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Abstract

We investigate the homogeneous symmetric Macdonald polyno-
mials Pλ(X; q, t) for the specialization t = qk. We show an identity

relying the polynomials Pλ(X; q, qk) and Pλ

(

1−q
1−qk X; q, qk

)

. As a con-

sequence, we describe an operator whose eigenvalues characterize the
polynomials Pλ(X; q, qk).

1 Introduction

Macdonald polynomials are (q, t)-deformations of Schur functions which play
an important rôle in the representation theory of the double affine Hecke
algebra [10, 12] since they are the eigenfunctions of the Cherednik elements.
The polynomials considered here are the homogeneous symmetric Macdonald
polynomials Pλ(X; q, t) and are the eigenfunctions of the Sekiguchi-Debiard
operator. For (q, t) generic, these polynomials are completely characterized
by their eigenvalues, since the dimensions of the eigenspaces is 1. It is no
longer the case when t is specialized to a rational power of q. Hence, it is
more convenient to characterize the Macdonald (homogeneous symmetric)
polynomials by orthogonality (w.r.t. a (q, t)-deformation of the usual scalar
product on symmetric functions) and by some conditions on their dominant
monomials (see e.g. [11]). In this paper, we consider the specialization
t = qk where k is a strictly positive integer. One of our motivations is to
generalize an identity of [1], which shows that even powers of the discriminant
are rectangular Jack polynomials. Here, we show that this property follows
from deeper relations between the Macdonald polynomials Pλ(X; q, qk) and

Pλ

(

1−q
1−qk X; q, qk

)

(in the λ-ring notation). This result is interesting in the
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context of the quantum fractional Hall effect[7], since it implies properties of
the expansion of the powers of the discriminant in the Schur basis [3, 5, 13].
It implies also that the Macdonald polynomials (for t = qk) are characterized
by the eigenvalues of an operator M whose eigenspaces are of dimension 1
described in terms of isobaric divided differences.

The paper is organized as follow. After recalling notations and back-
ground (Section 2) for Macdonald polynomials, we give, in Section 3, some
properties of the operator which substitutes a complete function to each
power of a letter. These properties allow to show our main result in Section 4

which is an identity relying the polynomial Pλ(X; q, qk) and Pλ

(

1−q
1−qk X; q, qk

)

.

As a consequence, we describe (Section 5) an operator M whose eigenvalues
characterize the Macdonald polynomials Pλ(X; q, qk). Finally, in Section 6,
we give an expression of M in terms of Cherednik elements.

2 Notations and background

Consider an alphabet X potentially infinite. We will use the notations of
[9] for the generating function σz(X) of the complete homogeneous functions
Sp(X),

σz(X) =
∑

i

Si(X)zi =
∏

i

1

1 − xz
.

The algebra Sym of symmetric function has a structure of λ-ring [9]. We
recall that the sum of two alphabets X + Y is defined by

σz(X + Y) = σz(X)σz(Y) =
∑

i

Si(X + Y)zi.

In particular, if X = Y one has σz(2X) = σz(X)2. This definition is extended
for any complex number α by σz(αX) = σz(X)α. For example, the generating
series of the elementary function is

λz(X) :=
∑

Λi(X)zi =
∏

x(1 + xz)
= σ−z(−X) =

∑

i(−1)iSi(−X)zi.

The complete functions of the product of two alphabets XY are given by the
Cauchy kernel

K(X, Y) := σ1(XY) =
∑

i

Si(XY) =
∏

x∈X

∏

y∈Y

1

1 − xyt
=
∑

λ

Sλ(X)Sλ(Y),
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where Sλ denotes, as in [9], a Schur function. More generally, one has

K(X, Y) =
∑

λ

Aλ(X)Bλ(Y)

for any pair of basis (Aλ)λ and (Bλ)λ in duality for the usual scalar product
〈 , 〉.

