
HAL Id: hal-00250274
https://hal.science/hal-00250274

Submitted on 11 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Migrating Musical Concepts: An Overview of the Bol
Processor
Bernard Bel

To cite this version:
Bernard Bel. Migrating Musical Concepts: An Overview of the Bol Processor. Computer Music
Journal, 1998, 22 (2), pp.56-64. �hal-00250274�

https://hal.science/hal-00250274
https://hal.archives-ouvertes.fr

BEL, B. Migrating Musical Concepts: An Overview of the Bol Processor. Computer Music

Journal, vol. 22, no. 2. 1998, p. 56-64.

Migrating Musical Concepts — An Overview of the Bol Processor

Bernard Bel
CNRS (France) — Centre de Sciences Humaines (CSH)
2, Aurangzeb road, New Delhi 110 011, India

The Bol Processor is the outcome of a migratory process, its design having been
carried over in three phases and places: in collaboration with traditional North
Indian musicians (1980-85), Western musicians in Europe (1985-93) and back in
India with Carnatic musicians (1995-97).

The theoretical framework of the underlying research project also evolved in
three stages, taking inspiration from expert systems in the early 1980s, symbolic-
numeric machine-learning in the end of the decade, and composition theory (Laske
1989, 1992) in the 1990s.

Throughout this process, the designer has been faced with the challenge of
blending software with “mindware”, here taken to mean musicians’ striving for
[…] tools enabling them to manipulate objects so as to imbue them with ‘soul’ or
experiential value […] (Laske 1996). In a cross-cultural approach this led to
modelling descriptions of music and compositional processes at a level of
abstraction sufficiently high to encompass “local” musical concepts without
getting too abstruse.

Phase 1: setting-up the expert system

In 1982, ethnomusicologist Jim Kippen used to carry an Apple IIc, the ancestor
of laptop computers, to the homes of tabla players in North India. He
requested the author to design a word processor enabling him to type
rhythmic data at performance speed — up to five strokes per second. These
strokes are conventionally designated with semi-onomatopoeic syllables
named bol (from the Hindi/Urdu bolna, “to speak”): ‘dha’, ‘tirakita’, ‘dhin’,
‘ge’…

Bol Processor “BP1” resembled the AppleWriter program with a customised
mapping of the keyboard to the vocabulary of bols. The next step in its design
was the automation of “find-replace” operations aimed at experiments on
substitutions of word sequences. This led to the implementation of an inference
engine handling formal grammars, an approach based on Chomsky’s linguistics
(Révész 1985). Given a grammar, the inference engine picks up rules at
random to rewrite a string of variables and terminal symbols derived from the
conventional starting symbol ‘S’. This process goes on till the exhaustion of
candidate rules (Roads 1984:16-21; Bel and Kippen 1992).

2

Examples of grammars modelling improvisation on the tabla have been
published by Kippen and Bel (1989a, 1992).

Phase 2: modelling compositional tasks

In the late 1980s, interaction with Western musicians led the author to revise the
research agenda, focusing on explorative,!rather than analytical, approaches.
This followed experiments with a machine-learning device infering formal
grammars from sets of musical examples. Inductive inference had been
successfully tried on sample sets of tabla music, but when it came to real
performance this method highlighted the need of background knowledge
which only a consistant theory of compositional and improvisational strategies
could provide (Kippen and Bel 1989b).

The Bol Processor was ported to the Apple Macintosh and the new version was
named “BP2.” The alphabet of terminal symbols (bols) was mapped to sound-
objects containing sequences of MIDI messages, and complemented with simple
notes in English, French, Indian and key-number notation. These notes can be
captured from MIDI devices. A 440Hz tone is respectively notated ‘A4’, ‘la3’,
‘sa4’ or ‘key#69’ in the four conventions.

The initial inference engine of Bol Processor was handling context-sensitive
rules in formal grammars. To solve new musical problems it became necessary
to implement a check of remote and even “negative” contexts. In addition,
BP2’s syntactic model accepts meta-variables (wild cards), repetition patterns,
logic-numeric flags controlling the inference, and meta-grammars producing
grammars (Bel and Kippen 1992; Kippen and Bel 1992).

The polymetric expansion algorithm

Migrating to Western music raised an important question: how can polyphonic
structures be represented in a linear text format? The answer came with
polymetric expressions (Bel 1992:72-85). A simple polymetric expression is shown
figure 1 in staff notation, BP2 graphics and phase diagram. The latter is a table
containing pointers to the instances of sound-objects ‘C4’, ‘E#3’, etc.

