
HAL Id: hal-00250148
https://hal.science/hal-00250148

Submitted on 11 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

I-Dialogue: Modelling Agent Conversation by Streams
and Lazy Evaluation

Clement Jonquet, Stefano A. Cerri

To cite this version:
Clement Jonquet, Stefano A. Cerri. I-Dialogue: Modelling Agent Conversation by Streams and Lazy
Evaluation. International Lisp Conference, ILC’05, Jun 2005, Stanford University, United States.
pp.1. �hal-00250148�

https://hal.science/hal-00250148
https://hal.archives-ouvertes.fr

I-dialogue: Modeling Agent Conversation by Streams and
Lazy Evaluation

Clement Jonquet and Stefano A. Cerri
LIRMM (Laboratory of Informatics, Robotics, and Microelectronics of Montpellier) & CNRS

University of Montpellier II
161 rue Ada 34392 Montpellier Cedex 5 - France

{jonquet,cerri}@lirmm.fr

ABSTRACT
This paper defines and exemplifies a new computational
abstraction called i-dialogue which aims to model commu-
nicative situations such as those where an agent conducts
multiple concurrent conversations with other agents. The
i-dialogue abstraction is inspired both by the dialogue ab-
straction proposed by [17] and by the STROBE model [4]. I-
dialogue models conversations among processes by means of
fundamental constructs of applicative/functional languages.
(i.e. streams, lazy evaluation and higher order functions).
The i-dialogue abstraction is adequate for representing multi-
agent concurrent asynchronous communication such as it
can occur in service providing scenarios on today’s Web or
Grid. A Scheme implementation of the i-dialogue abstrac-
tion has been developed and is available.

1. INTRODUCTION
Current computing systems are more and more distributed.
The emergence of the Web and tomorrow’s Grid is a proof
of it. As they are by definition dispersed, these systems
often consist of interacting entities. For that reason interac-
tion modeling is a key issue in distributed system develop-
ment. In the Distributed Artificial Intelligence (DAI) and
Multi-Agent Systems (MAS) communities, these interactive
entities, considered autonomous and intelligent, are called
Agents. In this paper we describe i-dialogue, an abstraction
of the interaction between several processes inspired from
O’Donnell’s dialogue [17]. The dialogue and i-dialogue com-
binators are higher order functions that structure 2-agent’s
and n-agent’s conversations as networks of communicating
processes. These abstractions deal directly with different se-
quences of inputs, different sequence of outputs, and state of
the agents concerned. Theses abstractions are useful to de-
scribe interaction between several agents, whatever the type
of the agents (i.e. Artificial Agents (AA) or Human Agents
(HA)). The kernel of the model consists on the assumption
that messages are elements of an input and output ”stream”.

More specifically, [17] shows how programming environments
can be defined using dialogues. His popular 1985 paper gives
an application, called RIE (Recursive Interactive Environ-
ment), in which the traditional REP (Read Eval Print) in-
teraction loop of applicative languages is implemented by
the dialogue abstraction. The aim of O’Donnell’s paper was
to help programmers to develop useful and smart program-
ming environments. The aim of this paper is to help to
model agent’s conversations with a simple, powerful and el-
egant abstraction: i-dialogue.

Part of the paper is used to present a general implementation
of the i-dialogue abstraction for applicative languages such
as Daisy or LISP/Scheme. This implementation is based on
simple features of theses languages: higher order functions
(specifically function as argument), streams (as sequences
that are infinitely long) and lazy evaluation (to support
streams). We show how streams are a smart data struc-
ture to model agent conversation because they allow defin-
ing recursive data structures that can be used to represent
sequences that are infinitely long such as the inputs and out-
puts of the dialogue and i-dialogue abstractions. The paper
also argues that this new abstraction fits with the STROBE
model [4, 15], an agent representation and communication
model (highly inspired by applicative/functional research)
which suggest among others, to model agent conversations
by streams.

The rest of the paper is organized as follows: Section 2 intro-
duces the concept of agent and explains the importance of
interaction in MAS. Section 3 determines the notations and
conventions used in this paper. Section 4 recalls the prin-
ciples of O’Donnell’s dialogue abstraction and explains the
concepts that are going to be extended further in the paper.
This part of the paper is highly inspired from O’Donnell’s
paper. Before presenting the concepts of a general imple-
mentation of dialogue and i–dialogue, this section makes a
little state of the art of the notions of streams and lazy eval-
uation. Then, the extension of dialogue in section 5 presents
the i-dialogue abstraction by generalizing the three agents
case. Section 6 looks on related work, and especially estab-
lishes a relation between i-dialogue and the STROBE model.
It also shows how the i-dialogue abstraction suits for service
and gives an example. Section 7 concludes the paper and
gives some perspectives for further work with i-dialogue.

2. AGENTS AND MAS
As [7] defines it, an agent (i.e. AA) is a physical or virtual
autonomous entity which is capable of acting in an environ-
ment1, which can communicate directly with other agents,
which possesses its own state and skills and can offer ser-
vices, and whose behavior tends towards satisfying its ob-
jectives. We assume first that AA are just software programs
and their associated processes that at least are autonomous,
distributed and able to communicate asynchronously with
their environment and others agents by means of a commu-
nication language that is independent from the content of
the communication and from the internals of agents2.

Traditionally, agent conversations are modeled by communi-
cation protocols or conversation policies [11, 6]. These pro-
tocols represent the interaction structure and specify rules
that must be respected during the conversation. Using pro-
tocols, an agent interprets messages from a conversation one-
by-one, changing at each step its own state, and following
the protocol to produce the next message in the conversa-
tion. The main advantage of this approach is the semantic
description of the conversation (via logical expression of pre-
conditions, postconditions and mental states (Believe, De-
sire, Intentions)) [10]. But, this approach has weaknesses,
especially interoperability, composition and verification of
protocols. Agents are forced to follow a policy restrict-
ing their autonomy and the dynamic interpretation of mes-
sages. For example, ACLs and communication protocols
presuppose agent sincerity and thus assume that an agent
know some information about the internal state of its part-
ners. Moreover, the only way for an agent to consider the
entire conversation is to look at the protocol, which was
previously determined (before the conversation) and which
cannot change dynamically. Therefore, agents are obliged
to fit fixed conversations while it should be conversations
which fit dynamically changing agents. By contrast, other
approaches, for example [18], try to explain that the next
answer message of a conversation can not be foreseen, and
should be determined only after the interpretation of the
previous incoming message. Instead of modeling mental
states and their dynamics in conversation, these approaches
deal directly with speech acts rather than on hidden inten-
tions. The i-dialogue abstraction is inscribed in this sec-
ond idea by providing a simple, yet powerful abstraction to
model message exchanges in agent communication.

