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Frictionless bead packs have macroscopic friction, but no dilatancy.

Pierre-Emmanuel Peyneau∗ and Jean-Noël Roux
Université Paris-Est, LMSGC†, Institut Navier, 2 allée Kepler,

Cité Descartes, 77420 Champs-sur-Marne, France

(Dated: February 11, 2008)

The statement of the title is shown by numerical simulation of homogeneously sheared packings of
frictionless, nearly rigid beads in the quasistatic limit. Results coincide for steady flows at constant
shear rate γ̇ in the limit of small γ̇ and static approaches, in which packings are equilibrated under
growing deviator stresses. The internal friction angle ϕ, equal to 5.76 ± 0.22 degrees in simple
shear, is independent on the average pressure P in the rigid limit. It is shown to stem from the
ability of stable frictionless contact networks to form stress-induced anisotropic fabrics. No enduring
strain localization is observed. Dissipation at the macroscopic level results from repeated network
rearrangements, like the effective friction of a frictionless slider on a bumpy surface. Solid fraction
Φ remains equal to the random close packing value ≃ 0.64 in slowly or statically sheared systems.
Fluctuations of stresses and volume are observed to regress in the large system limit, and we conclude
that the same friction law for simple shear applies in the large system limit if normal stress or density
is externally controlled. Defining the inertia number as I = γ̇

√

m/(aP ), with m the grain mass and
a its diameter, both internal friction coefficient µ∗ = tanϕ and volume 1/Φ increase as powers of I
in the quasistatic limit of vanishing I , in which all mechanical properties are determined by contact
network geometry. The microstructure of the sheared material is characterized with a suitable
parametrization of the fabric tensor and measurements of connectivity and coordination numbers
associated with contacts and near neighbors.

PACS numbers: 45.70.-n, 83.80.Hj, 81.40.Lm, 83.10.Rs

I. INTRODUCTION

Packings of particles appear in a variety of fields of con-
densed matter physics and material science, such as gran-
ular materials [1, 2, 3], powders [4], or concentrated, non-
colloidal suspensions [5, 6]. Such systems are macroscop-
ically disordered, on a scale such that traditional statisti-
cal mechanical approaches are irrelevant, and share many
common features in their rheological behavior. One is a
certain shear stress threshold, above which they roughly
qualify as a fluid, and below which they might be re-
garded as solid. In assemblies of particles with purely
repulsive force laws, interactions often do not introduce
any stress scale, and the threshold only involves some
ratio of stress components, whence a behavior often ex-
pressed as a friction law. Another basic property shared
by many particulate systems is the existence of a spe-
cific value of the particle density, below which the ma-
terial cannot flow. The viscosity of a dense suspension
diverges as the solid fraction Φ approaches some value
Φ∗, often regarded [7] as identical to the random close
packing one, ΦRCP (ΦRCP ≃ 0.64 for identical spherical
balls [8]). Shearing and volumetric strains are coupled in
granular media, which, once densely packed, cannot de-
form without expanding: this is the dilatancy property,
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first introduced by Reynolds [9]. Once the shear strain
reaches a large enough value, granular packs can con-
tinuously deform, like perfectly plastic materials, under
constant stresses while keeping a constant solid fraction
Φc: this state of steady plastic flow does not depend on
initial conditions and is known in soil mechanics as the
critical state [10]. Friction and dilatancy are coupled in
granular materials by the stress-dilatancy relations, as
proposed, e.g. by Rowe [10, 11].

It is tempting to try and identify simple, model systems
apt to explore the microscopic origin of those broadly de-
fined rheological features. To this end, discrete particle
numerical simulation, for granular materials [1, 12, 13],
or suspensions [14], has now become a widespread re-
search tool. Thus friction laws in model granular as-
semblies in steady shear flows, with some inertial ef-
fects, were simulated [15, 16], and stress-dilatancy re-
lations were tested [17]. Many results were obtained
on sphere packings [18, 19], which, long investigated in
order to characterize their geometry [8, 20], are now
studied with complete mechanical models. Thus it has
been checked [21, 22, 23] that the random close pack-
ing state of monosized spheres (which is simply an equi-
librium configuration of frictionless, rigid beads under
a uniform isotropic pressure) is apparently uniquely de-
fined if enduring agitation inducing traces of crystalline
order is avoided in the assembling stage. The macro-
scopic (or internal) friction coefficients, and their rela-
tion to micromechanical parameters, including intergran-
ular friction, have been evaluated from numerical simu-
lations [18, 19].

Despite recent advances, some open gaps and unan-
swered questions can be pointed out in the literature.
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The accurate and detailed characterization of frictionless
systems under isotropic loads [21, 22], in which static
equilibrium states are studied, and few parameters are in-
troduced, contrast with the more general investigations
of the behavior of granular systems with intergranular
friction [17, 18, 19], which are most often carried out by
dynamical methods involving inertia effects, and involve
quite a few additional parameters. In those latter stud-
ies, the limit of frictionless grains is not really treated
with the desirable accuracy. Yet, frictionless packings,
albeit reported to exhibit singular properties [24, 25, 26],
incorporate basic geometric effects that are common to
suspensions and dry granular systems, even though they
are supplemented by viscous flow effects in the first case,
by intergranular friction and inertia in the second case.

In order to clarify issues that have not been settled, the
present paper is devoted to a numerical study of friction-

less bead packings, subjected to homogeneous shear, and
addresses the following questions. Are there such things
as “anisotropic random close packing states” ? Can fric-
tionless packs sustain shear stresses in static equilibrium
states as well as in slow, steady flow, and do static and
dynamic friction coefficients coincide ? Do fluctuations
on measured stresses or strain rates regress in the large
system limit ? What can be said about characteristic
densities ΦRCP, Φ∗, Φc ? How do classical approaches of
dilatancy [9, 27], and the way it couples to friction [17],
apply in such a simple case ?

The paper is organized in four main parts. Section II
describes the model material and the numerical simula-
tion setup, specifying the boundary condition and initial
states used in static and dynamic approaches. Section III
reports on the main results about the macroscopic behav-
ior – macroscopic friction and dilatancy – and their de-
pendence on the dimensionless control parameters identi-
fied in Section II. Section IV investigates the packing mi-
crostructure and the force networks, in connection with
macroscopic mechanical properties, with, in particular,
a detailed characterization of anisotropy. Section V is a
discussion.

II. MODEL MATERIAL AND NUMERICAL

EXPERIMENTS

A. System and interactions

We consider packings of equal-sized spherical beads of
diameter a and massm, enclosed in a cuboidal simulation
cell.

Beads interact in their contacts where only normal
forces FN are transmitted, which are modeled as a sum
of an elastic term and a viscous one, as in many numer-
ical studies of granular systems (see e.g., Refs. [18, 23,
28, 29]). The elastic force F e

N is related to the normal
deflection h of the contact by the Hertz law [30],

F e
N =

Ẽ

3

√
ah3/2, (1)

where Ẽ is a notation for E/(1 − ν2), E is the Young
modulus of the solid material the spherical grains are
made of, and ν its Poisson ratio. Eq. (1) attributes to
contacts a variable spring constant KN ,

KN =
dF e

N

dh
=
Ẽ

2

√
ah1/2 =

31/3

2
Ẽ2/3a1/3(F e

N )1/3. (2)

The viscous normal force opposes the relative normal
velocity δVN = ḣ of contacting beads, and is chosen as

F v
N = ζ

√

2mKNδVN = ζ(mẼ)1/2(ah)1/4δVN , (3)

with a constant coefficient ζ. The motivation of (3) is the
choice of a damping coefficient which varies in time, but
stays equal to a fixed fraction ζ of the critical damping
coefficient of the harmonic oscillator defined by spring
constant KN and mass m/2 (the relevant value for the
relative motion in an isolated pair of interacting particles
of mass m). The same form of the viscous force was used
in [23, 31]. It is admittedly devoid of a physical justifi-
cation (like most models of viscous forces implemented
in simulations of granular materials) and consequently
the influence of parameter ζ on the simulation results
has to be carefully assessed. In practice, some kind of
dissipation in relative motion of contacting particles and
collisions is needed, otherwise frictionless particles would
form conservative systems. One attractive feature of the
force law of (3) is the resulting velocity-independent co-
efficient of restitution eN in binary collisions. Most sim-
ulations reported here were done with ζ values such that
eN is close to zero. The combination of the two normal
components (1) and (3) may give rise to tensile forces
between two particles in contact (an extremely rare oc-
currence in slow flows). We checked that this feature has
no impact on the results.

Particle rotations play no role and are ignored, as fric-
tionless spherical objects behave like point particles in-
teracting with central forces.

The equations of motion for the particles, given by
Newton’s law, as in all molecular dynamics (MD) meth-
ods, are to be numerically solved with standard time dis-
cretization schemes [32], and the procedure is similar to
the ones employed in a host of recent numerical studies
of granular systems (Refs. [16, 19, 23, 28, 29, 31] are but
a few examples). The time step used in the computa-
tions is a small fraction of the characteristic period of
oscillations in one contact, with

∆t = δ

√

m

KN
, with δ ≪ 1. (4)

As KN varies with h or FN according to (2), the time
step is chosen with reference to the typical largest elastic
intergranular force, and therefore changes with the stress
level in the system.

In Sec. II B we specify how stresses or strain rates are
controlled. The boundary conditions are such that the
macroscopic stress identifies with the classical expression,
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which applies to granular systems [33, 34], as well as to
simple liquids [35], in the frame of reference of the center
of mass of the whole system:

σ =
1

Ω

[

N
∑

i=1

mi~vi ⊗ ~vi +
∑

i<j

~Fij ⊗ ~rij

]

(5)

We use the convention that compressive stresses are pos-
itive. In (5), the second term within brackets is a sum

over all interacting pairs i, j, ~Fij is the force exerted by
particle i onto j, and vector ~rij points from the center of
i to the center of j (~rij should be defined with the near-
est image convention if periodic boundary conditions are
used). The first term vanishes in mechanical equilibrium.

B. Boundary conditions, stress and strain control

We use different simulation procedures in which some
strain, or strain rate, and stress components are exter-
nally imposed to the system. We first describe the dif-
ferent procedures in global physical terms (Secs. II B 1
to II B 3), while the computational details, with the ap-
propriate equations and parameter values, are presented
in Appendix A.

In order to avoid all wall effects and to determine
more easily the intrinsic constitutive laws that apply
in the large system limit, the simulation cell has peri-
odic boundary conditions (possibly affected by the Lees-
Edwards procedure for sheared systems [32]) in all three
directions. The edges of the cell have lengthes (Lα)1≤α≤3

along the three orthogonal axes of coordinates, and even
though Lα’s may vary the cell remains rectangular par-
allelipipedic, it does not distort or rotate. Ω = L1L2L3

denotes its volume. Unlike the cell, the material under-
goes some shear strain, imposed with the Lees-Edwards
procedure [32], to be recalled below. Adding this possi-
bility to the shrinking deformations along the three axes
of coordinates, four independent strain components are
considered in the different simulation steps and methods
we are using in this work. The procedures defined below
consist in choosing to fix some of them to zero or to a con-
stant value while prescribing the values of stresses con-
jugate to the others. Table I recapitulates those choices
for the three different simulation procedures.

1. Initial assembling process: procedure O

In a preliminary step, the system is first prepared by
isotropic compression of a loose “gas” of particles. The
corresponding procedure, denoted as “O” (like “origin”),
is the one applied in [23] to prepare isotropic packings.
Global shear strain γ is kept equal to zero, while the sys-
tem shrinks along all three directions, until a mechanical
equilibrium state is reached for which all three diagonal
components σαα of the Cauchy stress tensor are equal

to a set pressure value P . The system is deemed equi-
librated when all forces compensate to zero, with a tol-
erance set to 10−4Pa2 on each particle, and each diag-
onal stress component, as computed with formula (5) is
equal to P with a relative error smaller than 10−4, while
the kinetic energy per particle does not exceed 10−8Pa3.
Those isotropic equilibrated configurations are the “ran-
dom close packing states”, as studied in [21, 22, 23] and
they are accurately determined here to compare their in-
ternal states with those of sheared systems.

2. Controlled shear rate: procedure D

Initial configurations produced with method O are
then subjected to a simple shear deformation, in which
a macroscopic motion along direction 1 is set up, with
velocity gradient, on average, along direction 2, while L3

and L1 are fixed. L2 is allowed to fluctuate in order to
maintain, on average, a prescribed value Σ22 of stress σ22.
The macroscopic shear rate γ̇ = − ∂v1

∂x2

is imposed with
the Lees-Edwards method: the neighboring periodic copy
of the simulation cell for larger x2 values is moving with
velocity −γ̇L2 in direction 1. (Minus signs stem from
our choice of a convention for strain parameters, which
should be consistent with the one for stresses). Mean-
while, stress σ22 is maintained equal to P on average
(with very small fluctuations). This defines procedure
“D” (for dynamically sheared). One then records the
time-averaged shear stress τ = 〈σ12〉, as well as the sam-
ple volume. The Lees-Edwards boundary condition for
simple shear is illustrated on Fig. 1. It is important to
note that it is fully compatible with either a linear ve-
locity profile or very heterogeneous strain fields, as when
shear localizes to thin bands. It was implemented in a
very similar way in [36]. Note that the Lees-Edwards

2

1

FIG. 1: Sketch of the Lees-Edwards condition imposing sim-
ple shear flow, with average velocities in direction 1 and ve-
locity gradient parallel to direction 2. Periodic copies of any
particle with different coordinates x2 are shifted along direc-
tion 1 by integer multiples of γL2, γ denoting a global shear
strain. With our convention, γ̇ is negative in this picture.

condition imposes a constant shear rate. If a shear strain

is defined at time t as the opposite of the average dis-
placement gradient, i.e., γ(t) = −∆(t)/L2(t) (the sign
stems from our convention for strains and stresses), ∆(t)
denoting the offset along axis x1 of the neighbor copy
of the cell in the x2 direction (see Fig. 1), then, due to
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Stress/strain control Procedure O Procedure D Procedure S

σ11 / L1 σ11 = P constant L1 σ11 = P

σ22 / L2 σ22 = P σ22 = P σ22 = P

σ33 / L3 σ33 = P constant L3 σ33 = P

σ12 / γ̇ γ̇ = 0 constant γ̇ σ12 = τ

TABLE I: Choice of imposed stresses or strain rates in the
three simulation procedures O, D, and S.

fluctuations in length L2, the time derivative of γ is not
strictly equal to the constant γ̇.

