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Abstract

Estimating probabilistic deformable template models is a new approach in the

fields of computer vision and probabilistic atlases in computational anatomy. A first

coherent statistical framework modelling the variability as a hidden random variable

has been given by Allassonnière, Amit and Trouvé in [1] in simple and mixture of

deformable template models. A consistent stochastic algorithm has been introduced

in [2] to face the problem encountered in [1] for the convergence of the estimation

algorithm for the one component model in the presence of noise. We propose here

to go on in this direction of using some “SAEM-like” algorithm to approximate the

MAP estimator in the general Bayesian setting of mixture of deformable template

model. We also prove the convergence of this algorithm toward a critical point of

the penalised likelihood of the observations and illustrate this with handwritten digit

images.
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1 Introduction

This paper deals with the representation and the analysis of geometrical structures upon

which some deformations can act. One central point is the modelisation of varying objects,

and the quantification of this variability with respect to one or several reference models

which will be called templates. This is known as “Deformable Templates” [10]. The

problem of constructing probabilistic models of variable shapes in order to statistically

quantify this variability has not been successfully addressed yet in spite of its importance.

Many solutions have been proposed to face the problem of the template definition.

They go from some generalised Procruste’s means with a variational [9] or statistical [8]

point of view to some statistical models like Active Appearance Model [4] or Minimum

Description Length methods [13]. Unfortunately, all these methods are only focussing on

the template whereas the geometrical variability is computed afterwards (using PCA). This

contradicts with the fact that a metric is required to compute the template through the

computation of deformations. Moreover, they do not really differ from the variational point

of view since they consider the deformations as some nuisance parameters which have to be

estimated and not as some unobserved random variables. Another issue addressed here is

the clustering problem. Given a set of images, the statistical estimation of the component

weights and the image labels is usually supervised, at least the number of components

is fixed. The templates of each component and the label are estimated iteratively (for

example in methods like the K-means) but the geometry, and related to this the metric to

compute the distances between elements, is still fixed. Moreover, the label, which is not

observed is, as the deformations, considered as a parameter and not as a hidden random
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variable. Finally, all these iterative algorithms do not have a statistical interpretation as

the parameter optimisation of a generative model describing the data.

In this paper we consider the statistical framework for dense deformable templates de-

veloped by Allassonnière, Amit and Trouvé in [1] in the generalised case of mixture model

for multicomponent estimation. Each image taken from a database is supposed to be gen-

erated from a noisy and random deformation of a random template image picked among a

given set of possible templates. All the templates are assumed to be drawn from a common

prior distribution on the template image space. To propose a generative model, each de-

formation and each image label have to be considered as hidden variables. The template,

the parameters of the deformation laws and the components weight are the parameters of

interest. This generative model automatically decomposes the database into components

and, at the same time, estimates the parameters corresponding to each component while

increasing the likelihood of the observations. Given this parametric statistical Bayesian

model, the parameter estimation is performed in [1] by a penalised Maximum A Posteriori

(MAP). This estimation problem is carried out using a deterministic and iterative scheme

based on the EM (Expectation Maximisation) algorithm where the posterior distribution

is approximated by a Dirac measure on its mode. Unfortunately, this gives an algorithm

whose convergence toward the MAP estimator cannot be proved. Moreover, as shown by

the experiments in that paper, the convergence is lost within a noisy setting.

Our goal in this paper is to propose some stochastic iterative method to reach the

MAP estimator for which we will be able to get a convergence result as already done for

the one component case in [2]. We propose to use a stochastic version of the EM algorithm

to reach the posterior distribution of the hidden variables. We use the SAEM algorithm

introduced by Delyon et al in [5] coupled with a Monte Carlo Markov Chain (MCMC)

method. Contrary to the one component model where we can couple the iteration of the

SAEM algorithm with the Markov chain evolution (introduced by Kuhn and Lavielle in
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[12] and extended in [2]), we show here that it cannot be driven numerically. We need

to consider another method. We propose to simulate the hidden variables using some

subsidiary Markov chains, one per component, to approach the posterior distributions of

the labels in particular. We prove the convergence of this particular algorithm for a non

compact setting by adapting Delyon’s theorem about general stochastic approximations

and introducing truncation on random boundaries as in [3].

The paper is organised as follows: in Section 2 we first recall the observation mixture

model proposed by Allassonnière, Amit and Trouvé in [1]. In Section 3, we describe the

stochastic algorithm used in our particular setting. Section 4 is devoted to the experiments.

Section 5 gathers the proof of the convergence of the algorithm.

2 The Observation Model

We are working with the multicomponent model introduced in [1]. Given a sample of

gray level images (yi)1≤i≤n observed on a grid of pixels {rs ∈ D ⊂ R
2, s ∈ Λ} where D is

a continuous domain and Λ the pixel network, we are looking for some template images

which will explain the panel. Each of them is a real function I0 : R
2 → R defined on the

whole plane. An observation y is supposed to be a discretisation on Λ of the deformation

of a template plus an independent additive noise. This leads to assume the existence of an

unobserved deformation field z : R
2 → R

2 such that for s ∈ Λ : y(s) = I0(rs−z(rs))+σǫ(s) ,

where σǫ denotes an additive noise.

2.1 Models for Templates and Deformations

We use the same framework as chosen in [1] to describe both the template I0 and the

deformation field z. Our model takes into account two complementary sides: photometry

-indexed by p, and geometry -indexed by g. The template I0 and the deformation z

are assumed to belong to some finite dimensional subspace of two reproducing kernels
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Hilbert spaces Vp and Vg (determined by their respective kernel Kp and Kg). We choose a

representation of both of them by finite linear combinations of the kernels centred at some

fixed landmark points in the domain D: (rp,k)1≤k≤kp
respectively (rg,k)1≤k≤kg

. They are

therefore parametrised by the coefficients α ∈ R
kp and β ∈ (Rkg)2 which yield: ∀r ∈ D,

Iα(r) = (Kpα)(r) =

kp
∑

k=1

Kp(r, rp,k)α(k) and zβ(r) = (Kgβ)(r) =

kg
∑

k=1

Kg(r, rg,k)β(k).

2.2 Parametrical Model

In this paper, we consider a mixture of the deformable template model which enables a fixed

number τm of components in each training set. This means that the data will be separated

in τm (at most) different components by the algorithm. The algorithm automatically

decompose the data increasing the posterior likelihood while assigning a label to each

image of the training set. Therefore, for each observation yi, we consider the pair (βi, τi) of

unobserved variables which correspond respectively to the deformation field and the label

of image i. We denote below yn
1 , (yi)1≤i≤n, βn

1 , (βi)1≤i≤n and τn
1 , (τi)1≤i≤n. The

generative model is:























τn
1 ∼ ⊗n

i=1

τm
∑

t=1

ρtδt | (ρt)1≤t≤τm
,

βn
1 ∼ ⊗n

i=1N (0,Γg,τi
)| τn

1 , (Γg,t)1≤t≤τm
,

yn
1 ∼ ⊗n

i=1N (zβi
Iατi

, σ2
τi
Id|Λ|) | βn

1 , τ
n
1 , (αt, σ

2
t )1≤t≤τm

,

(1)

where zβIα(s) = Iα(rs−zβ(rs)), for s in Λ and δt is the Dirac function on t. The parameters

of interest are the vectors (αt)1≤t≤τm
coding the templates, the variances (σ2

t )1≤t≤τm
of the

additive noise, the covariance matrices (Γg,t)1≤t≤τm
of the deformation fields and the com-

ponent weights (ρt)1≤t≤τm
. We denote the parameters (θt, ρt)1≤t≤τm

so that θt corresponds

to the parameters composed of the photometric part (αt, σ
2
t ) and the geometric part Γg,t
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for all 1 ≤ t ≤ τm. We assume that for all 1 ≤ t ≤ τm, the parameter θt = (αt, σ
2
t ,Γg,t)

belongs to the open space Θ defined as Θ = { θ = (α, σ2,Γg) | α ∈ R
kp, |α| < R, σ >

0, Γg ∈ Sym+
2kg,∗(R) } , where R is an arbitrary positive constant and Sym+

2kg,∗(R) is the

set of strictly positive symmetric matrices. Concerning the weights (ρt)1≤t≤τm
, we assume

that they belong to the setx ̺ = {(ρt)1≤t≤τm
∈]0, 1[τm | ∑τm

t=1 ρt = 1} .