Simply grouping together several agents is not enough to
form a MAS. It is interaction between these agents, with
the environment, and with users that makes it. Interac-
tion allows cooperation and coordination between agents [7].
However, interaction is strongly related to agent’s auton-
omy. In order to enhance agents’ autonomy, it is interesting
to develop communication models: i) which expect agents
to communicate without being knowledgeable of the inter-
nal believes of their partners, with whom they only handle
output messages as interface [19]; ii) which allow agents to
handle the entire conversation dynamically and not simply

1The term environment is here used with its MAS meaning,
that is to say, the world surrounding an agent and in which
it progresses.
2These languages are called Agent Communication Lan-
guages, ACLs, such as KQML or FIPA-ACL. They are
speech act oriented. See for example [11].

interpret messages one-by-one following a previously deter-
mined structure. The i-dialogue abstraction respects these
ideas dealing only with some input sequences of messages
(i.e. the partners output sequences of messages).

3. NOTATIONS
In order to express theses abstractions, we use a Daisy in-
spired language syntax to ensure continuity with [17]. This
syntax is briefly repeated in appendix A. The rest of the
notations used are:

• X, Y (uppercase letters) represent agents

• x, y (lowercase letters) represent elements of sequences
(i.e. messages)

• xY i is the ith message from X to Y

• ξ, ψ (Greek letters) represent states of agents X, Y.

• fX
Y is X’s transition function dedicated to Y

• RX is X’s function producing a result value from a
state

• IX
Y is X’s input sequence of messages from Y

• OX
Y is X’s output sequence of messages to Y

• then OX
Y = (xY 1, xY 2, . . . , xY n) = IY

X

• and OY
X = (yX1, yX2, . . . , yXn) = IX

Y

4. THE DIALOGUE ABSTRACTION
4.1 Description of dialogue
A dialogue is an interactive session between two agents, A
and B, which take turns sending messages to each other as
figure 1 shows.

Agent A
⇒ OA

B I
B
A ⇒

⇐ IA
B OB

A ⇐
Agent B

Figure 1: Streams in dialogue between two agents

Each agent has a state that contains personal information
(internals) and information about the history of the conver-
sation. One of the agents (A) begins the dialogue by sending
the first message to the other (B). Initially A is in state αj ,
j ≥ 03. Each agent model the conversation with the part-
ner with the dialogue abstraction. During the conversation,
each agent computes a new state and a new output from its
previous state and the last input it received from the other
agent, using its transition function (fA

B for agent A and fB
A

for B):

fA
B :

[
αj+k I

A
B

]
→

[
αj+k+1 O

A
B

]
fB

A :
[
βk I

B
A

]
→

[
βk+1 O

B
A

]
3If agent A has just been created then j = 0, but if A has
already had a dialogue with some other agent then j ≥ 0.
As agent B does not start the dialogue, we consider it as
”new”, thus its beginning state is β0.

Thus the transition functions fA
B and fB

A and the initial state
αj and β0 define, for each agent, a sequence of states and a
sequence of outputs. The 4-tuple of sequences:

A : (αj αj+1 . . .) OA
B = (aB1 aB2 . . . aBn . . .) = IB

A

B : (β0 β1 . . .) OB
A = (bA1 bA2 . . . bAn . . .) = IA

B

specifies a complete history of the dialogue (figure 2). Note
furthermore that every agent has a result function (RA and
RB) which it is used to produce a final ”dialogue value”
according to their last state, if the agent decides to terminate
the dialogue.

A dialogue between A and B, initiated by A, is defined to
be a 4-tuple of sequences. Advantages of this representation
are quoted from [17]:

The advantage of this definition is that it doesn’t
rely on an explicit notion of time, I/O or side
effects. The ordering of sequence elements corre-
sponds to their relative order in time. Similarly,
the definition of each sequence element as the
value of a function applied to other sequence ele-
ments (except for the initially defined elements)
replaces the notion of sending messages with ex-
plicit I/O. Finally, it is not necessary to view the
state of a participant as a variable which must be
changed through a side effect upon each commu-
nication. Instead of destroying old state values,
we view state as a sequence of values.

Agent A Agent B

(initial)αj β0(initial)
(send to B)aBj ⇒

[β1, bA0] = fB
A :

[
β0, aBj

]
⇐ bA0(send to A)[

αj+1, aBj+1

]
= fA

B : [αj , bA0]
(send to B)aBj+1 ⇒

.

..[
αj+k, aBj+k

]
=

fA
B :

[
αj+k−1, bAk−1

]
(send to B)aBj+k ⇒

[βk+1, bAk] =
fB

A :
[
βk, aBj+k

]
⇐ bAk(send to A)

Figure 2: Dialogue between two agents A and B

4.2 History of streams and lazy evaluation
Until now we used the term ”sequence” to define inputs and
outputs. This paragraph gives some details about the type
of sequence the dialogue (and i-dialogue) abstraction needs.
The dialogue implementation must be able to operate on
sequences that represent state and communications in which
the elements are not evaluated before they are really needed.
Those sequences are potentially infinite lists called streams.