2.1 Macdonald polynomials

One considers the (q, t)-deformation (see e.g. [11]) of the usual scalar product
on symmetric functions defined for a pair of power sum functions Ψλ and Ψµ

(in the notation of [9]) by

〈Ψλ, Ψµ〉q,t = δλ,µzλ

l(λ)
∏

i=1

1 − qλi

1 − tλi
, (1)

where δλ,µ = 1 if λ = µ and 0 otherwise. The familly of Macdonald polyno-
mials (Pλ(X; q, t))λ is the unique basis of symmetric functions orthogonal for
〈 , 〉q,t verifying

Pλ(X; q, t) = mλ(X) +
∑

µ≤λ

uλµmµ(X), (2)

where mλ denotes, as usual, a monomial function [9, 11]. The reproducing
kernel associated to this scalar product is

Kq,t(X, Y) :=
∑

λ

〈Ψλ, Ψλ〉−1
q,t Ψλ(X)Ψλ(Y) = σ1

(

1 − t

1 − q
XY

)

see e.g. [11] (VI. 2). In particular, one has

Kq,t(X, Y) =
∑

λ

Pλ(X; q, t)Qλ(Y; q, t), (3)

where Qλ(X; q, t) is the dual basis of Pλ(Y; q, t) for 〈 , 〉q,t,

Qλ(X; q, t) = 〈Pλ, Pλ〉
−1
q,t Pλ(X; q, t). (4)
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The coefficient bλ(q, t) = 〈Pλ, Pλ〉
−1
q,t is known to be

bλ(q, t) =
∏

(i,j)∈λ

1 − qλj−i+1tλ
′

i−j

1 − qλj−itλ
′

i−j+1
(5)

see [11] VI.6. Writing

Kq,t

((

1 − q

1 − t

)

X, Y

)

= K(X, Y), (6)

one finds that
(

Pλ

((

1−q
1−t

)

X; q, t
))

λ
is the dual basis of (Qλ(X; q, t))λ for the

usual scalar product 〈 , 〉.
Note that there exists an other Kernel type formula which reads

λ1(XY) =
∑

λ

Pλ′(X; t, q)Pλ(Y; q, t) =
∑

λ

Qλ′(X; t, q)Qλ(Y; q, t). (7)

where λ′ denotes the conjugate partition of λ. This formula can be found in
[11] VI.5 p 329.

From Equalities (6) and (3) , one has

σ1(XY) = Kq,t

(

1 − q

1 − t
X, Y

)

=
∑

λ

Qλ

(

1 − q

1 − t
X; q, t

)

Pλ(Y; q, t). (8)

Applying (7) to
σ1(XY) = λ−1(−XY),

one obtains

σ1(XY) =
∑

λ

(−1)|λ|Qλ′(−X; t, q)Qλ(Y; q, t). (9)

Identifying the coefficient of Pλ(Y; t, q) in (8) and (9), one finds the property
below.

Lemma 2.1

Qλ(−X; t, q) = (−1)|λ|Pλ′

(

1 − q

1 − t
X; q, t

)

. (10)
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Unlike the usual (q = t = 1) scalar product, there is no expression as a
constant term for the product 〈 , 〉q,t when X = {x1, . . . , xn} is finite. But the
Macdonald polynomials are orthogonal for an other scalar product defined
by

〈f, g〉′q,t;n =
1

n!
C.T.{f(X)g(X∨)∆q,t(X)} (11)

where C.T. denotes constant term w.r.t. the alphabet X, ∆q,t(X) =
∏

i6=j

(xix
−1
j ; q)∞

(txix
−1
j ; q)∞

,

(a; b)∞ =
∏

i≥0

(1−abi) and X
∨ = {x−1

1 , . . . , x−1
n }. The expression of 〈Pλ, Qλ〉

′
q,t;n

is given by ([11] VI.9)

〈Pλ, Qλ〉
′
q,t;n =

1

n!
C.T.{∆q,t(X)}

∏

(i,j)∈λ

1 − qi−1tn−j+1

1 − qitn−j
. (12)

2.2 Skew symmetric functions

Let us define as in [11] VI 7, the skew Q functions by

〈Qλ/µ, Pν〉q,t := 〈Qλ, PµPν〉q,t. (13)

Straightforwardly, one has

Qλ/µ(X; q, t) =
∑

ν

〈Qλ, PνPµ〉q,tQν(X; q, t). (14)

And classically, the following property hold. 1

Proposition 2.2 Let X and Y be two alphabets, one has

Qλ(X + Y; q, t) =
∑

µ

Qµ(X; q, t)Qλ/µ(Y; q, t),

or equivalently

Pλ(X + Y; q, t) =
∑

µ

Pµ(X; q, t)Pλ/µ(Y; q, t).