This yields a generative model: given the parameters of the model, to get a realisation

of an image, we first draw a label τ with respect to the probability law
∑

ρtδt. Then, we

simulate a deformation field β using the covariance matrix corresponding to component τ

according to N (0,Γg,τ). We apply it to the template of the τ th component. Last, we add

an independent Gaussian noise of variance σ2
τ .

2.3 The Bayesian Model

Even though the parameters are finite dimensional, their high dimensionality can lead to

degenerated maximum-likelihood estimator when the training sample is small. Introducing

prior distributions, estimation with small samples is still possible and their importance has

been shown in the parameter update formula in [1]. We use a generative model which

includes standard conjugate prior distributions with fixed parameters: a normal prior on

αt and inverse-Wishart priors on σ2
t and Γg,t for all 1 ≤ t ≤ τm. All priors are assumed

independent. Let ∀1 ≤ t ≤ τm, θt = (αt, σ
2
t ,Γg,t) ∼ νp ⊗ νg and 〈A,B〉F , tr(AtB) for two

matrices A and B where



















νp(dα, dσ
2) ∝ exp

(

−1

2
(α− µp)

t(Σp)
−1(α− µp)

)(

exp

(

− σ2
0

2σ2

)

1√
σ2

)ap

dσ2dα, ap ≥ 3 ,

νg(dΓg) ∝

(

exp(−〈Γ−1
g ,Σg〉F/2)

1
√

|Γg|

)ag

dΓg, ag ≥ 4kg + 1 .

(2)
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For the prior law νρ we choose the Dirichlet distribution with density

D(aρ) : νρ(ρ) ∝
(

τm
∏

t=1

ρt

)aρ

, with fixed parameter aρ .

3 Parameter Estimation with a Stochastic Approxi-

mation EM Algorithm

For the sake of simplicity, let us denote in the sequel x , βn
1 ∈ R

N with N , 2nkg

the vector collecting all the missing deformation variables and λ , τn
1 ∈ T with T ,

{1, . . . , τm}n the collection of missing labels. We also introduce the following notations:

η = (θ, ρ) with θ = (θt)1≤t≤τm
and ρ = (ρt)1≤t≤τm

.

In our Bayesian framework, we choose the MAP estimator to estimation the parameters:

η̂n = argmax
η

q(η|y) , (3)

where q(η|y) denotes the a posteriori likelihood. (We will use q to denote all the density

functions below.)

To reach this estimator, we maximise the posterior likelihood using a Stochastic Ap-

proximation EM algorithm coupled with a MCMC method. Indeed, due to the intractable

computation of the E step encountered in this complex non linear setting, we follow in a

stochastic way the EM setting introduced by [6]. Unfortunately, the direct generalisation

of the algorithm presented in [2] turns out to be of no use in practice. This suggests to go

back to some extension of the SAEM procedure proposed in [5].

3.1 The SAEM Algorithm Using MCMC Methods

Let us first recall the SAEM algorithm. The kth iteration consists in three steps:
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(i) the missing data, here the deformation parameters and the labels, (x, λ) = (βn
1 , τ

n
1 ),

are drawn using the current parameter according to the posterior distribution denoted πη,

• Simulation step : (xk, λk) ∼ πηk−1
,

(ii) a stochastic approximation is done on the complete likelihood using the simulated value

of the missing data,

• Stochastic approximation : let (∆k)k be a decreasing sequence of positive step-sizes:

Qk(η) = Qk−1(η) + ∆k[log q(y, xk, λk, η)−Qk−1(η)] , (4)

(iii) the parameters are updated in the M-step,

• Maximisation step : ηk = argmax
η

Qk(η).

Initialised values of Q and η are arbitrarily chosen.

We notice that the density function of the model proposed in paragraphs 2.2 and

2.3 belongs to the curved exponential family. The complete likelihood can be written

as: q(y, x, λ, η) = exp [−ψ(η) + 〈S(x, λ), φ(η)〉] , where the sufficient statistic S is a Borel

function on R
N×T taking its values in an open subset S of R

m and ψ, φ two Borel functions

on Θ× ̺. (Note that S, φ and ψ may depend also on y, but since y will stay fixed in the

sequel, we omit this dependency.) With such a likelihood, the stochastic approximation

can be done on the complete log-likelihood as well as on sufficient statistics. This yields

to the following stochastic approximation:

sk = sk−1 + ∆k(S(xk, λk)− sk−1) .

We introduce the following function: L : S×Θ×̺→ R as L(s; η) = −ψ(η)+〈s, φ(η)〉 .

It has been proved in [1] that there exists a critical function η̂ : S → Θ × ̺ which make
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∇L vanishe. It is straightforward to prove that this function satisfies: ∀η ∈ Θ × ̺, ∀s ∈

S, L(s; η̂(s)) ≥ L(s; η) so that the maximisation step becomes: ηk = η̂(sk).

Unfortunately, the first step is, in this particular model, untractable and requires the

use of some MCMC methods to reach the simulation of the missing data. We will explain

this procedure in the two next paragraphs.

Another tool needs to be introduced. Some of the convergence assumptions of such

algorithms [5, 12] will not be satisfied since we are working with unbounded missing data

(the deformation fields β are assumed Gaussian). This leads to consider a truncation

algorithm as suggested in [5] and extended in [2].

Let (Kq)q≥0 be an increasing sequence of compact subsets of S such as ∪q≥0Kq = S and

Kq ⊂ int(Kq+1), ∀q ≥ 0. Let K be a compact subset of R
N . Let Πη be a transition kernel

of an ergodic Markov chain on R
N having πη as stationary distribution. We construct

the sequence ((xk, λk, sk, κk))k≥0 as explained in Algorithm 1. As long as the stochastic

approximation does not wander out the current compact set and is not too far from its

previous value, we run our ”SAEM like” algorithm. As soon as one of the two previous

conditions is not satisfied, we reinitialise the sequences of s and (x, λ) using a projection

(for more details see [5]).

Algorithm 1 Stochastic approximation with truncation on random boundaries

Set κ0 = 0, s0 ∈ K0, x0 ∈ K and λ0 ∈ T .
for all k ≥ 1 do
compute s̄ = sk−1 + ∆k(S(x̄, λ̄)− sk−1)
where (x̄, λ̄) are sampled from a transition kernel Πηk−1

.
if s̄ ∈ Kκk−1

then
set (sk, xk, λk) = (s̄, x̄, λ̄) and κk = κk−1,

else
set (sk, xk, λk) = (s̃, x̃, λ̄) ∈ K0 ×K× T and κk = κk−1 + 1,
where (s̃, x̃) can be chosen through different ways (cf [5]).

end if
ηk = argmax

η
η̂(sk).

end for
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3.2 The intuitive idea: the usual Gibbs Sampler

In this particular setting, we can try to simulate the unobserved variables (x, λ) using a

Markov chain which has q(x, λ|y, η) as stationary distribution and couple the iteration of

the SAEM algorithm with the Markov chain evolution as done in [2]. If we consider the

full vector (x, λ) as a single vector of missing data, we can try and use the hybrid Gibbs

Sampler on R
N+n as detailed in Algorithm 2. For any b ∈ R and 1 ≤ j ≤ N , let us denote

xj,b the unique configuration which is equal to x everywhere except the coordinate j where

xj
j,b = b and x−j the vector x without the coordinate j. Each coordinate of the deformation

field xj is updated using a Hastings Metropolis procedure where the proposal is given by

the conditional distribution of xj|x−j , λ coming from the current Gaussian distribution

with the corresponding parameters (pointed by λ).

Algorithm 2 Transition step k → k + 1 using an hybrid Gibbs Sampler on (x, λ)

Require: x = xk, λ = λk; η = ηk

Gibbs Sampler Πη,λ:

for all j = 1 : N do
Hasting-Metropolis procedure:

b ∼ q(b|x−j , λ, η)

Compute rη,λ,j(x, b) =
[

q(y|xj,b,λ,η)

q(y|x,λ,η)
∧ 1
]

With probability rη,λ,j(x, b), update xj : xj ← b
end for
Update xk+1 ← x
Update λ through the following distribution:

λk+1 ∼ ⊗n
i=1

τm
∑

t=1

q(t|yi, βi,k+1, η)δt

where δ is the Dirac function and the weights (q(t|yi, βi,k+1, η))t,i are proportional to
(q(yi, βi,k+1, t|η))t,i and their sum equals to one.