As [1] explains, streams allows to model systems and changes
on them in terms of sequences that represent the time histo-
ries of the systems being modeled. They are an alternative

approach to modeling state. As a data abstraction, streams
are sequences as lists are. The difference is the time at which
the elements of the sequence are evaluated: list elements are
evaluated when the list is constructed where as stream ele-
ments are evaluated only when they are accessed. Streams
are a clever idea that allows to use sequence manipulations
without incurring the costs of manipulating sequences as
lists. The basic idea consists in constructing a stream only
partially, and to pass the partial construction to the pro-
gram that consumes the stream. Stream processing allows
to model stateful systems without ever using assignment or
mutable data. It is often easier to consider the sequence
of values taken on by a variable in a program as structure
that can be manipulated, rather than considering the mech-
anisms that use, test, and change the variable. This has
important implications, both theoretical and practical, be-
cause we can build models that avoid the drawbacks inherent
in introducing assignment (side effects) . The stream for-
mulation is particularly elegant and convenient because the
entire sequence of states is available as a data structure that
can be manipulated with a uniform set of operations [1]. For
Burge [2], a stream is a functional analog of a coroutine and
may be considered to be a particular method of representing
a list in which the creation of each list element is delayed
until it is actually needed. [2] discusses the use of streams
as a method for structured programming and introduce a
set of functional stream primitives for this purpose. In [8]
mechanism for the maintenance of streams based on con-
tinuations is presented. Stream processing is also presented
in [13] where streams are represented by pair of functions
(enumerator and selector).

For the applicative/functional language community a stream
could be seen as a list which is built using a non-strict con-
structor. Peter J. Landin first originated the idea of a non-
strict data structure. Most applicative/functional languages
as Scheme [1] or LISP are applicative order languages, that
means that all the arguments of functions are evaluated
when the function is applied. In contrast, normal order
languages (such as Daisy [14]) delay evaluation of function
arguments until the actual argument values are needed. De-
laying evaluation of function arguments until the last possi-
ble moment (e.g. until they are required by a primitive, or
printed as an answer) is called lazy evaluation. Lazy evalu-
ation, which is the key to making streams practical, comes
from Algol 60, and was used to implement streams firstly in
[16]. Lazy evaluation for streams was introduced into LISP
by [9], which shows that with this mechanism, streams and
lists can be identical. A lazy evaluator only computes val-
ues when they are really required avoiding computing values
that are not really needed. For example, lazy languages al-
lows to define the if special form as a classical function,
allowing it to benefit of the first class proprieties of func-
tions (only in Scheme).4

4In the literature about lazy evaluation the reader could find
the three ”calls-by” terms about the order of evaluation.
Call-by-value argument passing, as it is the case in applica-
tive language, where a function application is done with the
values of each argument. Call-by-name argument passing,
as it is the case in lazy language, where function application
is done with the names of each argument. Call-by-need ar-
gument passing, which correspond to the call-by-name prin-
ciple combined with memoization (values are memorized to
be compute only once).

To complete this small overview of streams, we should make
a little difference between Abelson and Sussman’s stream
definition and Burge’s one. The first one defines streams as
a pair which head part (car) is evaluated and tail part (cdr)
is delayed. The second one defines them as list in which the
creation of each list element (even the head) is delayed. The
second definition is called ”lazy list”. It permits to create
delayed versions of more general kinds of list structures, not
just sequences, but for examples trees [12].

Features of applicative/functional programming seem par-
ticularly adapted for modeling agent conversation. For ex-
ample, lazy evaluation is relevant to express the natural re-
tarded aspect of interactions: an agent may delay the pro-
duction of the next message until it interprets its partner’s
reaction to its first message. As streams allow to define
recursive data structures, we can use them to represent se-
quences that are infinitely long such as the input and output
of the dialogue and i-dialogue abstractions. Streams used in
dialogue an especially in i-dialogue are even lazy lists as it
is explain latter.

4.3 Implementation of the dialogue function
The dialogue abstraction provides a useful way to think
about communications and state. It can be implemented ef-
ficiently by a simple recursive function with the techniques
of applicative/functional programming. This function has
vocation to be run by each agent implied in a 2-agent con-
versation. Figure 3 shows an implementation of dialogue.
The dialogue function has four parameters:

1. inputs. It is a stream of input messages (IA
B for agent

A, IB
A for agent B).

2. initial-state. It is the initial state of the agent running
a dialogue function (αj for agent A, β0 for agent B).

3. step-fcn. It is the transition function that defines the
actions of the agent (fA

B for agent A, fB
A for agent B).

The step-fcn must return a stream of four elements:

(a) A stream of unused inputs, which is usually the
tail of inputs. That value will be used in the next
step of the dialogue unless the dialogue termi-
nates.

(b) A stream of outputs messages sent to the partner.

(c) A new state.

(d) A boolean value that is true if the agent wishes
to terminate the dialogue and false otherwise.

The dialogue function repeatedly applies step-fcn to
the current values of inputs and state in order to find
the new outputs’ and state’.

4. result-fcn. It is a function which the agent uses to
produce a ”dialogue value” with its last state (RA and
RB).

The dialogue function returns a stream5 of three elements:
5This sequence must be a stream because the unused-inputs,
which can include future inputs from a future dialogue, has
not to be evaluated since the messages inside have not been
produced yet.

1. unused-inputs. The agent removes the input elements
that it needs from inputs, and returns the remainder
unused-inputs.

2. outputs. It is a stream of output messages (OA
B and

OB
A).

