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14050 Caen Cedex France

sbougleu@greyc.ensicaen.fr

Mahmoud Melkemi
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Abstract

In this paper, we consider the problem of curve reconstruction from a finite planar set of points. To solve this
problem, we propose to use a family of neighborhood graphs included in the Gabriel graph. The neighborhood
that we use is theβ-neighborhood, initially defined in the context of circle-basedβ-skeletons, but applied to edges
of the Voronoi diagram. This family of graphs includes the local crust. This formulation enables us to design
effective algorithms to reconstruct curves, by using as a prior knowledge that the curves to be reconstructed
are without intersections. We show, through several examples, that the proposed algorithms improve the results
obtained with the local crust, when the set of points is of lowdensity.

1. Introduction

Reconstruct the shape of objects from a finite set of pointsP , measured on the boundary of the objects, is an
important step in many application areas, such as computer vision, image analysis, or shape modeling. In this ar-
ticle, the set of pointsP is supposed to be a sample of simple curves ofR

2 (curves without intersections), and the
reconstruction consists in finding a polygonal interpolation ofP , topologically equivalent to the sampled curves.

Among the methods which solve the problem of curve reconstruction, the ones based on neighborhood graphs
are known to be efficient, both in practice and theory. All of them provide an adequate interpolation if the set
of pointsP is a sufficiently dense sample of the curves. Conceptually, neighborhood graphs connect the points
of P that are close relatively to a given measure. The neighborhood, which allows to generate the edges, can be
interpreted as the structuring element of the graphs. Firstworks on curve reconstruction, based on neighborhood
graphs, were inspired by point cloud clustering and description methods. The main graphs used by these meth-
ods are the Gabriel graph, thek-nearest neighbors graphs, the minimum spanning tree, the relative neighborhood
graph, or the Delaunay triangulation (see [20] for a recent survey of these methods).

An important class of these graphs allows to describe the shape of the point cloud at several levels of details,



by using an union and/or an intersection of discs as a structuring element. Two points ofP are connected by an
edge if the neighborhood of the edge does not contain any points of P . Among these graphs, one can distinguish
the family ofα-shapes [10], which is generated with empty discs of radiusα, and the family ofβ-skeletons [16],
which is formed with two empty discs of same radius and local scaleβ. Extensions of these two descriptors were
proposed by usingγ-neighborhood graphs [21]. Since the Delaunay triangulation is generated with the empty
discs of maximum radius, it includes most of the graphs mentioned above. While the neighborhood of these
graphs is defined by using a global parameter, the neighborhood of theA-shapes [19, 18], is defined by using a
set of control pointsA. The edges of this family of graphs are generated by discs empty of points ofP ∪ A. The
A-shapes are also subgraphs of the Delaunay triangulation. The choice of control points is related to the medial
axis of the shapes to be reconstructed. As the medial axis canbe approximated by a subset of the edges of the
Voronoi diagram [6], the vertices of the Voronoi diagram aregood candidates for the setA.

In the context of simple closed curve reconstruction, a similar concept has been proposed to define the crust
of P [1]. The crust is a particular case of theA-shapes, whereA corresponds to the whole set of Voronoi vertices.
It always gives a reconstruction topologically equivalentto the sampled curves, ifP is sufficiently dense and if the
curves are twice differentiable (or smooth) [1]. The calculation of the crust requires to compute the Voronoi dia-
gram ofP , as well as the Delaunay triangulation ofP ∪A. In order to improve the complexity of this calculation,
a local version of the crust, called the local crust, has beenproposed in [13], and studied beforehand in another
form in [2]. It only requires to compute the Delaunay triangulation of P , and provides equivalent results to those
obtained with the crust. Moreover, the Voronoi edges, whosedual Delaunay edges do not belong to the local crust,
approximate the medial axis of the reconstructed curves [13]. This subgraph of the Voronoi diagram ofP is called
the anti-crust ofP .