1See e.g. [11] VI.7 for a short proof of this identity
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Equalities (3) and (7) are generalized by identities 15 and 16 as shown in [11]
example 6 p.352
∑

ρ

Pρ/λ(X; q, t)Qρ/µ(Y; q, t) = Kqt(X, Y)
∑

ρ

Pµ/ρ(X; q, t)Qλ/ρ(Y; q, t), (15)

∑

ρ

Qρ′/λ′(X; t, q)Qρ/µ(Y; q, t) = λ1(XY)
∑

ρ

Qµ′/ρ′(X, t, q)Qλ/ρ(Y; q, t). (16)

3 The substitution xp → Sp(Y) and the Mac-

donald polynomials

Let X = {x1, . . . , xn} be a finite alphabet and Y be an other (potentially
infinite) alphabet. For simplicity we will denote by

∫

Y
the substitution

∫

Y

xp = Sp(Y), (17)

for each x ∈ X and each p ∈ Z.

3.1 Substitution formula

Let us define the symmetric function

H
n,k
λ/µ(Y; q, t) :=

1

n!

∫

Y

Pλ(X; q, t)Qµ(X
∨; q, t)∆(X, q, t) (18)

where X
∨ = {x−1

1 , . . . , x−1
n }.

Set Y
tq := 1−t

1−q
Y and consider the substitution

∫

Ytq

xp = Sp
(

Y
tq
)

= Qp(Y; q, t). (19)

One has the following property.

Theorem 3.1 Let X = {x1, . . . , xn} be an alphabet, λ = (λ1, . . . , λn) be

a partition and µ ⊂ λ. The polynomial H
n,k
λ/µ(Ytq; q, t) is the Macdonald

polynomial

H
n,k
λ/µ(Ytq; q, t) =

1

n!

∏

(i,j)∈λ

1 − qi−1tn−j+1

1 − qitn−j
C.T.{∆(X, q, t)}Qλ/µ(Y, q, t) (20)
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Proof From the definition of the Qλ, one has

∫

Ytq

xp = Qp(Y; q, t) = C.T.{x−pKq,t(x, Y)}. (21)

Hence, the polynomial H
n,k
λ/µ(Yqt, q, t) is the constant term

H
n,k
λ/µ(Ytq; q, t) =

1

n!
C.T.{Pλ(X

∨; q, t)Qµ(X; q, t)Kq,t(X, Y)∆(X, q, t)}.

As a special case of Equality (15),

Kqt(X, Y)Qµ(X; q, t) =
∑

ρ

Pρ/µ(Y; q, t)Qρ(X; q, t),

holds and implies

H
n,k
λ/µ(Ytq, q, t) = 〈Pλ(X

∨; q, t),
∑

ρ

Pρ/µ(Y; q, t)Qρ(X; q, t)〉′q,t;n

= 〈Pλ(X
∨; q, t), Qλ(X; q, t)〉′q,t;nQλ/µ(Y, q, t).

(22)

Equality (12) ends the proof. �

3.2 Substitution dual formula

Setting Y = {−y1, . . . ,−ym, . . . } if Y = {y1, . . . , ym, . . . } 2, one observes the
following propery.

Theorem 3.2 Let X = {x1, . . . , xn} be an alphabet, λ = (λ1, . . . , λn) be a

partition and µ ⊂ λ. One has

H
n,k
λ/µ(−Y; q, t) = H

n,k
λ′/µ′(Y

qt; t, q) (23)

where Y
qt = 1−q

1−t
Y.

