ver-
tices and empty of points adP. Based on these properties, we extend the Gabriel neigbbdrbf the Voronoi
edges to the circle-basetineighborhood, initially defined fas-skeletons [16]. Whe is fixed, this neighbor-
hood enables to define two types of graphs, the first one is graplp of the Voronoi diagram, and the second
one is a subgraph of the Gabriel graph. We call respectivegd graphs thé-medial axis and the local-crust.
Beyond that, we show that certain properties of the familpoél 3-crusts allow to design efficient nonparametric
algorithms that extract simple curves from the Delaunantyulation. These algorithms exploit as a prior know-
ledge that the curves to be reconstructed are without etgos. A similar assumption has also been considered
in [15].

The rest of this article is organized as the following. Th&treection points out the concepts on which the
graphs and the algorithms we propose are based. Sectiors@sehe3-neighborhood of Voronoi edges, the
(#-medial axes and the locglcrusts. Then, we discuss the differences with the locatcia Section 4 we pro-
pose an algorithm which computes the maximum valug foir which there exists a local-crust that reconstructs
simple curves. The results of this algorithm are improvedubh an extension described in Section 5. We show
experimentally that the proposed algorithms improve tiselts obtained with the local crust [13] and the nearest
neighbors crust [7], when the set of points is not dense.



2. Related concepts

Let P be a finite set ofV distinct points of the Euclidean plane. We assufhi® be in general position. Here,
we recall some definitions and properties needed for the ceimepsion of the graphs and the algorithms presented
in Section 3, Section 4 and Section 5.

2.1. Voronoi diagram and Delaunay Triangulation

In this paper, the Voronoi diagram and the Delaunay tricetgut of the point seP are the two fundamental
data structures used to compute a polygonal interpolafid?. o

Let ||p—¢|| be the Euclidean distance between two poirisidg of R?. TheVoronoi polygorof a pointp; € P,
denoted byV (p;, P), is the set of pointp € R? such that|p — p;|| < ||p — p;|, for all p; € P. The Voronoi
diagramof P is the set of Voronoi polygon'(P) = {V(p;, P), Vp; € P}. Two points are neighbors i (P) if
the intersection of their Voronoi polygons is not empty.

The topological and geometrical dual of the Voronoi diag@n® is the Delaunay triangulation @?, noted
D(P). Two points of theD(P) are neighbors if there exists a circle passing through thesgs and such that its
interior is empty of points of?. The dual of a Delaunay triangle is a Voronoi vertex, the difia Delaunay edge
is a Voronoi edge, and the dual of a Delaunay vertex is a Vanoolggon.

For the detail of these two concepts, on can refer to [3]. hiqaar, the edges of the convex hull & noted
cony P), correspond to the boundary edgedufP), i.e. to the edges incident to one triangle/afP). The dual
Voronoi edges of the convex hull edges are infinite. To sifpphie notations, we suppose that all the edges of
V' (P) are finite. The case of infinite Voronoi edges is discussectién 3.4.

2.2. Gabriel graph and (-skeletons

TheGabriel Graphof P [12], notedGG(P), is the graph that connects two poiptsandp; of P if the diametral
disk of the edgey;p; contains no points aP \ {p;,p;}. Itis a subgraph of the Delaunay triangulation. The disk of
diameter;p;, called theGabriel diskof p;p; and notedB(p;p; ), represents the neighborhoodygp;. The edges
of the Gabriel graph have also the property to cut their doabhoi edges.

Also based on the notion of empty neighborhood, the familgiafle-baseds3-skeletonof P [16] describes
a hierarchy of graphs indexed by a real positive valued patans. The G-neighborhoodof a pair of points
p; andp; of P, noted Ng(p;p;), is defined as the union of the two disks of raditip; — p;||/2, for 3 > 1,
circumscribed to the points; andp;. Wheng < 1, Ng(p;p;) is defined to be the intersection of the two disks
of radius||p; — p;||/28 circumscribed tg; andp;. Given a value of3, the edgep;p; is in the 3-skeleton ofP
if Ng(pip;) is empty of points ofP \ {p;,p;}. The family of 3-skeletons ofP includes the Gabriel graph d?
for 8 = 1. Moreover, for allg > 1 the 3-skeleton ofP is a subgraph of the Delaunay triangulation. This is not
necessarily the case when< 1.