3. Static approach, controlled shear stress: procedure S

In the limit of small γ̇, results of procedure D simu-
lations should be comparable to static computations, in
which the system equilibrates under an externally im-
posed shear stress. To compare static and dynamic mea-
surements (possible differences between “static” and “dy-
namic” friction coefficients or threshold shear stresses
in similar systems are mentioned in [16], and discussed
in [29, 37]), we also implemented a completely stress-
controlled, quasistatic procedure, denoted as “S” (for
static). In procedure S increasing values of shear stress
τ are stepwise applied, by increments δτ = 0.005×P , to
the initially isotropic configurations obtained with pro-
cedure O, while the prescribed value of all three diago-
nal components σαα is the initial pressure P . γ̇, unlike
in procedure D, is not constant. It satisfies a dynamical
equation, written down in Appendix A, which is designed
to impose prescribed value τ to σ12. For each value of τ ,
one waits until a satisfactory equilibrium state is reached
(with the same tolerance levels as in procedure O). The
calculation is stopped when the packing does not equili-
brate with the current value of τ after 5 × 107 MD time
steps. The largest τ value for which an equilibrium state
was obtained is kept as an estimate of the shear stress
threshold for onset of flow, which we are going to com-
pare to the measured average σ12 in D type simulations
with small γ̇.

C. Dimensional analysis, state parameters and

geometric limit

We are primarily interested in the macroscopic consti-
tutive equations and the characterization of the internal
states of the assembly of nearly rigid frictionless spherical
grains in slow shear flow.

Consequently, we should investigate the relations be-
tween global intensive variables, such as stresses, density,
strain rate, in the limit of large samples, i.e., ofN → +∞.
It is expected that for large enough samples the material
state in shear flow will not depend on the specificities of
boundary conditions, or on whether shear stress or strain

rate is controlled. This requires to investigate possible
size effects and to study the regression of fluctuations for
global variables. Measured state variables should also
be uniform in space – and thus one needs to check for
possible shear localization.

Assuming homogeneous steady states are observed in
large enough samples, with shear rate γ̇ and normal stress
P , then, by dimensional analysis [13, 15, 23] all dimen-
sionless state variables, such as solid fraction Φ or average
stress ratio 〈σ12/σ22〉 only depend on three dimensionless
parameters.

The first one is the level of viscous damping ζ, whose
influence will be assessed in Sec. III. ζ was observed to
have negligible influence on steady uniform shear flows
of granular materials [15]. ζ, which appears in a viscous
force, should not play a major role in the quasistatic limit
of very slow flow. However, it is important to keep a non-
vanishing dissipation, and viscous normal forces cannot
be discarded altogether.

The second parameter, the inertia number,

I = γ̇

√

m

aP
(6)

characterizes the importance of inertial effects in dense
granular flows [15, 16, 38] (for which it plays a central
role in the design of successive constitutive laws [39]) or
slow deformation of solid granular packings [40]. The
quasistatic limit is the limit of I → 0, which we will sys-
tematically explore. Simulations reported in the present
paper were carried out with I values ranging from 10−5

to 0.56.
Finally, the importance of contact deformation is char-

acterized by the third dimensionless parameter, a stiff-

ness number which we define, like in [23], as

κ =

(

Ẽ

P

)2/3

. (7)

κ is such a that the typical contact deflection h under
pressure P is κ−1a. More precisely, in a packing of spher-
ical grains under pressure P , one has, in equilibrium, as
a straightforward consequence of Eq. (5), the exact rela-
tion [23]

〈h3/2〉2/3

a
=
( π

zΦ

)2/3

κ−1, (8)

involving the coordination number z, i.e., the average
number of force-carrying contacts per bead, which is close
to 6 in frictionless bead packs under low pressure. Thus
prefactor C in relation 〈h〉/a = Cκ−1 is close to 1 in prac-

tical cases. In [23], elastic modulus Ẽ, in order to enable
comparison of macroscopic elastic properties with exper-
imental results [41], was attributed the suitable value for
glass beads (E = 70 GPa and ν = 0.3). Pressure levels
P = 10 kPa and P = 100 kPa then respectively corre-
spond to κ = κ1 ≃ 39000 and κ = κ2 ≃ 8400. Most
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I κ ζ

1 × 10−5 – 0.56 κ1 = 39000; κ2 = 8400 0.05 – 0.98

TABLE II: Range of dimensionless parameters used in this
study.

of the present simulations of sheared samples were per-
formed with those values of the stiffness number. In [23]
these two values of κ were reported to be large enough
for the limit of rigid grains, i.e., of κ → +∞, to be ap-
proached with good accuracy in the case of static pack-
ings, while κ of order 102 would be too small: such low
stiffness numbers induce notable changes in the proper-
ties of contact networks [40], which very likely affect the
macroscopic mechanical properties under shear.

Table II sums up the values of dimensionless control
parameters used in the present numerical study.

If dimensionless variables such as stress ratios or den-
sity are well behaved in the triple limit of N → ∞
(thermodynamic limit), I → 0 (quasistatic limit) and
κ → +∞ (rigid limit), then the observed inner states
and mechanical behaviors of the packings only depend
on their geometric properties – hence the name “macro-
scopic geometric limit” we adopted for such a situation.
One of the major goals of the present study is the inves-
tigation of material properties in this limit.

Finally, as a practical application of the dimensional
analysis of simulation parameters, let us note that the
computational cost, expressed as a number of MD inte-
gration steps needed to reach a given shear strain γ, due
to Eqs. (4), (7), and (8), is proportional to γ

√
κ/I.

III. GLOBAL VARIABLES AND

MACROSCOPIC BEHAVIOR

Our global observations and measurements are re-
ported in this section. Conditions for proper oberva-
tions of the intrinsic behavior of the material subjected
to procedure D (shear-rate-controlled numerical experi-
ments) are checked for in Section III A, in which various
qualitative aspects of the material state in shear flow are
also discussed. Attention is then focused on macroscopic
friction (Sec. III B) and dilatancy (Sec. III C) properties
of the material, which are more thoroughly and quanti-
tatively investigated. Finally, the results obtained with
procedure D at low inertial numbers (I ≪ 1) are com-
pared to those of the static approach, procedure S, in
Section III D. Section III E discusses the essential results
and their connections with the literature on granular ma-
terials and sheared athermal particle assemblies.

FIG. 2: (Color online) |σ12| (left axis, in black) and σ22 (right
axis, in red) as functions of strain γ. Note that the left and
right scales are different. Time series obtained with I = 3.2×
10−5, κ = κ1, ζ = 0.98 and N = 4000.

A. Material state in slow shear flow: qualitative

aspects

With procedure D, we investigate steady states, and
time series are collected for averaging. We are interested
in intrinsic constitutive laws, as measured on averaging
over the whole sample. It is therefore necessary to check
for both invariance in time and homogeneity, in the sta-
tistical sense. We should also assess the control of con-
stant stress σ22, and discuss the values of other stress
components.

1. Steady state flows and stress measurements

Fig. 2 displays the evolution of two components of the
stress tensor, σ22 and σ12, with strain γ. It shows that
σ22 is well controlled since it was requested to stay equal
to Σ22 = 0.1P in this numerical experiment. The evolu-
tion of stress σ12, from the initial, isotropically confined
state, resulting from procedure O, witnesses the exis-
tence of an initial transient, which has virtually ended at
γ = 0.1 in that case. Unlike in dense systems with inter-
granular friction [17, 18, 19], for which deviator stresses,
starting from isotropically compressed initial states, go
through a peak before approaching a plateau value at
large strain, the shear stress in frictionless bead packs
appears to grow monotonically, as a function of strain,
toward its steady state value. Another notable feature of
the shear stress as a function of time is the importance of
fluctuations, which often exceed 30% of the mean value
on the example of Fig. 2, in a sample of 4000 beads. A
proper evaluation of average shear stresses thus requires
careful statistical approaches and error estimates.

As a practical criterion to detect the end of the ini-
tial transient regime, we request that a small set of ba-
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sic measured quantities do not exhibit any visible trend.
Specifically, shear stress σ12, volume fraction Φ and coor-
dination number z should all fluctuate about their mean
value in a stationary manner, as well as the kinetic energy
per particle, δec, associated with velocity fluctuations.
The latter is defined as

δec =
1

2N

N
∑

i=1

mi

[

(v1 − γ̇x2)
2 + v2

2 + v2
3

]

(9)

δec measures the discrepancy between the actual flow
generated by the Lees-Edwards boundary condition in
the granular material and the affine velocity field in a
homogeneous continuum in shear flow. The steady state
part of the time series starts for values of strain γ that
depend on the inertia parameter, of order 10−1 for the
smallest I values, (∼ 10−5), increasing typically to about
0.5 for I = 10−2 and to several units for I ∼ 10−1.

Unlike L2, lengthes L1 and L3 are constrained to re-
main constant in procedure D, so that σ11 and σ33 may
vary during the simulation. For I < 0.01, we observed
that time averages of σ11 and σ33 differed from the ini-
tial hydrostatic pressure P by less than 3%. This dif-
ference becomes even smaller for smaller inertial num-
bers: for I = 10−3, relative differences (〈σ11〉/P ) − 1
and (〈σ33〉/P )− 1 respectively reduce to 1.0% and 2.2%.
Those values decrease down to 0.9% and 1.7% for I =
10−4, and to 0.6% and 1.6% for I = 10−5. Although
apparently not equal to zero, even in the quasistatic
limit, those stress components are very small, and, con-
sequently, will not be studied in the sequel. Sec. III B, in-
stead, focuses on accurate determinations of shear stress
σ12.

For a given number of particles, the relative fluctua-
tions of the instantaneous value of σ12, Φ and z (i.e.,
the ratio of their quadratic average to the mean value)
seem to be independent of inertial number I. The aver-
age values of δec, on the other hand, as compared to the
kinetic energy of the macroscopic field, which is propor-
tional to γ̇2, increases as I decreases. Fig. 3 is a plot of
〈δec〉/(ma2γ̇2) versus inertial number, showing that this
ratio approximately diverges as 1/I in the limit of I → 0.
This agrees with measurements made in 2D simulations
of shear flow: the same behavior is reported in Ref. [15],
and an interpretation was suggested, to which we shall re-
turn in Section III E. These observations suggest that in
the quasitatic limit one has increasingly inhomogeneous
instantaneous velocity gradient fields, which we now in-
vestigate.

2. Instantaneous velocity profiles

Instantaneous velocity profiles v1(x2) recorded at dif-
ferent random times for different values of I are plotted
in Fig. 4. Profiles v1(x2) are obtained on averaging parti-
cle velocities over slices cut alongside x2 in the simulation
cell (particles contributing to several different averages if

FIG. 3: Kinetic energy associated with velocity fluctuations,
as defined in (9), normalized by ma2γ̇2, versus I , in simula-
tions with 4000 beads, for κ ∈ {κ2, κ1} and ζ = 0.98.

they overlap slice boundaries). Inertial number I has an
important effect on the granular flow. As shown in Fig. 4,
instantaneous velocity profiles for I = 3.2× 10−2 are lin-
ear, whereas shear bands may appear for I = 3.2× 10−4,
as in the profile marked “L” (for “localized”) on the bot-
tom plot of Fig. 4. The transition between these two
regimes seems to be gradual, with profiles in the middle
part of Fig. 4, corresponding to I = 3.2×10−3, exhibiting
somewhat intermediate features.

Localization occurs here in the bulk of the material
since the system is not enclosed between walls. Local-
ization is thus an intrisic property of the studied ma-
terial, which spontaneously appears for small values of
I. Ref. [42] reports, consistently with our observations,
that bulk localization appears in simulations of sheared
granular materials for high enough confining pressures
and/or low enough shear rates, i.e. for small I, near
the quasistatic limit. We also believe that localization
should occur more easily in soft systems since the cor-
relation length of the strain field becomes smaller as κ
decreases [15]. Yet, since detailed quantitative character-
izations of velocity or strain fields are beyond the scope of
the present study, we did not set out to chart localization
tendency or intensity in the I-κ plane.

