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Part 1 : The case of the time dependent P1 equations.

P.Cargo and G.Samba
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Bruyères Le Châtel, 91297 Arpajon Cedex, France

11th February 2008

1 Introduction

The Pn equations are a good tool to approximate the neutral transport equation. This model does
not suffer from ray effects known to seriously affect the accuracy of the discrete ordinates method
Sn [4, 5].

Recently [6, 7, 8, 9], implicit Godunov type schemes have been used to approximate the Pn model
in one dimension since the resulting system is hyperbolic. The advantage of such methods is to take
exactly into account the wave structure involved. The main issue is the treatment of the collision
terms. If no care is taken, the scheme is unable to treat diffusive medium with a mesh whose cell
size is much larger than the mean free path. In this paper, we adress this issue in 1D. Let us now
explain what it means for the P1 equations:











∂ρ

∂t
+

1√
3

∂J

∂x
+ σaρ = 0

∂J

∂t
+

1√
3

∂ρ

∂x
+ σtJ = 0

(1)

where ρ and J denote the two first moments of the solution ψ(x, µ, t) of the transport equation:

∂ψ

∂t
+ µ

∂ψ

∂x
+ σtψ = (σt − σa)ψ̃ (2)

with µ ∈ [−1,+1], x ∈ [xm, xM ], ψ̃ =
1

2

∫ +1

−1
ψdµ. The coefficient σa denotes the absorption cross

section and σt the total cross section. Note that the speed of the neutrons does not appear in (1)
because the transport equation (2) has been adimensioned.
In a diffusive regime, the system (1) may be scaled like:

∂

∂t
7→ ε

∂

∂t
, σt 7→

σt

ε
, σa 7→ εσa.

This scaling leads to the following equations:
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∂ρ

∂t
+

1

ε
√

3

∂J

∂x
+ σaρ = 0

∂J

∂t
+

1

ε
√

3

∂ρ

∂x
+
σt

ε2
J = 0.

(3)

It can be shown that when ε goes to zero, ρ converges towards the solution of the diffusion equation:

∂ρ

∂t
− ∂

∂x

(

1

3σt

∂ρ

∂x

)

+ σaρ = 0. (4)

Unless the mesh is at the mean free path scale
ε

σt
, an explicit or splitted treatment of the source

terms
{

σaρ,
σt

ε2
J
}

does not give a correct approximation of ρ solution of (4) when ε goes to zero.

To discretize the Pn model, the authors [7] propose a Godunov scheme where the dissipation is
scaled. This scheme gives a good approximation of the solution of (4). But in a diffusive regime, it
results in two uncoupled discretizations subject to non physical modes: one of them involves odd
cells and the other one even cells.

In [8, 9], L. Gosse and al. have considered the Goldstein-Taylor model, also known as the telegraph
equation:











∂ρ

∂t
+
∂J

∂x
= 0

∂J

∂t
+
∂ρ

∂x
+ σtJ = 0.

(5)

Following [10], they proposed a formulation of these equations which allows the exact resolution of
the Riemann problem. The resulting Godunov scheme preserves the steady solutions of the system
(5) (well-balanced property [10]). Moreover, this scheme gives the solution of the diffusion equation

on a mesh at the diffusion scale

√

T

σt
not depending on ε (T is a characteristic time of evolution of

the solution).

In [2, 3], a relaxation method applied to a two moments method for radiation leads to two systems
close to (5). Their discretization is achieved by the scheme proposed in [8].

In this paper, before solving the Pn equations, we propose to extend the scheme of L. Gosse to the
case of the P1 model.
This article is organized as follows. We begin by presenting the main features of the P1 model,
among them its equivalence with the S2 equations. The next section is devoted to the discretization
of the P1 equations: we propose a Gosse type scheme. It is proved that this scheme has the diffusion
limit. We describe also how to deal with a variable size mesh and non constant coefficients (σa, σt).
In the next section, some numerical results are presented. The last section is devoted to the
conclusion.

2 P1 equations and S2 equations

We first show the equivalence between the P1 equations and the so called S2 equations in 1D. The
P1 equations are an approximation of the transport equation in a sense we are going to explain.
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We are looking for the solution ψ(x, µ, t) of the transport equation (2) in plane geometry, with the
boundary conditions:

{

ψ(xm, µ, t) = ψm(µ, t) for µ > 0
ψ(xM , µ, t) = ψM (µ, t) for µ < 0.