2.3. Medial axis

The medial axisof a collection of curve§ C R? is defined as the closure of the set of pointRafthat have
two or more closet points iii. The medial axis, which can be interpreted as a continuorssoreof the Voronoi
diagram, is one of the most important descriptors of shapjest|can be approximated by a subset of the edges of
the Voronoi diagram of a dense sample of the curves [6]. Wherttirves are smooth and without intersections,
the medial axis never intersects the curves. These prepente the main ideas exploited in smooth curve sampling
and reconstruction methods [2, 1, 7].



Figure 1. lllustration of the proofs of Observation 1 and Lemma 1.

2.4. Local crust and anti-crust

Thelocal crustof P, notedLC(P), is a subgraph of the Delaunay triangulationfo€omputed from a relation
between Delaunay and Voronoi edges. hgt; be an edge oD (P) andv;v; be its dual Voronoi edge. The edge
pip; is in the local crust if and only if there exists a circle cinescribed tg;p; and whose interior is empty of the
Voronoi verticesy; andwv; [13]. This local test can be formalized by considering the bgen disks circumscribed
to the pointsy;, p;, v; andp;, p;, v; [14]:

b(pipjvi) N{v;} =0, and
b(pipjv;) N {vi} = 0.

Due to the relation of duality between the edgg; and the edge;v;, one can show that the test of emptiness
b(pipjvi) N{v;} = 0 is equivalent td(p;p;v;) N {v;} = 0. Thus, only one of the two tests is needed in Eq. (1) to
determine if the edgg;p; is in LC(P) [14].

The dual Voronoi edges of the Delaunay edges that are nogilotfal crust constitute thenti-crustof P [13],
noted AC(P). This graph provides an approximation of the medial axishef turves that are reconstructed
by LC(P).

pip; € LC(P) = { (1)

3. Local 5-crust and 5-medial axis
In this section, we introduce the graphs which are used bgltiwithms presented in Section 4 and Section 5.
3.1. Motivations

The proposed graphs are inspired by two properties of tred tyast and the anti-crust. Firstly, the local crust
of P is a subgraph of the Gabriel graph Bf This property, indirectly mentioned in [13], implies thhe edges
of LC(P) never cut the edges &C(P). So, the local crust and the anti-crust are consistent Wéldefinitions of
a smooth curve and its medial axis, or any curve which doemtarsect its medial axis.

Observation 1 LC(P) C GG(P).

Proof. Letp;p; be an edge that is not BG(P). Letv;v; be the dual Voronoi edge gf;p;. In order to get a
contradiction, suppose thaip; € LC(P). By definition ofGG(P), we havep;p; Nv;v; = () (or one of the vertices



of v;v5), i.e. the vertices; andv; are located on the same sidepgh;. Letv; be the nearest vertex tgandp;. As
illustrated in Fig. 1 (verticess, pg anduvs, vg) , this implies thav; € b(p;p;v;), and from Eq. (1)p;p; ¢ LC(P).O

Secondly, the anti-crust @f can be defined using Gabriel disks on Voronoi edges. Indeegtigev;v; € V (P)
is included inAC(P) if and only if the closed disk of diametefuv; is empty of points ofP.

Lemmal Viv; € AC(P) = B(vivj) NP =0.

Proof. Let p;p; be the dual Delaunay edge of a Voronoi edge;. By definition of the anti-crust and by Eq. (1),
we havev,v; € AC-(P) < v; € b(pip;v;) (@andv; € b(p;p;v;)). As illustrated in Fig. 1 (point:, p2, p3 andpy),
this is equivalent ta3(v;v;) C b(pip;jv;) (and respectivelyB(v;v;) C b(pipjv;)). Then the verticep; andp; are
not in B(v;v;). Since they are the two nearest neighbors of the eggethere exists no points @? in B(v;v;). O

From Observation 1 and Lemma 1, one can deduce that an edge @felaunay triangulation is in the lo-
cal crust if it is entirely included in the diametral disk @ idual. Based on this property, we generalize the

definitions of the local crust and the anti-crust in orderbtao a family of graphs, and thus a range of possible
solutions to the problem of curve reconstruction.