2The operation Y → Y makes sense for virtual alphabet since it sends any homogeneous
symmetric polynomial P (Y) of degree p to (−1)pP (Y).
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Proof It suffices to show that

H
n,k
λ/µ(−Y; q, t) =

1

n!

∏

(i,j)∈λ

1 − qi−1tn−j+1

1 − qitn−j
C.T.{∆(X, q, t)}Qλ′/µ′(Y, t, q).

The proof of this identity is almost the same than the proof of (20) except
than one uses the formula

∏

(1 + xiyj)Qµ(X; t, q) =
∑

ρ

Qρ(X; q, t)Qρ′/µ′(Y; t, q),

which is a special case of identity (16). �

Note that in the case of partitions, one has

Corollary 3.3

H
n,k
λ (−Y, q, t) =

1

n!

∏

(i,j)∈λ

1 − qi−1tn−j+1

1 − qitn−j
C.T.{∆(X, q, t)}Qλ′(Y, t, q) (24)

Example 3.4 Consider the following equality

H
2,3
41/3(−Y; q, t) = (∗)C.T.{∆(X, q, t)}Q2111/111(Y; t, q).

where X = {x1, x2}. The coefficient (∗) is computed as follows. One writes
the partition [41] in a rectangle of height 2 and length 4.

×
× × × ×

Each × of coordinate (i, j) is read as the fraction [i, j] := 1−qi−1t3−j

1−qit2−j . Hence

(∗) = [1, 2][1, 1][2, 1][3, 1][4, 1] =
(1 − t)(1 − t2)(1 − qt2)(1 − q2t2)(1 − q3t2)

(1 − q)(1 − qt)(1 − q2t)(1 − q3t)(1 − q4t)
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4 A formula relying the polynomials Pλ

(

1−q

1−qkX; q, qk
)

and Pλ

(

X; q, qk
)

When t = qk with k ∈ N, Corollary 3.3 gives

Corollary 4.1

H
n,k
λ (−Y, q, qk) = β

n,k
λ (q)Qλ′(Y; qk, q). (25)

where

β
n,k
λ (q) =

n−1
∏

i=0

[

λn−i − 1 + k(i + 1)

k − 1

]

q

and
[

n
p

]

q
= (1−qn)...(1−qn−p+1)

(1−q)...(1−qr)
denotes the q-binomial.

Proof From Corollary 3.3, it remains to compute C.T.{∆(X, q, t)}. The
evaluation of this term is deduced from the q-Dyson conjecture 3

C.T.{∆(x; q, qk)} = n!

n
∏

i=1

[

ik − 1

k − 1

]

q

,

and can be found in [11] examples 1 p 372.
Hence,

H
n,k
λ (−Y, q, qk) = β

n,k
λ (q)Qλ′(Y, qk, q),

where

β
n,k
λ (q) =

∏

(i,j)∈λ

1 − qi+k(n−j+1)−1

1 − qi+k(n−j)

n
∏

i=1

[

ik − 1

k − 1

]

q

. (26)

But,
∏

(i,j)∈λ

1 − qi+k(n−j+1)−1

1 − qi+k(n−j)
=

n−1
∏

i=0

λn−i
∏

j=1

1 − qj+k(i+1)−1

1 − qj+ki
.

3see [14] for a proof.
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Hence, rearranging the factors appearing in the right hand side of Equality
(26), one obtains

β
n,k
λ (q) =

n−1
∏

i=0

(

[

(i + 1)k − 1

ik

]

q

λn−i
∏

j=1

1 − qj+k(i+1)−1

1 − qj+ki

)

=

n−1
∏

i=0

[

λn−i − 1 + k(i + 1)

k − 1

]

q

.

(27)

This ends the proof.�

Example 4.2 Set k = 2, n = 3 and consider the polynomial

H
3,2
[320](−Y; q, q2) =

1

n!

∫

−Y

P[32](x1 + x2 + x3; q, q
2)
∏

i6=j

(1− xix
−1
j )(1− qxix

−1
j ).