To derive the S2 equations, we approximate ψ(x, µ, t) at two values of µ, µ± = ± 1√
3

and ψ̃ by the

quadrature formula 0.5(ψ(x, µ−, t) + ψ(x, µ+, t)). Let us denote:

{

u = ψ(x, µ+, t)
v = ψ(x, µ−, t)

we obtain the S2 equations:











∂u

∂t
+

1√
3

∂u

∂x
+ σtu =

1

2
(σt − σa)(u+ v)

∂v

∂t
− 1√

3

∂v

∂x
+ σtv =

1

2
(σt − σa)(u+ v)

(6)

with the boundary conditions:

{

u(xm, t) = ψm(µ+, t)
v(xM , t) = ψM (µ−, t).

If we rewrite the system (6) as follows:











∂u

∂t
+

1√
3

∂u

∂x
=
σt

2
(v − u) − σa

2
(u+ v)

∂v

∂t
− 1√

3

∂v

∂x
=
σt

2
(u− v) − σa

2
(u+ v)

(7)

it is easy to check that:

{

ρ = u+ v

J = u− v

are solutions of the system (1) with the following boundary conditions :















(

ρ+ J

2

)

(xm, t) = ψm(µ+, t)
(

ρ− J

2

)

(xM , t) = ψM (µ−, t).

Note that u and v are decoupled in the left hand side of (7), but they are coupled in the right hand
side. Actually, we have diagonalized the transport part of the hyperbolic P1 system: the fields
associated with the S2 equations, (u,v), are the characteristic variables of the P1 system, with the

eigenvalues

(

1√
3
,− 1√

3

)

.
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3 Derivation of a Gosse type scheme

We consider a uniform mesh of size h to discretize the spatial domain [xm, xM ]. The cells are

defined by Cj = [xj−1/2, xj+1/2] where xj+1/2 = xj +
h

2
, j ∈ [1, Nx].

3.1 Approximate Riemann solver

Following the ideas of L. Gosse and al. in [8], the terms on the right hand side of the system (7)
are modified as follows:



















∂u

∂t
+

1√
3

∂u

∂x
= h

∑

j

(σt

2
(v − u) − σa

2
(u+ v)

)

δ(x− xj−1/2)

∂v

∂t
− 1√

3

∂v

∂x
= h

∑

j

(σt

2
(u− v) − σa

2
(u+ v)

)

δ(x − xj−1/2)
(8)

where δ(x− x0) stands for the Dirac mass in x = x0.

The Riemann problem associated with (8) involves a stationary contact discontinuity, which yields
two unknown states {û, v̂}:

Figure 1: Riemann problem with the standing wave.

x

(ul, vl)

(ul, v̂) (û, vr)

(ur, vr)

(

− 1√
3

) (

1√
3

)

t

By analogy with [8]-[9], these states are computed by solving the steady equations:



















∂u∗

∂χ
= h

√
3
(σt

2
(v∗ − u∗) − σa

2
(u∗ + v∗)

)

for χ ∈ [0, 1]

−∂v
∗

∂χ
= h

√
3
(σt

2
(u∗ − v∗) − σa

2
(u∗ + v∗)

)

(9)

for χ ∈ [0, 1] and the following boundary conditions:
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{

u∗(0) = ul

v∗(1) = vr.
(10)

By shifting to the (ρ∗, J∗) variables where J∗ = u∗ − v∗, ρ∗ = u∗ + v∗, we obtain:











∂J∗

∂χ
= −2βρ∗

∂ρ∗

∂χ
= −2αJ∗

(11)

with α = h
√

3
σt

2
, β = h

√
3
σa

2
and the boundary conditions:

{

ρ∗(0) = −J∗(0) + 2ul

ρ∗(1) = J∗(1) + 2vr.
(12)

J∗ depends on χ because β 6= 0. Moreover, it satisfies: J ∗ = − 1

2α

∂ρ∗

∂χ
. The introduction of this

relation in the first equation of (11) leads to the following ordinary differential equation:

∂2ρ∗

∂2χ
= C2ρ∗ , C = 2

√

αβ = h
√

3σtσa

whose solution is:

ρ∗(χ) = aeχC + be−χC {a, b} ∈ R

This statement and the second equation of (11) yield J ∗(χ) = − C

2α
(aeχC − be−χC).