Even if this procedure provided an estimated parameter sequence which theoretically

converged toward the MAP estimator, in practice, as mentioned in [15], it would take a

quite long time to reach its limit because of the trapping state problem: when a small

10



number of observations are assigned to a component, the estimation of the component

parameters is hardly concentrated and the probability of changing the label of an image

to this component or from this one to another is really small (most of the time under the

computer precision).

We can interpret this from an image analysis viewpoint: the first iteration of the algo-

rithm gives a random label to the training set and computes the corresponding maximiser

η = (θ, ρ). Then for each image, thanks to its label, it simulates a deformation field which

only takes into account the parameters of this given component. Indeed, the simulation

of x through the Gibbs Sampler involves a proposal whose corresponding Markov chain

has q(x|λ, y, η) as stationary distribution. Therefore, the deformation tries to match y to

the deformed template of the given components λ. The deformation field tries to get a

better connection between the component parameters and the observation, and there is

only small probability that the observation given this deformation field will be closer to

another component.

This suggests that this algorithm should not be used in our case. To overcome the

trapping state problem, we will simulate the optimal label, using as many Markov chains in

x as the number of components so that each component has a corresponding deformation

which “computes” its distance to the observation. Then we can simulate the optimal

deformation corresponding to that label.

Remark 1 This is a point that was done in [1] while computing the best matching for all

components by minimising the corresponding energies.

3.3 Using multicomponent Markov chains

Since we aim to simulate (x, λ) through a transition kernel that has q(x, λ|y, η) as stationary

distribution, we simulate λ with a kernel whose stationary distribution is q(λ|y, η) and then

x through a transition kernel that has q(x|λ, y, η) as stationary distribution.

11



For the first step, we need to compute the weights q(t|yi, η) ∝ q(t, yi|η) for all 1 ≤ t ≤ τm

and all 1 ≤ i ≤ n which cannot be easily reached. So we will make an approximation.

Indeed, for any density function f , for any image yi and for all 1 ≤ t ≤ τm, we have

q(t, yi|η) =

(

Eq(β|yi,t,η)

[

f(β)

q(yi, β, t|η)

])−1

. (5)

Obviously the computation of this expectation w.r.t. the posterior density is not tractable

either but we can approximate it by a Monte Carlo sum. Nevertheless we cannot easily

simulate variables through the posterior distribution q(·|yi, t, η) so we would rather use

realisations of an ergodic Markov chain having q(·|yi, t, η) as stationary distribution than

independent realisations of this distribution.

The solution we propose is the following: suppose we are at the kth iteration of the

algorithm and let η be the current parameters. Given any initial deformation field ξ0 ∈

R
2kg , we run, for each component t, the hybrid Gibbs Sampler Πη,t on R

2kg J times so that

we get J elements ξt,i = (ξ
(l)
t,i )1≤l≤J of an ergodic homogeneous Markov chain detailed in

Algorithm 3 whose stationary distribution is q(·|yi, t, η). Let us denote ξi = (ξt,i)1≤t≤τm
the

matrix of all the auxiliary variables. We then use these elements for the computation of

the weights pJ(t|ξi, yi, η) through a Monte Carlo sum:

pJ(t|ξi, yi, η) ∝
(

1

J

J
∑

l=1

[

f(ξ
(l)
t,i )

q(yi, ξ
(l)
t,i , t|η)

])−1

, (6)

where the normalisation is done such that their sum over t equals one, involving the

dependence on all the auxiliary variables ξi. The ergodic theorem ensures the conver-

gence of our approximation toward the expected value. We then simulate λ through

⊗n
i=1

τm
∑

t=1

pJ(t|ξi, yi, η)δt.

Concerning the second step, we update x by re-running J times the hybrid Gibbs
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sampler Πη,λ on R
N starting from a random initial point x0 in a compact subset of R

N .

The size of J will depend on the iteration k of the SAEM algorithm in a sense that will be

precised later, thus we now index it by k.

The density function involved in the Monte Carlo sum above needs to be specified to

get the convergence result proved in the last section of this paper. We show that using the

prior on the deformation field enables to get the sufficient conditions for convergence. This

density is the Gaussian density function and depends on the component we are working

on: ft(ξ) = 1√
2π

2kg
√

|Γg,t|
exp

(

−1
2
ξT Γ−1

g,tξ
)

. Algorithm 3 shows the detailed iteration.

Algorithm 3 Transition step k → k + 1 using an hybrid Gibbs Sampler on (x, λ)

Require: η = ηk , J = Jk

for all i = 1 : n do
for all t = 1 : τm do
ξ

(0)
t,i = ξ0

for all l = 1 : J do
ξ = ξ

(l−1)
t,i

Gibbs Sampler Πη,t:

for all j = 1 : 2kg do
Hasting-Metropolis procedure:

b ∼ q(b|ξ−j, t, η)

Compute rη,t,j(ξ, b) =
[

q(yi|ξj,b,t,η)

q(yi|ξ,t,η)
∧ 1
]

With probability rη,t,j(ξ, b), update ξj: ξj ← b
end for
ξ

(l)
t,i = ξ

end for

pJk
(t|ξi, yi, η) ∝

(

1

Jk

Jk
∑

l=1

[

ft(ξ
(l)
t,i )

q(yi, ξ
(l)
t,i , t|η)

])−1

end for
end for

λk+1 ∼ ⊗n
i=1

τm
∑

t=1

pJk
(t|ξi, yi, η)δt and xk+1 ∼ ΠJk

η,λk+1
(x0).
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3.4 Convergence theorem of the multicomponent procedure

In this particular case, we are not working with the SAEM-MCMC algorithm which couples

the iteration of the Markov Chain to the EM iterations. To prove the convergence of our

parameter estimate toward the MAP, we need a convergence theorem which deals with

general stochastic approximations.

We consider the following Robbins Monroe stochastic approximation procedure:

sk = sk−1 + ∆kh(sk−1) + ∆kek + ∆krk ,

where (ek)k≥1 and (rk)k≥1 are random processes defined on the same probability space

taking their values in an open subset S of R
ns; h is referred to as the mean field of the

algorithm; (rk)k≥1 is a remainder term and (ek)k≥1 is the stochastic excitation.

To be able to get a convergence result, we consider the truncated sequence (sk)k defined

as follow: let s̄k = sk−1 + ∆kh(sk−1) + ∆kek + ∆krk , where

if s̄k ∈ Kκk−1











sk = s̄k ,

κk = κk−1 ,

if s̄k /∈ Kκk−1











sk = s̃k ,

κk = κk−1 + 1 .

(7)

As already done in [5], we will use Delyon’s Theorem which gives sufficient conditions

for the sequence (sk)k≥0 truncated on random boundaries to converge with probability one:

Theorem 1 (Delyon, Lavielle, Moulines) Assume that :

SA0 w.p.1, for all k ≥ 0, sk ∈ S.

SA1 (∆k)k≥1 is a decreasing sequence of positive numbers such that
∞
∑

k=1

∆k =∞.
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SA2 The vector field h is continuous on S and there exists a continuously differentiable

function w : S → R such that

(i) for all s ∈ S, F (s) = 〈∂sw(s), h(s)〉 ≤ 0.

(ii) int(w(L′)) = ∅, where L′ , {s ∈ S : F (s) = 0}.

STAB1’ There exist a closed convex set Sa ⊂ S for which s→ ρ(h(s) + e(x) + r(x)) ∈ Sa

for any ρ ∈ [0, 1] and (s, x) ∈ Sa × R
N (Sa is absorbing), a continuous differentiable

function W : R
N → R and a compact set K such that

(i) For all c ≥ 0, we have Wc ∩ Sa is a compact subset of S where Wc = {s ∈ S :

W (s) ≤ c} is a level set.

(ii) 〈∂sW (s), h(s)〉 < 0, for all s ∈ S \ K.

STAB2 For any positive integer M , w.p.1 lim
p→∞

p
∑

k=1

∆kek1W (sk−1)≤M exists and is finite and

w.p.1 lim sup
k→∞

|rk|1W (sk−1)≤M = 0.