One has,

H
3,2
[320](−Y; q, q2) =

(1 − q5) (1 − q8)

(1 − q)2 Q[221](Y; q2, q).

Let

ΩS :=
1

n!

∫

X

∏

i6=j

(1 − xix
−1
j ) (28)

and for each v ∈ Z
n,

S̃v(X) = det
(

x
vj+n−j
i

)

∏

i<j

(xi − xj)
−1.

Lemma 4.3 If v is any vector in Z
n, one has

ΩSS̃v(X) = Sv(X) := det(Svi−i+j(X)) (29)

Proof The identity is obtain by the direct computation:

1

n!

∫

X

S̃v(X)
∏

i<j

(

1 − xix
−1
j

)

=
1

n!

∫

X

det
(

x
vj−j+1
i

)

det(xj−1
i )

=
1

n!

∫

X

∑

σ1,σ2∈Sn

sign(σ1σ2)
∏

i

xvσ1(i)−σ1(i)+σ2(i)−1

=
1

n!

∑

σ1σ2

sign(σ1σ2)
∏

i

Svσ1(i)−σ1(i)+σ2(j)

= det(Svi−i+j(X)).
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In particular, ΩS lets invariant any symmetric polynomial. The operator

Am := ΩSΛn(X)−m (30)

acts on symmetric polynomials by substracting m on each part of partitions
appearing in their expansion in the Schur basis.

Example 4.4 If X = {x1, x2, x3} consider the polynomial, and λ = [320].
One has

P32(X; q, t) = S32(X) +
(−q + t)S311(X)

qt − 1
+

(q + 1) (qt2 − 1) (−q + t) S221(X)

(qt − 1)2 (qt + 1)
.

Hence,

A1P32(X; q, t) = (−q+t)S2(X)
qt−1

+
(q+1)(qt2−1)(−q+t)S11(X)

(qt−1)2(qt+1)

=
(−q+t)(t+1)(q2t−1)P11(X;q,t)

(qt−1)2(qt+1)
+ (−q+t)P2(X;q,t)

qt−1
.

Theorem 4.5 If λ denotes a partition of length at most n, one has

A(k−1)(n−1)Pλ(X; q, qk)

k−1
∏

l=1

∏

i6=j

(xi − qlxj) = β
n,k
λ (q)Pλ

(

1 − q

1 − qk
X; q, qk

)

(31)

Proof From the definitions of the operators Am (30) and ΩS (28), one obtains

A(k−1)(n−1)Pλ(X; q, qk)

k−1
∏

l=1

∏

i6=j

(xi − qlxj) =
1

n!

∫

X

Pλ(X; q, qk)∆(X, q, qk).

Corollary 4.1 implies

1

n!

∫

X

Pλ(X; q, qk)∆(X, q, qk) = H
n,k
λ (X; q, qk)

= β
n,k
λ (q)Qλ′(−X; qk, q)

But, from Lemma 2.1, one has

Qλ′(−X; qk, q) = (−1)|λ|Qλ′(−X; qk, q) = Pλ

(

1 − q

1 − qk
X; q, qk

)

.

The result follows. �
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Example 4.6 Set k = 2, n = 3 and λ = [2]. One has

P[2](x1 + x2 + x3; q, q
2)
∏

i6=j

(xi − qxj) = −q3S[6,2] + q2 q3 − 1

q − 1
S[6,1,1]

+
q2(q5 − 1)

q3 − 1
S[5,3] −

q(q2 + 1)(q5 − 1)

q3 − 1
S[5,2,1] −

q(q7 − 1)

q3 − 1
S[4,3,1] +

q7 − 1

q − 1
S[4,2,2].

And,

A2P[2](x1 + x2 + x3; q, q
2)
∏

i6=j

(xi − qxj) =
q7 − 1

q − 1
S[2].

Since,

P[2]

(

x1 + x2 + x3

1 + q
; q, q2

)

=
1 − q

1 − q3
S[2]

one obtains

A2P[2](x1+x2+x3; q, q
2)
∏

i6=j

(xi−qxj) =

[

1

1

]

q

[

3

1

]

q

[

7

1

]

q

P[2]

(

x1 + x2 + x3

1 + q
; q, q2

)

.

