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WAVE DECAY ON CONVEX CO-COMPACT HYPERBOLIC MANIFOLDS

For convex co-compact hyperbolic quotients X = Γ\H n+1 , we analyze the long-time asymptotic of the solution of the wave equation u(t) with smooth compactly supported initial data f = (f 0 , f 1 ). We show that, if the Hausdorff dimension δ of the limit set is less than n/2, then u

). We explain, in terms of conformal theory of the conformal infinity of X, the special cases δ ∈ n/2 -N where the leading asymptotic term vanishes. In a second part, we show for all ǫ > 0 the existence of an infinite number of resonances (and thus zeros of Selberg zeta function) in the strip {-nδ -ǫ < Re(λ) < δ}. As a byproduct we obtain a lower bound on the remainder R(t) for generic initial data f .

Introduction

It is well-known that on a compact Riemannian manifold (X, g), any solution u(t, z) of the wave equation (∂ 2 t + ∆ g )u(t, z) = 0 expands as a sum of oscillating terms of the form e iλj t a j (z) where λ 2 j are the eigenvalues of the Laplacian ∆ g and a j some associated eigenvectors. The eigenvalues then give the frequencies of oscillation in time. For non-compact manifolds, the situation is much more complicated and no general theory describes the behaviour of waves as time goes to infinity, at least in terms of spectral data. A first satisfactory description has been given by Lax-Phillips [START_REF] Lax | Scattering theory[END_REF] and Vainberg [START_REF] Vainberg | Asymptotic methods in equations of mathematical physics[END_REF] for the Laplacian ∆ X with Dirichlet condition on X := R n \ O where O is a compact obstacle and n odd; indeed if u(t) is the solution of (-∂ 2 t -∆ X )u(t, z) = 0 with compactly supported smooth initial data in X and under a non-trapping condition, they show an expansion as t → +∞ of the form u(t, z) = λj ∈R Im(λj )<N m(λj ) k=1 e iλj t t k-1 u j,k (z) + O(e -(N -ǫ)t ), ∀N > 0, ∀ǫ > 0 uniformly on compacts, where R ⊂ {λ ∈ C, Im(λ) ≥ 0} is a discrete set of complex numbers called resonances associated with a multiplicity function m : R → N, and u j,k are smooth functions. The real part of λ j is a frequency of oscillation while the imaginary part is an exponential decay rate of the solution. Resonances can in general be defined as poles of the meromorphic continuation of the Schwartz kernel of the resolvent of ∆ X through the continuous spectrum.

In [START_REF] Tang | Resonance expansions of scattered waves Comm[END_REF], Tang and Zworski extended this result for non-trapping black-box perturbation of R n and considered also a strongly trapped setting, namely when there exist resonances λ j such that 1 Im(λ j ) < (1 + |λ j |) -N for all N > 0, satisfying in addition some separation and multiplicity conditions. The expansion of wave solutions then involved these resonances and the error is O(t -N ) for all N > 0. This last result has also been generalized by Burq-Zworski [START_REF] Burq | Resonances expansion in semi-classical propagation[END_REF] for semi-classical problems.

It is important to notice that such results are almost certainly not optimal when the trapping is hyperbolic since, at least for all known examples, resonances do not seem to approach the real line faster than polynomially. Christiansen and Zworski [START_REF] Christiansen | Resonance wave expansions: two hyperbolic examples[END_REF] studied two examples in hyperbolic geometry, the modular surface and the infinite volume cylinder, they showed a full expansion of waves in terms of resonances with exponentially decaying error terms. The proof is based on a separation of variables computation in the cylinder case (here the trapping geometry is that of a single closed hyperbolic orbit) while it relies on well-known number theoretic estimates for the Eisenstein series in the modular case. The case of De Sitter-Schwarzchild metrics has recently been studied by Bony-Häfner [START_REF] Bony | Decay and non-decay of the local energy for the wave equation in the De Sitter -Schwarzschild metric[END_REF] using also separation of variables and rotational symmetry of the space. This is another example of hyperbolic trapping. Clearly, the general hyperbolic trapping situation is an issue and the above results are always based on very explicit computations or the arithmetic nature of the manifold. It is therefore of interest to consider more general cases of hyperbolic trapping geometries, the most basic examples being the convex co-compact quotients of the hyperbolic space H n+1 that can be considered as the simplest non-trivial models of open quantum chaotic systems.