We are now able to compute the solutions of (9):















u∗(χ) =
a

2

(

1 − C

2α

)

eχC +
b

2

(

1 +
C

2α

)

e−χC

v∗(χ) =
a

2

(

1 +
C

2α

)

eχC +
b

2

(

1 − C

2α

)

e−χC
(13)

The boundary conditions (10) lead to a set of 2 equations with 2 unknowns {a, b} and we get:























a = 4α
(2α− C)e−Cul − (2α + C)vr

(2α − C)2e−C − (2α+ C)2eC

b = −4α
(2α+ C)eCul − (2α− C)vr

(2α − C)2e−C − (2α + C)2eC
.

These identities give the following expressions of the unknown states û, v̂:

{

û = u∗(1) = ãul + b̃vr

v̂ = v∗(0) = b̃ul + ãvr
(14)

with:

5

























ã =
2
√
αβ

2
√
αβ cosh(2

√
αβ) + (α+ β) sinh(2

√
αβ)

b̃ =
α− β

α+ β + 2
√
αβ coth(2

√
αβ)

.

(15)

Lemma 1 The coefficients
{

ã, b̃
}

satisfy the following properties:







ã > 0

b̃ > 0

ã+ b̃ < 1.

The unknown states {û, v̂} are a linear combination of {ul, vr} with positive coefficients.

Proof Trivial because of the properties of the hyperbolic functions and α > 0, β > 0. �

3.2 Godunov type scheme

If we apply the above solver to the cell Cj, with the following notations for the different states:

Figure 2: Riemann problem in the cell Cj .

xj−1/2 xj xj+1/2

(tn)

(

ûn
j−1/2, v

n
j

)

(

un, vn
j

)

(

un
j , v̂

n
j+1/2

)

(tn+1)

we obtain the explicit first order Godunov type scheme:











un+1
j = un

j +
∆t

h
√

3
(ûn

j−1/2 − un
j )

vn+1
j = vn

j +
∆t

h
√

3
(v̂n

j+1/2 − vn
j )

(16)

with:

{

ûn
j−1/2 = ãun

j−1 + b̃vn
j

v̂n
j+1/2 = b̃un

j + ãvn
j+1.

(17)
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Remark For the first and last interfaces of the mesh, the equations (9) must be slightly modified
to take into account the boundary conditions:











∂u∗

∂χ
=

h

2

√
3
(σt

2
(v∗ − u∗) − σa

2
(u∗ + v∗)

)

−∂v
∗

∂χ
=

h

2

√
3
(σt

2
(u∗ − v∗) − σa

2
(u∗ + v∗)

)

for χ ∈ [0, 1] and the following boundary conditions for the first interface:

{

u∗(0) = ψm(µ+, t = 0)
v∗(1) = vr

and for the last interface:

{

u∗(0) = ul

v∗(1) = ψM (µ−, t = 0).

�
For the P1 equations, the scheme reads as:











ρn+1
j = ρn

j − ∆t

h
√

3
ã
(

Jn
j+1/2 − Jn

j−1/2

)

+
∆t

h
√

3
(ã+ b̃− 1)ρn

j

Jn+1
j = Jn

j − ∆t

h
√

3
ã
(

ρn
j+1/2 − ρn

j−1/2

)

+
∆t

h
√

3
(ã− b̃− 1)Jn

j

(18)

where:











ρn
j+1/2 =

ρn
j + ρn

j+1

2
+
Jn

j − Jn
j+1

2

Jn
j+1/2 =

Jn
j + Jn

j+1

2
+
ρn

j − ρn
j+1

2
.

(19)

This relation was obtained by Buet et al. [2] in the case σa = 0.

Because of the lemma 1, we can prove the L∞-stability of the previous explicit schemes under the
same CFL condition:

∆t

h
√

3
≤ 1. (20)

We will also consider the implicit following Godunov type scheme:











un+1
j = un

j +
∆t

h
√

3
(ûn+1

j−1/2 − un+1
j )

vn+1
j = vn

j +
∆t

h
√

3
(v̂n+1

j+1/2 − vn+1
j )

(21)

where:
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{

ûn+1
j−1/2 = ãun+1

j−1 + b̃vn+1
j

v̂n+1
j+1/2 = b̃un+1

j + ãvn+1
j+1 .