Other curve reconstruction methods use neighborhood graphs. It is the case of the methods using theα-
shapes [4], theβ-skeletons [1] or the minimum spanning tree [11]. In [7], thenearest neighbors crust is proposed
as an alternative to the crust and the local crust. Due to undesirable effects when the sampled curves are open or
non-smooth, the ideas in [7] have been modified by incorporating parameters that control the sharpness of corners
and the local density [8, 9]. These ideas have also been extended to take into account curves with intersections [17].

The principal objective of this paper is to describe a hierarchical family of graphs which is generated by a struc-
turing element defined on the edges of the Voronoi diagram. Our work takes as a starting point two properties of
the local crust and the anti-crust that we demonstrate. Firstly, the local crust is a subgraph of the Gabriel graph.
Secondly, the edges of the anti-crust are generated by usingGabriel discs that are circumscribed to Voronoi ver-
tices and empty of points ofP . Based on these properties, we extend the Gabriel neighborhood of the Voronoi
edges to the circle-basedβ-neighborhood, initially defined forβ-skeletons [16]. Whenβ is fixed, this neighbor-
hood enables to define two types of graphs, the first one is a subgraph of the Voronoi diagram, and the second
one is a subgraph of the Gabriel graph. We call respectively these graphs theβ-medial axis and the localβ-crust.
Beyond that, we show that certain properties of the family oflocalβ-crusts allow to design efficient nonparametric
algorithms that extract simple curves from the Delaunay triangulation. These algorithms exploit as a prior know-
ledge that the curves to be reconstructed are without intersections. A similar assumption has also been considered
in [15].

The rest of this article is organized as the following. The next section points out the concepts on which the
graphs and the algorithms we propose are based. Section 3 presents theβ-neighborhood of Voronoi edges, the
β-medial axes and the localβ-crusts. Then, we discuss the differences with the local crust. In Section 4 we pro-
pose an algorithm which computes the maximum value ofβ for which there exists a localβ-crust that reconstructs
simple curves. The results of this algorithm are improved through an extension described in Section 5. We show
experimentally that the proposed algorithms improve the results obtained with the local crust [13] and the nearest
neighbors crust [7], when the set of points is not dense.



2. Related concepts

Let P be a finite set ofN distinct points of the Euclidean plane. We assumeP to be in general position. Here,
we recall some definitions and properties needed for the comprehension of the graphs and the algorithms presented
in Section 3, Section 4 and Section 5.

2.1. Voronoi diagram and Delaunay Triangulation

In this paper, the Voronoi diagram and the Delaunay triangulation of the point setP are the two fundamental
data structures used to compute a polygonal interpolation of P .

Let ‖p−q‖ be the Euclidean distance between two pointsp andq of R
2. TheVoronoi polygonof a pointpi ∈ P ,

denoted byV (pi, P ), is the set of pointsp ∈ R
2 such that‖p − pi‖ ≤ ‖p − pj‖, for all pj ∈ P . TheVoronoi

diagramof P is the set of Voronoi polygonsV (P ) = {V (pi, P ), ∀pi ∈ P}. Two points are neighbors inV (P ) if
the intersection of their Voronoi polygons is not empty.

The topological and geometrical dual of the Voronoi diagramof P is the Delaunay triangulation ofP , noted
D(P ). Two points of theD(P ) are neighbors if there exists a circle passing through thesepoints and such that its
interior is empty of points ofP . The dual of a Delaunay triangle is a Voronoi vertex, the dualof a Delaunay edge
is a Voronoi edge, and the dual of a Delaunay vertex is a Voronoi polygon.

For the detail of these two concepts, on can refer to [3]. In particular, the edges of the convex hull ofP , noted
conv(P ), correspond to the boundary edges ofD(P ), i.e. to the edges incident to one triangle ofD(P ). The dual
Voronoi edges of the convex hull edges are infinite. To simplify the notations, we suppose that all the edges of
V (P ) are finite. The case of infinite Voronoi edges is discussed in Section 3.4.

2.2. Gabriel graph and β-skeletons

TheGabriel Graphof P [12], notedGG(P ), is the graph that connects two pointspi andpj of P if the diametral
disk of the edgepipj contains no points ofP \{pi, pj}. It is a subgraph of the Delaunay triangulation. The disk of
diameterpipj , called theGabriel diskof pipj and notedB(pipj), represents the neighborhood ofpipj. The edges
of the Gabriel graph have also the property to cut their dual Voronoi edges.