As a consequence, one has

Corollary 4.7 If λ = µ + [((k − 1)(n − 1))n],

Pµ(X; q, qk)

k−1
∏

l=1

∏

i6=j

(xi − qlxj) = β
n,k
λ (q)Pλ

(

1 − q

1 − qk
X; q, qk

)

.

Proof Since the size of X is n,

Pλ(X; q, qk) = Pµ(X; q, qk)(x1 . . . xn)(k−1)(n−1).

Then, the result is a direct consequence of Theorem 4.5.�

Example 4.8 Set k = 3, n = 2 and λ = [5, 2]. One has,

P[5,2](x1 + x2; q, q
3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =

q3S[9,2] +
(1 − q7)(1 + q4)

1 − q5
S[7,4] −

(1 − q2)(1 + q)(1 + q2)(1 + q4)

1 − q5
S[8,3].

This implies

A2P[5,2](x1 + x2; q, q
3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =

(x1x2)
−2P[5,2](x1 + x2; q, q

3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =
P[3](x1 + x2; q, q

3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1).

12



One verifies that

P[3](x1 + x2; q, q
3)(x1 − qx2)(x1 − q2x2)(x2 − qx1)(x2 − q2x1) =

[

4

2

]

q

[

10

2

]

q

P[5,2](
x1 + x2

1 + q + q2
; q, q3).

Remark 4.9 If µ is the empty partition, Corollary 4.7 gives

k−1
∏

l=1

∏

i6=j

(xi − qlxj) = β
n,k
λ (q)P[((k−1)(n−1))n]

(

1 − q

1 − qk
X; q, qk

)

.

This equality generalizes an identity given in [1]:

∏

i<j

(xi − xj)
2(k−1) =

(−1)
((k−1)n(n−1)

2

n!

(

kn

k, . . . , k

)

P
(k)

n(n−1)(k−1)(−X),

where P
(k)
λ (X) = lim

q→1
P

(α)
λ (X; q, qk) denotes a Jack polynomial (see e.g. [11]).

The expansion of the powers of the discriminant and their q-deformations
in different basis of symmetric functions is a difficult problem having many
applications, for example, in the study of Hua-type integrals (see e.g. [4, 6])
or in the context of the factional quantum Hall effect (e.g. [3, 5, 7, 13]).
Note that in [2], we gave an expression of an other q-deformation of the powers
of the discriminant as staircase Macdonald polynomials. This deformation
is also relevant in the study of the expansion of

∏

i<j(xi − xj)
2k in the Schur

basis, since we generalized [2] a result of [5].

5 Macdonald polynomials at t = qk as eigen-

functions

Let Y = {y1, . . . , ykn} be an alphabet of cardinality kn with y1 = x1, . . . , yn =
xn. One considers the symmetrizer πω defined by

πωf(y1, . . . , ykn) =
∏

i<j

(xi−xj)
−1
∑

σ∈Skn

sign(σ)f(yσ(1), . . . , yσ(kn))y
kn−1
σ(1) . . . yσ(kn−1).

Note that πω is the isobaric divided difference associated to the maximal
permutation ω in Skn.
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This operator applied to a symmetric function of the alphabet X increases
the alphabet from X to Y in its expansion in the Schur basis, since

πωSλ(X) = Sλ(Y). (32)

Indeed, the image of the monomial yi1
1 . . . yikn

kn is the Schur function SI(Y).
Since

πωSλ(X) = πωxλ1
1 . . . xλn

n = πωyλ1
1 . . . yλn

n y0
n+1 . . . y0

kn,

one recovers Equality (32).
One defines the operator πtq which consists in applying πω and specializing

the result to the alphabet

X
tq := {x1, . . . , xn, qx1, . . . , qxn, . . . , qk−1x1, . . . , q

k−1xn}.