3. result. A value which is computed by the agent by
applying its result-fcn to its final state.

dialogue : 〈inputs initial-state step-fcn result-fcn〉 ≡
letrec

run ≡ λ 〈inputs state〉 .
let

(inputs’ outputs’ state’ done’) ≡
stef-fcn : 〈inputs state〉

in
if done’

then (inputs’ outputs’ result-fcn:state’)
else

let
(inputs” future-outputs” result”) ≡

run : 〈inputs’ state’〉
in

(inputs”
append-ll : 〈outputs’ future-outputs”〉
result”)

in
run : 〈inputs initial-state〉

Figure 3: Definition of the function dialogue

Then, in a case such as the one illustrated by figure 1, calls
to dialogue are, and produce:

Agent A: dialogue : 〈IA
B αj f

A
B RA〉 → (IA

B OA
B val)

Agent B: dialogue : 〈IB
A β0 f

B
A RB〉 → (IB

A OB
A val)

4.4 The dialogue abstraction limits
The dialogue abstraction was adequate for the interaction of
two processes but today’s distributed system requirements
oblige to consider interaction between more than two agents.
Therefore, the limit of the dialogue abstraction is intrinsic
to it: it does not model more than two agents conversation.
Indeed, several uses of dialogue (executed serially or in par-
allel) do not model conversation among several agents but
several different dialogues that an agent has with each part-
ner at the same time. For example, two dialogues executed
serially do not model a four agents conversation as the first
one must terminate before the second one starts. In the
same way, two dialogues executed in parallel do not model a
four agents conversation as the different inputs and outputs
are not intertwined. The processing of inputs of the first
dialogue always produces outputs of the first dialogue and
same thing respectively for the second dialogue. We need
to extend the dialogue abstraction to model conversations
where processing of one agent inputs possibly produces not
the outputs for this agent but another outputs intended to
another agent. It is the scope of this paper. The i-dialogue

Agent A
⇒ OA

B I
B
A ⇒

⇐ IA
B OB

A ⇐
Agent B

⇒ OB
C IC

B ⇒

⇐ IB
C OC

B ⇐
Agent C

Figure 4: Streams in trialogue between agents A,B and C

(initial)αj β0(initial) γ0(initial)
(send to B)aBj ⇒

[β1, bC0] = fB
A :

[
β0, aBj

]
(send to C)bC0 ⇒

[γ1, cB0] = fC
B : [γ0, bC0]

⇐ cB0(send to B)
[β2, bA0] = fB

C : [β1, cB0]
⇐ bA0(send to A)[

αj+1, aBj+1

]
= fA

B : [αj , bA0]
(send to B)aBj+1 ⇒

.

..
.
..[

αj+k, aBj+k

]
= fA

B :
[
αj+k−1, bAk−1

]
(send to B)aBj+k ⇒

[β2k+1, bCk] = fB
A :

[
β2k, aBj+k

]
(send to C)bCk ⇒

[γk+1, cBk] = fC
B : [γk, bCk]

⇐ cBk(send to B)
[β2k+2, bAk] = fB

C : [β2k+1, cBk]
⇐ bAk(send to A)

Figure 5: Trialogue between three agents A, B and C

abstraction aims to realize what was anticipated by the end
of section 2 of O’Donnell’s paper. Instead of directly con-
nect A’s output stream to C’s input stream, and vice versa,
i-dialogue allows B to process A’s output stream to produce
a different stream for C’s inputs.

5. THE I-DIALOGUE ABSTRACTION
The purpose of this section is to extend the dialogue ab-
straction from two agents to n agents. In a first time, for
the reader comprehension, we propose the trialogue abstrac-
tion which deals with three agents. Then, we generalize to
n agents.

5.1 The trialogue abstraction
Trialogue aims to model an interactive session between three
agents, A, B and C, where A and C send messages to B and
B to A and C as figure 4 shows. The difference between
dialogue is that the transition functions of B, fB

A and fB
C ,

do not produce respectively an output stream for A and B
but the opposite, as shown by figure 5.

There are two ways for implementing trialogue. The first
one is defined in figure 76. The trialogue function has six
parameters: inputsA, inputsC , step-fcnA, step-fcnC and the
original initial-state and result-fcn. An agent has a transi-
tion function dedicated to each agent with which it commu-
nicates. It gets the message from inputsA and produces the
answer message in outputs′C before getting the message from
inputsC which is only produced after C has interpreted the
message B has just sent. If step-fcnA incites to terminate
the trialogue, then step-fcnC is not applied. The trialogue

6Due to space economy we use abbreviations in this figure.

function returns a stream of five elements: unused-inputsA,
unused-inputsC , outputsA, outputsC , result. So, in a case
such as the one illustrated by figure 4, A and C run dia-
logue as in section 4.3, and B call to dialogue is:

trialogue : 〈IB
A IB

C β0 f
B
A fB

C RB〉 → (IB
A IB

C OB
A OB

C val)

The second way of implementing trialogue consists in giving
as parameters two input streams but a single step-fcn pro-
cessing the two streams. Then this step-fcn must return five
elements (2 unused-streams, 2 output streams and a result).
This way is not detailed here by lack of space. The main
drawbacks of this second way are: i) the fact that it is more
complicated to program, ii) that with a step-fcn processing
two streams, all the language and all applications of func-
tions must be lazy (not simply stream processing functions).
Indeed, when the step-fcn is applied the value of the first
stream could be evaluated, but not the value of the second
one: its evaluation must be delayed (because the messages
inside have not been produced yet). So, in a traditional ap-
plicative language where all arguments are evaluated before
being applied, the first way should be used while in a lazy
language the two ways are suitable.

Remark: Note that in trialogue the unused-inputs stream
produced by the first step-fcn is accessible while the second
step-fcn is applied. In figure 7, when s-fcnC is applied in′A
is accessible. Then, if s-fcnC was written (or is dynamically
changed, cf. section 6.1) in order to process it, B can access
the messages previously sent by A but not interpreted during
s-fcnA application. This remark stays recursively true in i-
dialogue.

Agent A
⇒ OA

B I
B
A ⇒

⇐ IA
B OB

A ⇐
Agent B

⇒ OB
C1 I

C1
B ⇒

⇐ IB
C1 O

C1
B ⇐

...

⇒ OB
Cn

. ICn
B ⇒

⇐ IB
Cn

. OCn
B ⇐

Agent C1

...