3

C4 _ _ - _ _

- _ E#3 _ G3 _

A#5 _ _ _ _ _

- _ _ D5 _ _

1 2 3 4 5 6

Figure 1: Staff notation, phase diagram and BP2 graphic display of a polymetric

expression notated “{1,!C4!-,!-!E#3!G3,!A#5,!-!D5}”. This expression is taken from

a grammar producing a piece imitating Steve Reich’s style. (Courtesy Thierry

Montaudon)

This expression is notated “{1,!C4!-,!-!E#3!G3,!A#5,!-!D5}” on a BP2 text score. It
shows five sequences (fields) separated by commas. The leftmost field contains
‘1’, the symbolic duration of the expression. With a metronome set to 45!beats
per minute, the resulting physical duration is 1.33 seconds.

The polymetric expansion algorithm imbedded in Bol Processor coerces all
sequences of the structure to the same symbolic duration. The second field
contains a note ‘C4’ followed by a silence ‘-’, both of which will be treated as
quavers. The third field contains the sequence “-!E#3!G3” which is performed
as a triplet.

Thus, the polymetric expression “{1,!C4!-,!-!E#3!G3,!A#5,!-!D5}” is expanded to
“/6!{C4_!_!-_!_,-_!E#3_!G3_,A#5_!_!_!_!_,-_!_!D5_!_}"” as suggested by the phase
diagram. Symbol ‘_’ is a prolongation of the preceding sound-object, and ‘/6’
indicates a change of tempo after which durations are divided by 6.

The polymetric expansion algorithm is called recursively by expressions
containing multiple parenthesis levels. Sequences may optionally contain
undetermined rests, the durations of which are computed to satisfy a constraint
of minimum complexity in the resulting structure (op.cit:80).

Period notation

In the same way it deals with superimposed sequences, the polymetric
expansion algorithm works out equal symbolic durations between beat
separators notated ‘•’ — the “period notation.” A note sequence in period
notation and the context-free grammar it originated from are shown figure 2.
In this example, beats contain increasing numbers of notes resulting in an
accelerating movement.

4

S --> _vel(60) A B _vel(65) C D _vel(70) E F _vel(75) G _vel(77)
H _vel(80) I _vel(85) J _vel(87) K _vel(90) L

A --> E2 •
B --> D2 A
C --> B2 B
D --> G2 C
E --> F#2 D
F --> A#2 E
G --> C2 F
H --> G#2 G
I --> A2 H
J --> D#2 I
K --> C#2 J
L --> F2 K

BP2 score: Velocity controls have been left out

E2 • D2 E2 • B2 D2 E2 • G2 B2 D2 E2 • F#2 G2 B2 D2 E2 • A#2 F#2 G2
B2 D2 E2!• C2 A#2 F#2 G2 B2 D2 E2 • G#2 C2 A#2 F#2 G2 B2 D2 E2 •
A2 G#2 C2 A#2 F#2 G2 B2 D2 E2 • D#2 A2 G#2 C2 A#2 F#2 G2 B2 D2 E2
• C#2 D#2 A2 G#2 C2 A#2 F#2 G2 B2 D2 E2 • F2 C#2 D#2 A2 G#2 C2 A#2
F#2 G2 B2 D2 E2 •

Figure 2: A grammar producing an accelerating sequence of notes, and the resulting

item in BP2 score notation. (Courtesy: Harm Visser)

Once the grammar has been typed, the user may select “Produce!items” to get
a text or graphic display of its production, listen to it on the MIDI output, and
optionally produce a Csound score. The output of the “acceleration grammar”
of figure 2 is displayed on a piano-roll score (figure
3).

Figure 3: A piano-roll of the item produced by the grammar of figure 2.

Quantization as a response to complexity

The polymetric expansion algorithm works on integer ratios yielding absolute
time accuracy. It produces an expanded polymetric expression used to
construct the phase diagram. The phase diagram of figure 1 contains 6 columns
or frames. This value was obtained as the lowest common multiple (LCM) of 1,
2, 3, the symbolic durations of sequences in the original expression.

Complexity quickly grows out of acceptable ranges. For instance, the phase
diagram of the example displayed figure 3 should contain
12!x!27,720!=!332,640!frames, where 27,720 is the LCM of 1, 2, 3, …, 12. Since the

5

total duration is 12!seconds, the delay between two frames would be
12!/!332,640!=!36!microseconds, i.e. about 1,000 times less than a musical ear
would be able to notice. Needless to say, large phase diagrams demand a great
amount of computation space and time.