At first glance, it seems that the erratic behavior of
the velocity profiles in the quasistatic limit may seriously
jeopardize the interest of the results obtained on averag-
ing over the whole simulation size and would demand
specific analyses, distinguishing between material states
within and outside shear bands. However, localization
patterns are not persistent, and linear velocity profiles
are recovered by time averaging, even in the I → 0 limit,
which means that on average, the flow is homogeneous.
Figure 5 shows the gradual fading out of strain rate local-
ization, after a strain interval of order 0.1. Shear bands
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FIG. 4: (Color online) Two velocity profiles at randomly cho-
sen times, for I = 3.2 × 10−2 (top), I = 3.2 × 10−3 (middle),
I = 3.2 × 10−4 (bottom). κ = κ1, ζ = 0.98 and N = 4000.

thus randomly appear, move and disappear. Such a be-
havior is witnessed by larger relative fluctuations of δec

as I decreases. We did not carry out a detailed study of
the lifetime and dynamics of nonpersistent shear bands,
as the statistical homogeneity of the system in steady
state shear justifies an analysis of global behavior based
on averages over space and time. δec/(ma

2γ̇2), a global
measure of the departure of the velocity fields from the
macroscopic, affine form, smoothly increases (Fig. 3) as
I decreases, but shows no sign of a different regime in
the range for which temporary localized shear strains are
more frequently observed.

B. Macroscopic friction coefficient

The macroscopic friction coefficient µ∗ of the granu-
lar system is defined by analogy with the Amontons-
Coulomb law commonly used in rigid body mechan-
ics [38, 43]. For shear-rate controlled simulations (pro-
cedure D), µ∗ is set equal to the time average – in the
steady state – of the ratio of the shear stress σ12 to the

FIG. 5: (Color online) Velocity profile after shear strain in-
tervals γ equal to 0.004 (red dotted curve), 0.02 (blue dashed
curve) and 0.1 (black solid curve), following the instant corre-
sponding to the localized profile marked L in Fig. 4, bottom
graph.

normal stress σ22

µ∗ = 〈 |σ12|
σ22

〉t (10)

where σ is the Cauchy stress tensor, defined in Eq. 5.
The shear-rate-controlled simulations performed with

procedure D produce raw data in the form of time series.
The steady part of the time series is isolated as explained
in Sec. III A and µ∗ can then be easily computed. Note
that the use of the ratio of average values in (10), instead
of the average of the stress ratio, would hardly affect the
measurements, since the fluctuations of σ22 (see Fig. 2)
are much smaller than the fluctuations of σ12.

To estimate the statistical uncertainty on the measure-
ment of averages over finite time series, we use the “block-
ing” (or “renormalization group”) technique presented
in [44]. This procedure amounts to break the whole time
series, of duration T , into n subsets or “blocks” extending
over smaller time intervals T1 = T/n, evaluate averages
over each one, check that the variance of the values of
such averages scales as 1/T1 if T1 is large enough, and
then extrapolate to the complete steady state time series
(n=1). This yields error bars on measurements of aver-
ages in finite systems which should not be confused with
the quadratic average of fluctuations of the observable
quantity. The method identifies the minimum size of in-
dependent blocks. It does not involve any approximation
and gives the correct answer when it exists provided the
analyzed series is sufficiently long. In practice, due to
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intrinsic long-lasting correlations in the system, we ob-
served that quite long runs were necessary. In some cases
with I ∼ 10−5, up to 109 simulation time steps (corre-
sponding to a deformation γ ≃ 4) were necessary for a
correct evaluation of the uncertainty on µ∗.

Continuously sheared granular materials are known to
reach a shear stress plateau in steady state, at large
enough γ, with a specific, constant inner structure – the
so-called critical state of soil mechanics [10, 43, 45, 46].
The critical state is independent of the initial state, it
is an attractor state approached by the system once the
memory of the initial configuration is lost. In the present
case, we could check that the time series of all observable
quantities recorded in different samples were statistically
identical in steady state with high accuracy.
µ∗, as estimated from time series in type D simula-

tions, may depend on the three dimensionless numbers
introduced in Sec. II C, as well as on the number N of
particles. This dependence is investigated in the follow-
ing paragraphs.

1. Effect of I

Among the three dimensionless parameters governing
the behavior of the system, the inertial number I has the
strongest effect on µ∗. Fig. 6 plots µ∗ as a function of I.
This dependence of the macroscopic friction coefficient
on the inertial number is similar to the ones reported in
the literature, as obtained by both simulations and ex-
periments [15, 16, 38], although most published results
pertain to granular systems with friction in the contacts.
Here µ∗ approaches a finite value µ∗

0 in the quasistatic
limit of I → 0, despite the absence of friction at inter-
granular contacts. µ∗

0 coincides with the internal friction
coefficient of the material in its critical state in the tra-
ditional sense, which implies slow enough shear rates for
a quasistatic, rate independent behavior to be observed.
In steady flow the power dissipated per unit volume is
σ12γ̇ = µ∗P γ̇. In the absence of intergranular friction the
only microscopic origin of this dissipation is the viscous
damping force, Eq. 3. Connections between damping and
macroscopic friction are discussed below.
µ∗ is an increasing function of I, starting from a fi-

nite value µ∗
0 in the quasistatic limit, i.e. when I → 0.

Note that the displayed curve is very accurate: statisti-
cal uncertainties measured with our blocking method are
comprised between 10−4 and 10−3 and are thus invisible
on the graph. We recall that the range I ≪ 1 is of pri-
mary interest in this work, which motivated simulations
for values of I as small as 10−5.

2. Effect of κ

In the rigid limit (κ ≫ 1), the macroscopic behaviour
should reflect the absence of stress scale in the contact
law: stress ratios and derived quantities such as the

FIG. 6: Macroscopic friction µ∗ vs. inertial number I for
stiffness parameter κ ∈ {κ2, κ1}, damping parameter ζ = 0.98
and number of beads N = 4000. The solid line is Eq. (12)
with the parameters of Table V (no visible difference on using
best parameters with κ1 or κ2).

macroscopic friction coefficient are expected to be inde-
pendent of the average stress. As shown numerically in
Tab. III, the friction coefficient hardly changes between
the two values of κ used in our simulations, indicating
that the rigid limit κ → ∞ is accurately approached.
Those simulations were carried out with ζ = 0.98 for
1.8 × 10−4 ≤ I ≤ 5.6 × 10−1, and the relative variation
on µ∗ is less than 2% throughout this range of inertia pa-
rameter on varying the stiffness parameter from κ = κ1

to κ = κ2. However, despite the high values of κ, a slight
systematic influence on µ∗ can still be observed. We de-
cided nonetheless to gather the values obtained for the
macroscopic friction coefficient with κ = κ2 and κ = κ1

in Fig. 6, because the uncertainty on the macroscopic, ge-
ometric limit of µ∗ to be estimated will eventually exceed
this small difference.

3. Effect of ζ

As mentioned above, the viscous damping terms are
indispensable in the model, as the only source of dissipa-
tion. In the steady shear-rate-controlled simulations we
are discussing, energy is continuously injected into the
system and yet, the granular assembly ends up reaching
a steady state, thanks to the viscous forces as defined by
Eq. (3).

Consequently, the influence of the damping parameter
ζ on our results had to be assessed and we performed sim-
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I κ µ∗

5.6 × 10−4 κ1 0.1250 ± 0.0006

κ2 0.1225 ± 0.0003

5.6 × 10−3 κ1 0.1571 ± 0.0004

κ2 0.1554 ± 0.0003

5.6 × 10−2 κ1 0.2435 ± 0.0003

κ2 0.2428 ± 0.0002

5.6 × 10−1 κ1 0.5031 ± 0.0009

κ2 0.5049 ± 0.0004

TABLE III: Influence of κ on µ∗ for ζ = 0.98 and N = 4000
(κ1 ≡ 3.9 × 104, κ2 ≡ 8.4 × 103)

ulations for different values of I with ζ = 0.98 (this value
corresponds to a restitution coefficient eN = 3.3× 10−3),
ζ = 0.55 (eN = 0.17), ζ = 0.25 (eN = 0.49) and ζ = 0.05
(eN = 0.87). ζ being a dynamical parameter, its effect
on µ∗ is expected to decrease as I decreases. Our results
show that this is indeed the case: for I < 10−3, the max-
imal relative variation of ζ on the macroscopic friction
µ∗ is less than 1%. Far from the quasistatic regime, the
influence of ζ is no more negligible: the relative variation
of µ∗ is more than 10% on changing ζ when I > 10−1.

4. Effect of N

The influence of the sample size on the average of the
apparent friction coefficient |σ12|/σ22, was investigated
on comparing results for three different numbers of par-
ticles: N = 500, N = 1372 and N = 4000. Results are
listed in Table IV. We also recorded the standard devi-
ations, denoted as ∆µ, and the average of the top per-
centile of the instantaneous values, denoted as µ∗,100. Let
us recall that we are dealing here with the fluctuations
of the time series, which differ from the statistical uncer-
tainties on the average values. As explained above, the
latter can be calculated thanks to a blocking technique
(the uncertainty on µ∗ displayed in Table IV lie within
10−4 and 10−3), whereas the computation of ∆µ/µ∗ and
µ∗,100 are a way to evaluate the former.

The effect of the sample size on the macroscopic fric-
tion is unnoticeable forN = 1372 andN = 4000 since the
difference between the macroscopic friction coefficients
pertaining to these two sizes is less than the statistical
uncertainty marring the accuracy on µ∗. However, the
impact of N on µ∗ cannot be neglected in the quasistatic
limit for a system of N = 500 beads. These results show
that at least approximately 1000 particles are required
to approach the thermodynamic limit with an acceptable
accuracy.

The data of Table IV also witness the regression of
fluctuations of stress ratio µ∗ in the steady state in the
large system limit. The results are compatible with the
classical form for the decrease of fluctuations of collective

I N µ∗ ∆µ/µ∗ µ∗,100 Φ ∆Φ/Φ Φ,100

3.2 × 10−5

500 0.1169 0.3100 0.2188 0.6367 0.0022 0.6403

1372 0.1101 0.1907 0.1609 0.6380 0.0015 0.6408

4000 0.1090 0.1245 0.1431 0.6387 0.0008 0.6404

3.2 × 10−4

500a 0.1432 1.263 0.8378 0.6738 0.0178 0.7148

1372 0.1209 0.1689 0.1779 0.6365 0.0016 0.6390

4000 0.1197 0.1002 0.1519 0.6368 0.0010 0.6388

3.2 × 10−3

500 0.1473 0.2091 0.2275 0.6316 0.0027 0.6360

1372 0.1457 0.1293 0.1966 0.6322 0.0016 0.6346

4000 0.1458 0.0764 0.1752 0.6323 0.0009 0.6338

3.2 × 10−2

500 0.2112 0.2045 0.3317 0.6193 0.0025 0.6234

1372 0.2123 0.1197 0.2802 0.6197 0.0015 0.6223

4000 0.2125 0.0694 0.2517 0.6200 0.0009 0.6215

TABLE IV: Influence of sample size N on macroscopic fric-
tion µ∗ and volume fraction Φ for different values of inertial
number I , with κ = κ1 and ζ = 0.98. Superscripts “, 100”
denote the average of the top percentile values in the steady
state part of the time series.

aThis numerical experiment displays shear-induced ordering, a
feature observed only for systems of N < 1000 beads (see Ap-
pendix C for details).

FIG. 7: ∆µ/µ∗ as a function of N for I = 3.2× 10−5, κ = κ1

and ζ = 0.98. The solid line equation is relation (11).

variables, viz. ∆µ/µ∗ ∝ N−1/2. Specifically, for I =
3.2 × 10−5, κ = κ1 and ζ = 0.98, a fit of the data to the
following form:

∆µ/µ∗ = (7.6 ± 0.7)N−1/2 (11)

has good statistical admissibility. This result is shown in
Fig. 7 in graphical form (two additional sizes N = 2048
andN = 2916 were also simulated). Therefore, we expect
the steady state stress-strain curves such as the ones of
Fig. 2, however noisy for the sample sizes simulated, to
because smooth in the large system limit. The steady
state in simple shear corresponds to a horizontal plateau
of σ12 versus strain γ. This well-behaved thermodynamic
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κ µ∗
0 α c

κ1 0.101 ± 0.004 0.38 ± 0.04 0.40 ± 0.07

κ2 0.100 ± 0.003 0.39 ± 0.02 0.42 ± 0.03

TABLE V: Best fit parameters for Eq. (12) and the data ob-
tained with N = 4000, ζ = 0.98 for κ = κ1 and κ = κ2.

limit contrasts with the predictions of Ref [24] for the
initial transient rise of shear stress as a function of strain
in the quasistatic limit.