Also based on the notion of empty neighborhood, the family ofcircle-basedβ-skeletonsof P [16] describes
a hierarchy of graphs indexed by a real positive valued parameter β. The β-neighborhoodof a pair of points
pi andpj of P , notedNβ(pipj), is defined as the union of the two disks of radiusβ‖pi − pj‖/2, for β ≥ 1,
circumscribed to the pointspi andpj. Whenβ ≤ 1, Nβ(pipj) is defined to be the intersection of the two disks
of radius‖pi − pj‖/2β circumscribed topi andpj . Given a value ofβ, the edgepipj is in theβ-skeleton ofP
if Nβ(pipj) is empty of points ofP \ {pi, pj}. The family ofβ-skeletons ofP includes the Gabriel graph ofP
for β = 1. Moreover, for allβ ≥ 1 theβ-skeleton ofP is a subgraph of the Delaunay triangulation. This is not
necessarily the case whenβ < 1.

2.3. Medial axis

Themedial axisof a collection of curvesΓ ⊂ R
2 is defined as the closure of the set of points ofR

2 that have
two or more closet points inΓ. The medial axis, which can be interpreted as a continuous version of the Voronoi
diagram, is one of the most important descriptors of shapes [5]. It can be approximated by a subset of the edges of
the Voronoi diagram of a dense sample of the curves [6]. When the curves are smooth and without intersections,
the medial axis never intersects the curves. These properties are the main ideas exploited in smooth curve sampling
and reconstruction methods [2, 1, 7].
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Figure 1. Illustration of the proofs of Observation 1 and Lemma 1.

2.4. Local crust and anti-crust

The local crustof P , notedLC(P ), is a subgraph of the Delaunay triangulation ofP computed from a relation
between Delaunay and Voronoi edges. Letpipj be an edge ofD(P ) andvivj be its dual Voronoi edge. The edge
pipj is in the local crust if and only if there exists a circle circumscribed topipj and whose interior is empty of the
Voronoi verticesvi andvj [13]. This local test can be formalized by considering the two open disks circumscribed
to the pointspi, pj, vi andpi, pj , vj [14]:

pipj ∈ LC(P )⇔

{

b(pipjvi) ∩ {vj} = ∅, and
b(pipjvj) ∩ {vi} = ∅.

(1)

Due to the relation of duality between the edgepipj and the edgevivj, one can show that the test of emptiness
b(pipjvi) ∩ {vj} = ∅ is equivalent tob(pipjvi)∩ {vj} = ∅. Thus, only one of the two tests is needed in Eq. (1) to
determine if the edgepipj is in LC(P ) [14].

The dual Voronoi edges of the Delaunay edges that are not in the local crust constitute theanti-crustof P [13],
notedAC(P ). This graph provides an approximation of the medial axis of the curves that are reconstructed
by LC(P ).

3. Local β-crust and β-medial axis

In this section, we introduce the graphs which are used by thealgorithms presented in Section 4 and Section 5.

3.1. Motivations

The proposed graphs are inspired by two properties of the local crust and the anti-crust. Firstly, the local crust
of P is a subgraph of the Gabriel graph ofP . This property, indirectly mentioned in [13], implies thatthe edges
of LC(P ) never cut the edges ofAC(P ). So, the local crust and the anti-crust are consistent with the definitions of
a smooth curve and its medial axis, or any curve which does notintersect its medial axis.

Observation 1 LC(P ) ⊂ GG(P ).

Proof. Let pipj be an edge that is not inGG(P ). Let vivj be the dual Voronoi edge ofpipj. In order to get a
contradiction, suppose thatpipj ∈ LC(P ). By definition ofGG(P ), we havepipj∩vivj = ∅ (or one of the vertices



of vivj), i.e. the verticesvi andvj are located on the same side ofpipj. Letvi be the nearest vertex topi andpj . As
illustrated in Fig. 1 (verticesp5, p6 andv5, v6) , this implies thatvi ∈ b(pipjvj), and from Eq. (1),pipj 6∈ LC(P ). �

Secondly, the anti-crust ofP can be defined using Gabriel disks on Voronoi edges. Indeed, an edgevivj ∈ V (P )
is included inAC(P ) if and only if the closed disk of diametervivj is empty of points ofP .