Agent Cn

Figure 6: Streams in i-dialogue between agents A,B and C1 . . . Cn

trialogue : 〈inA inC init-s s-fcnA s-fcnC r-fcn〉 ≡
letrec

run ≡ λ 〈inA inC state〉 .
let

(in′A out′C state’ done’) ≡ s-fcnA : 〈inA state〉
in

if done’
then (in′A inC null o′C r-fcn:state’)
else

let
(in′C out′A state” done”) ≡

s-fcnC : 〈inC state’〉
in

if done”
then (in′A in′C out′A out′C r-fcn:state”)
else

let
(in′′A in′′C f-out′′A f-out′′C result”) ≡

run : 〈in′A in′C state”〉
in

(in′′A in′′C
append-ll : 〈out′A f-out′′A〉
append-ll : 〈out′C f-out′′C〉
result”)

in
run : 〈inA inC init-s〉

Figure 7: Definition of the function trialogue

5.2 Generalization: the i-dialogue abstraction
The term i-dialogue is the abbreviation of intertwined-dialo-
gue. An i-dialogue aims to model conversations between an
agent and a group of agents. These conversations are di-
alogues intertwined together and must be executed in the
same time as their inputs and outputs depend each oth-
ers. These situations (described by figure 6) can not be
expressed by the dialogue abstraction. Concretely, the i-
dialogue abstraction is a generalization of trialogue. The
main idea consists in processing several inputs coming from
several agents in a special order and being able to process
each input stream to process the next output one.

The implementation of i-dialogue follows the same princi-
ples as dialogue and trialogue (1st way). Instead of giv-
ing as parameter several inputsi and several step-fcni, i-

dialogue takes as parameter a list of input streams, l-inputs,
and a list of transition functions, l-step-fcn. Then, the im-
plementation of i-dialogue consists just in a classic list re-
cursion ! (cf. figure 8). Note that i-dialogue can real-
ize all the calls of dialogue (or trialogue). If both the l-
inputs and l-step-fcn have only one element then i-dialogue
is equivalent to dialogue. In a case such as the one il-
lustrated by figure 6, calls to i-dialogue are, and produce:

A: i-dialogue : 〈〈IA
B 〉 αj 〈fA

B 〉 RA〉 → (〈IA
B 〉 〈OA

B〉 val)

B: i-d. . . : 〈〈IB
A I

B
C1 . . . I

B
Cn
〉 β0 〈fB

A f
B
C1 . . . f

B
Cn
〉 RB〉

→ (〈IB
A I

B
C1 . . . I

B
Cn
〉 〈OB

AO
B
C1 . . . O

B
Cn
〉 val)

C1: i-d. . . : 〈〈IC1
B 〉 γ10 〈fC1

B 〉 RC1〉 → (〈IC1
B 〉 〈OC1

B 〉 val)
...

...

Cn: i-d. . . : 〈〈ICn
B 〉 γn0 〈fCn

B 〉 RCn〉 → (〈ICn
B 〉 〈OCn

B 〉 val)

In the i-dialogue function the ordering of the elements of
the lists (l-inputs and l-step-fcn) is important. Indeed, it
corresponds to the semantics of the i-dialogue, that means
the order in which the inputs are processed by the agent
running the i-dialogue. This semantics is determined by
the agent before the starting of the i-dialogue. Thus, if an
agent runs an i-dialogue for computing the sum of squares
of numbers by interacting with an agent computing sums
(A-sums) and an agent computing squares (A-squares) then
it must send the numbers firstly to A-squares ant then send
the result to A-sums, because the two operations are not
commutative.

However, if the second way for implementing trialogue in
section 5.1 is extended to i-dialogue (that means instead of
using a list of step-fcni, using only one step-fcn processing
all the streams) then the semantics of the i-dialogue is not
anymore determined by the order as before, but directly by
the step-fcn.

Remark – Note that streams used in i-dialogue are even lazy
lists because when agent B runs the i-dialogue function with
IB

A , I
B
C1 , . . . , I

B
Cn

, the first elements of IB
C1 , . . . , I

B
Cn

cannot

be determined because the first elements of OB
C1 , . . . , O

B
Cn

needed for C1, . . . , Cn to produce an answer, have not been
produced yet.

i-dialogue : 〈l-inputs initial-state l-step-fcn result-fcn〉 ≡
letrec

iter ≡ λ 〈listi listf listui listo state〉 .
if null?:listi

then (listui listo state #f)
else

let
(in’ out’ state’ done’) ≡ [car:listf] : 〈car:listi state〉

in
if done’

then (append : 〈listui cons:〈in’ cdr:listi〉 〉
append : 〈listo

cons:〈out’
map:〈λ x . null cdr:listi〉 〉 〉

state’ #t)
else

iter : 〈cdr:listi
cdr:listf
append : 〈listui 〈in’〉 〉
append : 〈listo 〈out’〉 〉
state’〉

run ≡ λ 〈l-inputs state〉 .
let

(l-inputs’ l-outputs’ state’ done’) ≡
iter : 〈l-inputs l-step-fcn null null state〉

in
if done’

then (l-inputs’ l-outputs’ result-fcn:state’)
else

let
(l-inputs” future-l-outputs” result”) ≡

run : 〈l-inputs’ state’〉
in

(l-inputs”
append-ll-with-list : 〈l-outputs’ future-l-outputs”〉
result”)

in
run : 〈l-inputs initial-state〉

Figure 8: Definition of the function i-dialogue

6. RELATED WORK AND APPLICATIONS
The utility of applicative/functional features (especially dy-
namic typing and lazy evaluation) for the Web (the fu-
ture environment of agents) was previously presented in
[3]. Besides, the idea to bring closer features from applica-
tive/functional languages and MAS is also suggested in [5]
which presents Java agents using stream of messages. Es-
pecially, we think that the principles of i-dialogue abstrac-
tion fit multi-agent scenarios because it respects the pre-
requisite of communication in MAS i.e. do not pre-suppose
about internals of the partner and only deal with messages
exchanged. Moreover, it is a useful abstraction for describ-
ing the interaction between two ”system programs” (AA-AA
interaction) but it can equally well describe an interactive
session between a human user and a program (HA-AA inter-
action), or even between two persons (HA-HA interaction).
The HA can ”start” an i-dialogue with an AA: Each time he
receives a message from the AA, the HA enters a new mes-
sage, which depends both of the received message and of
the history of the interaction (i.e., the HA’s old state). This

kind of characteristic, aiming to introduce/integrate HA in
MAS, is more and more important in the evolution of nowa-
days MAS and even distributed systems in general. MAS
community tends to do the necessary shift putting the user
towards the center of the agent applications. In order to do
that, uniform models for AA-AA and HA-AA interactions
are needed. It is one of the principle of the STROBE model
presented below.