3.2. Main definitions and properties

The basic idea of the extension is to yselisks defined on Voronoi edges instead of Gabriel disks ¢@fas
tion 1). Letv;v; be an edge oV (P) andp;p; be its dual Delaunay edge. Lgt<]0, +-o00[ be a given parameter,
andNg(v;v;) be thes-neighborhood of the edgeguv; (see Section 2.2 for the definition 6ig).

In order to preserve the properties related to the Gabragdgrthe edge;p; must be located in the part &P
limited by the two lines, parallel with;p;, which pass through the vertices @b; (see Fig. 2(a)). This part of
R?, notedH (v;v;), can be written as the set of pointss R? such that/v;v;p < 7/2 and Zvjv;p < 7/2. Then,
we define the neighborhood ofv; as the intersection aVg(v;v;) andH (v;v;) (see Fig. 2(c,d,e)). According to

whether this intersection is empty or notf(andp;), the edgev;v; belongs to the3-medial axisof P, noted
B-MA(P), or the edge;p; belongs to théocal 5-crustof P, noted3-LC(P):

| |
| |

[}
I
k
L
o

(@) H (vivy) (b) Ng(vivj), B> 1 (8>1

Figure 2. Construction of the neighborhood used to form the local S-crust and the #-medial axis,
according to the value of .

vv; € B-MA(P) < {pi,p;} ¢ N(vivj) N H(viv;) 2
pipj € B-LC(P) < {pi,pj} C Ng(viv;) N H(vivj) ©)

The localg-crust of P is the set of Delaunay edges entirely included ingheeighborhood of their dual Voronoi
edges:

pip;j € ﬁ-LC(P) < pipj C N@(Uﬂ}j). (4)
By construction of the neighborhood, the logatrusts are subgraphs of the Gabriel graph.



Figure 3. Spectrum of local (-crusts (bottom) computed from the Delaunay triangulation (top). The
weight of Delaunay edges is represented by gray levels, from black to white according to the appari-
tion order of the edges in the family of local 3-crusts.

Theorem 1 3-LC(P) C GG(P), ¥4 €]0, +oo|.

Thus, one can deduce thad_C(P) is the set of Gabriel edges whose vertices are included ig4meghborhood
of their dual edges. While varying, the locals-crusts ofP (and thes-medial axes) describe a hierarchical family
of graphs. This is due to the relation of inclusion which extzetween th@g-neighborhoods.

Theorem 2 V3, 8 €]0, +00[, 3 < ' & G-LC(P) C F-LC(P) & #-MA(P) C 3-MA(P).

Proof. Let p;p; be an edge ofi-LC(P) andv;v; be its dual Voronoi edge. From the equation (4), we have
pip; C Ng(’UZ'Uj). That iS,ﬁ, > (. By definition,Ng(vivj) C N peta’ (’UZ"Uj), and thU%?ipj C N petar (vivj). ]

Moreover, the family of local3-crusts of P, and that of3-medial axes, are finite. The number of graphs
from these two families is limited by the number of edges ef@abriel graph of’. Indeed, for each edggp; of
GG(P), there exists a valug > 0 such thap;p, belongs ta3-LC(P), andp;p; does not belong tg’-LC(P), for
all 3/ < $. In other words, the value g¢f from which the edge;p; is included in the family of locab-crusts. By
duality, it is also the value of from which the dual edge qf;p; is excluded of the family of thg-medial axes.
This allows to associate one weight to each edgb @P). Theweightof an edgep;p; € D(P), notedw(p;p;), is
defined to be: o . Gop
vty = { L0 M) o LSS ©
whered N represents the boundary ;. Based on the relation of inclusion stated by theorem 2, dyes of
D(P) are ordered according to the ascending order of their weigpip;, < pip; < w(pip;) < w(prpr) <
w(pipj)-LC(P) C w(prp)-LC(P). Then, we define thepectrumof the local3-crusts ofP, notedspectruniP),
as the set of edges @ (P) ordered according to the preceding relation. Bgi and Smax be the minimal and
the maximal values of the weights of the edge$s@(P). Given a values € [Bmin, Bmaxl, this value separates
the spectrum of in two disjoined subsets of edges : those which have a weigler or equal tg3 belong to
B-LC(P), and those which have a weight higher thamave their dual edges i6-MA(P). The local 3-crust
coincide with the Gabriel graph wheh > Gnax. This shows that the maximum number of log¢atrusts of P
corresponds to the number of edgesG#d( P) (certain edges can have equal weights). An spectrum example
illustrated in Fig. 3.