Lemma 1 vivj ∈ AC(P )⇔ B(vivj) ∩ P = ∅.

Proof. Let pipj be the dual Delaunay edge of a Voronoi edgevivj . By definition of the anti-crust and by Eq. (1),
we havevivj ∈ AC-(P )⇔ vj ∈ b(pipjvi) (andvi ∈ b(pipjvj)). As illustrated in Fig. 1 (pointsp1, p2, p3 andp4),
this is equivalent toB(vivj) ⊂ b(pipjvi) (and respectivelyB(vivj) ⊂ b(pipjvj)). Then the verticespi andpj are
not inB(vivj). Since they are the two nearest neighbors of the edgevivj , there exists no points ofP in B(vivj). �

From Observation 1 and Lemma 1, one can deduce that an edge of the Delaunay triangulation is in the lo-
cal crust if it is entirely included in the diametral disk of its dual. Based on this property, we generalize the
definitions of the local crust and the anti-crust in order to obtain a family of graphs, and thus a range of possible
solutions to the problem of curve reconstruction.

3.2. Main definitions and properties

The basic idea of the extension is to useβ-disks defined on Voronoi edges instead of Gabriel disks (Observa-
tion 1). Letvivj be an edge ofV (P ) andpipj be its dual Delaunay edge. Letβ ∈]0,+∞[ be a given parameter,
andNβ(vivj) be theβ-neighborhood of the edgevivj (see Section 2.2 for the definition ofNβ).

In order to preserve the properties related to the Gabriel graph, the edgepipj must be located in the part ofR
2

limited by the two lines, parallel withpipj , which pass through the vertices ofvivj (see Fig. 2(a)). This part of
R

2, notedH(vivj), can be written as the set of pointsp ∈ R
2 such that∠vivjp < π/2 and∠vjvip < π/2. Then,

we define the neighborhood ofvivj as the intersection ofNβ(vivj) andH(vivj) (see Fig. 2(c,d,e)). According to
whether this intersection is empty or not ofpi (andpj), the edgevivj belongs to theβ-medial axisof P , noted
β-MA(P ), or the edgepipj belongs to thelocal β-crustof P , notedβ-LC(P ):
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Figure 2. Construction of the neighborhood used to form the local β-crust and the β-medial axis,
according to the value of β.

vivj ∈ β-MA(P )⇔ {pi, pj} 6⊂ Nβ(vivj) ∩H(vivj) (2)

pipj ∈ β-LC(P )⇔ {pi, pj} ⊂ Nβ(vivj) ∩H(vivj) (3)

The localβ-crust ofP is the set of Delaunay edges entirely included in theβ-neighborhood of their dual Voronoi
edges:

pipj ∈ β-LC(P )⇔ pipj ⊂ Nβ(vivj). (4)

By construction of the neighborhood, the localβ-crusts are subgraphs of the Gabriel graph.
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Figure 3. Spectrum of local β-crusts (bottom) computed from the Delaunay triangulation (top). The
weight of Delaunay edges is represented by gray levels, from black to white according to the appari-
tion order of the edges in the family of local β-crusts.

Theorem 1 β-LC(P ) ⊆ GG(P ), ∀β ∈]0,+∞[.

Thus, one can deduce thatβ-LC(P ) is the set of Gabriel edges whose vertices are included in theβ-neighborhood
of their dual edges. While varyingβ, the localβ-crusts ofP (and theβ-medial axes) describe a hierarchical family
of graphs. This is due to the relation of inclusion which exists between theβ-neighborhoods.

Theorem 2 ∀β, β′ ∈]0,+∞[, β < β′ ⇔ β-LC(P ) ⊆ β′-LC(P )⇔ β′-MA(P ) ⊆ β-MA(P ).