6.1 The STROBE model
In [4] and more recently in [15], the authors present the
STROBE model as an agent representation and communica-
tion model. In STROBE, generic communication may be de-
scribed by means of STReams of messages to be exchanged
by agents represented as OBjects exerting control by means
of procedures (and continuations) and interpreting messages
in multiple Environments. The model is highly influenced
by applicative/functionnal constructs. For STROBE agents,
message’s interpretation is done in a given Cognitive Envi-
ronment7 and with a given Cognitive Interpreter both ded-
icated to the current conversation (a pair for each acquain-
tances). Moreover, communication enables agents to dy-
namically change values in an environment and especially
change (at run time) these interpreters to adapt their way of
interpreting messages (meta-level learning). As the Cogni-
tive Interpreters are ”included”8 in Cognitive Environments,
the state of an agent is the composition of all its Cognitive
Environments. Actually, these pairs environment – inter-
preter play the role of ”partner models” in order to be able
for an agent to reconstruct as much as possible, the partner’s
internal state.

One of the original idea of the model is to represent messages
by streams. Agents generate the next message to send only
after having received the last partner’s answer. This allows
to remove the necessity of global conversation planning (i.e.
communication protocol) substituting it by history memo-
rization and one-step, opportunistic planning.

Note that in i-dialogue the step-fcns take an input stream
as argument, but noting implies they should begin by pro-
cessing the first element of this stream (i.e. the first message
send by the partner agent); they may decide to process any
element of the input stream at any time. In the same way,
the STROBE model suggest to use a dynamic scheduler to
”choose” the next message an agent wants to interpret.

Therefore, the i-dialogue abstraction seems particularly syn-
ergic with the STROBE model: both use streams and lazy
evaluation and both aim to model dynamic agent interac-
tions. Moreover, the Cognitive Interpreters are quite the
same thing that the step-fcns of the i-dialogue abstraction:
they are functions producing an answer message (i.e. out-
put) according to an incoming message (i.e. input) and
an environment (i.e. state). What is really interesting
in the STROBE model is the fact that these interpreters
could evolve dynamically (while communicating) so, by anal-
ogy, an unification of the i-dialogue abstraction with the

7The term environment is here used with its programming
language meaning, that is to say, a structure that binds
variables and values.
8In the same way that the function eval is part of the
Scheme language.

USER
(U)

⇒ (date, dept, dest, date-r) ⇒

⇐ (ticket,ticket-r, reserv) ⇐

TRAVEL
AGENCY

(A)

⇒ (date, dept, dest) ⇒

⇐ (ticket) ⇐

⇒ (date-a, date-q) ⇒

⇐ (reserv) ⇐

AIRPLANE
TICKET (T)

HOTEL RESER-
VATION (H)

Figure 9: Streams in the travel agency scenario

STROBE model should allow agents to dynamically change
step-fcns during the execution of the i–dialogue function.
Such a feature seems very attractive for the dynamicity of
conversations being modeled by the i-dialogue abstraction.

6.2 Providing services
The step-fcns of i-dialogue represent both the agent evolu-
tion functions (by changing the agent state) but also the
agent capabilities (by producing outputs according to in-
puts). Then an agent executing an i-dialogue function pro-
vides a service realized by its stef-fcns. Besides, we can
nevertheless explain that the i-dialogue abstraction suits for
providing services within scenarios such as the ones on to-
day’s Web and Grid. Without a doubt, in figure 6 the agent
A may be a service user (AA or HA), the agent B may be
the service provider and the group of agents C1 . . . Cn may
represent the network (e.g. the Web or the Grid) to which
agent B is connected and which allows it to provide sev-
eral services. In this scenario, as each Ci agent provides a
service to B, i-dialogue models the composition of all the-
ses services. Composed services (or business processes), are
the subject of current applied research and a central con-
cern for the future generation of services as it is explained,
among others, in [20], a recent overview of Service Oriented
Computing.

The next generation of services will consists in dynamically
generated services, i.e. services constructed on the fly by the
provider according to the conversation it has with the user.
Dynamic Service Generation (DSG) is opposed to classical
product delivery approach; just like in current life, buying
ready-to-wear clothes is analogue to asking for a product,
whereas having clothes made by a tailor is analogue to re-
quiring a service to be generated. For going toward this kind
of DSG, the notion of service on the Web (Web services, Grid
services) has to surpass HTTP protocols, RPC (Remote Pro-
cedure Call) and XML standards to be enriched by DAI
research and especially by agent communication progress.
The main difference between DSG and product delivery is
the emerging conversational process managed by agents in
the first one: future DSG systems need open and dynamic
communication models able to generate these conversational
processes which may occur between agents: AA-AA, AA-
HA, and also HA-HA, as services may be asked/produced
by any kind of agents. The i-dialogue abstraction represents
a concrete fundamental model for this challenging goal.