BP2 performs a quantization to reduce the size of the phase diagram before it is
constructed. A reasonable time resolution, for instance 20!milliseconds, is
declared by the user. The machine calculates a compression rate accordingly.
In the example of figure 3 the rate is 20,000!/!36!=!555. Consequently, the
simplified phase diagram contains only 332,640!/!555!=!600 frames.
Quantization is performed at the symbolic level, modifying polymetric
expressions before constructing the phase diagram. This method is prefered
for two reasons: 1) it minimises computation time and space; 2) it ensures long-
term time accuracy since rounding errors are not cumulated.

Quantization is indispensable to the performance of intricate structures (e.g.
self-replicating fractals) produced by recursive grammars. A recursive
grammar contains self-imbedding rules rewriting their own left argument to
the string under derivation, or rules that rewrite each other’s left argument.
Thanks to the polymetric syntax, the symbolic durations of time-object
structures produced by recursive grammars may be coerced to finite values
regardless of the number of symbols they are made of. While recursivity
allows musical structures to grow more complex in a specified time metrics,
quantization is required to maintain complexity below the limit set by the time
discrimination of the auditory system.

Sound-objects

The low-level components of musical structures in the Bol Processor are not
conventional notes but sound-objects. A sound-object may contain a stream of
MIDI messages, a Csound score or any combination thereof. Simple notes are
predefined sound-objects reduced to a NoteOn/NoteOff pair in MIDI, or a
single score line invoking a pitched Csound instrument.

The sequence of events in a sound-object and its metrical and topological
properties (see infra) are stored in a template called a sound-object prototype.
Each terminal symbol of the grammar is assigned a unique sound-object
prototype. Instances of sound-object prototypes may be resized according to
the metronome speed and their symbolic durations. Resizing can be prohibited
or restricted to a particular range. An object may also be declared “cyclic:”
beyond an introductory section the sequence of events is repeated instead of
being stretched.

The perceptual and physical start/end points of a sound-object may be
dissociated, as suggested by Dannenberg (1997a:50), using “preroll” and
“postroll” values defined in its prototype (Bel 1997:24).

When a metronome is used the performance is set in striated time — Boulez’
temps strié (Boulez 1963:107; Bel 1992:71). Accordingly, metronome beats or

6

their regular subdivisions are named time streaks. An anchoring point to the
time streak, a pivot, is defined for each sound-object prototype.

In the sequence displayed figure 4, the sound-object ‘a’ behaves like simple
notes ‘C4’ and ‘D4’. Its pivot (a triangle at the top left corner) is placed on the
time streak numbered ‘0’ and its duration is exactly one beat. Sound-objects ‘b’
and ‘c’ behave in different ways. Their durations are less than one beat as they
may contain sequences of events whose durations could not be dilated beyond
a certain range. In addition, the pivot of sound-object ‘b’ is located after the
first event. Consequently, the time-span of ‘b’ is overlapped by ‘D4’.

Figure 4: A sequence of five sound-objects notated “a!C4!D4!b!c” performed on a

metronome beat (mm!=!60). The horizontal axis represents physical time.

Vertical positions are arbitrary. Vertical lines numbered 0, 1, 2, are the time

streaks. Rectangles represent the time-span of elementary MIDI or Csound event

sequences.

The time-setting algorithm

Sound-objects may be assigned topological properties pertaining to their time-
span intervals in a sequence (Bel 1992:90-92). For instance, sound-object ‘b’
could be configured to prohibit its overlapping by the preceding sound-objects.
In addition, it could be declared “non-relocatable.” The time-setting algorithm
would then try any of the solutions shown figure 5:

1) truncating the beginning of ‘b’;

2) if truncating ‘b’ is not allowed, it could “break the tempo,” delaying by 200
milliseconds all time streaks beyond the one labelled ‘2’;

3) if breaking the tempo is not allowed, the algorithm would attempt to
relocate ‘D4’;

4) the same as (3) when sound-object ‘c’ has a property specifying that its time-
span interval must be contiguous with the one of a preceding object.

7

(1)

(3)

(2)

(4)

Figure 5: The sequence shown figure 4 with the additional constraint that ‘b’ is

not relocatable. The time-setting algorithm may opt for any of the solutions

displayed here. Solution (4) is the same as (3) with forced continuity between

sound-objects ‘b’ and ‘c’.