Proof. Let pipj be an edge ofβ-LC(P ) and vivj be its dual Voronoi edge. From the equation (4), we have
pipj ⊂ Nβ(vivj). That is,β′ > β. By definition,Nβ(vivj) ⊂ N beta′(vivj), and thuspipj ⊂ N beta′(vivj). �

Moreover, the family of localβ-crusts ofP , and that ofβ-medial axes, are finite. The number of graphs
from these two families is limited by the number of edges of the Gabriel graph ofP . Indeed, for each edgepipj of
GG(P ), there exists a valueβ > 0 such thatpipj belongs toβ-LC(P ), andpipj does not belong toβ′-LC(P ), for
all β′ < β. In other words, the value ofβ from which the edgepipj is included in the family of localβ-crusts. By
duality, it is also the value ofβ from which the dual edge ofpipj is excluded of the family of theβ-medial axes.
This allows to associate one weight to each edge ofD(P ). Theweightof an edgepipj ∈ D(P ), notedw(pipj), is
defined to be:

w(pipj) =

{

β : {pi} ⊂ ∂Nβ(vivj) if pipj ∈ GG(P ),
+∞ otherwise,

(5)

where∂Nβ represents the boundary ofNβ. Based on the relation of inclusion stated by theorem 2, the edges of
D(P ) are ordered according to the ascending order of their weights : pipj ≤ pkpl ⇔ w(pipj) ≤ w(pkpl) ⇔
w(pipj)-LC(P ) ⊆ w(pkpl)-LC(P ). Then, we define thespectrumof the localβ-crusts ofP , notedspectrum(P ),
as the set of edges ofD(P ) ordered according to the preceding relation. Letβmin andβmax be the minimal and
the maximal values of the weights of the edges ofGG(P ). Given a valueβ ∈ [βmin, βmax], this value separates
the spectrum ofP in two disjoined subsets of edges : those which have a weight lower or equal toβ belong to
β-LC(P ), and those which have a weight higher thanβ have their dual edges inβ-MA(P ). The localβ-crust
coincide with the Gabriel graph whenβ ≥ βmax. This shows that the maximum number of localβ-crusts ofP
corresponds to the number of edges ofGG(P ) (certain edges can have equal weights). An spectrum exampleis
illustrated in Fig. 3.

3.3. Alternative definitions

Theβ-neighborhood can be expressed with angles. Letθ ∈ (0, π) be the angle defined by:

θ(β) =

{

π − arcsin(β) if β ∈ (0, 1],
arcsin(1/β) if β ∈ [1,+∞).

(6)



This notation implies several alternative definitions of the localβ-crust ofP . Let pipj be an edge ofD(P ), and
vivj be its dual Voronoi edge. Let∠pivivj be the angle between the vectorvipi and the vectorvivj.

Lemma 2 pipj ∈ β-LC(P ) if and only if:
(i) ∠pivivj < π/2 and∠pivjvi < π/2, and
(ii) ∠pivivj + ∠vivjpi ≤ π − θ(β).

Proof. The property (i) ensurespipj to be inGG(P ) and it comes from the definition ofGG(P ). To demon-
strate the property (ii), we consider the trianglepivivj . From Eq. (6), Eq. (3) and the definition ofNβ, we obtain
pipj ∈ β-LC(P ) iff pipj ∈ GG(P ) and∠vipivj ≥ θ(β). As the sum of the angles inpivivj is π, ∠vipivj ≥ θ(β)
is equivalent to the property (ii).�

From Lemma 2, the localβ-crust can also be expressed with the angles of the Delaunay triangles. Letpipjpk

andpipjpl be the two triangles incident to the edgepipj.

Lemma 3 pipj ∈ β-LC(P ) if and only if:
(i) ∠pipkpj < π/2 and∠pjplpi < π/2, and
(ii) ∠pipkpj + ∠pjplpi ≤ π − θ(β).

