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FIBER TRACKING ON HARDI DATA USING ROBUST ODF FIELDS
H-E. Assemlal D. Tschumpeérl L. Brun

GREYC IMAGE (CNRS UMR 6072), 6 Bd Maréchal Juin, 14050 Caeué€X, France

ABSTRACT et al. [E] proposed a generalization of DTI based on the ex-
] ] ~ pansion of Fick’s diffusion laws to higher order. However

We presgnt a_robust method to_retrleve neuronal f|pers in hyp practice, this methods requires to sample several gespac
man brain white matter from H|gh-AnguIa_r Resolutl_on MRI single spheres at different gradient strenghts and uratsgir
(HARDI datasets). Contrary to classical fiber-trackingtec jncreases the number of acquisitions. Tucl'ﬂn [5] proposed t
niques done on the traditional 2nd-order tensor model (DTlyea5yre diffusion orientation through tBeientation Distri-
which may lead to truncated or biased estimated diffusien diytion Function(ODF) defined as the radial projection of the
rections in case of fiber crossing configurations, we proposgpherical diffusion function from HARDI data. Given a unit
here a more complex approach based on a variational estimgsatia| direction: € R?, ¥(u) is the radial projection of the
tion of Orientation Diffusion Functions (ODF) modeled with ppE on the line directed by. Thus, the exact ODF can be

spherical harmonics. This kind of model can correctly reyyitien without loss of generality witlx taken as the z-axis,
trieve multiple fiber directions corresponding to underlyi 4¢

intra-voxel fibers populations. Our technique is able to-con -
sider the Rician noise model of the MRI acquisition in or- ¥ (u) = [~ P(au)da = [ P(r,0,2)5(0, z)rdrdodz (1)

der to better estimate the white matter fiber tracks. Resul
on both synthetic and real human brain white matter HARDT?UCh ﬁi] showed that the Funk-Radon transform (F&Tjom

datasets illustrate the effectiveness of the proposecdaphr the raw HARDI data approximates the ODF on the Q-space

single sphere:
Index Terms— Diffusion MRI, Variational methods and
Gy [S(a@)l(u) = 27¢" [ P(r,0,2)Jo(2nq r)rdrdfdz (2)

PDEs, ODF estimation, Fiber-tracking

where J, stands for the zeroth-order Bessel function. Con-
sequently, the estimated ODF in a directioiis given by the
greatintegral over the diffusion signal on the plane ortivag
Diffusion Magnetic Resonance Imaging (dMR]l) [1] is a non-tou. This leads to an interesting model-free method known as
invasive method to observe the Brownian motion of watelQ-Ball Imaging to retrieve orientation diffusion infornias,
molecules constrained by neuronal tissiregivo within the  contrary to themodel-basednethods which implies a strong
brain. Diffusion Tensor Imaging (DTI) is a well-known par- a priori knowledge about the local fiber configuration. Once
ticular case of such a modality which maps each voxel signdiaving estimated diffusion directions, an interestingliagp

to a 2nd-order tensor modﬂ [2]. Itimplicitly assumes tingt t  tion of diffusion MRI consists in retrieving neuronal fibens
diffusion is Gaussian everywhere, which is wrong and leadbrain white matter by the mean of a so calfézer-tracking

to serious limitations when estimating intra-voxel diffus  algorithm. This is classically done by computing the inggr
configurations where more than one single fiber direction precurve of interpolated DTI dominanteigenvectcﬂd]& 7]. How
dominates, like in crossing or kissing fibers patterns. tieor ever, these methods are very sensitive to noise since iyalwa
to overtake this significant shortcoming, higher orderudiff suppose that the dominant eigenvector is correct. Noise iss
sion model have been considered so far. Historically, Biéjs was tackled in[[7[|8]]9] who proposed to apply regularization
and Tanner were the first to show the exact relation betweeschemes on tensor or principal direction before applyirg th
the diffusion signal and the diffusion probability denditypc-  fiber-tracking step. One of the main limitation of the DTI
tion (PDF) ﬂ;]. More recently, Tuch proposed the Q-Spaceanodel is that it is not able to retrieve several intra-voxetfi
Imaging (QSI) technique based on the inverse Fourier Tranglistributions, leading to wrong or biased estimation of dom
form to estimate the PDF. Unfortunately, this method has signant fiber directions. On the other hand, recent higher order
nificant restrictions essentially because of the long aiqui models as ODF fields are promising for estimating correct
tion time needed to sample the whole g-space. Consideringeuronal fibers.

QS limitations, High Angular Resolution Diffusion Imagjn In the following sections, we quickly remind the linear esti
(HARDI) comes as an interesting alternative as it samples thmation technique of the ODFs introduced by Descotegtux
diffusion signal only on the single sphere following digere al. [fLq] (section[2]1). In sectioh 2.2, we present our contri-
gradient directions; and consequently needs less time. Libution, i.e. a new variational framework for a more robust

1. INTRODUCTION



estimation of the ODF field. It has the advantage of beindollows a Rice distribution|EI3] not a Gaussian one. There-
nonlinear, allowing to estimate and regularize simultarsho  fore, a least square fit is definitely not the best choice for
a wholevolumeof ODFs. We highlight the importance of a such an estimation process. Furthermore, estimation imad
robust ODF estimation considering regularization comstsa voxel-by-voxel and does not reflect the spatial regularfty o

on fiber-tracking in sectiof] 3. We finally illustrate this nedd  the diffusion function. Hence, our contribution is a vadagl

by validating results on synthetic and human brain HARDIframework which is adaptable to MRI noise distribution and

data. able to use valuable informations of the neighbour voxels.