Then, considering (sk)k≥0 given by the truncated procedure, w.p.1, lim sup
k→∞

d(sk,L′) = 0.

We want to apply this theorem to our “SAEM like” procedure where the missing vari-

ables are not simulated through the posterior density function but by a kernel which can

be as close as wanted -increasing Jk- to this posterior law (generalising Theorem 3 in [5]).

Let us consider the following stochastic approximation: (xk, λk) are simulated by the

transition kernel described in the previous section and sk = sk−1 + ∆k(S(xk, λk)− sk−1) ,

which can be connected to the Robbins Monro procedure using the notations introduced in

[5]: let F = (Fk)k≥1 be the filtration where Fk is the σ−algebra generated by the random

variables (S0, x1, . . . , xk, λ1, . . . , λk) Eπη
is the expectation with respect to the posterior

distribution πη and
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h(sk−1) = Eπη̂(sk−1)
[S(x, λ)]− sk−1 ,

ek = S(xk, λk)− E [S(xk, λk)|Fk−1] ,

rk = E [S(xk, λk)|Fk−1]− Eπη̂(sk−1)
[S(x, λ)] .

Theorem 2 Let w(s) = −l◦η̂(s) where l(η) = log
∑

λ

∫

q(y, x, λ, η)dx and h(s) =
∑

λ

∫

x
(S(x, λ)−

s)πη̂(s)(x, λ)dx for s ∈ S. Assume that:

(A1) The sequence (∆k)k≥1 is non-increasing, positive and satisfy:
∞
∑

k=1

∆k =∞ and
∞
∑

k=1

∆2
k <∞.

(A2) L′ , {s ∈ S, 〈∂sw(s), h(s)〉 = 0} is included in a level set of w.

Let (sk)k≥0 be the truncated sequence defined in equation (7), K a compact set of R
N and

K0 ⊂ S(RN) a compact subset of S. Then, for all x0 ∈ K, λ0 ∈ T and s0 ∈ K0, we have

lim
k→∞

d(sk,L′) = 0 P̄x0,λ0,s0,0 -a.s. ,

where P̄x0,λ0,s0,0 is the probability measure associated with the chain Zk = (xk, λk, sk, κk)

for k ≥ 0 starting at (x0, λ0, s0, 0).

The proof of this theorem is given in Appendix. It will follow the scheme of the proof of

Theorem 5 in [5]. The only difference between our algorithm and SAEM is the simulation of

the missing data which is not done through the posterior law but through an approximation

which can be arbitrarily close.

Corollary 1 Under the assumptions of Theorem 2 we have for all x0 ∈ K, λ0 ∈ T and

η0 ∈ Θ × ̺, lim
k→∞

d(ηk,L) = 0 P̄x0,λ0,s0,0-a.s , where P̄x0,λ0,s0,0 is the probability measure

associated with the chain Zk = (xk, λk, sk, κk), k ≥ 0 starting at (x0, λ0, s0, 0) and L ,

{ η ∈ η̂(S), ∂l
∂η

(η) = 0}.
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proof 1 This is a direct consequence of the smoothness of the function s 7→ η̂(s) on S

and Lemma 2 of [5].

4 Experiments

To illustrate the previous algorithm for the deformable template model, we are considering

handwritten digit images. For each digit, referred as class later, we learn two templates,

the corresponding noise variances and the geometric covariance matrices. We use the USPS

database which contains a training set of around 7000 images. Each picture is a (16× 16)

gray level image with intensity in [0, 2] where 0 corresponds to the black background.

Figure 1: Some example of the training set: 40 images per class (inverse video).

In Figure (1) we show some of the training images used for the statistical estimation.

A natural choice for the prior laws on α and Γg is to set 0 for the mean on α and

to induce the two covariance matrices by the metric of the spaces Vp and Vg involving

the correlation between the landmarks through the kernels: Define the square matrices

Mp(k, k
′) = Kp(rp,k, rp,k′) ∀1 ≤ k, k′ ≤ kp , and Mg(k, k

′) = Kg(rg,k, rg,k′) ∀1 ≤ k, k′ ≤ kg .

Then Σp = M−1
p and Σg = M−1

g . In our experiments, we have chosen Gaussian kernels for

both Kp and Kg, where the standard deviations are fixed: σp = 0.2 and σg = 0.3 (for an

estimation on [−1.5, 1.5]2 and [−1, 1] respectively).
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For the stochastic approximation step-size, we allow a heating period which corresponds

to the absence of memory for the first iterations. This allows the Markov chain to reach an

area of interest in the posterior probability density function q(β, λ|y) before exploring this

particular region. In the experiments presented, the heating time lasts up to 150 iterations

and the whole algorithm is stopped at, at most, 200 iterations depending on the data set

(noisy or not). This number of iterations corresponds to a point when the convergence

seems to be reached. The power of the decreasing sequence is chosen to equal d = 0.6.

The multicomponent case has to face the problem of its computational time. Indeed,

as we have to approximate the posterior density by running J elements of τm independent

Markov chains, the computation time increases linearly with J . In our experiments, we

have chosen a fixed J for every EM iteration, J = 50.

4.1 The estimated templates

We are showing here the results of the statistical learning algorithm for our generative

model. The initialisation of the parameters is an important choice. To avoid the problems

shown in [2], we choose the same initialisation of the template parameter α as they did,

that is to say, we set the initial value of α such that the corresponding Iα is the mean of

the gray-level training images.

Figure 2: Estimated prototypes of the two components for each digit (40 images per class;
100 iterations; two components per class).

In Figure (2), we show the two estimated templates obtained by the multicomponent

procedure with 40 training examples per class. It appears that, as for the mode approx-

imation algorithm, the two components reached are meaningful, such as the 2 with and
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Figure 3: Estimated prototypes of the two components for each digit (40 images per class,
second random sample).

without loop or American and European 7. They even look alike.

In Figure (3), we show a second run of the algorithm with a different database, the

training images are randomly selected in the whole USPS training set. We can see that

there are some variability, in particular for digit 7 where there were no European 7 in the

training set. This generates two different clusters still relevant for this digit. The other

digits are quite stable, in particular the strongly constrained ones (like 5, 8 or 9).

4.2 The photometric noise variance

Even if we prove the convergence result for fixed component noise variances, we still try to

learn them in the experiments. The same behaviour for our stochastic EM as for the mode

approximation EM algorithm done in [1] is observed for the noise variances: allowing the

decomposition of the class into components enables the model to better fit the data yielding

a lower residual noise. In addition, the stochastic algorithm enables to look around the

whole posterior distribution and not only focusing on its mode which increases the accuracy

of the geometric covariance and the template estimation. This yields lower noise required

to explain the gap between the model and the truth.

4.3 The estimated geometric distribution

To be able to compare the learnt geometry, we draw some synthetic examples using the

mixture model with the learnt parameters. Even when the templates look similar, the

separation between two components can be justified by the different geometry distributions.
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To show the effects of the geometry on the components, we have drawn some “2” with their

respective parameters in the four top rows of Figure 4.

Figure 4: Some synthetic examples of the components of digit 2: First four rows: templates
of the two components deformed through some deformation field β and −β drawn from
their respective geometric covariance. Two last row: template of the first component from
Figure 2 with deformations drawn with respect to the second component covariance matrix.

For each component, we have drawn the deformation given by the variable β and its

opposite −β since, as soon as one is learnt, because of the symmetry of the Gaussian

distribution, the opposite deformation is learnt at the same time. This is why sometimes,

one of the two looks strange whereas the other looks like some element of the training set.