The corresponding scheme for the P1 equations reads as:











ρn+1
j = ρn

j − ∆t

h
√

3
ã
(

Jn+1
j+1/2 − Jn+1

j−1/2

)

+
∆t

h
√

3
(ã+ b̃− 1)ρn+1

j

Jn+1
j = Jn

j − ∆t

h
√

3
ã
(

ρn+1
j+1/2 − ρn+1

j−1/2

)

+
∆t

h
√

3
(ã− b̃− 1)Jn+1

j .
(22)

where:















ρn+1
j−1/2 =

ρn+1
j−1 + ρn+1

j

2
+
Jn+1

j−1 − Jn+1
j

2

Jn+1
j−1/2 =

Jn+1
j−1 + Jn+1

j

2
+
ρn+1

j−1 − ρn+1
j

2
.

(23)

Let us note the previous implicit schemes are unconditionnally L∞-stable.

Remark Like the schemes [2, 8] derived for the case σa = 0, the previous schemes satisfy the well-
balanced property because the approximate solver is based on the exact solution of the stationary
equations (9). �

Remark The schemes [2, 8] can also be recovered from the scheme (22) by defining:







ã =
1

1 + α

b̃ =
α

1 + α
.

Let us note that these relations are obtained by considering that σa goes to 0 in the identities (15).
�

3.3 Properties of the matrix for the implicit scheme

The above implicit scheme (21) can be rewritten as:















− ∆t

h
√

3
ãun+1

j−1 +

(

1 +
∆t

h
√

3

)

un+1
j − ∆t

h
√

3
b̃vn+1

j = un
j

− ∆t

h
√

3
b̃un

j +

(

1 +
∆t

h
√

3

)

vn+1
j − ∆t

h
√

3
ãvn

j+1 = vn
j .

(24)

This scheme leads to the resolution of a linear system to achieve the computation of un+1, vn+1.
The matrix of this system satisfies some properties:

• it is non symmetric;

• if (uj , vj) are stored by pairs, it is is block tridiagonal;
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• it is a M-matrix since ã + b̃ ≤ 1, ã > 0 and b̃ > 0 (we take into account the case σa = 0 by
allowing ã+ b̃ = 1).

So, the scheme (21) is positive.
Moreover, a convenient way to solve the linear system is to use the block Gauss Seidel iteration
method: its convergence is ensured by the above properties of the matrix. Let us note that the
inversion of the (2,2) diagonal blocks:







1 +
∆t

h
√

3
− ∆t

h
√

3
b̃

− ∆t

h
√

3
b̃ 1 +

∆t

h
√

3







can be performed outside the time loop.

4 Asymptotic preserving property

We are interested in the behaviour of this numerical scheme in the diffusive regime.
To derive the scheme in the diffusive regime, the “discrete diffusive scaling”:

{

∆t 7→ ∆t

ε
, σt 7→

σt

ε

}

is applied to (18). The CFL condition becomes:
∆t

εh
√

3
≤ 1, which is very restrictive. This is why

we will consider the implicit discretization (22).

Definition 1 A numerical scheme is said to be asymptotic preserving (AP) or to have the diffusion
limit if it satisfies a consistent discretization of the limiting diffusion equation (4), when ε goes to
zero.

The application of the “discrete diffusive scaling” to the implicit scheme (22) yields:











ρn+1
j = ρn

j − ∆t

εh
√

3
ãε

(

Jn+1
j+1/2 − Jn+1

j−1/2

)

+
∆t

εh
√

3
(ãε + b̃ε − 1)ρn+1

j

Jn+1
j = Jn

j − ∆t

εh
√

3
ãε

(

ρn+1
j+1/2 − ρn+1

j−1/2

)

+
∆t

εh
√

3
(ãε − b̃ε − 1)Jn+1

j

(25)

where {ãε, b̃ε} denote the natural extension of {ã, b̃} defined by the expressions (15):