5. Approach to the macroscopic geometric limit

According to the previous parametric study, the
macroscopic friction coefficient µ∗ depends mostly on I
and is nearly independent of κ and ζ for I . 0.01. µ∗ is
also independent on system size provided the number of
beads is sufficiently large (N & 1000 typically). Conse-
quently, the geometric limit can be confidently studied as
the limit of I → 0 on samples of 4000 beads with κ ≥ κ2

and ζ = 0.98.
µ∗ should be a function of the sole inertial number in

very good approximation within the range I ≤ 0.01. In
the absence of any scale, we tried to fit the data by a
power law function (see Fig. 6) of the form

µ∗ = µ∗
0 + cIα (12)

As stated above, this fit is not expected to be accurate
for I > 0.01: we therefore restricted ourselves to fit the
data points with I ≤ 0.01, even if the curve obtained is
drawn on Fig. 6 for the whole horizontal range displayed
(which explains the discrepancy between the data and
the fit for the largest values of I). We neglected the very
small influence of ζ, which vanishes in the quasistatic
limit, and separately estimated parameters µ∗

0, α and c
for κ = κ1 and κ = κ2 (keeping ζ = 0.98 and N = 4000),
with the results shown in Table V.
µ∗

0 in (12) is the geometric macroscopic friction coef-
ficient. Friction coefficient µ∗ corresponds to a friction
angle ϕ such that tanϕ ≡ µ∗: ϕ is the angle between
σ · e2, the stress vector on planes orthogonal to unit vec-
tor e2 of the x2 axis, and e2 in the simple shear test
studied here. The value of the geometric macroscopic
friction angle ϕ∗

0 corresponding to µ∗
0 is (for κ = κ1)

ϕ∗
0 = 5.76◦ ± 0.22◦ (13)

Quite similar values are also reported with two-
dimensional packings of polydisperse disks by Taboada et

al. [17], whose estimate of the macroscopic friction angle
lies between 4◦ and 7◦ for frictionless grains, and by Da
Cruz et al. [15], who obtained µ∗

0 ≃ 0.1 in shear flow
simulations for small I parameters. Hatano [16] recently
performed 3D numerical simulations on polydisperse as-
semblies of about 10000 spherical beads, for different in-
tergranular friction coefficients µ. The reported value

of the macroscopic friction coefficient in the quasistatic
limit is 0.06 for µ = 0, apparently lower than our re-
sult. It should be recalled however that Hatano’s work
was motivated by applications to granular materials un-
der high confining stresses within geological fault zones,
and that consequently simulations were carried out with
lower stiffness levels (κ = 1840, 136, 84 and 42) than in
the present study. Moreover, the lower range of I pa-
rameters, below 3× 10−4, was only investigated with the
lower κ values. Hatano used the same form as Eq. (12) to
fit his data, but his estimate α = 0.28± 0.05 differs from
ours (see Table V). Although some effect of the poly-
dispersity is possible, we also attribute this discrepancy
to some non-negligible influence of κ in [16]. Only the
simulations with κ = 1840 in [16] can be expected to ap-
proach the rigid limit accurately. For this stiffness level,
Hatano’s data points are available for I ≥ 3 × 10−4 and
are in very good agreement with ours (e.g., µ∗ ≃ 0.17 for
I = 0.01).

C. Dilatancy and steady-state density

Dilatancy under shear is a basic property of granu-
lar materials in quasistatic deformation [9, 10, 11, 17],
when dense samples are subjected to increasing deviator
stresses. It entails that the critical value Φc of the solid
fraction has to be reached for steady quasistatic shear
flow to be possible. Φc, for a given material, is a function
of κ. In granular flows with some non-negligible inertia
effects, the material also dilates and Φ decreases below
Φc. The steady-state density is mainly sensitive to pa-
rameter I if κ is large enough [15]. The small I behavior
of frictionless bead assemblies is investigated here with
greater accuracy than in previous studies. In particular
we wish to clearly identify the critical volume fraction in
the rigid limit in that particular case, and compare it to
the random close packing value ΦRCP.

We could check that, just like the macroscopic friction
coefficient, the steady state time average of the volume
fraction, Φ ≡ 〈Φ(t)〉t, is an intrinsic property of the ma-
terial, independent of its initial preparation. Next, we
investigate its dependence on the three dimensionless pa-
rameters I, κ and ζ and on the number of particles N .

1. Effect of I, κ and ζ

Once again, numerical experiments demonstrate that
among the three dimensionless numbers governing the
behavior of the system, the inertial number I has the
most important effect on Φ ≡ 〈Φ(t)〉t. Fig. 8 shows the
influence of I on Φ. We observe that Φ decreases for
increasing I, as previously reported [15, 16]. It starts
from a value Φ0 ≃ 0.64 in the quasistatic limit and the
system expands as I increases. Statistical uncertainties
on Φ measured thanks to the blocking method are com-
prised between 10−5 and 10−4 and are thus invisible on
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FIG. 8: (Color online) Volume fraction Φ as a function of
inertial number I (for ζ = 0.98, N = 4000), for both stiff-
ness levels κ = κ1 (blue squares) and κ = κ2 (red triangles)
The solid lines are given by Eq. (17) with the parameters of
Table VI.

the figure. Φ0 is thus very close to ΦRCP [21, 23], which
coincides (up to small corrections due to the finite contact
stiffness) with the initial volume fraction Φiso, right after
the samples are assembled under isotropic pressure with
simulation procedure O. For κ = κ2 and N = 4000 we
have Φiso = 0.6382± 0.0011, and Φiso = 0.6369± 0.0009
for κ = κ1 (averages and standard deviations are eval-
uated on five samples). The system studied thus ap-
pears to be devoid of dilatancy in the quasistatic limit.
Whether Φ0 should be regarded as equal to Φiso ≃ ΦRCP

at the macroscopic level will be discussed after the possi-
ble influence ofN on the average densities is investigated.

Stiffness parameter κ typically induces a relative in-
crease of the volume fraction of roughly 0.1% when it
changes from κ = κ2 to κ = κ1, whatever the value of
the inertial number I – a small effect, yet distinguishable
from statistical uncertainties. Such a density increase is
of course expected, as larger contact deflections due to
larger stresses or a softer material decrease the sample
volume. Simulations with ζ = 0.98 (eN = 3.3 × 10−3),
ζ = 0.55 (eN = 0.17), ζ = 0.25 (eN = 0.49) and ζ = 0.05
(eN = 0.87) for a wide range of inertial numbers have
also been run. The influence of ζ on Φ is important for
large I: for I > 0.1, the relative variation of Φ with ζ can
reach 30%. However, this effect, as expected, gradually
vanishes as the quasistatic limit is approached, and for
I < 0.01 the relative variation of Φ with ζ is less than
0.1%.

FIG. 9: ∆Φ/Φ as a function of N for the same time series as
in Fig. 7, fitted with Eq. (16) (solid line).

2. Effect of N

According to Table IV, Φ very slightly varies with
the number N of particles, like in static, isotropic sys-
tems [21, 23]. The following fit, based on the measure-
ments for the smallest available value of I, i.e., I = I1 =
3.2 × 10−5 for κ = κ1, may be used:

Φ(κ = κ1, I = I1, N) = Φ1 − k1N
−1/2 (14)

with the following parameters:
{

Φ1 = 0.6398± 0.0002

k1 = 0.070 ± 0.008
(15)

As with the macroscopic friction coefficient µ∗, we could
check for the regression of fluctuations of the volume frac-
tion for increasing N . For the same set simulations with
I = 3.2 × 10−5, κ = κ1 and ζ = 0.98 as in Sec. III B 4,
we observe that the decrease of density fluctuations with
increasing N can be fitted by the following relation:

∆Φ

Φ
=

A√
N
, with A = 0.051± 0.011 (16)

as shown graphically in Fig. 9, whence a well-defined
large system limit for Φ.

3. Approach to the macroscopic geometric limit

Volume fraction Φ can therefore be modelled as a func-
tion of I near the quasistatic limit, say for I < 0.01, with
small corrections to account for the influence of N and
κ. It can be regarded as independent of ζ (at least for
I < 0.01). The fit form used is

Φ−1 = Φ−1
0 + eIν (17)

For N = 4000 and ζ = 0.98, the best fit values of the
parameters of Eq. (17) are given in Table VI.
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κ Φ0 ν e

κ1 0.6398 ± 2. 10−4 0.39 ± 0.01 0.1786 ± 8. 10−4

κ2 0.6405 ± 2. 10−4 0.42 ± 0.02 0.2038 ± 3 10−4

TABLE VI: Best fit parameters for Eq. (17) and the data
obtained with N = 4000, ζ = 0.98 for κ = κ1 and κ = κ2.

To evaluate the macroscopic value Φ∗
0 in the double

limit of I → 0 and N → +∞, it is reasonable to assume
that the small corrections to Φ∗

0 that result from the fi-
nite value of N and from the nonvanishing value of I are
additive. The use of Eqs. (14)-(15) to evaluate the finite
N correction to the value Φ0 of the quasistatic density, as
obtained on fitting Eq. (17) to the results with N = 4000,
yields, for κ = κ1:

Φ∗
0 = 0.6410± 0.0005 (18)

The increases of Φ, from its value in the rigid limit, due
to the finite stiffness is of order κ−1 (an exact formula
can be written down on using specific properties of pack-
ings of frictionless, rigid spheres, see [23, Eq. 31]) and
is smaller than the statistical uncertainty in (18). The
value of Φ∗

0 given in (18) is thus our best estimate, from
D-type simulations, of the solid fraction of sheared sphere
packings in the macroscopic geometric limit.

D. Static behavior

We now compare the results of Sections III B and III C
for steady shear rate controlled simulations (procedure
D) with those obtained through static shear numerical
experiments (procedure S). In procedure S, all three di-
agonal stress components are controlled (see Table I) and
stay equal to P , while σ11 and σ33 take different values
in procedure D. However, as explained in Section III A,
their averages are close enough to P , and their fluctu-
ations small enough for the differences in stress states
between both numerical methods to be safely neglected.

1. Friction coefficient

The static macroscopic friction coefficient is defined in
procedure S as

µstat =
|τmax|
P

(19)

where τmax denotes the maximum shear stress which the
system has been able to sustain in mechanical equilib-
rium, and P the confining pressure. Static microscopic
friction coefficients for different sample sizes are displayed
in Table VII. Values of µstat are larger than the dynami-
cal value µ∗

0 = 0.100±0.004 obtained in D simulations in
the quasistatic limit. As shown by Tab. VII, µstat is size

N SN 〈µstat〉 ∆µstat

256 4 0.246 0.022

500 4 0.210 0.007

1372 6 0.169 0.004

2048 6 0.154 0.004

2916 6 0.145 0.007

4000 10 0.136 0.007

8788 6 0.122 0.005

TABLE VII: Average 〈µstat〉 and standard deviation ∆µstat

of the static friction coefficient obtained in S-type simula-
tions, over SN samples of N grains for different N . Data
corresponding to both values of κ (with SN/2 samples each)
are aggregated.

dependent, unlike µ∗
0 (for N & 1000). Analogous oberva-

tions were reported in [29] for two-dimensional systems
of frictionless disks: in the limit of vanishing shear rates,
the shear stress reaches its large system limit with only
several hundreds of beads, whereas the minimum shear
stress required to maintain a long lasting steady shear
flow exceeds the previous one and is more sensitive to N .

Fig. 10 shows the influence of system size N on µstat

(discarding the smallest N values). The data are cor-
rectly fitted by the following relation

µstat = µstat
∞ + dN−1/2, (20)

with
{

µstat
∞ = 0.091 ± 0.009

d = 2.87 ± 0.32
(21)

The related angle of friction is ϕstat
∞ = 5.20◦±0.52◦. This

is consistent with the equality, in the thermodynamic
limit (N → ∞), of the dynamical and static macroscopic
friction coefficients (see Eq. 13). The influence of κ is
very small and negligible in comparison to the effect of
the system size, and we therefore averaged over systems
with both stiffness levels κ1 and κ2.

With the smallest system size simulated, N = 256,
we observed that some of the samples, once submitted
to shear stresses, acquired a strongly ordered, crystalline
structure, to be discussed in Appendix C.

2. Density

Static shear simulations with procedure S support the
observation made in Sec. III C that the frictionless model
material studied is devoid of dilatancy in the quasistatic
limit. As shown in Fig. 11, which represents Φ as a func-
tion of the macroscopic stress ratio τ/P imposed to the
material in different samples with N = 4000, the vol-
ume fraction hardly evolves with the stress deviator as
it is increased towards its maximum value. The evo-
lution of Φ is somewhat erratic (as in previous studies
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FIG. 10: (Color online) Size dependence of 〈µstat〉. N denotes
the number of particles in the system. The solid line is the
fit of Eqs. (20)-(21). Crosses are the top percentile values
extracted from the time series of |σ12|/σ22 obtained in proce-
dure D, as listed in Table IV. The hashed region represents
the estimate, from D simulations, of µ∗

0 with its error bar (Ta-
ble V). The (blue) dot with an error bar on the left axis is
the static estimate, µstat

∞ .

on 2D rigid, frictionless disk assemblies [24, 25]) and the
density change between the isotropic initial state and the
one supporting the maximum shear stress is equal to zero,
within statistical uncertainties. Similarly to the values of
Φ measured in steady state D simulations, solid fraction
Φstat in static packings under maximum shear stress is
slightly dependent on sample size, with a negative finite-
size correction to the macroscopic value. On fitting a
variation proportional to N−1/2 one gets, for κ = κ1,

Φstat = Φstat
∞ − k/

√
N, (22)

with
{

Φstat
∞ = 0.6403± 0.0004

k = 0.125 ± 0.026.
(23)

Φ values for κ = κ2 are slightly larger, by about 10−3.
Comparing this estimate of Φstat

∞ with the result for Φ∗
0

given in (18), we conclude that static and dynamic solid
fractions in quasistatic shear are identical, within statisti-
cal uncertainties. Disregarding the very small correction
due to the finite value of κ1 (equal to about 1.1×10−4 on
applying the formula given in [23, Eq. 31]), this means
that, just like for µ∗, the values of solid fraction Φ in
the macroscopic, geometric limit coincide in strain rate
controlled and in shear stress controlled approaches.

As to the value Φiso of the solid fraction in the initial
isotropic state, a similar evaluation of size effects yields
(using the samples of Table VII with κ = κ1 and N ≥
500):

Φiso = Φiso
∞ − k0√

N
, (24)

FIG. 11: Variation of the volume fraction Φ with the static
shear |τ |/P imposed to five different samples of 4000 beads
with κ = κ2. Each curve stops at a given value of |τ |/P =
|τmax|/P : this is the greatest value for which the packing has
managed to reach mechanical equilibrium.

with
{

Φiso
∞ = 0.6397± 0.0008

k0 = 0.15 ± 0.03.
(25)

As announced, this is the random close packing value [21,
23]. Results (25), (23) and (18) are compatible, and we
thus conclude that the system is devoid of dilatancy un-
der shear in the macroscopic geometric limit.