From Equality (32), one has

πtq
ω Sλ(X) = Sλ

(

(1 + q + · · · + qk−1)X
)

, (33)

for l(λ) ≤ n. Furthermore, the expansion of Sλ

(

(1 + q + · · · + qk−1)X
)

in
the Schur basis being triangular, the operator πtq defines an automorphism
of the space Sym≤n generated by the Schur functions indexed by partitions
whose length are less or equal to n, i.e. for each function f ∈ Sym≤n, one
has

πtqf(X) = f(Xtq). (34)

In particular, one has

Lemma 5.1 Let λ be a partition such that l(λ) ≤ n then

πtq
ω Pλ

(

1 − q

1 − qk
X; q, t = qk

)

= Pλ(X, q, qk). (35)

Proof It suffices to remark that Pλ

(

1−q
1−qk X; q, qk

)

∈ Sym≤n(X).4

It follows from (34),

πtq
ω Pλ

(

1 − q

1 − qk
X; q, qk

)

= Pλ

(

1 − q

1 − qk
X

tq; q, qk

)

= Pλ(X, q, qk).

4This can be seen as a consequence of the determinantal expression of the expansion
of Pλ(X, q, t) in the Schur basis evaluated on the alphabet X

tq (see [8]).
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�

Consider the operator M : f → Mf defined by

M := (x1 . . . xn)(k−1)(1−n)πtq
ω

k−1
∏

l=1

∏

i6=j

(xi − qlxj).

The following theorem shows that the Macdonald polynomials are the eigen-
functions of the operator M.

Theorem 5.2 The Macdonald polynomials Pλ(X; q, qk) are eigenfunctions

of M. The eigenvalue associated to Pµ(X; q, qk) is β
n,k
µ+((k−1)(n−1))n (q). Fur-

thermore, if k > 1, the dimension of each eigenspace is 1.

Proof From Corollary 4.7, one has

Pµ(X; q, qk)
k−1
∏

l=1

∏

i6=j

(xi − qlxj) = β
n,k
λ (q)Pλ

(

1 − q

1 − qk
X; q, qk

)

where λ = µ + ((k− 1)(n− 1))n. Applying πtq
ω to the left and the right hand

sides of this equality, one obtains from Lemma 5.1

πtq
ω Pµ(X; q, qk)

k−1
∏

l=1

∏

i6=j

(xi − qlxj) = β
n,k
λ (q)πtq

ω Pλ

(

1−q
1−qk X; q, qk

)

= β
n,k
λ (q)Pλ

(

X; q, qk
)

.

Since the cardinality of X is n, one has

Pλ

(

X; q, qk
)

= (x1 . . . xn)(k−1)(n−1)Pλ

(

X; q, qk
)

,

and
MPµ(X; q, qk) = β

n,k
µ+[((k−1)(n−1))n ](q)Pµ(X; q, qk). (36)

Suppose now that k > 1. It remains to prove that the dimensions of
the eigenspaces equal 1. More precisely, It suffices to show that βλ(q) =
βµ(q) implies λ = µ. The denominators of βλ(q) and βµ(q) being the
same, one needs only to examine the numerators, that is the products γλ =
∏n−1

i=0 (qλn−i+ki; q)k−1 and γµ =
∏n−1

i=0 (qµn−i+ki; q)k−1. One needs the following
lemma.
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Lemma 5.3 Let I = {i1, . . . , in} and J = {j1, . . . , jm} be two finite subsets

of N \ {0}. Then, I 6= J implies
∏

i∈I(1 − qi) 6=
∏

j∈J(1 − qj).

Proof Without lost of generalities, one can suppose I ∩J = ∅. Suppose that
i1 ≤ · · · ≤ in and j1 ≤ · · · ≤ jm. Then, expanding the two products, one
finds

∏

i∈I

(1 − qi) = 1 − qi1 +
∑

l>i1

(∗)ql 6= 1 − qj1 +
∑

l>j1

(∗)ql =
∏

j∈J

(1 − qj).