2. ROBUST ESTIMATION
. . . 2.2. PDE-based estimation
2.1. Linear estimation

Descoteawset al. [[[d] recently proposed an elegant analyti- e key idea is to estimaend regularize the whole volume
cal method based on the Funk-Hecke theorem to calculate ti%é VOXels at the same time. It is worth to mention that similar
great integral of the FRT from a signal expressed in a spheﬁmhOdS have been proposed for the regularization of BT,
cal harmonics (SH) modified basis. It is a set of orthonormak4] and apparent diffusion coefficient (ADC) [15]; yet none
functions to describe complex functions defined on the unitS able to take advantage of the informations provided by the
sphere and constrained to be symmetric and fed[Ad; 11, 15PFs.

as these are known diffusion signal properties. Thug/Jeff ~ LetC: Q¢ C R® — RY be the volume of spherical harmon-
degreej be a spherical harmonic, any functigndefined on  ics coefficientsps € R be the number of gradient directions
the unit spher&(, ) € Q,, = [0,7] x [0,27),x : Q, — R  andB be the matrix of sizén,, N)

can be described as:

X(0,0) = Y00 ¢;Y5(0, ) = BC;, (6i,6:)  (3) B

whereN corresponds to the highest degree of the decompo- Yi(0n.s n.) - YN(On,, én.)

sition into spherical harmonic# is a matrix of SH functions

Y; andC : R® — R" be the vector of coefficients of spheri- We propose to robustly estimate and regularize the ODF field

cal harmonicsit voxelp = (z,y, 2). simultaneously by minimizing this nonlinear functionaken

LetS : R? — R™ be the vector field of diffusion signal in ergy E defined as:

n, discrete directions on the sphere. Descotesiual. [[LG]

proposed to fit the signal with a continuous spherical fuorcti ns

by a least square minimization min {E(C) :/ [Z Y(De)) | + a<p(||VC||)dQS}
CeQc Qs .

minCeQS ||S(p) (091', ¢1) - BC(p)(Gl, ¢z)||2 (4) . -~ (8)
whereDy, at voxelp is Dy, = Sk, — >, P; 'Bi;Cj,,
whered;, ¢; follow gradient discretization of the diffusion is a data attachment term which measures the differences be-
signal on the single sphere. Best fitting coefficiddtare then tween the raw signal and its ODF estimation at gradient di-
given by a modified Moore-Penrose pseudo-inverse schemeectionk, 1 : R — RT™ andy : R — R* are real and
o _ ~ positive functionsp € R is the regularization weight and
Cp) = (B"B+AL)'BTS, (5)  ||vC]|| the gradient norm defined 4&7C|| = 3=, [|VC,]|.
Note that if(s) = s? anda = 0 in (f), we minimize the
LS criterion ﬂi corresponding to the Descoteaux’s method

Y1(917¢1) YN(91,¢1)
. - @)

where ) is the weight term on the frequential regularization

matrix L. At thls_p0|r_1t, we have a continuous spherical func'with A = 0). Yet, as MRI noise follows a Rician distribution,
tion fitting the diffusion signal. We want now to recover the ST . S
least square criterion is not the best choice. THanction is

ODF which gives the orientation of the diffusion. Descoteau defi L o
L efined to support a robust ODF estimation and regularizatio
et al @] showed that the FRT approximating the ODF can t betw diff tfiber distributiot
be expressed using the SH basis, by: preserves contours between different fiber distributigiores
using the gradient norr||C||. Indeed, Frank in[[]2] points
. Py (0) out that the spherical harmonics basis is well adapted t6 cha
Gy [Sp)(a)] = PBCp) =3; PW%} %o Yiey () acterize anisotropy since its coefficients characterizedpic
_ (j = 0), one-fiber § = 1), and several fiberg (>= 2) diffu-
where P a N-rank order diagonal matrix, ang}; are asso- sions. As the minimization cannot be computed straightfor-
ciated Legendre polynomials at ordgr(value of/ knowing  wardly, the gradient descent coming from the Euler-Lageang
4). P is a transition matrix from Q-space signal to diffusion derivation of (B) leads to a set of multi-valued partial daté
probability space. equation (PDE)|]9). In order to estimate a solution, SH coeffi
The spherical harmonics are a powerful tool to recover an agzients velocity% giving the direction from the curre, to
proximation of the ODF. However, MRI noise distribution a solution is computed. The latter is done several timed unti



convergence (typically when— 0, 2€ < ¢ ). can be expressed in the spherical harmonics basis which has

)9t
the advantage to be much faster to compute.