The time-setting algorithm may recursively modify the positions of all sound-
objects in a sequence until all constraints are satisfied (Bel 1992:85-107). This
constraint-satisfaction approach combines stipulatory top-down design at the
symbolic level — formal grammars, polymetric structures — with bottom-up
constructs based on sound-objects endowed with metric and topological
properties.

8

Time patterns

In our view, an essential feature of the sonological component of music
software lies in the proper distinction between “symbolic” and “physical” time,
and their mapping which should take into account the plasticity of perceptual
time. We use “symbolic” in a sense similar to Jaffe’s (1985) “basic” time or
Dannenberg’s (1997b) “score” time. However, since these authors rely on
numeric functions for the mapping of physical time to symbolic time (op.cit:62),
they measure both with real numbers. In the Bol Processor, symbolic time is
expressed by integer ratios, a format which lends itself to symbolic-numeric
computation as exemplified with the polymetric expansion algorithm.

Time-stretch operators are implemented in BP2, but they work as performance
controls. For instance, the “_legato(x)” and “_staccato(y)” tools alter the
durations of sound-objects, and their numeric arguments ‘x’ and ‘y’ may be
interpolated throughout a sequence and copied to sub-structures in a
polymetric expression. Thus, time flexibility in BP2 is not the effect of arbitrary
numeric functions. It stems out of a time structure — Xenakis’ (1963) structure
temporelle — deeply interwoven with the syntactic description of music.

The case of time patterns will clarify this point. In smooth time, the temps lisse of
Boulez (1963:107), empty time-objects labelled ‘t1’, ‘t2’… may be set-up (as
integer ratios) to build a hierarchy of time patterns. Figure 6 shows a sequence
of simple notes ‘do5’, ‘re5’… arranged on a lattice of time-objects setting up an
irregular beat structure.

BP2 score:

{10,t1 t2,{t1 t3 t4,do4 re4 mi4 fa4 - la4}{t3 t1,si4 do5 _ mi5}}

Grammar producing this score:

S --> {10, t1 t2, Part1 Part2}
Part1 --> {t1 t3 t4, do5 re5 mi5 fa5 - la5}
Part2 --> {t3 t1, si5 do6 _ mi6}

TIMEPATTERNS:
t1 = 1/1 t2 = 3/2 t3 = 4/3 t4 = 1/2

Figure 6: A sequence of simple notes ‘do5’, ‘re5’,…, arranged against a lattice of

time objects ‘t1’, ‘t2’,…, resulting in an irregular “beat” structure in smooth time.

9

Symbolic time, marked by vertical lines numbered 1 to 11, is basically a
graduation in which precedence relationships are checked by comparing
integer ratios. There is no explicit mapping of symbolic to physical time, no
“corrective factor” as the physical timing of this musical piece depends on the
instantiation of time-objects imbedded in its deep structure.

Phase 3: the Csound interface

After 1994, the Bol Processor project resumed in India with a significant input
from musicians conversant with computer technology (Kippen and Bel 1994).
Finding no MIDI studios around was an incentive to look for new
environments BP2 could fit in. Csound (Vercoe 1993) became a priority target
because of its versatility and free availability on various platforms.

The interaction between BP2 and its MIDI and Csound environments is
sketched out figure 7.

10

BP2 scores (text)

Sound-object prototypes

Sound files

Csound scores Csound orchestra

Text editor

BP2 grammars

Csound instrument

specs

MIDI direct sound

MIDI files

Figure 7: The interaction between Bol Processor BP2, MIDI and Csound. BP2 scores

in text format may be typed in, produced by a grammar or entered from a MIDI

device. These scores contain simple notes, sound-objects and performance controls.

A BP2 score combined with sound-object prototypes works out a direct MIDI

output. The same output can be saved to MIDI files which may in turn be exported

to sound-object prototypes. The same score combined with a formal description of

Csound instruments yields a Csound score. Csound is then invoked to make a sound

file using the orchestra file and the score generated by BP2.

Csound handles sound synthesis and transformation algorithms with arbitrary
parameters making it easy to represent features beyond the reach of the
Western classical concepts underlying MIDI.

Given the description and location of parameters in a Csound orchestra, BP2
tries its best to produce scores handling all significant parameters. While the
parameters defined in MIDI (pitch, volume, pitchbend, channel pressure…) can
be mapped to those of Csound instruments, BP2 also manipulates user-defined
parameters that have no equivalent in MIDI.