E. Discussion

We briefly review and comment here the essential re-
sults on the macroscopic behavior of the material under
simple shear, and compare them to other available results
on similar systems.

1. Internal friction and the macroscopic geometric limit

Whether assemblies of frictionless grains have a well-
defined, finite internal friction coefficient has sometimes
appeared as a debatable issue, although some previously
cited works [15, 16] relying on numerical simulations of
slow shear flows in steady state agree with our positive
conclusion. In particular, when values of µ∗ in the qua-
sistatic critical state are studied as a function of inter-
granular friction coefficient µ0, it is sometimes assumed
as obvious that µ∗ should vanish for µ0 = 0. Thus plots
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of µ∗ as a function of µ0 shown in Ref. [19] start at the
origin of coordinates, even though no calculation with
µ0 = 0 are reported in this work. It should be emphasized
that a proper evaluation of µ∗

0 in the macroscopic, geo-
metric limit requires more care than corresponding mea-
surements in granular assemblies with friction, µ0 > 0.
This is due to the importance of fluctuations, as appar-
ent on Fig. 2. In steady state dynamical simulations, it
is also necessary to explore a range of very small inertial
numbers to accurately evaluate the quasistatic friction
coefficient, as apparent in Fig. 6 or Table III: for, e.g.,
I = 5.6× 10−4, quite a small value, the macroscopic fric-
tion coefficient already exceeds its quasistatic limit by
25%. Consequently, in the context of quasistatic simula-
tions with variable intergranular friction µ0, the special
case of µ0 = 0 is seldom treated with the necessary care
(although some published results are fairly compatible
with ours [17, 47]).

Our estimate for µ∗
0, the macroscopic internal friction

coefficient of the material in the geometric limit, is fur-
ther confirmed by the static, S-type, simulations, once
their size-dependent results are suitably extrapolated to
the limit of large systems. One may understand this size
effect on S results as follows. The friction coefficient eval-
uated in D simulations is an average over time series with
large fluctuations. However, the system remains close to
mechanical equilibrium at any time. Assuming it is pos-
sible to find an equilibrated configuration very close to
all dynamically explored states, however large the instan-
taneous value of the shear stress, the static S procedure
would be able to find statically supported shear stress
values as large as the maximum of σ12 in D time se-
ries. Although clearly oversimplifying the evolution of
the system in configuration space, this explanation ap-
pears to be correct at least on correlating N -dependent
maximum static shear stress levels to fluctuations in slow
shear flows: the N dependence of µstat, as plotted in
Fig. 10, is paralleled by that of the typical largest values
of µ∗ (top percentile) in D simulations.

Static and dynamic values of shear stress thresholds
for flow are also observed to coincide in the fixed density
simulation results of Xu and O’Hern [29], obtained on 2D
packings of frictionless disks, with a similar excess of the
static value that vanishes as N → ∞.

When non negligible inertial effects are present, we ob-
serve that the increase of internal friction with inertial
number I is the dominant feature of the material behav-
ior (the effect of stiffness level κ is smaller by orders of
magnitude), in qualitative agreement with many other
results on frictional and frictionless grains [15, 16].

2. Absence of dilatancy

Our results also agree in static shear (S) and in steady
state constant shear rate flows (D) for the average volume
fraction Φ, which stays equal to its value in the initial,
isotropically confined configuration in the macroscopic

geometric limit. Our data show that, within statistical
uncertainties (i.e., about 5 × 10−4) the critical value of
Φ is equal to ΦRCP in packings of frictionless spherical
beads.

The regression of fluctuations for Φ in the large system
limit, as expressed by Eq. (16), in the constant shear
rate, D procedure, implies that the state of the material
in simple steady shear flow is the same for macroscopic
systems, irrespective of whether density or normal stress
σ22 is maintained constant.

The material studied is thus devoid of dilatancy. Inter-
estingly, this contradicts the simple pictures of the origins
of dilatancy which have been proposed since the introduc-
tion of this property by Reynolds [9], based on the distor-
sion of simple assemblies of a small number of contacting
spheres (like, e.g., a regular tetrahedron). Reynolds’s
ideas were discussed and generalized by Goddard and
Didwania [27], who deduced estimates of the dilatancy
of packings of frictionless spheres, based on statistics of
Delaunay simplices obtained from numerical simulations.
All such approaches predict strictly positive volume in-
creases under shear. Sections III E 3 and IV below discuss
the inadequacy of these models. Part IV also investigates
the microscopic properties of such states of RCP density
that support a maximum shear stress, which might be
regarded as anisotropic random close packing configura-
tions.

The absence of dilatancy in the quasistatic limit is also
at odds with the classical ideas on the relation between
dilatancy and internal friction, according to which macro-
scopic friction stems from two microscopic origins, inter-
granular friction and dilatancy, with an additive combi-
nation of relevant angles [11, 27] – such model systems
as that of Section III E 3 providing a rationale for such a
decomposition. Ref. [17] adds another component ϕ0 to
macroscopic friction, due to intergranular collisions as a
source of dissipation, and therefore accounts for the inter-
nal friction of frictionless grains. Thus ϕ0 is the internal
friction angle that we measure in the geometric limit.
Ref [17], although only incidentally dealing with friction-
less materials, nevertheless appears to predict a positive
dilatancy in that case, which our results do not confirm.
Similarly, a recent study published by Kruyt and Rothen-
burg [46], which also deals with 2D disk assemblies, pre-
dicts a non-vanishing dilatancy when intergranular fric-
tion coefficient µ0 approaches zero. Ref. [46], similarly to
Ref. [17], discusses stress-dilatancy relations, and finds a
linear variation of the dilatancy ratio with the difference
between peak and steady-state macroscopic friction. In
contradiction with our data, it attributes a positive value
to both quantities as µ0 → 0, while its estimate for µ∗

0 is
significantly larger than our (3D) one, or than the (2D)
one of Ref. [17]. (Note that the maximum deviator to
mean stress ratio, as defined in [43, 46], is sinϕ ≃ tanϕ).
It seems that the case µ0 = 0 was not directly simulated
in this work, which might overlook some rapid variations
of macroscopic friction and dilatancy angles with µ0 for
µ0 ≪ 1.
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In our simulations, instantaneous fluctuating shear
stress and volume fraction, however, appear to be cor-
related, suggesting some stress-dilatancy coupling at the
level of short-lived, transient and rearranging structures,
which disappears on taking time averages.

3. A toy model

One may obtain an intuitively appealing picture of the
origins of friction and dilatancy on considering a simple
model in which a frictionless object slides on a bumpy
surface – even though, of course, such a toy model pro-
vides a suggestive analogy, rather than a complete physi-
cal explanation of the phenomena ruling macroscopic fric-
tion and dilatancy.

The model presented here bears some similarity with
the one developped in [48], and further discussed in [37],
although those studies deal with a circular grain rolling

on a bumpy surface (with an experimental realiza-
tion [48]), and aim at the understanding of the avalanch-
ing behavior of a thin granular layer, rather than the bulk
behavior of a homogeneous granular sample.

The mobile object has mass M , it is subject to its
weight W , and it is pushed along a horizontal surface
with hills and troughs. It is driven either by a constant
horizontal force F , or by a piston with constant hori-
zontal velocity V . Both contacts of the mobile object,
with the piston and with the substrate, are unilateral, so
that it might move faster than the piston if accelerated
downhill by gravity, or even occasionally take off from
the surface. A viscous force opposing the tangential mo-
tion along the surface dissipates energy, and, for F = 0,
the frictionless slider stabilizes at some local elevation
minimum, at the bottom of one of the depressions of the
substrate.

To keep matters simple, let us consider a 2D problem
with only one horizontal direction (coordinate x1) and a
surface profile h(x1) with alternating minima and max-
ima of vertical coordinate x2, periodic with wavelength
λ (Fig. 12). Force F is the analog of shear stress σ12

in the granular material, and W that of σ22, while hori-
zontal and vertical displacements respectively correspond
to shear strain and vertical strain (or volume increase).
Points of minimum potential energy, like point O on the
figure, correspond to equilibrium states under isotropic
pressure.

Let us first discuss the static experiment. The mo-
bile object is subjected to a growing horizontal force F .
Starting from O, it equilibrates where the tangent direc-
tion to the substrate is orthogonal to the applied force,
dh
dx = F/W . Under F > 0, it had to move upwards, hence
some dilatancy. The maximum value of F/W is the static
effective friction coefficient µS = tanϕ of the point on the
surface, it is the maximum slope of profile h(x1), reached
at point S on the figure. Effective static friction angle ϕ
is the maximum angle between the reaction of the sub-
strate, force R on Fig. 12, and the vertical direction. The

FIG. 12: The model of the slider on a rough surface. (a) Case
of a sinusoidal profile. Forces at point S are drawn as vectors.
(b) Profile for which µD = µS.

quasistatic motion from O to S follows the surface, and
hence the dilatancy tanψ (corresponding to ratio ǫ̇22/γ̇
in the sheared granular material), defined as the ratio of
vertical to horizontal coordinates of the velocity, is also
identical to the maximum profile slope. Dilatancy and
friction angles coincide: ψ = ϕ. If a nonzero friction
coefficient µ0 = tanϕ0 is introduced in the contact be-
tween the mobile object and the substrate, then reaction
R at point S (see Fig. 12) may form an angle ϕ0 with
normal direction (Sn), so that the effective static friction
angle is ϕ = ϕ0 + ψ. This coincides with some classical
forms of the stress-dilatancy relation [10, 17], relating the
macroscopic friction angle to dilatancy and microscopic,
intergranular friction. In fact, stress-dilatancy relations
were originally obtained with similar models: the friction
of two rough surfaces onto each other can be dealt with
just like the simple system we are using here, and those
surfaces are granular planes in regular bead packings in
Ref. [11].

In order to calculate the dynamic friction coefficient in
the velocity-controlled case, it is convenient to evaluate
the dissipation of energy. In the limit of small velocity,
the mobile object overtakes the velocity-controlled driv-
ing piston at each maximum of h(x1). Its subsequent
downhill sliding is accelerated by gravity, but the slider
is prevented by viscous dissipation to pass the next max-
imum, and ends up at the bottom of the valley, where
it is later picked up by the slow piston, to be pushed up
the next ascending slope. In this scenario (with no take
off) the dissipated energy per wavelength λ is the poten-
tial energy loss HW in a fall over height H . Hence an
effective friction coefficient µD = H/λ. This result is,
remarkably, independent of the viscous damping coeffi-
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cient, which is analogous to the behavior of the granular
material in slow shear flow. Note also that the ingredi-
ents of the model are simply geometry and inertia, and
that the limit of slow imposed velocity is the geometric

limit.

The macroscopic limit, in this model, can be defined as
λ/L→ 0, where L is the length scale on which the effec-
tive properties of the moving slider are studied. Conse-
quently, the vertical motion of the sliding object, on the
scale of microscopic asperities of the surface, becomes ir-
relevant, and one observes effective macroscopic friction

without dilatancy – like in the granular material made of
frictionless beads. Models for dilatancy [27] focus on mi-
croscopic phases of the motion in which the slider rises
up the slope, but ignore the equally important ones in
which it falls down.

In general, the dynamic coefficient is smaller than the
static one, µD < µS , because µD is the average slope
of the ascending part of the profile, which is, further-
more, multiplied by the fraction of length for which h(x1)
is increasing, while µS is the maximum slope. Thus,
for a sinusoidal profile, h(x1) = H/2 sin(2πx1/λ), as
represented on Fig. 12(a), one has µS = πH/λ, while
µD = H/λ. In order for both friction coefficients to co-
incide, function h(x1) should be as shown on Fig. 12(b),
with constant slope ascending parts, followed by vertical
drops.

Although such a particular profile shape as that of
Fig. 12(b) is unlikely to provide a relevant model for
a physical surface, it can be argued to be appropriate
for the analogy with the bulk material. As long as the
sliding object remains in contact with the substrate, the
configuration might be an equilibrium position for some
(possibly negative) value of F . In the analogy with the
granular material, the contact network might balance the
external load for some value of the applied stress com-
ponents. The free fall of the mobile object, on the other
hand, is analogous to the situation of a rearranging net-
work, which cannot support any applied load because of
the missing contacts. It has been shown, in 2D simu-
lations of rigid, frictionless disks [24], that the material
deforms in a sequence of dynamical crises during which
the contact network is unable to support a macroscopic
stress, and that the frequency of occurrence of such crises,
in terms of macroscopic stress intervals, diverges in the
large system limit. This is analogous, in the toy model,
to the limit of λ→ 0 on the one hand, and also, as stable
networks are only capable to support stresses in a range
which shrinks to zero, to a constant slope of the rising
parts of profile h(x1), on the other hand.

Finally, the velocity-controlled sliding of the object on
the profile shown in Fig. 12(b) also provides an interpre-
tation of inertial number I [38], and of the behavior of the
kinetic energy [15]. The motion involves two characteris-
tic times. The first one is the duration of the rising phase,
in which the object is in contact with the piston and
moves with horizontal velocity V : τ1 = λ/V . The sec-

ond one is the duration of the free fall: τ2 ∝
√

(MH/W ).

Ratio τ2/τ1 ∝ (V/λ)
√

(MH/W ), is the analog of num-
ber I. In the analogy, distance H should be replaced
by some length (a typical interstice between neighboring
grains to be closed for a new contact to appear) of order
a, V/λ corresponds to γ̇, while force W becomes Pa2,
which is the order of magnitude of unbalanced forces on
the grains during the dynamical phases of motion. The
free fall phases of the motion explain why the kinetic
energy is, on average, much larger than the scale MV 2

associated with the macroscopic motion. More precisely,
the time average δec of the kinetic energy associated with
velocity fluctuations is of orderHW (τ2/τ1) (for τ2 ≪ τ1),
whence

δec

MV 2
∝ 1

I

H2

λ2
,

and the behavior shown in Fig. 3 is obtained, since H/λ
is a constant geometric factor. (The same argument is
presented in [15].)