3.3. Alternative definitions

The 3-neighborhood can be expressed with anglesdLet(0, ) be the angle defined by:

[ m—arcsin(B) if g€ (0,1],
6(8) = { arcsin(1/3)  if B8 € [1,+00). ©)



This notation implies several alternative definitions a tbcal 3-crust of P. Let p;p; be an edge oD(P), and
v;v; be its dual Voronoi edge. Lefp;v;v; be the angle between the vectgp; and the vector;v;.

Lemma2 p;p; € 8-LC(P) if and only if:
(l) Zpﬂ)ﬂ)j < 7T/2 and Zpﬂ}j’l)i < 7'('/2, and
(ll) Zpﬂ}ﬂ)j + 4%2}]’]?2‘ <7T- 9(6)

Proof. The property (i) ensureg;p; to be inGG(P) and it comes from the definition &G(F). To demon-
strate the property (ii), we consider the triangje;v;. From Eq. (6), Eq. (3) and the definition 8fz, we obtain
pip; € B-LC(P) iff p;p; € GG(P) andZv;p;v; > 6(3). As the sum of the angles muv;v; is 7, Zv;pjv; > 6(5)

is equivalent to the property (i)

From Lemma 2, the locaB-crust can also be expressed with the angles of the Delauiaagles. Letp;p;py
andp;p;p; be the two triangles incident to the edge;.

Lemma3 p;p; € 8-LC(P) if and only if:
(1) Lpipkp; < w/2 and ZLp;pp; < /2, and
(i)) Zpipxp; + Zpjpips < ™ —0(B).

Proof. Letv;v; be the Voronoi dual op;p;. We have/p;pyp; = Zp;viv; andZLp;pip; = Zvv;p;. Then, property
(ii) is equivalent to property (ii) of Lemma 21

The conditions (i) and (ii) of Lemma 3 allow to redefine the gies of the edges oD (P) using the angles
of the Delaunay triangles. Eq. (5) is then replaced by tHewahg equation:

Ly _ [ £pipepj + Lpijpipi if pipj € GG(P),
w(pip;) = { 400 otherwise. (7)

The value of3, which corresponds to the weight of an edge, is obtained dppiposite equation of Eq. (6):

_ [ sin(r —90) if 0 >7/2,
p6) = { 1/sin(m — @) otherwise. 8

Lemma 2 and Lemma 3 allow to treat the case of the convex hgésd

3.4. Case of convex hull edges

For instance, we supposed that all the edgds(@?) are finite, i.e. all the edges @f(P) are incident to exactly
two triangles ofD(P). However, edges afony P) are incident to only one triangle @ (P). Their dual edges
have one vertex i’ (P). In this case, thg-neighborhood of the Voronoi edges cannot be directly ddffrem
V(P).

In order to define thg-neighborhood of the infinite edgesw{ P), we consider the Voronoi diagram &fJ P/,
where P’ is a finite set of points satisfying D(P) ¢ D(P U P’). The points ofP’ are selected on the infinite
edges oft’(P). Thus, to take into account the case of infinite edgels @), the localg-crusts and thg-medial
axes of P are defined by using’ (P U P’) and D(P U P’), and by considering the edges of which the vertices
belong toP.

By using Lemma 2 and Lemma 3, the logakrusts and thg-medial axes ofP can be completely computed
from D(P) andV(P). For that, only one of the two angles is considered in the itomd (i) and (ii) if the
Delaunay edge belongs tmny P). Conceptually, this is equivalent to add B a point at the infinity on each
infinite edge ofV/ (P).



V(P) 0.97-LC(P

V(P) LC( 1.002-LC(P
Figure 4. Comparison between local 8-crusts and the local crust.