6.3 Example: the travel agency
In this section we illustrate a scenario using i-dialogue with
a classical example in service composition: the travel plan-
ning! A travel agency agent (A) provides to an user agent
(U), both an airplane ticket booking service and hotel reser-
vation service coordinated together, by composing the ser-
vice provided by an airplane ticket agent (T) and the service
provided by a hotel reservation agent (R), as illustrated by
figure 9. The step-fcns are detailed below (with their side
effects):

fA
U : 〈(date dept dest date-r) α〉 →

〈()(date dept dest date-r dest dept) α b〉

fA
U : The agent U produces a stream of parameters which

contains variables of the trip, i.e. departure date, departure
city, destination city and return date. The agent A consumes
all this stream and produces a stream for T composed of
two sequences defining the two tickets the user requests, i.e.
date, departure city, destination city. The state, α, of agent
A is not changed by fA

U .

fT
A : 〈(date dept dest) τ〉 → 〈()(ticket) τ ′ b〉

- Change the database of T

fT
A : The agent T consumes the entire stream produced by

A and for each triplet date, departure city, destination city,
it produces a one-way ticket. The state, τ , of agent T is
changed by producing ticket(s) (the database of T is updated
to consider the new ticket(s) booked). The agent T produces
a stream containing the ticket(s).

fA
T : 〈(ticket ticket-r) α〉 → 〈()(date date-r) α′ b〉

- Remember ticket and ticket-r
- Extract date and date-r from ticket and ticket-r

fA
T : The agent A consumes the entire stream produced by

T and for each ticket, it extracts the date of the ticket, in
order to ask to R an hotel reservation. Note that the date
extracted from ticket are not necessarily the same that the
date firstly produced by U. The agent A produces a stream
of two dates, an arrival date and a quit date. It also changes
its state, α, by memorizing the two tickets returned by T.

fR
A : 〈(date-a date-q) ρ〉 → 〈()(reserv) ρ′ b〉

- Change the database of R

fR
A : The agent R consumes the entire stream produced by

A and for each pair of date produce a hotel reservation. The
state, ρ, of agent R is changed by producing reservation(s)
(the database of R is updated to consider the new reser-
vation(s)). The agent R produces a stream containing the
reservation.

fA
R : 〈(reserv) α〉 → 〈()(ticket ticket-r reserv) α′ b〉

- Extract ticket and ticket-r from state

fA
R : Finally, the agent A consumes the stream produced by

R and produces a stream directed to U with the reservation
and the two tickets previously memorized. A new state is
thus computed. The boolean returns by fA

R is probably #t
to express the fact that for A, the service providing is over.

Remark: In this scenario, to simplify, messages (i.e. ele-
ments of streams) consist just of variables. Real agent mes-
sages are more complex.

In this scenario, the use of streams implies that the values of
date, departure city and destination city variables of OU

A are
determined only when the agent T needs them (i.e. when
one of its database primitive forces the evaluation) and not
when A produces OA

T . Actually, the user U firstly asks for
a service and then specifies its parameters only when the
service is sure to be applied. The user parameters are deter-
mined one by one progressively when they are really needed
which differs from a traditional RPC as it is the case in
classical service approaches (Web service). This idea goes
toward DSG.

An integration of i-dialogue and STROBE allowing agents
to change dynamically the step-fcns could be very inter-
esting in this scenario by changing at run time, for exam-
ple, fA

R and fR
A . The former could be changed in order to

produce a different stream, including for example customer
services requested by the user (i.e. parameters of IA

U , re-
turned in unused-inputs when A applied fA

U , and used after
as explained in remark section 5.1), and the latter could
be changed to process this new stream. If these changes
depends on the A’s initiative, then fA

R changes are inter-
nal, but fR

A changes are externals (does not concerns agent
A) and should be accomplished by communicating. These
kinds of changes on the way messages are interpreted are
considered as ”meta-level learning by communicating” and
are typical of STROBE agents as illustrated in [15].

6.4 Weaknesses and perspectives
I-dialogue does not directly model multiple conversation
where each agent can send messages to any others agent
or broadcast messages to all, as it can occur in a ”human
meeting”. Using i-dialogue an agent can decide which part
of an input stream it wants to process, but cannot for the
moment change dynamically the order in which it process
all the inputs streams together. Or, add dynamically one
or several new stream(s) to process. The ordering is not
dynamic yet. For example in the travel agency scenario,
the ordering of agent A (fA

U , fA
T , fA

R) could be changed
to include a new agent in the conversation providing a car
rental service. The step-fcns may change (as it is explain
just before) but also the ordering of the elements of l-inputs
and l-step-fcn. It is a perspective for future work based on

streams and lazy evaluation.

7. CONCLUSION
We have presented in his paper the i-dialogue abstraction,
a model of multiple concurrent conversations in MAS. Each
agent can use i-dialogue locally to represent its conversa-
tions. This abstraction is based on simple constructs of
applicative / functional languages (i.e. streams, lazy eval-
uation and higher order functions). It has two main ad-
vantages: i) to not presuppose anything about the internals
of the partner agent and only deals with outputs stream of
messages; ii) to deal with the entire conversation (expressed
by potentially infinite and not predetermined stream of mes-
sages) and not simply with a message alone.

The main contributions of this paper are:

• To spread the elegant model of O’Donnell to more com-
plex situations implying several entities.

• To consider this quite new model for MAS and within
agent communication as it was suggested by STROBE.

• To open a new kind of consideration in composition of
services as it can occur in DSG.

8. ACKNOWLEDGMENTS
Work partially supported by the European Community un-
der the Information Society Technologies (IST) programme
of the 6th Framework Programme for RTD - project ELeGI,
contract IST-002205 (www.elegi.org). This document does
not represent the opinion of the European Community, and
the European Community is not responsible for any use that
might be made of data appearing therein.

9. REFERENCES
[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure

and Interpretation of Computer Programs. MIT Press,
Cambridge, Massachusetts, USA, 2nd edition, 1996.

[2] W. H. Burge. Stream processing functions. IBM
Journal of Research and Development, 19(1):12–25,
January 1975.

[3] S. A. Cerri. Dynamic typing and lazy evaluation as
necessary requirements for Web languages. In
European Lisp User Group Meeting, ELUGM’99,
Amsterdam, Holland, 1999.

[4] S. A. Cerri. Shifting the focus from control to
communication: the STReam OBjects Environments
model of communicating agents. In P. J.A., editor,
Collaboration between Human and Artificial Societies,
Coordination and Agent-Based Distributed Computing,
volume 1624 of Lecture Note in Artificial Intelligence,
pages 74–101. Springer-Verlag, Berlin Heidelberg New
York, 1999.

[5] T. Clark. Implementation of lazy agents in the
functional language ebg. Technical report, University
of Bradford, West Yorkshire, UK, July 1999.

[6] F. Dignum and M. Greaves, editors. Issues in Agent
Communication, volume 1916 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, Berlin
Heidelberg New York, 2000.