The naive model of Fig. 12 thus shares many proper-
ties with the granular material. In both cases, the mi-
croscopic motion is a succession of arrested dynamical
phases, alternating with approaches to transient equilib-
ria. The next section investigate some microscopic as-
pects of the granular material in more detail.

IV. MICROSTRUCTURE AND FORCE

NETWORKS

Our specific emphasis on the geometric limit of the
macroscopic mechanical behavior of frictionless bead
packings calls for an analysis of the geometry of sheared
configurations, the first motivation of which is to explain
the microscopic origins of macroscopic friction. Ulti-
mately, a model should be sought which, unlike the anal-
ogous one of Sec. III E 3, would explicitly and quanti-
tatively describe the mechanisms, involving instabilities
and network rearrangements at the microscopic level, by
which the material deforms and flows. Such goals will
be only partly achieved here, since, leaving the detailed
study of velocity correlations and strain mechanisms for
future work, we focus on simple characterizations that are
local in space and time. A secondary objective is the ex-
ploration of possible packing structures, with reference to
the well characterized disordered packings of equal-sized
spheres under isotropic pressure, i.e., the random close
packing states [21, 22, 23]. Since one important conclu-
sion of Section III is the equality of macroscopic internal
friction angles and densities in static experiments and in
the limit of very slow flow, we also check here that the
various microstructural variables studied, if measured in
D-type simulations, approach their values observed in S-
type ones in the limit of I → 0 (at least in the large
system limit).

Packing geometry is essentially controlled by steric ex-
clusion. It is classically described with a few state vari-
ables, among which the simplest ones are scalar: the
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volume fraction, the coordination number, or the net-
work connectivity, as studied here in Section IVA be-
low. Coordination number z is the average number of
force-carrying contact (or, in other words, active exclu-
sion constraints) per grain in the system. If Nc is the
number of force-carrying contacts between the N grains,
then z = 2Nc/N . The connectivity is the statistical dis-
tribution of the numbers of contact forces one grain has
with its touching neighbors, i.e. the set (pn) of proba-
bilities for one grain to be involved in n contact forces.
Thus z =

∑

n npn.
The much-studied distribution of contact force val-

ues [49, 50] is also determined in the present case
(Section IVB), and we check for effects of inertia and
anisotropy.

Under stress, or influenced by the history of their as-
sembling process, the microstructure of grain packings
develops anisotropic features, which are most often char-
acterized with the fabric tensors, expressing statistics on
orientations of normal directions at contacts, as stud-
ied in Sec. IVC. The critical state of soil mechanics is
characterized by stationary values of Φ, z, and fabric
tensors, which are reached after a sufficiently large in-
terval of monotonically growing strain in the quasistatic
regime [43, 45, 51].

Connectivity and fabric might also be evaluated on the
network of close neighbors (separated by a gap narrower
than a prescribed distance h). Such geometric data, re-
lated to the pair correlation function [21, 22, 23, 52] have
been studied in detail in isotropic RCP configurations
and are useful in attempts to determine how contacts
close on deforming the system, either on increasing the
level of confining stress [40, 53], in which case the re-
sponse is essentially elastic [41, 53], or in plastic flow,
for which contact gains and losses have to be assessed to
predict fabric evolution [54]. Statistics of short distance
neighbors are also important to compare numerical data
to direct experimental observations of packing geome-
tries (by such techniques as fluorescence microscopy [55]
or X-ray tomography [56]), which although gaining in
accuracy, are often still unable to clearly resolve the list
of mechanical contacts [23] from that of close neighbor
pairs.

A. Connectivity, coordination and near neighbor

correlations

For the steady shear, D-type simulations, the time av-
erage fraction pn ≡ 〈pn(t)〉t of beads having exactly n
contact neighbors is strongly affected by the inertial num-
ber I as shown in Table VIII. Fraction pn is observed to
be independent of sample size N and of the initial config-
uration, but it is sensitive to stiffness parameter κ: the
fraction of grains surrounded by a great number of con-
tact neighbors grows with κ. Uncertainties on fractions
pn are small (between 0.01% and 0.05%) and are not re-
ported in Table VIII.

FIG. 13: (Color online) Coordination number z as a function
of inertial number I , for κ = κ1 (red square dots joined by
dotted line, bottom data points) and κ = κ2 (blue crosses,
top, dashed line).

Distribution (pn)n≥0 was also measured for statically
sheared samples just before failure (S-type simulations).
In this case, pn is averaged over five different samples and
the error on pn is defined as the corresponding standard
deviation. Results are recorded in the bottom part of
Table VIII. D-type values approach those static results
as I decreases, so that both connectivity distributions
should coincide in the quasistatic limit. In equilibrium
under static shear stress, one has p1 = p2 = p3 = 0, be-
cause forces on a bead in contact with less than four other
ones cannot balance, in the absence of external forces or
tensile forces (thus, a 3-coordinated bead is necessarily
pushed away from the plane defined by the centers of its
three contacting neighbors).

Coordination number z =
∑

n npn strongly depends
on I in steady state shear flow, and it is also affected
by stiffness level κ. It decreases with increasing inertial
number I, or with increasing stiffness parameter κ. As to
the influence of ζ on z, it is notable for the largest I val-
ues explored, but it decreases as the quasistatic limit is
approached. Larger viscous damping coefficients increase
the duration of contacts in shear flow, and thus produce
slightly better coordinated networks on average. How-
ever, the intensity of viscous forces becomes irrelevant in
the quasistatic limit. According to our results, the ζ de-
pendence of z can safely be ignored for I < 10−4. The I
dependence of z is shown in Fig. 13.

Tab. VIII shows that the coordination number of the
equilibrated (S-type) anisotropic configurations is very
close to 6. This is a consequence of the isostatic-
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I κ p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

3.2×10−1 κ1 30.0 21.8 21.8 17.9 7.40 1.1 0 0 0 0 0

3.2×10−2 κ1 4.0 5.3 9.3 19.1 30.0 21.3 8.6 2.1 0.3 0 0

3.2×10−3 κ1 1.6 1.4 2.2 6.7 22.1 28.4 22.3 11.2 3.4 0.5 0

3.2×10−4 κ1 1.2 0.6 0.6 2.1 15.7 26.2 27.0 17.9 7.2 1.5 0.1

3.2×10−5 κ1 1.2 0.2 0.2 0.6 12.6 24.1 28.3 21.1 9.4 2.2 0.2

Static (S) κ1 1.3 ± 0.2 0 0 0 10.8 ± 0.4 22.7 ± 0.5 29.1 ± 0.8 23.1 ± 0.5 10.2 ± 0.5 2.5 ± 0.1 0.3 ± 0.1

Static (S) κ2 1.2 ± 0.2 0 0 0 9.3 ± 0.4 21.6 ± 0.8 29.4 ± 0.7 23.7 ± 0.4 11.4 ± 0.3 3.0 ± 0.2 0.3 ± 0.1

TABLE VIII: Connectivity for D and S simulations. pn denotes the percentage of particles having exactly n contacts. First five
rows: data from D simulations (N = 1372, ζ = 0.98). Two bottom rows: results from S simulations, averaged on five samples
(N = 4000, ζ = 0.98).

ity property of the force-carrying structure (also called
backbone [23]) of equilibrated sphere packings in the
rigid limit – a remarkable property discussed in sev-
eral recent publications [21, 22, 23], which is specific to
packings of rigid, frictionless and cohesionless spherical
grains [57, 58]. The backbone comprises all N beads mi-
nus the rattlers, in proportion p0, that carry no force.
Isostaticity means a one-to-one correspondence between
externally applied forces and normal contact forces bal-
ancing the load, or, equivalently, by duality, a one-to-
one correspondence between velocities and relative nor-
mal velocities in contacts. Such mappings being linear,
the spaces in correspondence have equal dimensions, and
this means that the number of degrees of freedom on
the backbone, i.e., 3N(1 − p0) is equal to the number of
contacts, whence a backbone coordination number, i.e.,
z∗ = z/(1 − p0), equal to 6. The data of Table VIII cor-
respond to z∗ ≃ 6.08 for κ = κ1 and to z∗ ≃ 6.16 for
κ = κ2, witnessing the approach to the isostatic, rigid
limit.

The dependence of (pn)n≥0 on κ is much weaker than
the dependence on I in the range explored. In faster
flows, rigid clusters of connected grains have to break
apart more often, contacts are lost and form looser struc-
tures of lower density (Fig. 8), as observed and discussed
in the 2D numerical study of Ref. [15]. We confirm that
I is really the essential state parameter ruling the transi-
tion, as it increases, between dense and collisional flows:
under growing I the well connected contact network with
force chains, characteristic of solid granular materials, is
gradually lost and replaced by scarce, strong binary in-
teractions. (Some early results on simulations of shear
flow, as in [59], showing an effect of pressure increase on
contact networks in shear flows with given shear rate γ̇,
should be interpreted as showing the influence of I, which
is proportional to 1/

√
P , rather than the influence of κ).

Table VIII and Fig. 13 show that very low values of in-
ertia parameter I have to be reached in order to approach
the quasistatic limit with good accuracy, thus confirming
the observations made for global characteristics µ∗ and
Φ in Section III. With quite low values of I, many con-
tacts are lost (z is down to about 5 for I in the 10−3

range). It has been often observed (see, e.g., the pictures
of force patterns shown in many publications on 2D sim-
ulations [31, 60, 61]) that the grains only have a small
number of contacts bearing large forces – this is the very
reason why the “force chains” exist. Consequently, as
contacts carrying smaller forces are necessarily shorter
lived, and tend to rarefy as I increases, the populations
of grains with the largest local coordination are quickly
depleted – pn is quickly decreasing at growing I for n ≥ 7
in Table VIII. This dependence on I is to be compared to
the one of the force distribution reported in Section IVB.

If we now replace the contact network by network Ch

defined on declaring a bond to join all pairs of grains sep-
arated by a distance smaller than h, then its coordina-
tion number z(h) is drawn as a function of h/a in Fig. 14.
In the X-ray microtomography experiments of Ref. [56],
only the range h/a > 0.04 would be accessible [23]. z(h)
starts from coordination number z at h = 0 and is the
cumulated integral of the pair correlation function up
to distance a + h between sphere centers. The inset of
Fig. 14 shows that the curves obtained with procedure
D tend to merge, as the quasistatic limit is approached,
with the one pertaining to S-type samples. One gets
z(h) − z(0) ∝ (h/a)0.6 for h/a ≪ 1 with static pack-
ings. A similar power law with exponent 0.6 has already
been observed to fit z(h) data in the same range of gap h
with isotropic granular packings in [22, 23]. Orientation-
averaged near neighbor pair correlations are not affected
by stress anisotropy in frictionless bead packs.

B. Distribution of forces

Fig. 15 is a plot of the probability distribution func-
tion of the intergranular force normalized by the average
force, for different values of inertial number I. The force
distribution strongly depends on I: for I > 3.2 × 10−2

the probability distribution function p(f) (f denoting
the ratio of the normal force to the average value 〈FN 〉)
is monotonically decreasing. For smaller values of I,
p(f) has a maximum, around f = 0.5, and an ap-
proximately exponential decay for large values, as of-
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FIG. 14: (Color online) Coordination number z(h) of network
Ch as a function of h/a, for I = 3.2 × 10−3 (red crosses),
I = 3.2 × 10−5 (blue squares) and for an S-type, maximum
stress deviator equilibrated configuration (black circles), with
κ = κ1. The difference between D-procedure, I = 3.2 × 10−5

and static data, invisible on a linear scale, is revealed by the
doubly logarithmic plot of z(h) − z(0) vs. h shown as inset.

ten observed observed in equilibrated granular pack-
ings [22, 23, 49, 50, 60, 62, 63]. The distributions ob-
tained for the low values of I in D-type simulations grad-
ually approach the one obtained in S-type, equilibrated
packings under maximum shear stress. The Kolmogorov-
Smirnov test [64] can be used to detect the influence of
parameters on the force distribution – the answer de-
pending of course on the level of statistics of the avail-
able data. Based on 10 independent configurations of
4000 grains, it leads to the conclusions that no signif-
icant difference in force distribution could be detected
between S-type results under maximum shear stress and
D-type ones, and no influence of κ either, provided the
inertia parameter is small enough: I < 5 × 10−3, while
some influence of ζ is only visible for I > 0.1.

The isostaticity property of frictionless force networks
in the rigid, quasistatic limit, as recalled in Section IVA,
entails that force distributions are determined by the sole
geometry, and do not depend on the particular form
of particle interaction, which might be elastic, as in
Refs. [21, 23, 28], purely viscous, as in Refs. [60, 65], or
collisional, as in Refs. [22, 66]. It is interesting to inves-
tigate whether such a basic geometric property of sphere
packings might depend on anisotropy. The present re-
sults, based on 10 configurations of 4000 beads, show that
the difference, if it exists, is below the available statisti-
cal accuracy. Our results are compatible with a unique
distribution, valid for maximum shear stress equilibrium

FIG. 15: (Color online) Probability distribution function of
f = N/〈N〉 for I = 3.2 10−1 (red triangles), I = 3.2 10−3

(blue round dots) and I = 3.2 10−5 (black square dots).

configurations as well as for isotropic ones.