Proof. Let vivj be the Voronoi dual ofpipj. We have∠pipkpj = ∠pivivj and∠pjplpi = ∠vivjpi. Then, property
(ii) is equivalent to property (ii) of Lemma 2.�

The conditions (i) and (ii) of Lemma 3 allow to redefine the weights of the edges ofD(P ) using the angles
of the Delaunay triangles. Eq. (5) is then replaced by the following equation:

w(pipj) =

{

∠pipkpj + ∠pjplpi if pipj ∈ GG(P ),
+∞ otherwise.

(7)

The value ofβ, which corresponds to the weight of an edge, is obtained by the opposite equation of Eq. (6):

β(θ) =

{

sin(π − θ) if θ > π/2,
1/ sin(π − θ) otherwise.

(8)

Lemma 2 and Lemma 3 allow to treat the case of the convex hull edges.

3.4. Case of convex hull edges

For instance, we supposed that all the edges ofV (P ) are finite, i.e. all the edges ofD(P ) are incident to exactly
two triangles ofD(P ). However, edges ofconv(P ) are incident to only one triangle ofD(P ). Their dual edges
have one vertex inV (P ). In this case, theβ-neighborhood of the Voronoi edges cannot be directly defined from
V (P ).

In order to define theβ-neighborhood of the infinite edges ofV (P ), we consider the Voronoi diagram ofP ∪P ′,
whereP ′ is a finite set of points satisfying :D(P ) ⊂ D(P ∪ P ′). The points ofP ′ are selected on the infinite
edges ofV (P ). Thus, to take into account the case of infinite edges ofV (P ), the localβ-crusts and theβ-medial
axes ofP are defined by usingV (P ∪ P ′) andD(P ∪ P ′), and by considering the edges of which the vertices
belong toP .

By using Lemma 2 and Lemma 3, the localβ-crusts and theβ-medial axes ofP can be completely computed
from D(P ) andV (P ). For that, only one of the two angles is considered in the conditions (i) and (ii) if the
Delaunay edge belongs toconv(P ). Conceptually, this is equivalent to add toP ′ a point at the infinity on each
infinite edge ofV (P ).



b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

bb
b

b

b
b

b

b

b
b

bbb

b

bbb

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

bb
b

b

b
b

b

b

b
b

bbb

b

bbb

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

bb
b

b

b
b

b

b

b
b

bbb

b

bbb

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
b

b

V (P ) LC(P ) 0.97-LC(P )
b

b

b

b

b
b

b

b

b

b

b

b

b

bb

b

bb

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b
b

b
b

b

b

b

bb

b

b

b

b
b

b

b

b b

b

b
b

b

b

b

b
b

b

b

b
b

b

b

b

b bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

bb

b

bb

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b
b

b
b

b

b

b

bb

b

b

b

b
b

b

b

b b

b

b
b

b

b

b

b
b

b

b

b
b

b

b

b

b bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

bb

b

bb

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b
b

b
b

b

b

b

bb

b

b

b

b
b

b

b

b b

b

b
b

b

b

b

b
b

b

b

b
b

b

b

b

b bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

V (P ) LC(P ) 1.002-LC(P )

Figure 4. Comparison between local β-crusts and the local crust.

3.5. Differences with the local crust

Given a value ofβ, the localβ-crust is the set of edges ofD(P ) which are completely included in theβ-
neighborhood of their dual edges. Whenβ = 1, the β-neighborhood of an edgevivj of V (P ) is the Gabriel
discB(vivj). According to Theorem 1, the local1-crust ofP corresponds to the local crust ofP . Moreover, the
relation of inclusion between the localβ-crusts (Theorem 2), whenβ is varying, implies the following theorem.

Theorem 3 The local crust is related to the family of localβ-crusts by the three following properties:
(i) LC(P ) = 1-LC(P ),
(ii) ∀β ∈ (0, 1], β-LC(P ) ⊆ LC(P ).
(iii) ∀β ∈ [1,+∞), LC(P ) ⊆ β-LC(P ).
The property (ii) of Theorem 3 shows that the local crust contains the localβ-crusts for whichβ ≤ 1. The property
(iii) shows that forβ > 1, the localβ-crusts are at least made up of the edges of the local crust. Base upon these
properties, we can study the differences between the local crust and the localβ-crusts, in the case of samples of
curves.