3.5. Differences with the local crust

Given a value of, the local3-crust is the set of edges @ (P) which are completely included in the-
neighborhood of their dual edges. Whgn= 1, the 3-neighborhood of an edggwv; of V(P) is the Gabriel
disc B(v;v;). According to Theorem 1, the locatcrust of P corresponds to the local crust 8f Moreover, the
relation of inclusion between the locgicrusts (Theorem 2), whetis varying, implies the following theorem.

Theorem 3 The local crust is related to the family of locaicrusts by the three following properties:

(i) LC(P) = 1-LC(P),

(i) v € (0,1], B-LC(P) C LC(P).

(i) VB € [1,+00), LC(P) C (-LC(P).

The property (ii) of Theorem 3 shows that the local crust amstthe locab-crusts for whichs < 1. The property
(iii) shows that fors > 1, the locals-crusts are at least made up of the edges of the local cruse Bzon these
properties, we can study the differences between the louat and the locab-crusts, in the case of samples of
curves.

Let I' be a collection of curves dk? and P be a sample of’. In some cases, as illustrated in Fig. 4, the
local crust cannot correctly reconstrdcfrom P. These cases can be encountered if one of the three following
configurations holds:

- All the correct edges are presentli€@(P) and at least one edge is incorrect.
- None incorrect edge is presentli€(P) but at least one correct edge is missing.
- LC(P) includes at the same time correct and incorrect edges.

In the two first configurations, there exists one lg@airust that is able to correctly reconstrudcif the weight
of all the correct edges dD(P) is lower than the weight of the incorrect edges/afP). Section 4 presents an
algorithm which computes such a graph in the case of simpieesu In the third configuration, it cannot exist a
local 3-crust which correctly reconstrutt We discuss this problem in Section 5.



4. Optimal local 3-crust for smple curves

In this section, we propose a method to compute the maximune & 5 for which there is a graph, of the
family of local 5-crusts of P, which reconstructs a collection of closed or opened cunwithout intersections.
We call this value the optimal value &f notedGopt.

According to the definition of the spectrum Bf Fop-LC(P) corresponds to the set of edgesafP) that have
aweight lower or equal tGopt. To computedop-LC(P), the idea is to add the edgesiof P) to a graph’, initially
empty, in the order defined by the spectrumfof The edges are added while the degree of their verticésis
strictly lower than two. In the contrary case, at least omteweof G would have a degree equal to three after the
insertion of the edge ity. Thus, this would represent a collection of curves with aersection, which contradicts
the assumption concerning the topology of the solutionvEsiwvithout intersections). During the traversal of the
spectrum, several edgesB{ P) can have the same weight. In this case, if one of them hasexw&rtegree two,
then none of these edges is addedrto

The computation of the spectrum 6fis summarized by Algorithm 1. For each edgel®?fP), its weight is
given by Eq. (7). The spectrum is then represented by a datyol. whose key is a weight value, and whose
elements are lists of edges having a same weight. The elsrokhtare sorted according to the ascending order
of the weights.

Algorithm 1 spectré P, D)
Input: the Delaunay triangulatio® of P C R2.
Output: the dictionaryL = {(w1, E1), ..., (Wm, Emn)} such thatv; < ... < wp,.

L+ 10
for each edgep;p; € D do
if pip; € conv(P) then
pr < p € P such that the trianglg;p,;p € D
it Zpiprp; < 7/2 then
w — Zpipkp;
dsew «— +oo
else
Pk, P < {p € P such that the trianglg;p;p € D}
if Zpiprp; < m/2 andZLp;pip; < m/2 then
w — Lpipkp;j + Lpipipi
dsew «— +o0
insert p;p; in L at the keyw
return L

The complete calculation @kp-LC(P) is summarized by Algorithm 2. The grapb,-MA(P) is also extracted
from V (P) with this algorithm. It corresponds to the set of edges wivesight is strictly higher thaopt.

Algorithm 2 can be seen as a thresholding method, where tashbld is automatically computed by using the
topological properties of the desired solution. Severabnstruction examples are illustrated in Fig. 5 on samples
of closed simple curves. As thigp-local crust correctly reconstructs when the local crustestly reconstructs
(Theorem 3), the examples show the differences betweer thesgraphs. The results are also compared with
those obtained with the nearest neighbors crugt ff], notedNNC(P) in the examples.