C. Fabric

Macroscopic friction is known to stem (at least par-
tially) from the build-up of fabric anisotropy in materials
made of frictional beads or disks [43, 51]. We explore this
connection here, with frictionless beads.

1. Anisotropy of the contact network

Anisotropy of the tridimensional contact network can
be characterized by the probability density function
E(θ, ϕ) of finding a contact with direction (θ, ϕ). θ is the
colatitude angle, and the axis of coordinate x3, which is
parallel to the vorticity vector in the macroscopic shear
flow, corresponds to θ = 0 or θ = π. And ϕ is the lon-
gitude angle of the spherical coordinates, with ϕ = 0 for
the axis of coordinate x1, which is parallel to the macro-
scopic velocity field. Numerically, E can be computed
as:

E(θ, ϕ) =
dP

dΩ
(26)

where dΩ is the elementary solid angle and dP the frac-
tion of contacts oriented within dΩ. E is defined on the
unit sphere of R

3 and thus can be expanded in a series
of spherical harmonics. The coefficients of the expansion
are in one-to-one correspondence with the values of the
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fabric tensors, which are defined as the moments of the
distribution of normal unit vectors ~n on the unit sphere.
Since a contact is left invariant by the parity symmetry
~r → −~r, distribution E satisfiesE(θ,Φ) = E(π−θ, ϕ+π).
This means that the coefficients of odd order in the ex-
pansion in spherical harmonics are all equal to zero, and
corresponds to the vanishing of all odd order fabric ten-
sors. The distribution is characterized by the series of
even order ones, viz.

〈
2k
⊗

i=1

~n〉 ≡ 1

Nc

∑

c∈C

2k
⊗

i=1

~nc (27)

C denoting the set of Nc contacts, labelled with index
c ∈ C, where the normal unit vector is ~nc.

Keeping only the lowest order of anisotropy, the ex-
pansion of E is restricted to the spherical harmonics of
order two. The coefficients (see Appendix B) are then
directly related to the value of the fabric tensor of order
two, denoted F:

E(θ, ϕ) = 1/(4π) + F12dxy(θ, ϕ)

+ (F11 − F22)dx2−y2(θ, ϕ)

+ (F33 − 1/3)dz2(θ, ϕ) + F13dxz(θ, ϕ)

+ F23dyz(θ, ϕ) + higher order terms (28)

The constant 1/(4π) corresponds to an isotropic distribu-
tion and the next five terms of the development charac-
terize the anisotropy of the material at the lowest order.
Functions d are combinations of spherical harmonics of
order two, with expressions given in Appendix B.

Fabric tensor F is computed as a time average in the
steady shear simulations. Numerical experiments show
that F13 and F23 are always less than their respective
statistical uncertainties, and thus we can consider that
these coefficients are equal to zero, as requested by the
symmetry in simple shear. We observe that coefficient
F12 is always greater (by at least one order of magni-
tude) than the two other nonzero anisotropic coefficients,
F11 − F22 and F33 − 1/3. These two latter terms, as
shown on Fig. 16, are below 2 × 10−3 for I < 10−3.
Such low values are comparable with sample to sample
fluctuations in equilibrated configurations. Thus, in the
quasistatic limit, the anisotropy can be characterized by
the sole F12 coefficient, the limit of which, as I → 0, is
evaluated as F 0

12 = −0.0165 ± 7. 10−4 for κ = κ1 and
F 0

12 = −0.0156 ± 7. 10−4 for κ = κ2, with a fitting pro-
cedure. Like macroscopic friction coefficient µ∗ and solid
fraction Φ, F12 strongly varies I (Fig. 16), and its de-
pendence on I can be represented by a power law, with
exponent ≃ 0.36. Fabric coefficient F12 slightly increases
with stiffness number κ, as shown by Table IX.
F12 values measured in S-type equilibrated samples

under maximum shear stress are influenced by system
size N , very similarly to the static friction coefficient:
larger values of |F12| are observed (typically ≃ 0.02 for
N = 4000), but the excess over F 0

12, the estimate from
D-type simulations in the quasistatic limit, regresses as

FIG. 16: (Color online) F12 (red), F11 −F22 (blue) and F33 −
1/3 (magenta) as functions of inertial number I , with κ = κ1,
ζ = 0.98 and N = 4000. The continuous line is a fit to a power
law increase of |F12| above some finite limit F 0

12 for I → 0, the
value of which is indicated with the dashed horizontal line.

I κ |F12|

5.6 × 10−4 κ1 0.0248883

κ2 0.0229216

5.6 × 10−3 κ1 0.0368044

κ2 0.0333569

5.6 × 10−2 κ1 0.0648169

κ2 0.0594749

5.6 × 10−1 κ1 0.125109

κ2 0.11695

TABLE IX: Influence of κ on |F12| for ζ = 0.98 and N = 4000
(F12 is negative for all parameter values).

N increases, and the extrapolated macroscopic limit is
compatible with the estimated values of F 0

12. This will
be further examined in the more general context of the
relationship between stress and fabric anisotropies, for
arbitrary stress values, in a forthcoming publication [67].

On changing ζ from 0.98 down to 0.05, |F12| increases
(correlatively with the decrease of z), by about 30% for
I ∼ 10−2. This relative change is reduced to about 1%
for I ∼ 10−4 and the effect of ζ vanishes in the limit of
I → 0.

Variations of fabric coefficient F12 with parameters
I, κ and ζ are qualitatively understood on noting that
F12 is negatively correlated with the coordination num-
ber. If there are more contacting neighbors, on average,
around a sphere, they are prevented by steric constraints
from achieving highly anisotropic orientation distribu-
tions. This argument, which with simple assumptions
was made quantitative in 2D in Ref. [51], thus explains
that the increase of z observed as κ is lowered tends to
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reduce |F12|. Similarly, the larger anisotropies observed
away from the quasistatic limit are made possible by the
smaller number of contacts. The increase of |F12| with I
is also due to the correlation of force intensities with con-
tact directions: on evaluating separately the fabric of the
subnetworks corresponding to forces larger (or smaller)
than the average contact force, one typically obtains, for
I ∼ 10−5, values of |F12| twice as large (respectively:
four times as small) as with the complete contact net-
work. Contacts with small forces open if I is increased,
and the remaining more strongly loaded ones are conse-
quently more anisotropically oriented.

2. Connection between fabric and stress anisotropies

We now relate fabric anisotropy and shear stress. Ne-
glecting the velocity dependent term of Eq. 5 in the qua-
sistatic limit, one may write, with nearly rigid spheres of
equal diameter a

σ =
1

Ω

∑

1≤i<j≤N

~Fij ⊗ ~rij

=
Nc

Ω
〈~F ⊗ ~r〉

=
Nca

Ω
〈FN~n⊗ ~n〉.

If correlations between contact orientation ~n and force
values are neglected, one may replace 〈FN~n ⊗ ~n〉 by the
product of averages, hence an expression of stress with
the second-order fabric tensor:

σ =
aNc〈FN 〉

Ω
〈~n⊗ ~n〉, (29)

and the following relation for macroscopic friction coeffi-
cient µ∗:

µ∗ ≃ |F12|
F22

≃ 3|F12|, (30)

since F22 ≃ 0.33, whatever the value of I. In the qua-
sistatic limit, with F12 ≃ −0.017 and µ∗ ≃ 0.1, it may
be concluded that geometry accounts for roughly 50%
of the macroscopic friction for our model material. This
fraction of macroscopic friction explained by the sole ge-
ometry of the packing increases with increasing I. In
general, the connection between macroscopic friction and
fabric is influenced by many parameters, such as particle
shape [68].

The missing contribution to the macroscopic friction
stems from the correlation beween force intensities and
contact orientations. As mentioned in the end of Sec-
tion IVC 1, the anisotropy of the subnetwork carrying
larger than average forces is more pronounced, and such
an angular dependence of force intensities increases the
shear stress.

FIG. 17: (Color online) Evolution of the second-rank fabric
tensor coefficient F12 as a function of h for κ = κ2. Static
shear simulation (black solid squares, dotted line) and four
steady shear simulations: I = 0.1 (black open squares, solid
line), I = 0.01 (red crosses symbols, solid line) and I = 0.0001
(blue crosses symbols, dashed line).

3. h-gap anisotropy

We now consider the fabric tensor of the h-network, Ch.
Similar relations to those written in Sec. IV C1 hold when
the contact network is replaced by Ch: one can define
an h-gap distribution function Eh(θ, ϕ), an h-gap fabric

tensor (〈⊗2k
i=1 ~n〉h)k≥1, where 〈·〉h denotes the average

on Ch, and write an equation analogous to Eq. 28 for Eh

and F
h.

The variation of Fh
12 with h > 0 is plotted in Fig. 17,

with I-dependent D-results approaching S ones in the
limit of I → 0. Fig. 17 demonstrates that anisotropy
(that is the absolute value of Fh

12) diminishes until
h/a ∼ 0.20 and then appears to increase by a small
amount. Current cutting-edge experimental techniques
like X-ray tomography would be able to detect the type
of anisotropy we found in frictionless, equilibrated pack-
ings.

V. DISCUSSION

This work was devoted to the study of frictionless iden-
tical spherical balls subjected to simple shear. The influ-
ence of the three dimensionless quantities controlling the
problem – inertial number I, stiffness number κ and level
of viscous damping ζ – was carefully assessed and we ob-
served that the inertial number I has the most dramatic
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impact on the system behavior. Fluctuations of the mea-
sured quantities were shown to vanish for large systems.
Consequently, the particular nature of the boundary con-
ditions employed has no importance: for sufficiently large
systems, fixed-volume simulations would lead to the very
results we obtained with our stress driven numerical ex-
periments. Particular attention was paid to the macro-
scopic geometric limit, that is the triple limit N → +∞,
I → 0 and κ→ +∞. In this régime, the system behavior
is governed by a succession of instabilities due to dynam-
ical rearrangements of the contact network. A thorough
investigation of such events remains an interesting, yet
challenging, perpective.

The existence of a nonzero macroscopic friction an-
gle was evidenced by two different kinds of simulations –
shear-rate controlled dynamic calculations (D-type simu-
lations) and quasistatic stress-controlled calculations (S-
type simulations). Whereas the dynamic friction angle
ϕD is independent of the system size for N > 1000, the
static friction angle ϕS is very sensitive to the number
of grains and is systematically greater than ϕD for all
the studied sizes (N ≤ 8788) and ϕS − ϕD increases for
decreasing N . This might be the reason why localiza-
tion seems to occur more easily as the system size de-
creases. In finite-size systems, the shear stress is a mul-
tivaluated function of the strain rate in the quasistatic
limit and the range of multivaluation increases with de-
creasing N . Thus shear bands are more likely to appear
in small systems [15, 69, 70]. However, in the macro-
scopic geometric limit, we found that both friction an-
gles ϕS and ϕD are equal within statistical uncertain-
ties. In frictionless granular assemblies, all dissipation
is due to viscous terms in contact forces, which there-
fore can be regarded [17] as the physical origin of macro-
scopic friction. However, the value of the damping co-
efficient ζ is irrelevant in the quasistatic limit since the
amount of dissipated energy is geometrically determined.
We thus rather attribute the macroscopic friction angle
to the shear-induced anisotropy of the contact network.
The result that ϕS = ϕD contrasts with observations
on Lennard-Jones glasses at temperature T > 0 [69, 70]
and on granular avalanches [71, 72]. Glass simulations
show that the dynamic angle is less than the static one.
This difference is linked to a stress overshoot visible on
strain-stress curves. Similarly, in dense granular materi-
als with friction, the shear stress goes through a maxi-
mum before the steady state (”critical state”) is reached,
a feature which is absent in frictionless granular assem-
blies (both states coincide in this case). Similar differ-
ences (ϕS > ϕD) are reported for granular flows down
inclined plane. Thus, in Refs. [71, 72], θstop(h) is less
than θstart(h), where θ is the inclination of the plane
and h the thickness of the flowing layer in the station-
ary state. The small thickness of the layer (typically less
than ten grain diameters) and the intergranular friction
are certainly responsible for this hysteresis.

The interplay between stress and dilatancy is a well
known feature of granular materials. However, our sim-

ulations show that homogeneously sheared frictionless
bead assemblies do not display any dilatancy in the
macroscopic geometric limit. In this limit, volume frac-
tion Φ remains equal to ΦRCP during the whole time the
material is sheared and the backbone stays isostatic in
the rigid and quasistatic limits. Thus, equilibrated con-
figurations under nonzero shear stress can be regarded as
anisotropic random close packing states. This surprising
lack of dilatancy has been accounted for with the help of
a simple model presented in Sec. III E 3. We thus con-
clude that the steady state (critical) volume fraction Φc

is equal to ΦRCP.

The behavior of frictionless granular assemblies under
arbitrary load directions will be the subject of a future
work [67] in order to gain a better knowledge of the yield
surface and of the mechanical properties of such granu-
lar systems under a small enough stress deviator (before
yielding).