Let Γ be a collection of curves ofR2 andP be a sample ofΓ. In some cases, as illustrated in Fig. 4, the
local crust cannot correctly reconstructΓ from P . These cases can be encountered if one of the three following
configurations holds:
- All the correct edges are present inLC(P ) and at least one edge is incorrect.
- None incorrect edge is present inLC(P ) but at least one correct edge is missing.
- LC(P ) includes at the same time correct and incorrect edges.

In the two first configurations, there exists one localβ-crust that is able to correctly reconstructΓ if the weight
of all the correct edges ofD(P ) is lower than the weight of the incorrect edges ofD(P ). Section 4 presents an
algorithm which computes such a graph in the case of simple curves. In the third configuration, it cannot exist a
localβ-crust which correctly reconstructΓ. We discuss this problem in Section 5.



4. Optimal local β-crust for simple curves

In this section, we propose a method to compute the maximum value of β for which there is a graph, of the
family of local β-crusts ofP , which reconstructs a collection of closed or opened curves, without intersections.
We call this value the optimal value ofβ, notedβopt.

According to the definition of the spectrum ofP , βopt-LC(P ) corresponds to the set of edges ofD(P ) that have
a weight lower or equal toβopt. To computeβopt-LC(P ), the idea is to add the edges ofD(P ) to a graphG, initially
empty, in the order defined by the spectrum ofP . The edges are added while the degree of their vertices inG is
strictly lower than two. In the contrary case, at least one vertex of G would have a degree equal to three after the
insertion of the edge inG. Thus, this would represent a collection of curves with an intersection, which contradicts
the assumption concerning the topology of the solution (curves without intersections). During the traversal of the
spectrum, several edges ofD(P ) can have the same weight. In this case, if one of them has a vertex of degree two,
then none of these edges is added toG.

The computation of the spectrum ofP is summarized by Algorithm 1. For each edge ofD(P ), its weight is
given by Eq. (7). The spectrum is then represented by a dictionary L whose key is a weight value, and whose
elements are lists of edges having a same weight. The elements of L are sorted according to the ascending order
of the weights.

Algorithm 1 spectre(P, D)

Input: the Delaunay triangulationD of P ⊂ R
2.

Output: the dictionaryL = {(w1, E1), . . . , (wm, Em)} such thatw1 ≤ . . . ≤ wm.

L← ∅
for each edgepipj ∈ D do

if pipj ∈ conv(P ) then
pk ← p ∈ P such that the trianglepipjp ∈ D
if ∠pipkpj < π/2 then

w ← ∠pipkpj

else w ← +∞
else

pk, pl ← {p ∈ P such that the trianglepipjp ∈ D}
if ∠pipkpj < π/2 and∠pjplpi < π/2 then

w ← ∠pipkpj + ∠pjplpi

else w ← +∞
insert pipj in L at the keyw

return L

The complete calculation ofβopt-LC(P ) is summarized by Algorithm 2. The graphβopt-MA(P ) is also extracted
from V (P ) with this algorithm. It corresponds to the set of edges whoseweight is strictly higher thanβopt.

Algorithm 2 can be seen as a thresholding method, where the threshold is automatically computed by using the
topological properties of the desired solution. Several reconstruction examples are illustrated in Fig. 5 on samples
of closed simple curves. As theβopt-local crust correctly reconstructs when the local crust correctly reconstructs
(Theorem 3), the examples show the differences between these two graphs. The results are also compared with
those obtained with the nearest neighbors crust ofP [7], notedNNC(P ) in the examples.



Algorithm 2 βopt-LC(P )

Input: P ⊂ R
2.

Output: G = (V,E) corresponding toβopt-LC(P ), G′ = (V ′, E′) corresponding toβopt-MA(P ), andβopt.