Hyperbolic quotients Γ\H n+1 by a discrete group of isometries with only hyperbolic elements (those that do not fix points in H n+1 but fix two points on the sphere at infinity S n = ∂H n+1 ) and admitting a finite sided fundamental domain are called convex cocompact. The Laplacian on such a quotient X has for continuous and essential spectrum the half-line [n 2 /4, ∞), the natural wave equation is

(1.1) (∂ 2 t + ∆ X -n 2 /4)u(t, z) = 0, u(0, z) = f 0 (z), ∂ t u(0, z) = f 1 (z), its solution is (1.2) u(t) = cos t ∆ X - n 2 4 f 0 + sin t ∆ X -n 2 4 ∆ X -n 2 4 f 1 .
For a convex co-compact quotient X = Γ\H n+1 , the group Γ acts on H n+1 as isometries but also on the sphere at infinity S n = ∂H n+1 as conformal transformations. The limit set Λ(Γ) of the group is the set of accumulation points on S n of the orbit Γ.m for the Euclidean topology of the ball {z ∈ R n+1 ; |z| ≤ 1} for any picked m ∈ H n+1 , it is well known that Λ(Γ) does not depend on the choice of m. We denote by δ ∈ (0, n) the Hausdorff dimension of Λ(Γ),

δ := dim H (Λ(Γ)).
It is proved by Patterson [28] and Sullivan [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF] that δ is also the exponent of convergence of Poincaré series

(1.3) P λ (m, m ′ ) := γ∈Γ e -λd h (m,γm ′ ) , m, m ′ ∈ H n+1 ,
where d h is the hyperbolic distance. Standard coordinates on the unit sphere bundle SX = {(z, ξ) ∈ T X; |ξ| = 1} show that 2δ + 1 is the Hausdorff dimension of the trapped set of the geodesic flow on SX. We denote by Ω := S n \ Λ(Γ) the domain of discontinuity of Γ, this is the largest open subset of S n on which Γ acts properly discontinuously. The quotient Γ\Ω is a compact manifold and X can be compactified into a smooth manifold with boundary X = X ∪ ∂ X with ∂ X = Γ\Ω. It turns out that ∂ X inherits from the hyperbolic metric g on X a conformal class of metrics [h 0 ], namely the conformal class of h 0 = x 2 g| T ∂ X where x is any smooth boundary defining function of ∂ X in X.

In this paper, we focus on the case when δ < n/2 since if δ > n/2, the Laplacian ∆ X has pure point spectrum in (0, n 2 /4) that gives the leading asymptotic behaviour of u(t) by usual spectral theory. We prove the following result.

Theorem 1.1. Let X be an (n + 1)-dimensional convex co-compact hyperbolic manifold such that δ < n/2, and let f 0 , f 1 , χ ∈ C ∞ 0 (X). With u(t) defined by (1.2), as t → +∞, we have the asymptotic

(1.4) χu(t) = A X Γ(δ -n 2 + 1) e -t( n 2 -δ) u δ , (δ - n 2 )f 0 + f 1 χu δ + O L 2 (e (δ-n 2 )t t -∞ )
where u δ is the Patterson generalized eigenfunction defined in (2.10) and , is the distributional pairing, A X ∈ C \ {0} is a constant depending on X.

Remark 1: when δ / ∈ n/2 -N, this shows that the "dynamical dimension" δ controls the exponential decay rate of waves, or quantum decay rate2 . It seems to be the first rather general example of hyperbolic trapping for which we have an explicit asymptotic for the waves, in terms of geometric data. However, we point out that the recent work of Petkov-Stoyanov [START_REF] Petkov | Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function[END_REF] should in principle imply an expansion in terms of a finite number of resonances for the exterior problem with strictly convex obstacles. We also believe that a result similar to Theorem 4.3 holds for general negatively curved asymptotically hyperbolic manifolds, this will be studied in a subsequent work.

Remark 2: In the special case δ ∈ n/2 -N (note that it can happen only for n ≥ 3 i.e. for four and higher dimensional manifolds) the leading term vanishes in view of the Euler Γ fonction in (1.4). Waves for this special case turn out to decrease faster. We explain this fact in the last section of the paper, and it is somehow related to the conformal theory of ∂ X: what happens is that when δ / ∈ n/2 -N, λ = δ is always the closest pole to the continuous spectrum of the meromorphic extension of the resolvent

R(λ) := (∆ X -λ(n-λ)) -1 and u δ is an associated non-L 2 eigenstate (∆ X -δ(n-δ))u δ = 0, while when δ ∈ n/2 -k with k ∈ N, the extended resolvent R(λ) is holomorphic at λ = δ and u δ has asymptotic behaviour near ∂ X u δ (z) = x(z) δ f δ + O(x(z) δ+1 )
where

f δ ∈ C ∞ (∂ X
) is an element of ker(P k ), P k being the k-th GJMS conformal Laplacian [START_REF] Graham | Conformally invariant powers of the Laplacian. I. Existence[END_REF] of the conformal boundary (∂ X, [h 0 ]); more precisely P j > 0 for all j = 1, . . . , k -1 while ker P k = Span(f δ ). The manifold has a special conformal geometry at infinity that makes the resonance δ disappears and transforms into a 0-eigenvalue for the conformal Laplacian P k .