BP2 is able to convert a stream of MIDI messages to a Csound score using the
parameter definitions and mappings defined in the Csound orchestra

11

description. Each Csound instrument may be assigned a MIDI channel so that it
handles messages on that channel. When no instrument description is
available, BP2 uses a default instrument accepting only pitch, volume and
pitchbender information, with arguments pointing to optional function tables.

When both MIDI and Csound are used for the same project, it is practical to
create dual sound-objects producing related sounds so that outlines of the
composition are checked in real time and Csound is used for final versions.

The orchestra/score dichotomy has often been resented as a limitation of
Csound. Bol Processor addressed this problem by allowing a high-level
description of the orchestra to steer its Csound score generator.

Vectorising continuous parameters

MIDI control parameters such as pitchbend, volume, panoramic,…, or arbitrary
parameters defined for Csound instruments, may be set to vary continuously
during the performance. In a conventional MIDI sequencer, these streams of
messages would be stored along with other data, an approach which is similar
to “pixel” graphics.

BP2 uses a “vector” representation in which only a few points are provided and
intermediate values interpolated during the performance (Bel 1996). A melodic
shape on the note ‘D4’ could for instance be notated:

_pitchrange(200) _pitchbend(+200) D4 _ _ _ _ _ _pitchbend(-200) _ _ _ _ _ _ _ _ _
_ _pitchbend(+160) _ _ _ _ _ _ _pitchbend(-200) _ _ _pitchbend(0)

Instruction “_pitchrange(200)” instructs BP2 that the range of the pitchbender
on the current patch is [-200,!+200] cents.

While playing the item on MIDI, the interpreter generates a stream of
pitchbend messages at a programmable sampling rate (typically 30 messages
per second). When producing Csound scores, BP2 constructs a function table
for the Csound parameter mapped to pitchbend. This function table is inserted
before the score line of events invoking it to produce the required shape.

Real-time control

All processes in BP2 may be automated thanks to an interpreted script language
akin to AppleScript. Some script instructions determine responses to the MIDI
environment. For example, instruction “Wait!for!Continue” causes the
performance to hang until a “Continue” MIDI message is received. BP2 can
also be operated and synchronised by messages packed in AppleEvents.

Real-time interaction is similar to the situation of several musicians improvising
together while they exchange information about parameters such as changes of
tempo or compositional patterns through conventional (audible or inaudible)
messages.

It is possible to synchronise processes, perform or repeat an item, modify
tempo, adjust rule probabilities in grammars, etc., using a MIDI keyboard and

12

controllers, a MIDI sequencer, interactive programs like Opcode MAX, or even
another BP2.

A commitment to text

BP2 gives preference to text representations of musical data and compositional
processes (scores, grammars, scripts, glossaries, etc.). All files may be saved in
hypertext format so that no data gets corrupted and no transcoding is required
to exchange files with other computer platforms or via the Internet.

BP2 data and processes in text format can be stored in standard data-base
systems such as Claris FileMaker Pro. We use this feature for storing song
melodies that can be played in QuickTime Music by BP2 running in background
as a server. Scripts attached to buttons of the data-base upload the contents of
fields along with AppleEvents telling BP2 how to process this data.

Conclusion — back to pencils?

Thanks to interactions with musicians tired of Euro-centric music software, the
Bol Processor has become a flexible environment for composition and
improvisation in MIDI and Csound, taking advantage of text representations of
musical data and processes.

The strength of the formal language approach — text representations of
musical data and processes — lies in the possibility of structuring material in a
comprehensive manner. BP2 helps the composer to concentrate on declarative
knowledge while procedural aspects are taken care of by constraint-satisfaction
algorithms. In sum, musicians can concentrate on “virtual” music, high-level
design strategies, rather than depend on a library of preset algorithms imitative
of existing music — for instance permutations à la Stravinsky or à la Schönberg.

The last word should be with musicians whose concern for flexible and
powerful software tools cannot be dissociated from their penchant to adequate
task environments. Recently, Harm Visser wrote to the author:

I think that the development of more and more visual stuff curtails the possibility of
"thinking in your chair." Sometimes I develop grammars, not at the computer, but
sitting with a pencil and paper. With programs [other than BP2] this is not possible:
you must sit in front of the computer. The difference lies in the type of attention that
each software environment demands on the part of the composer, and indeed reflects
on the way s/he thinks about music.