[7] J. Ferber. Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence. Addison Wesley
Longman, Harlow, UK, 1999.

[8] J. Franco, D. P. Friedman, and S. D. Johnson.
Multi-way streams in scheme. Computer Languages,
15(2):109–125, 1990.

[9] D. P. Friedman and D. S. Wise. CONS should not
evaluate its arguments. In S. Michaelson and
R. Milner, editors, Automata, Languages and
Programming: Third International Colloquium, pages
257–284. Edinburgh University Press, 1976.

[10] F. Guerin. Specifying Agent Communication
Languages. PhD thesis, Imperial College of Science,
University of London, London, UK, June 2002.

[11] M.-P. Huget, editor. Communication in Multiagent
Systems, Agent Communication Languages and
Conversation Poliscies, volume 2650 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin
Heidelberg New York, 2003.

[12] J. Hughes. Why functional programming matters.
Computer Journal, 32(2):98–107, 1989.

[13] T. Ida and J. Tanaka. Functional programming with
streams. In R. E. A. Mason, editor, Information
Processing 83, IFIP 9th World Computer Congress,
pages 265–270, Paris, France, September 1983.

[14] S. D. Johnson. How daisy is lazy: Suspending
construction at target levels. Technical Report 286,
Indiana University Computer Science Department,
Bloomington, Indiana, USA, August 1989.

[15] C. Jonquet and S. A. Cerri. Agents communicating for
dynamic service generation. In 1st International
Workshop on GRID Learning Services, GLS’04, pages
39–53, Maceio, Brazil, September 2004. Revised and
extended version to appear in AAIJ, September 2005.

[16] P. J. Landin. Correspondence between ALGOL 60 and
Church’s Lambda-notation: part I. Communications
of the ACM, 8(2):89–101, February 1965.

[17] J. T. O’Donnell. Dialogues: A Basis for Constructing
Programming Environments. ACM SIGPLAN Notices,
20(7):19–27, June 1985. Proceedings of the symposium
on Language issues in programming environments,
Seattle, Washington, USA, June 1985.

[18] P.-M. Ricordel, S. Pesty, and Y. Demazeau. About
conversations between multiple agents. In 1st
International Workshop of Central and Eastern
Europe on Multi-agent Systems, CEEMAS’99, pages
203–210, St. Petersburg, Russia, June 1999.

[19] M. P. Singh. Agent communication languages:
Rethinking the principles. IEEE Computer,
31(12):40–47, 1998.

[20] M. P. Singh and M. N. Huhns. Service-Oriented
Computing Semantics, Processes, Agents. John Wiley
& Sons, Ltd, 2005.

APPENDIX
A. DAISY LANGUAGE INSPIRED SYNTAX
A part of this section is quoted from [17]. Some changes
have been done specially to make the distinction between
”evaluated list” and ”lazy list”. In the descriptions below,
ε may be any expression and η may be any identifier list
(evaluated or lazy); an identifier list is an identifier or a list
of identifier lists.

1. 〈ε0 ε1 . . . εn〉
An ”evaluated list” is a list of expressions enclosed in
angle brackets. Lists are constructed with cons, ap-
pend and map, and accessed with car and cdr. The
predicate null? taste if a list is null.

2. (ε0 ε1 . . . εn)
A ”lazy list” or a stream (cf. section 4.2 for the exact
distinction) is a list of expressions enclosed in brackets.
The function append-ll is equivalent to append but
for lazy-list. The function append-ll-with-list apply
append-ll to the elements of the list in arguments. Cf.
appendix B for implementation of streams in Scheme.

3. λ η . ε
Function definitions. A lambda expression evaluates to
a closure, as in Scheme. η represents the parameter(s)
and ε is the body of the function.

4. ε0 : ε1
Function applications are written with an infix apply
operator ”:”. The expression to the left of the ”:”
should evaluate to a closure. In this syntax functions
take exactly one parameter, but that parameter may
be an evaluated list. For example, inc : 3 and mpy : 〈3
4〉 compute 3+1 and 3*4 respectively.

5. if ε0 then ε1 else ε2
The if expression. ε1 is evaluated if ε0 is true (#t) or
ε2 is evaluated if ε0 is false (#f).

6. let η0 ≡ ε0 η1 ≡ ε1 . . . in ε
The let expression evaluates the right hand sides of
the equations in the existing environment, binds the
resulting values to the left hand sides, and evaluates ε
in the new environment.

7. letrec η0 ≡ ε0 η1 ≡ ε1 . . . in ε
The letrec expression is like let, except that the right
hand sides of the equations are evaluated in the ex-
tended environment, rather than the original environ-
ment. This makes it possible to define sets of recursive
functions or recursive data structures in a letrec.

B. SCHEME IMPLEMENTATION
To experiment the work described in this paper, we imple-
mented the i-dialogue function in Scheme, a purely applica-
tive language. Scheme R5RS is not a lazy language, but it
offers the function force and the macro delay in library
which allow, combined with the macro operator (special
form) define-syntax, to implement streams and lazy lists.
Besides, the second way of implementing trialogue cited
in section 5.1 was tested and verified with a lazy Scheme
meta-evaluator. Some simple examples have been devel-
oped. These implementations are available. An integration
of i-dialogue and STROBE is in progress over the multi-
agent platform Madkit (www.madkit.org).

	1 Introduction
	2 Agents and MAS
	3 Notations
	4 The dialogue abstraction
	4.1 Description of dialogue
	4.2 History of streams and lazy evaluation
	4.3 Implementation of the dialogue function
	4.4 The dialogue abstraction limits

	5 The i-dialogue abstraction
	5.1 The trialogue abstraction
	5.2 Generalization: the i-dialogue abstraction

	6 Related work and applications
	6.1 The STROBE model
	6.2 Providing services
	6.3 Example: the travel agency
	6.4 Weaknesses and perspectives

	7 Conclusion
	8 Acknowledgments
	9 References
	A Daisy language inspired syntax
	B Scheme implementation