The simulation is done using a common standard Gaussian distribution which is then

multiplied by the square root of the covariance matrix we want to apply. We can see the

effects of the covariance matrix on both templates and the large variability learnt. This

has to be compared with the bottom rows of Figure 4, where the two samples are drawn on

the one template but with the covariance matrix of the other one. Even if these six lines

represent some “2”s, the bottom ones suffer from the geometrical tendency of the other

cluster and are not as natural. This shows the variability of the models into classes.
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5 Appendix

Here is the proof of Theorem 2. First let exhibit sufficient statistics for the model. The

complete log-likelihood equals:

log q(y, x, λ|η) =
n
∑

i=1

{

log

[

(

1

2πσ2
τi

)|Λ|/2

exp

(

− 1

2σ2
τi

|yi −Kβi
p ατi

|2
)

]

+ log

[

(

1

2π

)kg

|Γg,τi
|−1/2 exp

(

−1

2
βt

iΓ
−1
g,τi
βi

)

]

+ log(ρτi
)

}

,

where Kβ
p α = zβIα. This emphasises five sufficient statistics given in their matricial form

for all 1 ≤ t ≤ τm,

S0,t(x, λ) =
∑

1≤i≤n

1τi=t , S1,t(x, λ) =
∑

1≤i≤n

1τi=t

(

Kβi
p

)t
yi ,

S2,t(x, λ) =
∑

1≤i≤n

1τi=t

(

Kβi
p

)t (
Kβi

p

)

, S3,t(x, λ) =
∑

1≤i≤n

1τi=tβ
t
iβi ,

S4,t(x, λ) =
∑

1≤i≤n

1τi=t|yi|2 .

Thus we apply the stochastic approximation at iteration k of the algorithm leading to:

sk,i,t = sk−1,i,t + ∆k(Si,t(xk, λk)− sk−1,i,t) for 0 ≤ i ≤ 4 and rewrite the maximisation step.

The weights and the covariance matrix are updated as follows:

ρτ,k =
sk,0,τ + aρ

n + τmaρ

and Γg,τ,k =
1

sk,0,τ + ag

(sk,0,τsk,3,τ + agΣg) . (8)

The photometric parameters are solution of the following system:











ατ,k =
(

sk,0,τsk,2,τ + σ2
τ,k(Σp)

−1
)−1 (

sk,0,τsk,1,τ + σ2
τ,k(Σp)

−1µp

)

,

σ2
τ,k = 1

sk,0,τ |Λ|+ap
(sk,0,τ (sk,4,τ + (ατ,k)

tsk,2,τατ,k − 2(ατ,k)
tsk,1,τ) + apσ

2
0) ,

(9)

which can be solved iteratively for each component τ starting with the previous values.
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We will now apply Theorem 1 to prove Theorem 2. (SA0) is trivially satisfied as well

as (SA1) since we can choose our step-size sequence (∆k)k.

(SA2) holds as already mentioned for the one component case with w(s) = −l(η̂(s))

such as (STAB1’(i)) with the same function W (s) = −l(η̂(s)) (see [2]).

We need to suppose, like in the one component case, that the critical points of our

model are in a compact subset of S which stands for (STAB1’(ii)).

We will now focus on (STAB2) and show first the convergence to zero of the remainder

term |rk|1W (sk−1)≤M for any positive integer M . We denote πk = πη̂(sk) for any k ≥ 0. We

have rk = E [S(xk, λk)|Fk−1]− Eπk−1
[S(x, λ)] thus,

rk =
∑

λ

∫

x

S(x, λ)ΠJk

ηk−1,λ(x0, x)
n
∏

i=1

∫

pJk
(τi|ξi, yi, ηk−1)

τm
∏

t=1

Jk
∏

l=1

Πη,t(ξ
(l−1)
t,i , ξ

(l)
t,i )dξ

(l)
t,i dx

−
∑

λ

∫

x

S(x, λ)πηk−1
(x, λ)dx .

DenoteQ(ξi)dξi =
τm
∏

t=1

Jk
∏

l=1

Πη,t(ξ
(l−1)
t,i , ξ

(l)
t,i )dξ

(l)
t,i andRJk

(λ|y, ηk−1) =
n
∏

i=1

∫

pJk
(τi|ξi, yi, ηk−1)Q(ξi)dξi.

We can now rewrite

|rk| ≤
∣

∣

∣

∣

∣

∑

λ

∫

x

S(x, λ)
[

ΠJk

ηk−1,λ(x0, x)RJk
(λ|y, ηk−1)dx− πηk−1

(x, λ)
]

dx

∣

∣

∣

∣

∣

≤
∑

λ

∣

∣

∣

∣

∫

x

S(x, λ)
[

ΠJk

ηk−1,λ(x0, x)− q(x|λ, y, ηk−1)
]

dx

∣

∣

∣

∣

|RJk
(λ|y, ηk−1)|

+
∑

λ

∣

∣

∣

∣

∫

x

S(x, λ)q(x|λ, y, ηk−1)dx

∣

∣

∣

∣

|RJk
(λ|y, ηk−1)− q(λ|y, ηk−1)| .

DenotingMηk−1
= maxλ

∫

x
|S(x, λ)|q(x|λ, y, ηk−1)dx, we obtain finally

|rk|1W (sk−1)≤M ≤
∑

λ

∣

∣

∣

∣

∫

x

S(x, λ)
[

ΠJk

ηk−1,λ(x0, x)− q(x|λ, y, ηk−1)
]

dx

∣

∣

∣

∣

1W (sk−1)≤M(10)

+Mηk−1

∑

λ

|RJk
(λ|y, ηk−1)− q(λ|y, ηk−1)|1W (sk−1)≤M . (11)
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We will first show that the Gibbs sampler kernel Πη,λ satisfies a minoration condition and

a Drift condition (MDRI) to get its geometric ergodicity (as it has been done in [2]).

(MDRI) For any s ∈ S and any λ ∈ T , Πη̂(s),λ is irreducible and aperiodic. In addition

there exist a small set C ( defined below) and a function V : R
N → [1,∞[ such that

for any p ≥ 2 and any compact subset K ⊂ S, there exist an integer m, constants

0 < κ < 1, B , δ > 0 and a probability measure ν such that

sup
s∈K,λ∈T

Πm
η̂(s),λ(x,A) ≥ δν(A) ∀x ∈ C, ∀A ∈ B(RN) , (12)

sup
s∈K,λ∈T

Πm
η̂(s),λV

p(x) ≤ κV p(x) +B1C(x) . (13)

Notation 1 Let (ej)1≤j≤N be the canonical basis of the x-space and for any 1 ≤ j ≤ N , let

Eη,λ,j , { x ∈ R
N | 〈x, ej〉η,λ = 0} be the orthogonal of Span{ej} and pη,λ,j be the orthogonal

projection on Eη,λ,j i.e. pη,λ,j(x) , x − 〈x,ej〉η,λ

|ej |2η,λ

ej , where 〈x, x′〉η,λ =
∑n

i=1 β
t
iΓ

−1
g,τi
βi and

x = βn
1 , x′ = β ′n

1 (i.e. the natural dot product associated with the covariance matrices

(Γg,t)t).

We denote for any 1 ≤ j ≤ N , η ∈ Θ× ̺ and λ ∈ T , Πη,λ,j the Markov kernel on R
N

associated with the j-th Hasting-Metropolis step of the Gibbs Sampler on R
N . We have

Πη,λ = Πη,λ,N ◦ · · · ◦ Πη,λ,1.

We first recall the definition of a small set:

Definition 1 ( [14]) A set E ∈ B(X ) is called a small set for the kernel Π if there

exist an integer m > 0 and a non trivial measure νm on B(X ), such that for all x ∈ E ,

B ∈ B(X ), Πm(x,B) ≥ νm(B). When this holds, we say that E is νm-small.

We now prove the following lemma:

Lemma 1 Let E be a compact subset of R
N then E is a small set of R

N for (Πη̂(s),λ)s∈K,λ∈T .
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proof 2 First note that there exists ac > 0 such that for any η ∈ Θ× ̺, any x ∈ R
N and

any b ∈ R, the acceptance rate rη,λ,j(x, b) is uniformly lower bounded by ac so that for any

1 ≤ j ≤ N and any non-negative function f ,

Πη,λ,jf(x) ≥ ac

∫

R

f(x−j + bej)q(b|x−j , λ, η)db = ac

∫

R

f(pη,λ,j(x) + zej/|ej|η,λ)g0,1(z)dz ,

where g0,1 is the standard N (0, 1) density. By induction, we have

Πη,λf(x) ≥ aN
c

∫

RN

f

(

pη,λ,1,N(x) +
N
∑

j=1

zjpη,λ,j+1,N(ej)/|ej|η,λ

)

N
∏

j=1

g0,1(zj)dzj , (14)

where pη,λ,q,r = pη,λ,r ◦ pη,λ,r−1 ◦ · · · ◦ pη,λ,q for any integer q ≤ r and pη,λ,N+1,N = IdRN .