�

Each term (qλn−i+ki; q)k−1 is characterized by the degree of its factor of lower
degree : λn−i + ki. Hence, from Lemma 5.3, βλ(q) = βµ(q) implies that it
exists a permutation σ of Sn verifying

λi + k(n − i) = µσi
+ k(n − σi),

for each i. But, since λ is decreasing, one has

λi + k(n − i) − λi−1 − k(n − i + 1) ≤ 0.

And then,
µσi

+ k(n − σi) − µσi−1
− k(n − σi−1) ≤ 0. (37)

But, since µ is decreasing, σi−1 −σi has the same sign than µσi
−µσi−1

. As a
consequence, Inequality (37) implies σi > σi−1 for each i. The only possibility
is σ = Id, which ends the proof.�

Example 5.4 If n = 5, the eigenvalues associated to the partitions of 4 are

β
4,k
[4 k,4k−4,4k−4,4k−4,4 k−4] =

[

5k−5
k−1

]

q

[

6k−5
k−1

]

q

[

7k−5
k−1

]

q

[

8k−5
k−1

]

q

[

9k−1
k−1

]

q
,

β
4,k
[4 k−1,4k−3,4k−4,4 k−4,4k−4] =

[

5k−5
k−1

]

q

[

6k−5
k−1

]

q

[

7k−5
k−1

]

q

[

8k−4
k−1

]

q

[

9k−2
k−1

]

q
,

β
4,k
[4 k−2,4k−2,4k−4,4 k−4,4k−4] =

[

5k−5
k−1

]

q

[

6k−5
k−1

]

q

[

7k−5
k−1

]

q

[

8k−3
k−1

]

q

[

9k−3
k−1

]

q
,

β
4,k
[4 k−2,4k−3,4k−3,4 k−4,4k−4] =

[

5k−5
k−1

]

q

[

6k−5
k−1

]

q

[

7k−4
k−1

]

q

[

8k−4
k−1

]

q

[

9k−3
k−1

]

q
,

β
4,k
[4 k−3,4k−3,4k−3,4 k−3,4k−4] =

[

5k−5
k−1

]

q

[

6k−4
k−1

]

q

[

7k−4
k−1

]

q

[

8k−4
k−1

]

q

[

9k−4
k−1

]

q
.

6 Expression of M in terms of Cherednik el-

ements

In this paragraph, we restate Proposition 5.2 in terms of Cherednik operators.
Cherednik’s operators {ξi; i ∈ {1, . . . , n}} =: Ξ are commutative elements
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of the double affine Hecke algebra. The Macdonald polynomials Pλ(X; q, t)
are eigenfunctions of symmetric polynomials f(Ξ) and the eigenvalues are
obtained substituting each occurrence of ξi in f(Ξ) by qλitn−i (see [10] for
more details).
Suppose that k > 1 and consider the operator M̃ : f → M̃f defined by

M̃ :=
k−1
∏

i=1

(1 − qi)nM. (38)

From Proposition 5.2, one has

M̃Pλ(X; q, qk) =
n−1
∏

i=0

k−1
∏

j=1

(1 − qλn−i+k(i+1)−j)Pλ(X; q, qk). (39)

The following proposition shows that M̃ admits a closed expression in terms
of Cherednick elements.

Proposition 6.1 One supposes that k > 1. For any symmetric function f ,

one has

M̃f(X) =

k−1
∏

l=1

n
∏

i=1

(1 − ql+kξi)f(X). (40)

Proof From Theorem 5.2, it suffices to prove the formula (40) for f = Pλ.
The polynomial Pλ(X; q, t) is an eigenfunction of the operator

∏k−1
l=1

∏n
i=1(1−

ql+kξi) and its eigenvalues is
∏k−1

l=1

∏n
i=1(1 − ql+λitn−i+1)Pλ(X; q, t). Hence,

setting t = qk, we obtain

k−1
∏

l=1

n
∏

i=1

(1 − ql+kξi)Pλ(X; q, qk) =

k−1
∏

l=1

n
∏

i=1

(1 − ql+λi+k(n−i+1))Pλ(X; q, qk).

Comparing this expression to Equality (38), one finds the result. �
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