Algorithm 2 BoprrLC(P)
Input: P C R2,
Output: G = (V, E) corresponding t@op-LC(P), G’ = (V', E’) corresponding t6op-MA(P), andSGopt.

VP

E V' E 0

w «— 0

D «— D(P)

L — spectréP, D)

k0

for k=1,...,sizeofL) do
E). — the element of_ at the keywy,
for each edgep;p; in £} do

10: if (dedps, G) < 2) and(degp;, G) < 2) then
11: deqp;, G) « dedp;,G) + 1
12: dequ, G) — dequ, G) +1
13: elsego to linel6

14. FE— FUE;

15: W < Wy

16: for l = k,...,sizeofL) do

17:  E; < the element of_ at the keyw;,
18:  for each edgep;p; in Ej, do

19: E' — E"U{dual(p;p;)}

20: return G, G’ et3(w) (Eq. 8)

5. Improvement of the results

Algorithm 2 allows to reconstruct curves without interéaies by using the family of the local-crusts. Accor-
ding to the distribution of the points d? on the curves, the results obtained with this algorithm cabdd. As
illustrated in Fig. 6, many correct edges are missing. Thisdcause the spectrum cannot be separated in two
disjoined subsets of edges such that the reconstructiarrieat. At least one edge @¥(P) has a weight weaker
than the maximum value of the weight of the correct edgeshifhdase, one can notice that the local crust does
not reconstruct the curves correctly (Theorem 3).

The reconstruction can be considerably improved by sigmtbdifying Algorithm 2. Instead of stopping the
addition of Delaunay edges @when one of them has a vertex of degree two (line 13), the diga ef the current
edge is added to the grajgh, and the spectrum is traversed to its last element. Thutheakdges oD (P) are
traversed in the increasing order of their weights, and @ddehe reconstruction if they do not imply an inter-
section (vertex of degree three). Here, the spectrum igsepted by a the ligt of the edges oD (P) such that
L={ei,....em : ¢, € D(P), w(e1) < ... < w(en)}. The whole method is summarized by Algorithm 3. Its
time complexity isO(N log N). The graphg7 andG’, obtained with Algorithm 3, do not necessarily correspond
to a local3-crust or to a3-medial axis. On the other hand, they include thg-local crust and thg,,-medial
axis (Algorithm 2). A result obtained with Algorithm 3 isultrated in Fig. 7 on sparse samples of closed curves.
One can notice that it improves the results obtained withdbal crust.



Algorithm 3 recong P)

Input: P C R2,

Output: G = (V, E) corresponding to the curves, = (V, E’) corresponding to the approximation of the medial
axis of the curves

V<P
E,V',E —
w0
D — D(P)
L — spectréP, D)
k<0
for k=1,...,sizeofL) do
pq < L[k]
if (degp, G) < 2) and(deg¢, G) < 2) then
E — EU{pq}
dedp,G) — dedp,G) + 1
ded¢,G) «— dedq,G) + 1
ese B’ — E' U {dual(pq)}
creturn G etG’

e il o
W N RO

6. Conclusion

In this article, the problem of curve reconstruction, frosed of points ofR?, is formulated by using a hierar-
chical family of neighborhood graphs. The neighborhoodefingd on the edges of the Voronoi diagram, as the
union or the intersection of two discs of same radius, patanzed by a ratio of sizg. The graphs of this family,
which we call the local3-crusts, are subgraphs of the Gabriel graph. Moreover, whenl1, the local3-crust
corresponds to the local crust.

Based on properties of the logadcrusts, two algorithms are proposed to extract simpleasufrom the Delau-
nay triangulation. The first one calculates the maximumevalys for which a locals-crust reconstructs simple
curves. The second algorithm improves the results obtairthdhe first algorithm, while simplifying the method.
Each of these algorithms also provides an approximatioheofriedial axis of the reconstructed curves.

The main ongoing work is to establish the relation betweenviilue of 3 and the value of the parameter
which occurs in the-sampling [1] of curves.
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