Let Aη,λ ∈ L(RN) be the linear mapping on zN
1 = (z1, · · · , zN) defined by Aη,λz

N
1 =

∑N
j=1 zjpη,λ,j+1,N(ej)/|ej |η,λ. One easily checks that for any 1 ≤ k ≤ N , Span{ pη,λ,j+1,N(ej), k ≤

j ≤ N} = Span{ej, k ≤ j ≤ N} so that Aη,λ is an invertible mapping. By a change of

variable, we get

∫

RN

f
(

pη,λ,1,N(x) + Aη,λz
N
1

)

N
∏

j=1

g0,1(zj)dzj =

∫

RN

f(u)gpη,λ,1,N(x),Aη,λAt
η,λ

(u)du ,

where gµ,Σ stands for the density of the normal law N (µ,Σ). Since (η, λ) → Aη,λ is

smooth on the set of invertible mappings in (η, λ), we deduce that there exists c > 0 such

that cId ≤ Aη,λA
t
η,λ ≤ Id/c and gpη,λ,1,N(x),Aη,λAt

η,λ
(u) ≥ Cgpη,λ,1,N (x),Id/c(u) uniformly for

η = η̂(s) with s ∈ K and λ ∈ T . Assuming that x ∈ E , since η → pη,λ,1,N is smooth and E

is compact, we have supx∈E,η=η̂(s), s∈K,λ∈T |pη,λ,1,N(x)| <∞ so that there exists C ′ > 0 and

c′ > 0 such that for any (u, x) ∈ R
N × E and any η = η̂(s), s ∈ K, λ ∈ T

gpη,λ,1,N(x),Aη,λAt
η,λ

(u) ≥ C ′g0,Id/c′(u). (15)
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Using (14) and (15), we deduce that for any A Πη,λ(x,A) ≥ C ′aN
c ν(A) , with ν equal to

the density of the normal law N (0, Id/c′). This yields the existence of the small set as well

as equation (12).

This property also implies the φ-irreducibility of the Markov Chain generated by Πη,λ.

Moreover, the existence of a ν1-small set implies the aperiodicity of the chain [14].

Now consider the Drift condition (13).

We set V : R
N → [1,+∞[ as the following function V (x) = 1 + |x|2,where | · | denotes

the Euclidian norm. Define for any g : R
N → R

ns the norm ‖g‖V = sup
x∈RN

|g(x)|
V (x)

and the

functional space LV = {g : R
N → R

ns | ‖g‖V < +∞}. For any η ∈ Θ× ̺ and any λ ∈ T ,

we introduce a (η, λ) dependent function Vη,λ(x) , 1 + 〈x, x〉η,λ.

Lemma 2 Let K be a compact subset of Θ × ̺. For any integer p ≥ 1, there exist

0 ≤ ρ < 1 and C > 0 such that for any η ∈ K, any λ ∈ T , any x ∈ R
N we have

Πη,λV
p
η,λ(x) ≤ ρV p

η,λ(x) + C .

proof 3 The proposal distribution for Πη,λ,j is given by q(x | x−j , λ, y, η)
law
= pη,λ,j(x) +

Uη,λej, where Uη,λ ∼ N (0, |ej|−2
η,λ). Since the acceptance rate rη,λ,j is uniformly bounded

from below by a positive number ac > 0, we deduce that there exists CK such that for any

x ∈ R
N and any measurable set A ∈ B(RN )

Πη,λ,j(x,A) = (1− rη,λ,j(x))1A(x) + rη,λ,j(x)

∫

R

1A(pη,λ,j(x) + zej)γη,λ(dz) ,

where γη,λ ≤ CKγK and γK equals to the density of the normal law N (0, supη∈K,λ∈T |ej |−2
η,λ).
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Since 〈pη,λ,j(x), ej〉η,λ = 0, we get V p
η,λ(pη,λ,j(x)+ zej) = (Vη,λ(pη,λ,j(x))+ z2|ej|2η,λ)

p and

Πη,λ,jV
p
η,λ(x) = (1− rη,λ,j(x))V

p
η,λ(x) + rη,λ,j(x)

∫

R

(

Vη,λ(pη,λ,j(x)) + z2|ej|2η,λ

)p
γη,λ(dz)

≤ (1− rη,λ,j(x))V
p
η,λ(x) + rη,λ,j(x)×

(

V p
η,λ(pη,λ,j(x)) + (2p − 1)CKV

p−1
η,λ (pη,λ,j(x))

∫

R

(1 + z2|ej |2η,λ)
p−1γK(dz)

)

≤ (1− rη,λ,j(x))V
p
η,λ(x) + rη,λ,j(x)V

p
η,λ(pη,λ,j(x)) + C ′

KV
p−1
η,λ (pη,λ,j(x)) .

We have used in the last inequality the fact that a Gaussian variable has bounded moment of

any order. Since rη,λ,j(x) ≥ ac and |pη,λ,j(x)|η,λ ≤ |x|η,λ (pη,λ,j is an orthonormal projection

for the dot product 〈·, ·〉η,λ), we get that for any ℓ > 0, there exists CK,ℓ such that for any

x ∈ R
N and η ∈ K, λ ∈ T

Πη,λ,jV
p
η,λ(x) ≤ (1− ac)V

p
η,λ(x) + (ac + ℓ)V p

η,λ(pη,λ,j(x)) + CK,ℓ .

By induction, starting with j=1, we get

Πη,λV
p
η,λ(x) ≤

∑

u∈{0,1}N

N
∏

j=1

(1− ac)
1−uj (ac + ℓ)ujV p

η,λ(pη,λ,u(x)) +
CK,ℓ

ℓ
((1 + ℓ)N+1 − 1) ,

where pη,λ,u = ((1− uN)Id + uNpη,λ,N) ◦ · · · ◦ ((1− u1)Id + u1pη,λ,1).

Let pη,λ = pη,λ,1 = pη,λ,N ◦ · · · ◦ pη,λ,1 and note that pη,λ,u is contracting so that

Πη,λV
p
η,λ(x) ≤ bc,ℓV

p
η,λ(x) + (ac + ℓ)NV p

η,λ(pη,λ(x)) +
CK,ℓ

ℓ
((1 + ℓ)N+1)

for bc,ℓ =
(

∑

u∈{0,1}N , u 6=1

∏N
j=1(1− ac)

1−uj (ac + ℓ)uj

)

. To end the proof, we need to check

that pη,λ is strictly contracting uniformly on K. Indeed, |pη,λ(x)|η,λ = |x|η,λ implies that

pη,λ,j(x) = x for any 1 ≤ j ≤ N so that 〈x, ej〉η,λ = 0 and x = 0 since (ej)1≤j≤N is a basis.

Using the continuity of the norm of pη,λ and the compactness of K, we deduce that there
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exists 0 < ρK < 1 such that |pη,λ(x)|η,λ ≤ ρK |x|η,λ for any x, any η ∈ K and any λ ∈ T .

Changing ρK for 1 > ρ′K > ρK we get (1 + ρ2
K |x|2η,λ)

q ≤ ρ′2q
K (1 + |x|2η,λ)

q + C ′′
K for some

uniform constant C ′′
K so that

Πη,λV
p
η,λ(x) ≤ bc,ℓV

p
η,λ(x) + ρ′

2p
K (ac + ℓ)NV p

η,λ(x) + C ′′
K,ℓ.

Since we have infℓ>0 bc,ℓ + ρ′2p
K (ac + ℓ)N < 1 the result is straightforward.

Lemma 3 For any compact set K ⊂ Θ × ̺, any integer p ≥ 0, there exist 0 < ρ < 1,

C > 0 and m0 such that ∀m ≥ m0 , ∀η ∈ K, ∀λ ∈ T Πm
η,λV

p(x) ≤ ρV p(x) + C .

proof 4 Indeed, there exist 0 ≤ c1 ≤ c2 such that c1V (x) ≤ Vη,λ(x) ≤ c2V (x) for

any (x, η, λ) ∈ R
N × K × T . Then, using the previous lemma, we have Πm

η,λV
p(x) ≤

c−p
1 Πm

η,λV
p
η,λ(x) ≤ c−p

1 (ρmV p
η,λ(x) + C/(1− ρ)) ≤ (c2/c1)

p(ρmV p(x) + C/(1− ρ)). Choosing

m large enough for (c2/c1)
pρm < 1 gives the result.