ãε =
2
√
αεβε

2
√
αεβε cosh(2

√
αεβε) + (αε + βε) sinh(2

√
αεβε)

b̃ε =
αε − βε

αε + βε + 2
√
αεβε coth(2

√
αεβε)

(26)

with αε =
α

ε
and βε = βε. Let us note that αεβε remains constant, as the constant C, in spite of

the scaling.
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Proposition 1 ρ at the order 0 verifies the following consistent discretization of the diffusion
equation (4):

ρ
n+1,(0)
j = ρ

n,(0)
j +

∆t

3σth2

(

ρ
n+1,(0)
j−1 − 2ρ

n+1,(0)
j + ρ

n+1,(0)
j+1

)

− ∆tσaρ
n+1,(0)
j +O(h2) (27)

Proof The relations (26) lead to:























































aε

ε
=

−8αC

4α2(e−C − eC) − 4αC(e−C + eC)ε+ C2(e−C − eC)ε2

ãε + b̃ε − 1

ε
=

4αC(e−C + eC − 2) + 2C2(eC − e−C)ε

4α2(e−C − eC) − 4αC(e−C + eC)ε+ C2(e−C − eC)ε2

ãε − b̃ε − 1

ε
= − 2α(eC − e−C) + C(eC + e−C − 2)ε

α(eC − e−C)ε+ C(eC + e−C)ε2 +
C2

4α
(eC − e−C)ε3

.

(28)

In the second equation of (25), the term
aε

ε
being of order 0 in ε, there is only one term function

of
1

ε
:

−2

εh
√

3
coming from

ãε − b̃ε − 1

εh
√

3
. This remark yields:

J
n+1,(0)
j = 0 (∀j) =⇒ J

n+1,(0)
j+1/2 =

ρ
n+1,(0)
j − ρ

n+1,(0)
j+1

2
(∀j).

Because of the last statement and the identities (28), the scheme (25) on ρn+1
j rewrites as follows:

ρ
n+1,(0)
j = ρ

n,(0)
j +

∆t

h
√

3

[

2C

α(e−C − eC)

]

[

−ρn+1,(0)
j+1 + 2ρ

n+1,(0)
j − ρ

n+1,(0)
j−1

2

]

+
∆t

h
√

3

[

C(e−C + eC − 2)

α(e−C − eC)

]

ρ
n+1,(0)
j

at the order 0 in ε.

Remember that α and C depend on h: α = h
√

3
σt

2
and C = h

√
3σtσa. The introduction of these

definitions in the relation satisfied by ρ
n+1,(0)
j leads to an expression depending only on C. To

obtain a result free of this constant, let us make a Taylor expansion about h:

ρ
n+1,(0)
j = ρ

n,(0)
j +

∆t

3σt

(

ρ
n+1,(0)
j+1 − 2ρ

n+1,(0)
j + ρ

n+1,(0)
j−1

h2

)

(

1 − σtσah
2 +O(h4)

)

− ∆tσa

(

1 +
1

2
σtσah

2 +O(h4)

)

ρ
n+1,(0)
j

which leads to the relation (27). �
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5 Extension to a non uniform mesh and non constant (σa, σt)

If σa and σt are not constant and the mesh not uniform, to verify the WB property, one must
replace (9) by:















∂u∗

∂χ
=

hj−1 + hj

2

√
3

(

σt(χ)

2
(v∗ − u∗) − σa(χ)

2
(u∗ + v∗)

)

−∂v
∗

∂χ
=

hj−1 + hj

2

√
3

(

σt(χ)

2
(u∗ − v∗) − σa(χ)

2
(u∗ + v∗)

) (29)

where hj satisfies xj+1/2 = xj +
hj

2
and:















σt,a(χ) = (σt,a)j−1 for χ <
xj−1/2 − xj−1

xj − xj−1

σt,a(χ) = (σt,a)j for χ >
xj−1/2 − xj−1

xj − xj−1
.

The resolution of (29) can be made by introducing the variables (ρ∗, J∗) once again. In this case,
we obtain a diffusion equation on ρ∗ with variables coefficients:

∂

∂χ

(−1

2α

∂ρ∗

∂χ

)

+ 2βρ∗ = 0

which can easily be solved by classical techniques.