Interestingly, fifteen years ago the Bol Processor venture had been initiated by
a musicologist using his computer on the research site to get rid of pencils!

The current design agenda includes new types of sound-objects (fragments of
AIFF and MOD files, QuickTime), an editor for shape tables, interactive
graphics, microtonal scale management and communication with other
computer music software. Tools for the transformation of sequences, such as
permutation, retrogression and intervallic expansion or contraction will soon

13

become part of BP2 syntax. It is hoped that the development team — currently
the author and Srikumar Karaikudi Subramanian — will grow in proportion to
the demand.

Acknowledgements

This research is an outcome of projects conducted under the banners of the
International Society for Traditional Arts Research (ISTAR, New Delhi), the
French Centre National de la Recherche Scientifique (CNRS, France) and the Centre
de Sciences Humaines in New Delhi (CSH, French Ministry of External Affairs).

The author is most indebted to Thierry Montaudon and Harm Visser for their
musical input and thoughtful comments during the writing of this paper.

Access to software

Bol Processor BP2 is a shareware program running under Macintosh operating system. Version
2.7.4 or greater may be downloaded from Info-Mac mirror sites, notably
<ftp://ftp.amug.org/pub/mirrors/info-mac/gst/midi/>.

http://bolprocessor.sourceforge.net

References

Bel, B. 1992. “Symbolic and sonic representations of sound-object structures.” In M. Balaban,
K. Ebcioglu, and O. Laske, eds. Understanding Music With AI: perspectives on Music
Cognition. Menlo Park: AAAI Press, pp.65-109.

Bel, B. 1996. “A flexible environment for music composition in non-European contexts.”
Journées d'Informatique Musicale 1996, Caen (France). Available with sound examples on
<http://www.ircam.fr/jim96>.

Bel, B. 1997. Bol Processor BP2: QuickStart and Reference Manual. Available from
<ftp://ftp.amug.org/pub/mirrors/info-mac/gst/midi/>.

Bel, B. and J. Kippen 1992. “Bol Processor grammars.” In M. Balaban, K. Ebcioglu, and O.
Laske, eds. Understanding Music With AI: perspectives on Music Cognition. Menlo Park:
AAAI Press, pp.366-400.

Boulez, P. 1963. Penser la musique aujourd’hui. Paris: Gonthier.

Dannenberg, R.B. 1997a. “Machine Tongues XIX: Nyquist, a Language for Composition and
Sound Synthesis.” Computer Music Journal 21(3):50-60.

Dannenberg, R.B. 1997b. “Abstract Time Warping of Compound Events and Signals.”
Computer Music Journal 21(3):61-70.

Jaffe, D. 1985. “Ensemble timing in computer music.” Computer Music Journal 9(4):8-48.

Kippen, J. and B. Bel 1989a. “Can the computer help resolve the problem of ethnographic
description?” Anthropological Quarterly 62(3):131-144.

Kippen, J. and B. Bel 1989b. “The identification and modelling of a percussion "language",
and the emergence of musical concepts in a machine-learning experimental set-up.”
Computers and the Humanities 23(3):199-214.

Kippen, J. and B. Bel 1992. “Modelling music with grammars: formal language representation
in the Bol Processor.” In A. Marsden and A. Pople, eds. Computer Representations and
Models in Music. London: Academic Press, pp.207-238.

14

Kippen, J. and B. Bel 1994. “Computers, Composition and the Challenge of "New Music" in
Modern India.” Leonardo 4:79-84.

Laske, O. 1989. “Composition Theory: an enrichment of Music Theory.” Interface 18(1-2):45-
59.

Laske, O. 1992. “A Search of a Theory of Musicality.” Languages of Design 2:209-28.

Laske, O. 1996. “Creativity — Where should we look for it?” In T. Dartnall, ed., Creativity,
Cognition, and Computation. Cambridge: The AAAI/MIT Press.

Révész, G.E. 1985. Introduction to Formal Languages. New York: McGraw-Hill.

Roads, C. 1984. “An Overview of Music Representations.” In M. Baroni and L. Callegari, eds.
Musical Grammars and Computer Analysis. Firenze, Italy: Olschki, pp.7-37.

Vercoe, B. 1993. Csound. A Manual for the Audio Processing System and Supporting Programs
with Tutorials. Massachusetts Institute of Technology. Internet distribution:
<ftp://notam.uio.no/pub/mac/audio/>.

Xenakis, I. 1963. Musiques formelles. Paris, France: La Revue Musicale.