One motivation of the present work is the study of
highly concentrated non-Brownian suspensions (Péclet
number Pe = +∞), modeled as assemblies of nearly
touching grains bonded by a viscous lubricant [73, 74, 75].
Ideal lubrication effectively suppresses the tangent forces.
Lubricated dynamics has already been employed as a
means to obtain the force-carrying contact network of
frictionless rigid particles, as the set of viscous bonds
on which stresses concentrate [65]. Although crude, our
current model should be able to reproduce the behav-
ior of dense suspensions in the quasistatic limit. In this
régime, the system evolves via a sequence of equilibrium
states. At some point, the initial network is no longer
able to sustain the imposed stress, it becomes unstable
and a dynamic ”crisis” occurs. Consequently, the evo-
lution of the system is not quasistatic in the strictest
sense (each point of the configuration space cannot be
reached through a continuous series of equilibrium con-
figurations). However, details of the dynamic are ex-
pected to be irrelevant. Thus we expect that the same
equilibrium states will be visited in the quasistatic limit
by both frictionless granular systems and dense suspen-
sions with frictional grains. According to the simple
toy model of Sec. III E 3, a dense suspension might be
sketched by a slider moving on a bumpy surface in a
media of viscosity η. Close to the quasistatic limit, the
most important parameter would be the dimensionless
number ηγ̇/P . One may notice that it is very similar to
the parameter Iv introduced by Cassar et al. that con-
trols submarine avalanches in what they call the viscous
regime [76]. Steady shear simulations evidenced that the
material is still able to flow with a volume fraction ap-
proximately equal to Φ∗ = ΦRCP ≃ 0.64. This result is
consistent with theoretical results pertaining to suspen-
sions, where the volume fraction Φ∗ at which the viscos-
ity of the suspension diverges is believed to tally with the
random close packing volume fraction [77]. However, it
is not in agreement with the experiments exposed in [6],
where the value of Φ∗ was found to be below 0.61. This
discrepancy very likely originates in small scale features
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of the experimental system that are not accounted for a
model of perfectly lubricated spherical beads. The be-
havior of dense suspensions is known to be strongly im-
pacted by short-range physics [78]. In the near future, we
plan to study lubricated pastes with frictional contacts
in the spirit of the simplified Stokesian dynamics scheme
proposed by Ball and Melrose [73, 74, 75].

APPENDIX A: DYNAMICAL EQUATIONS

In all three procedures O, D or S, at least one diag-
onal component of the stress tensor is imposed, while
the conjugate cell dimension fluctuates. To perform
such stress controlled computations, we resort to the
Parrinello-Rahman method [32, 79, 80], with the same
implementation as in Ref. [23], which can be consulted
for more details. The position vector ri of particle i (de-
fined with respect to an arbitrary origin), is rescaled to
si:

si ≡ L
−1

ri for 1 ≤ i ≤ N (A1)

with

L = diag (L1, L2, L3) (A2)

L
−1 transforms the rectangular parallelipipedic simula-

tion cell into a cubic box of unit edge length. The scaled
position vector si encodes the coordinates of the parti-
cle i in this mathematically defined box. It follows from
Eq. A1 that the velocity vi of particle i is

vi = Lṡi + L̇si for 1 ≤ i ≤ N (A3)

Newtonian equations of motion for the scaled position
vectors are written in the standard fashion (mi denotes
the mass of bead i and Fi the overall force applied on
particle i by its contacting neighbors):

mis̈i = L
−1

Fi for 1 ≤ i ≤ N (A4)

The time evolution of 3N degrees of freedom is captured
in Eq. A4. Like in [23], we discard some other terms
present in the original, Hamiltonian Parrinello-Rahman
(PR) scheme in (A4), since they are irrelevant at low
strain rates in dissipative systems. Variables (Lα)1≤α≤3,
are either maintained constant, or satisfy an evolution
equation derived from the PR method, as follows.

ML̈α =
1

Lα

[

L2
α

N
∑

i=1

mi(ṡ
(α)
i )2 +

∑

1≤i<j≤N

F
(α)
ij r

(α)
ij

]

− Ω

Lα
Σα if σα is set to Σα (A5)

M , in (A5), is a generalized mass parameter, rij is the
vector joining the center of bead i to that of bead j, with
the appropriate nearest image convention. The dynam-
ical equations introduce an additional parameter, mass

Procedure O Procedure D Procedure S

(si)1≤i≤N Eq. A4 Eq. A4 Eq. A4

L1 Eq. A5 constant Eq. A5

L2 Eq. A5 Eq. A5 Eq. A5

L3 Eq. A5 constant Eq. A5

γ̇ 0 constant Eq. A6

Direction 1 PBC PBC PBC

Direction 2 PBC LE LE

Direction 3 PBC PBC PBC

TABLE X: First part of the table: equation used for cell
size and strain in procedures O, D and S. Second part of the
table: boundary conditions employed in procedures O, D and
S (PBC stands for periodic boundary condition and LE for
Lees-Edwards boundary condition).

M in Eqs. (A5) and (A6). In our simulations it was set
equal to the sum of masses of all particles in the system.
All changes in measured quantities such as friction co-
efficient, density or the fluctuations thereof on dividing
M by 1000 were checked to be negligible, throughout the
range of I values investigated.

The quantity within square brackets in Eq. A5 is Ωσαα,
with the Cauchy stress tensor as in Eq. (5). Thus
Eq. (A5) will cause the cell to expand in direction α
if the current stress level is higher than the prescribed
value Σα and to shrink if it is smaller.

The last degree of freedom is the shear strain rate γ̇.
The Lees-Edwards (LE) boundary condition means that
the conditions for periodicity in direction 2 and the defi-
nition of nearest images have to be redefined, as sketched
on Fig. 1. γ̇ is equal to zero in procedure O, it is con-
stant in procedure D, and varies in procedure S, until
equilibrium is reached with σ12 = τ . In this latter case
one has:

ML1γ̈ =
1

L2

[

L1L2

N
∑

i=1

miṡ
1
i ṡ

2
i +

∑

1≤i<j≤N

F 2
ijr

1
ij

]

− Ω

L2
Σ12 if σ12 is constrained to τ (A6)

Eq. A6 is adapted from Eq. A5, and ensures σ12 = τ in
equilibrium or, on average, in a steady state flow. Note
that with our sign convention, both γ̇ and τ are negative
in the situation depicted on Fig. 1.

Equations A4, A5 and A6, or the alternative condition
on the corresponding strain parameter completely deter-
mine the dynamics of the system. Relevant equations and
boundary conditions employed for each simulation proce-
dure are summed up in Table X. Second-order equations
A4, A5 and A6 are solved numerically by an order-three
Gear predictor-corrector scheme [32].
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APPENDIX B: FABRIC TENSOR AND

EXPANSION IN SPHERICAL HARMONICS

The density of contact normal directions, E(θ, ϕ), de-
fined on the unit sphere S

2, can be expanded on the
Hilbertian basis of spherical harmonics Y m

l :

E(θ, ϕ) =
+∞
∑

l=0

l
∑

m=−l

cl,mY
m
l (θ, ϕ), (B1)

with:

cl,m =

∫∫

S2

Y m
l (θ, ϕ)E(θ, ϕ) dΩ. (B2)

E satisfies E(θ, ϕ) = E(π − θ, ϕ+ π) (parity symmetry)
since the intergranular contacts are not oriented. This
symmetry implies cl,m = 0 for l odd.

Even order fabric tensors encode coefficients cl,m. We
restricted ourselves to the fabric tensor of order 2, F =
〈~n⊗~n〉. F yields the decomposition of E as a combination
of spherical harmonics Y m

l with l ≤ 2.
If (Y m

2 )−2≤m≤2 are expressed with Cartesian coordi-
nates, as

Y ±2
2 (x1, x2, x3) =

√

15

32π

x2
1 − x2

2 ± 2ix1x2

r2

Y ±1
2 (x1, x2, x3) = ∓

√

15

8π

x1x3 ± ix2x3

r2

Y 0
2 (x1, x2, x3) =

√

5

16π

3x2
3 − r2

r2
,

one obtains from (B2):

c2,−2 + c2,2 = 2

√

15

32π
(F11 − F22)

c2,−2 − c2,2 = 2

√

15

32π
2iF12

c2,−1 + c2,1 = 2

√

15

8π
iF23

c2,−1 − c2,1 = 2

√

15

8π
F13

c2,0 =

√

5

16π
(3F33 − 1)

At order 2:

E(θ, ϕ) =
1

4π
+ c2,0Y

0
2 (θ, ϕ)

+ c2,2Y
2
2 (θ, ϕ) + c2,−2Y

−2
2 (θ, ϕ)

+ c2,1Y
1
2 (θ, ϕ) + c2,−1Y

−1
2 (θ, ϕ). (B3)

since Y m
l (θ, ϕ) = (−1)mY −m

l (θ, ϕ) (a well known prop-
erty of spherical harmonics), and E takes real values.
Finally, one has

E(θ, ϕ) =
1

4π
+ c2,0Y

0
2 (θ, ϕ)

+ 2ℜ(c2,2Y
2
2 (θ, ϕ)) + 2ℜ(c2,1Y

1
2 (θ, ϕ))(B4)

from which Eq. 28 follows on setting:

dxy(θ, ϕ) =
15

8π
sin2 θ sin(2ϕ)

dx2−y2(θ, ϕ) =
15

16π
sin2 θ cos(2ϕ)

dz2(θ, ϕ) =
15

16π
(3 cos2 θ − 1)

dxz(θ, ϕ) =
15

4π
sin θ cos θ cosϕ

dyz(θ, ϕ) =
15

4π
sin θ cos θ sinϕ.

APPENDIX C: CRYSTALLIZATION UNDER

SHEAR

Small samples, in both D and S-type simulations, tend
to form strongly ordered structures under shear. This
phenomenon, which did not occur forN > 1000, is briefly
reported here. A more detailed study would be outside
the scope of the present paper, and would require some
investigation of the role of cell shape and boundary con-
ditions, which is necessarily important in such small sys-
tems.

2 out of 3 S-type samples with N = 256 and stiffness
level κ2, and 2 out of 2 D-type samples with N = 500,
I = 3.2 × 10−4 and κ = κ1 present the following
anomalies. First, solid fractions are considerably higher
than ΦRCP (and even more so considering the size ef-
fect [21, 23] on Φ), with values approximatively equal to
0.67 (see fourth line of Tab. IV). Apparent friction coef-
ficients are also particularly large. A lower bound for the
static macroscopic friction coefficient of S-type ordered
samples is 0.4, whereas dynamic macrosopic friction co-
efficient µ∗ of D-type ordered samples for I = 3.2×10−4,
κ = κ1, and N = 500 may overshoot by 20% the corre-
sponding friction coefficient in bigger samples that do not
experience any ordering. S-type samples also have very
large coordination numbers, 8 ≤ z ≤ 9. This latter char-
acteristic is a clear indicator of partial crystalline order,
as one necessarily has z ≤ 6 in generically disordered sit-
uations. The denser crystal arrangements, face-centered
cubic (fcc) and hexagonal compact (hcp) (and stacking
variants thereof), have z = 12.

For steady shear-rate-controlled D simulations, anoma-
lous values of Φ and σ12 appear after strains of order 5.

In order to detect crystalline order more quantitatively,
we use the standard order parameters Q6 and Q4 em-
ployed in [23, 56, 81, 82]. First, all neighboring pairs of
particles for which the center to center distance is smaller
than 1.4 a are declared to be joined by a bond (this dis-
tance is approximately the first minimum of pair corre-
lation function g(r) [23]). Then, local order parameters
Ql are associated to each grain i, as:

Qloc
l (i) =

[

4π

2l+ 1

m=l
∑

m=−l

|q̂lm(i)|2
]1/2

, (C1)
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FIG. 18: Crystalline order induced by shear in one S sample
with N = 256.

in which q̂lm(i) is an average over all neighbors j of i
numbered from 1 to Nb(i), the number of bonds of i:

q̂lm(i) =
1

Nb(i)

Nb(i)
∑

j=1

Ylm(nij), (C2)

nij denoting the unit vector pointing from the center of
i to the center of j.

First, values of the pair (Q4, Q6) can be used to dis-
tinguish different local environments. In [23], follow-
ing [56], the frequency of ocurrence of ranges of values
(0.191±0.05, 0.574±0.05) and (0.097±0.05, 0.485±0.05),
respectively corresponding to fcc-like and hcp-like config-
urations around one grain, were recorded. In the present
case, most samples had very similar proportions of hcp-
like and fcc-like local arrangements as in the RCP states
studied in [23]: about 12% of beads fall in the hcp cat-
egory, and fcc-like ones are virtually absent. The excep-
tions are the samples with anomalous, crystal-like prop-
erties, for which, while none of the beads has an fcc-like
environment in that sense, the proportion of the hcp-like
category raises to about 60% in S samples and to 40% in
D ones.

A direct visualization, Fig. 18, reveals strikingly or-
dered configurations. A tentative conclusion to those
preliminary observations is that the small samples tend
to crystallize on somewhat shear-distorted hcp lattices.

One convenient characterization of order that is not
sensitive to the distorsion of crystalline patterns was sug-
gested in [81], and used in [23] (those references may be
consulted for the details that are not reproduced here). It
amounts to extracting, by a suitable normalization, the
“direction” of (q̂6m(i))−6≤m≤6 (an element of the unit
sphere in a 13-dimensional space) and then using the cor-
relations of such “angular” parts of local order param-
eters to identify “crystalline” bonds, and “crystalline”
clusters of grains. With this method, more than 90% of
the particles of the anomalous samples are declared to
belong to crystalline regions.
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(1979).
[13] J.-N. Roux and F. Chevoir, Bulletin des Laboratoires des

Ponts et Chaussées 254, 109 (2005).
[14] J. F. Brady and G. Bossis, Annual Review of Fluid Me-

chanics 20, 111 (1988).
[15] F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, and

F. Chevoir, Phys. Rev. E 72, 021309 (2005).
[16] T. Hatano, Physical Review E 75, 060301(R) (2007).
[17] A. Taboada, N. Estrada, and F. Radjäı, Physical Review
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