6 Numerical results

6.1 Plane source

This problem involves a purely scattering problem: σa = 0, σt = 1. The boundary conditions are :
u(xm, µ > 0, t) = 0 and u(xM , µ < 0, t) = 0, with xm = −10, xM = 10. The initial condition is a
pulse of particles located at x = 0:

{

ρ(x, 0) = δ(x)
J(x, 0) = 0

In this case, the system of P1 equations (1) has an exact solution [1]:

ρ(x, t) =

√
3

4
σt exp(−

σt t

2
) I0 (

σt

2

√

t2 − 3x2)h(t −
√

3 |x|)

+

√
3

4
σt exp(−

σt t

2
)

t√
t2 − 3x2

I1 (
σt

2

√

t2 − 3x2)h(t−
√

3 |x|)

+

√
3

2
exp(−σt t

2
) δ(t −

√
3 |x|)

where h is the Heaviside function and I1 , I2 are Bessel functions of the first and second kind.

We compare the calculated solution with the exact solution (Fig.3) by taking Nx = 5001. The
explicit version of the scheme was used with a CFL constant equal to 0.99. We observe a good
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Figure 3: Plane source - exact solution at time T=10.

agreement between both solutions. The speed of the two opposite waves
1√
3

and − 1√
3

is well

reproduced by the scheme (Fig.4).
The use of the implicit scheme with ∆t = 0.01 (instead of ∆t = 0.006854 for the explicit one) smears
the solution at the position of the wave fronts, while the accuracy of the solution is preserved (Fig.5).
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Figure 4: Plane source with P1 equations - comparison of the exact density and the one obtained
with the explicit scheme (18).
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Figure 5: Plane source with P1 equations - comparison of the exact density and the ones obtained
with the explicit and implicit scheme (18-22).

6.2 Diffusive case

We solve the S2 equations:











∂u

∂t
+

1

ε
√

3

∂u

∂x
+
σa

2
(u+ v) =

σt

2ε2
(v − u)

∂v

∂t
− 1

ε
√

3

∂v

∂x
+
σa

2
(u+ v) =

σt

2ε2
(u− v)

(30)

with σa = 1, σt = 2, xm = 0, xM = 1, u(xm, µ
+, t) =

1

2
and u(xM , µ

−, t) =
1

2
.

When ε goes to zero, the stationary solution ρ = u+ v is solution of the diffusion equation:















− d

dx

1

3σt

dρ

dx
+ σaρ = 0

ρ(0) = ρ(1) = 1

which in this case is:

ρ =
1 − e−c

ec − e−c
exc +

ec − 1

ec − e−c
e−xc (31)

with c =
√

3σaσt.
Due to the well-balanced property, the scheme gives the exact steady state solution when ε goes to
zero whatever the mesh is. In this case, the steady solution is (31). This is what we observe on the
figure 6 where we compare the solution of (30)with the analytical one, at the time T = 10, to get
the stationary solution on a crude mesh Nx = 10 for various values of ε.

14



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

"eps=1"
"eps=0.1"

"eps=0.01"
"eps=0.001"

sol_exacte(x)

Figure 6: Diffusive case - Gosse type scheme for the P1 equations: convergence to the steady solution
of the diffusion equation.

7 Conclusion

In this paper, we have extended the method of L. Gosse, initially designed for the Goldstein-Taylor
model, to the P1 equations with absorption in 1D.

The resulting Godunov scheme gives the solution of the diffusion equation in the diffusive case, on
a mesh resolving the diffusion scale much larger than the transport scale (asymptotic preserving
property). This last result was proved by making formal expansions of the solution with respect
to a small parameter representing the inverse of the number of mean free path in each cell. In the
transparent scale, the scheme maintains the finite speed of propagation of the hyperbolic system.
To avoid the CFL constraint on the time step which can be prohibitive in the diffusive case, the
scheme has been made implicit. We have proved that the matrix of the resulting linear system is
a M-matrix which ensures the positiveness of the solution. We have verified numerically that the
asymptotic preserving property is satisfied.

This scheme has been extended to discretize the Pn equations in one dimension. It will be presented
in a forthcoming paper.

To improve this work, we could propose an extension to second order, at least in space, of the
proposed Gosse type scheme: the first order is too restrictive to compute sharp solutions, like in
the plane source test for example. We are also interested in solving bidimensional problems and
studying this approach on unstructured meshes.
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