This finishes the proof of (13). Thanks to this property we can use the following propo-

sition and lemma applied to every sequence (ξ
(l)
t,i )l with stationary distribution q(·|yi, t, η)

for all 1 ≤ t ≤ τm and all 1 ≤ i ≤ n: (cf: [14], [3] Proposition B1 and Lemma B2).

Proposition 1 Suppose that Π is irreducible and aperiodic and that Πm(x0, .) ≥ 1C(x0)δν(.)

for a set C ∈ B(X), some integer m and δ > 0 and that there is a Drift condition to C in

the sense that, for some κ < 1, B and a function V : X → [1,+∞[,

ΠV (x0) ≤ κV (x0) ∀x0 ∈/ C and sup
x0∈C

(V (x0) + ΠV (x0)) ≤ B .

Then, there exist constants K and 0 < ρ < 1, depending only upon m, δ, κ, B, such that,

for all x0 ∈ X, and all g ∈ LV ‖Πng(x0)− π(g)‖V ≤ Kρn‖g‖V .
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Lemma 4 Assume that there exist an integer m and constants κ < 1 and ς such that

ΠmV (x0) ≤ κV (x0) ∀x0 ∈/ C and ΠV (x0) ≤ ςV (x0) ∀x0 ∈ X for some function V : X →

[1,+∞[. Then there exists a function Ṽ and constants 0 < ρ < 1, c and C, depending only

upon m, κ, ς, such that, ΠṼ (x0) ≤ κṼ (x0) ∀x0 ∈/ C and cV ≤ Ṽ ≤ CV .

So each Gibbs sampler kernel Πη,λ is geometrically ergodic.

We will now use the term 1W (sk−1)≤M to show that the parameters ηk−1 are constrained

to move in a compact set of Θ× ̺. We show first that the observed log-likelihood l tends

to minus infinity as the parameters tend to the boundary of Θ× ̺. Equation (1) implies

that for any θ ∈ Θ we have:

q(yi|βi, τi, α, σ)q(βi|Γg,τi
) ≤ (2πσ2)−|Λ|/2(2π)−kg |Γg,τi

|−1/2 exp

(

−1

2
βt

iΓ
−1
g,τi
βi

)

,

so that denoting C as a constant:

log(q(y, η)) ≤
n
∑

i=1

[

−ag

2
〈Γ−1

g,τi
,Σg〉+

1 + ag

2
log |Γ−1

g,τi
| − apσ

2
0

2σ2
τi

− |Λ|+ ap

2
log(σ2

τi
)

−1

2
(ατi
− µp)

tΣ−1
p (ατi

− µp)− aρ log ρτi

]

+ C.

It was shown in [1] that we have lim||Γ||+||Γ−1||→∞−ag

2
〈Γ−1,Σg〉+ 1+ag

2
log |Γ−1| = −∞,

limσ2+σ−2→∞−apσ2
0

2σ2 − |Λ|+ap

2
log(σ2) = −∞ and lim|α|→∞−1

2
(α − µp)

tΣ−1
p (α − µp) = −∞.

Moreover, we have limρ→0 log(ρ) = −∞ , so we get limη→∂(Θ×̺) log q(y, η) = −∞ . which

ensures that for all M > 0 there exists ℓ > 0 such that |αt| ≥ ℓ or ||Γt|| + ||Γ−1
t || ≥ ℓ or

σ2
t +σ−2

t ≥ ℓ or ρt ≤ 1
ℓ

implies −l(η) ≥M so W (sk−1) ≤M implies that for all 1 ≤ t ≤ τm

we have |αt| ≤ ℓ, ||Γt||+ ||Γ−1
t || ≤ ℓ, σ2

t + σ−2
t ≤ ℓ and 1

ℓ
≤ ρt ≤ 1− 1

ℓ
because

∑τm

t=1 ρt =

1. Let us denote Vℓ = Θτm

ℓ ×
{

(ρt)1≤t≤τm
∈
[

1
ℓ
, 1− 1

ℓ

]τm | ∑τm

t=1 ρt = 1
}

, where Θℓ =
{

θ = (α, σ2,Γg) | α ∈ R
kp, σ > 0 , Γg ∈ Sym+

2kg ,∗(R) | |α| ≤ ℓ, 1
ℓ
≤ σ2 ≤ ℓ, 1

ℓ
≤ ||Γg|| ≤ ℓ

}

.

So there exists a compact set Vℓ of Θ × ̺ such that W (sk−1) ≤ M implies η̂(sk−1) ∈ Vℓ
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and the first term (10) can be bounded as follows:

∑

λ

∣

∣

∣

∣

∫

x

S(x, λ)
[

ΠJk

ηk−1,λ(x0, x)− q(x|λ, y, ηk−1)
]

dx

∣

∣

∣

∣

1W (sk−1)≤M

≤
∑

λ

sup
η∈Vℓ

∣

∣

∣

∣

∫

x

S(x, λ)
[

ΠJk

η,λ(x0, x)− q(x|λ, y, η)
]

dx

∣

∣

∣

∣

.

Since for each λ the function x → S(x, λ) belongs to LV , since we have proved that each

transition kernel Πη,λ is geometrically ergodic and since the set Vℓ is compact, we can

deduce that the first term (10) converges to zero as Jk tends to infinity.

We now consider the second term (11). We first need to prove that Mηk
1W (sk−1)≤M

is uniformly bounded that is to say the integral of the sufficient statistics are uniformly

bounded on {W (sk−1) ≤M} ; we only need to focus on the sufficient statistic which is not

bounded itself: let (j,m) ∈ {1, ..., 2kg}2:

∫

|xjxm|q(x|λ, y, ηk−1)dx1ηk−1∈Vℓ
≤

∫

|xjxm|q(x, λ, y, ηk−1)

q(λ, y, ηk−1)
dx1ηk−1∈Vℓ

≤ C(Vℓ)

q(λ, y, ηk−1)

∫

|xjxm| exp

(

−1

2
xtΓ̂−1

g,λ,k−1x

)

dx

≤ C(Vℓ)

∫

Q(|x|, Γ̂g,λ,k−1) exp

(

−1

2
|x|2
)

dx <∞ ,

where C(Vℓ) is a constant depending only on the set Vℓ, Γ̂g,λ is the diagonal block matrix

with all the Γg,τi
given by the label vector λ and we have changed the variable in the last

inequality and Q is a quadratic form in x whose coefficients are continuous functions of

elements of the matrix Γg. So we obtain that for all M > 0 there exists ℓ > 0 such that

for all integer k we have: Mηk
1W (sk−1)≤M ≤ C(Vℓ).

We now prove the convergence to 0 of the second term of the product involved in (11).
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Let us denote Rλ,y,k for the term |RJk
(λ|y, ηk−1)− q(λ|y, ηk−1)|. Thus we have:

Rλ,y,k =

∣

∣

∣

∣

∣

n
∏

i=1

∫

pJk
(τi|ξi, yi, ηk−1)Q(ξi)dξi −

n
∏

i=1

q(τi|yi, ηk−1)

∣

∣

∣

∣

∣

≤
n
∑

i=1

∣

∣

∣

∣

∫

pJk
(τi|ξi, yi, ηk−1)Q(ξi)dξi − q(τi|yi, ηk−1)

∣

∣

∣

∣

≤
n
∑

i=1

∫

|pJk
(τi|ξi, yi, ηk−1)− q(τi|yi, ηk−1)|Q(ξi)dξi

≤
n
∑

i=1

∫
∣

∣

∣

∣

SJk
(τi, yi|ξτi,i, ηk−1)

∑

s SJk
(s, yi|ξs,i, ηk−1)

− q(τi, yi|ηk−1)

q(yi|ηk−1)

∣

∣

∣

∣

Q(ξi)dξi ,

where we denote by SJ(t, yi|ξt,i, η) the quantity

(

1
J

J
∑

l=1

[

f(ξ
(l)
t,i )

q(yi,ξ
(l)
t,i ,t|η)

])−1

.