1: V ← P
2: E,V ′, E′ ← ∅
3: w ← 0
4: D ← D(P )
5: L← spectre(P, D)
6: k ← 0
7: for k = 1, . . . , sizeof(L) do
8: Ek ← the element ofL at the keywk

9: for each edgepipj in Ek do
10: if (deg(pi, G) < 2) and(deg(pj , G) < 2) then
11: deg(pi, G)← deg(pi, G) + 1
12: deg(pj, G)← deg(pj , G) + 1
13: else go to line16
14: E ← E ∪ Ek

15: w ← wk

16: for l = k, . . . , sizeof(L) do
17: Ek ← the element ofL at the keywk

18: for each edgepipj in Ek do
19: E′ ← E′ ∪ {dual(pipj)}
20: return G, G′ etβ(w) (Eq. 8)

5. Improvement of the results

Algorithm 2 allows to reconstruct curves without intersections by using the family of the localβ-crusts. Accor-
ding to the distribution of the points ofP on the curves, the results obtained with this algorithm can be bad. As
illustrated in Fig. 6, many correct edges are missing. This is because the spectrum cannot be separated in two
disjoined subsets of edges such that the reconstruction is correct. At least one edge ofD(P ) has a weight weaker
than the maximum value of the weight of the correct edges. In this case, one can notice that the local crust does
not reconstruct the curves correctly (Theorem 3).

The reconstruction can be considerably improved by slightly modifying Algorithm 2. Instead of stopping the
addition of Delaunay edges toG when one of them has a vertex of degree two (line 13), the dual edge of the current
edge is added to the graphG′, and the spectrum is traversed to its last element. Thus, allthe edges ofD(P ) are
traversed in the increasing order of their weights, and added to the reconstruction if they do not imply an inter-
section (vertex of degree three). Here, the spectrum is represented by a the listL of the edges ofD(P ) such that
L = {e1, . . . , em : ei ∈ D(P ), w(e1) ≤ . . . ≤ w(em)}. The whole method is summarized by Algorithm 3. Its
time complexity isO(N log N). The graphsG andG′, obtained with Algorithm 3, do not necessarily correspond
to a localβ-crust or to aβ-medial axis. On the other hand, they include theβopt-local crust and theβopt-medial
axis (Algorithm 2). A result obtained with Algorithm 3 is illustrated in Fig. 7 on sparse samples of closed curves.
One can notice that it improves the results obtained with thelocal crust.



Algorithm 3 recons(P )

Input: P ⊂ R
2.

Output: G = (V,E) corresponding to the curves,G′ = (V,E′) corresponding to the approximation of the medial
axis of the curves

1: V ← P
2: E,V ′, E′ ← ∅
3: w ← 0
4: D ← D(P )
5: L← spectre(P, D)
6: k ← 0
7: for k = 1, . . . , sizeof(L) do
8: pq ← L[k]
9: if (deg(p,G) < 2) and(deg(q,G) < 2) then

10: E ← E ∪ {pq}
11: deg(p,G)← deg(p,G) + 1
12: deg(q,G)← deg(q,G) + 1
13: else E′ ← E′ ∪ {dual(pq)}
14: return G etG′

6. Conclusion

In this article, the problem of curve reconstruction, from aset of points ofR2, is formulated by using a hierar-
chical family of neighborhood graphs. The neighborhood is defined on the edges of the Voronoi diagram, as the
union or the intersection of two discs of same radius, parameterized by a ratio of sizeβ. The graphs of this family,
which we call the localβ-crusts, are subgraphs of the Gabriel graph. Moreover, whenβ = 1, the localβ-crust
corresponds to the local crust.

Based on properties of the localβ-crusts, two algorithms are proposed to extract simple curves from the Delau-
nay triangulation. The first one calculates the maximum value of β for which a localβ-crust reconstructs simple
curves. The second algorithm improves the results obtainedwith the first algorithm, while simplifying the method.
Each of these algorithms also provides an approximation of the medial axis of the reconstructed curves.

The main ongoing work is to establish the relation between the value ofβ and the value of the parameterǫ
which occurs in theǫ-sampling [1] of curves.
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Figure 5. Reconstruction examples with Algorithm 2 and comparisons with the local crust and the
nearest neighbors crust.
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Figure 6. Reconstruction with Algorithm 2 and with the local crust is incorrect meanwhile the re-
construction with Algorithm 3 is correct.
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Figure 7. Reconstruction with Algorithm 3 and comparison with the local crust.
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