90, = P71y, ¢/ (IDy) sign(Dy) Bi ©

. _ std(¥)

The initial estimateC,— = Uy is computed either by con- Thg gives a convenient way to measure apart isotropic from
sidering a random field or a more structured one. A goodhisotropic area; therefore we used it to stop fiber line-inte

choice is to s_tqrt from an initigl set which _is nqt so far fromgration when arriving in water arege. whenG F A is below
the global minimum; so the linear LS estlmatlcﬁh (5) seems, threshold.

to be an adequate alternative. Indeed, LS minimizationds th

global minimum when)(s) = s> anda = 0. One can ex- 4. APPLICATIONS
pect the minimum to be close enough to the LS minimu
through variations ofy and¢ (c.f. Fig[.(e/f)); and should

52 . . . B
consequently bring down the number of iterations requived ttion ¢ (s) = 1 — 6_(75) and the discontinuity-preserving reg-
converge. ularization functiony(s) = -, Wherer,; andx, are

1
1+s2/k
two thresholds depending o;th/e value range of the original
3. FIBER-TRACKING HARDI dataset. Please refer @16] for a functigrspecific
DTl-based fiber-tracking has been widely usgd[j6[]7[]8, 910 MRI Rician noise. We first present results of our varia-
but it has significant drawbacks when dealing with intraelox tional framework on synthetical HARDI data created using a
structures. Indeed, not only DTI cannot model crossing ofsaussian multi tensor mod¢l [11] to simulatdibers cross-
kissing fibers but it also estimates wrong directions in tieec  ing. Discretization of the sphere (72 directions) was otgdi
of multiple fiber configurations. On the contrary, ODF doesfrom the subdivision of a regular icosahedron. Our syntheti
not fall into this restrictions. Nevertheless, althoughigsue data simulate horizontal and vertical fibers (respectiviglyt
of robust fiber-tracking has received numerous contrilbutio and top in Fig[JL) merging into one horizontal fiber (left in
with DTI model it is still an open problem when using ODFs. Fig[l). From the several fibers distributions estimated, we
In order to illustrate the influence of a robust ODF estinmatio retrieved one using a simple a priorig. to follow the di-
on fiber-tracking, we propose a model for retrieving neuronarection which is the most vertical. As expected, DTI is not
fiber in brain white matter. able to retrieve correctly the profile of any underlying fiber
A way to do fiber-tracking is to use estimated displacemenas shown in Fig[{1.b). Instead, it estimates a wrong direc-
due to diffusion which is given by the ODF in order to find tion, which is a mixture of the two main directions from each
dominant directions. Once directions are retrieved, onky o fiber distribution. Therefore the estimated fiber is a fictne
is kept based on a priori on the fibers distribution, resulting since a correct path in this dataset would be either horatont
in a diffusion tensors fieldv. A line integration scheme is Or going vertical. Fiber-tracking on ODF does not have this
needed to propagate a fiber along a cubwkrough the ten- problem, but it is sensitive to noise. However our variagion
sors volume¢.f. Figﬂ)_ One may want to use Euler method method successfully estimates the ODFs field from noisy data
(PSNR = 15dB), which leads to good fiber-tracking.{.
Cath = Cq + hwy + O(h?) (10)  Figl.(er).
We finally tested our estimation framework on a human brain

: i . . HARDI dataset, using &.57 MRI scanner with31 gradient
gration step. In practice, Euler's method is not stable agd p directions and — 500s/mm?. A comparison between DT

cise and so Runge-Kutta comes as an mterestmg alt_ematlvlﬁwear estimation and our variational framework is shown in

T_h|s method ca? be seen as the result of reduction in preCI'figﬂ on an interesting brain white matter region as it is the

sion of a curveC’ more precise thad because of a smaller meeting place of several fibers. Our regularized three dimen

Integration step sional estimation performs an enhancement of the contfast o

(11) the diffusion function when there are underlying fibers, and
keepsavater regions isotropic.

"Eor all our experiments, we used the robust estimation func-

whereq is the current position in the curgeandh is the inte-

Corn=Ca+ 8+ 48 4kt O

wherek; are the slope estimatedadnti/4h. Actually, fourth-

order Runge-Kuttais by far the most precise and is the one we 5. CONCLUSION

used on our tests. We proposed a robust tractography method with the use of
Besides, we assume that there are no neuronal fibers in watggriational scheme to estimate ODFs from HARDI data. This
: : . . _greatly improves the performance and the precision of the
regions of the brain, and c_onsequen'FIy there ISa need te IOIeﬁesults on very preliminary MRI noisy data. The ability to
tify this regions. Generalized Fractional Anisotropy (GFA recover reliabie and accurate intra-voxel fibers distrénst

(c.f. bottom of Figl]L.a) as proposed by Tuch [ih [5] measuresyithin the human brain is promising and opens new perspec-
the variation within the diffusion as a spherical functidbh. tives for studying more precisely the neuronal fiber network
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Fig. 1. Crossing fibers distributions: estimation and fiber-tiagk
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