We write each term of this sum as follows:

SJk
(τi, yi|ξτi,i, ηk−1)

∑τm

s=1 SJk
(s, yi|ξs,i, ηk−1)

−q(τi, yi|ηk−1)

q(yi|ηk−1)
=
SJk

(τi, yi|ξτi,i, ηk−1)(q(yi|ηk−1)−
∑τm

s=1 SJk
(s, yi|ξs,i, ηk−1))

q(yi|ηk−1)
∑τm

s=1 SJk
(s, yi|ξs,i, ηk−1)

+
(SJk

(τi, yi|ξτi,i, ηk−1)− q(τi, yi|ηk−1))
∑τm

s=1 SJk
(s, yi|ξs,i, ηk−1)

q(yi|ηk−1)
∑τm

s=1 SJk
(s, yi|ξs,i, ηk−1)

.

Denoting by Ti the set of τm + 1 integers {1, · · · , τm} ∪ {τi}, we obtain finally:

Rλ,y,k ≤
n
∑

i=1

1

q(yi|ηk−1)

∑

s∈Ti

∫

|SJk
(s, yi|ξs,i, ηk−1)− q(s, yi|ηk−1)|Q(ξi)dξi .

Defining the event Ak,i,t = {|SJk
(t, yi|ξt,i, ηk−1)− q(t, yi|ηk−1)| > ζk} for some positive

sequence (ζk)k, we get:

Rλ,y,k ≤
n
∑

i=1

1

q(yi|ηk−1)

∑

s∈Ti

∫

Ak,i,s

|SJk
(s, yi|ξs,i, ηk−1)− q(s, yi|ηk−1)|Q(ξi)dξi

+
n
∑

i=1

1

q(yi|ηk−1)

∑

s∈Ti

∫

Ac
k,i,s

|SJk
(s, yi|ξs,i, ηk−1)− q(s, yi|ηk−1)|Q(ξi)dξi .
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So we deduced that:

Rλ,y,k ≤
n
∑

i=1

1

q(yi|ηk−1)

∑

s∈Ti

(sup
ξ
SJk

(s, yi|ξs,i, ηk−1) + q(s, yi|ηk−1))P (Ak,i,s)

+

(

n
∑

i=1

1

q(yi|ηk−1)

)

(τm + 1)ζk

≤
n
∑

i=1

(

supξ,s SJk
(s, yi|ξs,i, ηk−1)

q(yi|ηk−1)
+ 1

)

(

∑

s∈Ti

P (Ak,i,s) + P (Ak,i,τi
)

)

+

(

n
∑

i=1

1

q(yi|ηk−1)

)

(τm + 1)ζk .

Assuming ζk < mini,t q(t, yi|ηk−1), we obtain:

P (Ac
k,i,t) = P (|SJk

(t, yi|ξt,i, ηk−1)− q(t, yi|ηk−1)| ≤ ζk)

≥ P

(
∣

∣

∣

∣

1

SJk
(t, yi|ξt,i, ηk−1)

− 1

q(t, yi|ηk−1)

∣

∣

∣

∣

≤ ζk
q(t, yi|ηk−1)(q(t, yi|ηk−1) + ζk)

)

≥ P

(
∣

∣

∣

∣

1

SJk
(t, yi|ξt,i, ηk−1)

− 1

q(t, yi|ηk−1)

∣

∣

∣

∣

≤ ζk
2q(t, yi|ηk−1)2

)

.

Using the first inequality of Theorem 2 of [7], we get: P (Ak,i,t) ≤ c1 exp
(

−c2 Jkζ2
k

q(t,yi|ηk−1)4

)

,

where c1 and c2 are independent of k since (ηk) only moves in a compact set Vℓ thanks to

the condition 1W (sk−1≤M). This yields:

Rλ,y,k ≤ c1

n
∑

i=1

(

supξ,s SJk
(s, yi|ξs,i, ηk−1)

q(yi|ηk−1)
+ 1

)

(τm + 1) exp

(

−c2
Jkζ

2
k

maxi q(yi|ηk−1)4

)

+ sup
ηk−1∈Lm

(

n
∑

i=1

1

q(yi|ηk−1)

)

(τm + 1)ζk.

We have to prove that the Monte Carlo sum involved in SJk
(s, yi|ξs,i, ηk−1) does not equal

zero everywhere, so that supξ,s SJk
(s, yi|ξs,i, ηk−1) is finite. For this purpose, we can choose

a particular probability density function f . Indeed, if we set f to be the prior density
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function on the simulated deformation fields ξ, we have for all η ∈ Vℓ:

1

J

J
∑

l=1

[

f(ξ
(l)
t,i )

q(yi, ξ
(l)
t,i , t|η)

]

=
1

J

J
∑

l=1

[

1

q(yi|ξ(l)
t,i , t, η)q(t|η)

]

≥ 1

J

J
∑

l=1





1
1

(2πσ2
t )|Λ| exp(− 1

2σ2
t
‖yi −Kξ(l)

p αt‖2)



 ≥ (2πσ2
ℓ )

|Λ|,

where σℓ is the lower bound of the variance σ on the compact set Vℓ.

So choosing the sequences (ζk)k and (Jk)k such that lim
k→∞

ζk = 0 and lim
k→∞

Jkζ
2
k = +∞

we get the result. We can take for example Jk = k and ζk = k−1/3 for all k ≥ 1.

We will now prove the convergence of the sequence of excitation terms.

For any M > 0 we define Mn =
n
∑

k=1

∆kek1W (sk−1)≤M and let F = (Fk)k≥1 be the filtra-

tion, where Fk is the σ−algebra generated by the random variables (S0, x1, . . . , xk, λ1, . . . , λk).

We have Mn =
n
∑

k=1

∆k (S(xk, λk)− E [S(xk, λk)|Fk−1])1W (sk−1)≤M so this shows us that

(Mn) is a F -martingale. In addition to this we have:

∞
∑

k=1

E
[

|Mk −Mk−1|2 | Fk−1

]

=
∞
∑

k=1

E
[

∆2
k|ek|21W (sk−1)≤M | Fk−1

]

≤
∞
∑

k=1

∆2
kE
[

|ek|2 | Fk−1

]

≤
∞
∑

k=1

∆2
kE
[

|S(xk, λk)− E [S(xk, λk)|Fk−1] |2 | Fk−1

]

≤
∞
∑

k=1

∆2
kE
[

|S(xk, λk)|2 | Fk−1

]

.

We now evaluate this last integral term:

E
[

|S(xk, λk)|2 | Fk−1

]

=
∑

λ

∫

x

∫

ξ

|S(x, λ)|2ΠJk

ηk−1,λ(x0, x)
n
∏

i=1

pJk,ηk−1
(τi, ξτi,i, yi)Q(ξτi,i)dξτi,idx

≤
[

∑

λ

∫

x

|S(x, λ)|2ΠJk

ηk−1,λ(x0, x)dx

]

[
∫

ξ

ΠJk

ηk−1,λ(ξ0, ξ)dξ

]

.

The last term equals one and again we only need to focus on the sufficient statistic which
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is not bounded itself. Indeed S3,t(x, λ) for all 1 ≤ t ≤ τm so using the fact that the function

V dominates this sufficient statistic, we obtain:

E
[

|S3,t(xk, λk)|2 | Fk−1

]

≤
∑

λ

∫

x

|S3,t(x, λ)|2ΠJk

ηk−1,λ(x0, x)dx

≤ C
∑

λ

∫

x

V (x)2ΠJk

ηk−1,λ(x0, x)dx ≤ C
∑

λ

ΠJk

ηk−1,λV (x0)
2 .

Applying Lemma 3 for p = 2, we get:

E
[

|S(xk, λk)|2 | Fk−1

]

≤ C
∑

λ

(ρV (x0)
2 + C) ≤ Cτn

m(ρV (x0)
2 + C) .

Finally it remains:
∞
∑

k=1

E [|Mk −Mk−1|2 | Fk−1] ≤ C
∞
∑

k=1

∆2
k , which ensures that the previous

series converges. This involves that (Mk)k∈N is a martingale bounded in L2 so that lim
k→∞

Mk

exists (see [11]). This proves the first part of (STAB2).

To conclude this proof we apply Theorem 1 and get that lim
k→∞

d(sk,L′) = 0.
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