The proof uses methods of Tang-Zworski [START_REF] Tang | Resonance expansions of scattered waves Comm[END_REF] together with informations on the closest resonance to the critical line, that is δ when δ / ∈ n/2 -N (the physical sheet for the resolvent R(λ) := (∆λ(nλ)) -1 is {Re(λ) > n/2}) this last fact has been proved by Patterson [START_REF] Patterson | On a lattice-point problem for hyperbolic space and related questions in spectral theory[END_REF] using Poincaré series and Patterson-Sullivan measure. The powerful dynamical theory of Dolgopyat [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF] has been used by the second author [START_REF] Naud | Expanding maps on Cantor sets and analytic continuation of zeta functions[END_REF] (for surfaces) and Stoyanov [START_REF] Stoyanov | Ruelle zeta functions and spectra of transfer operators for some axiom A flows[END_REF] (in higher dimension) to prove the existence of a strip with no zero on the left of the first zero λ = δ for the Selberg zeta function. Using results of Patterson-Perry [START_REF] Patterson | The divisor of Selberg's zeta function for Kleinian groups. Appendix A by Charles Epstein[END_REF], this implies a strip {δǫ < Re(λ) < δ)} with no resonance. Then we can view u(t) as a contour integral of the resolvent R(λ) and move the contour up to δ and apply residue theorem. This involves obtaining rather sharp estimates on the truncated (on compact sets) resolvent near the line {Re(λ) = δ}. This is achieved by combining the non-vanishing result with an a priori bound that results from a precise parametrix of the truncated resolvent.

A second result of this article is the proof of the existence of an explicit strip with infinitely many resonances. Theorem 1.2. Let X = Γ\H n+1 be a convex co-compact hyperbolic manifold and let δ ∈ (0, n) be the Hausdorff dimension of its limit set. Then for all ε > 0, there exist infinitely many resonances in the strip {-nδ-ε < Re(s) < δ}. If moreover Γ is a Schottky group, then there exist infinitely many resonances in the strip {-δ 2ε < Re(s) < δ}.

Note that the existence of infinitely many resonances in some strips was proved by Guillopé-Zworski [START_REF] Guillopé | The wave trace for Riemann surfaces[END_REF] in dimension 2 and Perry [START_REF] Perry | A Poisson formula and lower bounds for resonances on hyperbolic manifolds[END_REF] in higher dimension, but in both cases, they did not provide any geometric information on the width of these strips. Our proof is based on a Selberg like trace formula and uses all previously known counting estimates for resonances. An interesting consequence is an explicit Omega lower bound for the remainder in (1.4) for generic compactly supported initial data.

Corollary 1.3. For any compact set K ⊂ X, there exists a generic set Ω ⊂ C ∞ (K) such that for all f 1 ∈ Ω, f 0 = 0 and all ǫ > 0, the remainder in

(1.4) is not a O L 2 (e -( n 2 +nδ+ǫ)t ) as t → ∞. If X is Schottky, O L 2 (e -( n 2 +nδ+ǫ)t ) can be improved to O L 2 (e -( n 2 +δ 2 +ǫ)t
). The meaning of "generic" above is in the Baire category sense, i.e. it is a G δ -dense subset. We point out that when n = 1, all convex-cocompact surfaces are Schottky i.e. are obtained as Γ\H 2 , where Γ is a Schottky group. For a definition of Schottky groups in our setting we refer for example to the introduction of [START_REF] Guillopé | The Selberg zeta function for convex co-compact Schottky groups[END_REF]. In higher dimensions, not all convex co-compact manifolds are obtained via Schottky groups. For more details and references around these questions we refer to [START_REF] Guillarmou | Wave 0-Trace and length spectrum on convex co-compact hyperbolic manifolds[END_REF].

The rest of the paper is organized as follows. In §2, we review and prove some necessary bounds on the resolvent in the continuation domain. In §3 we prove the estimate on the strip with finitely many resonances. In §4, we derive the asymptotics by using contour deformation and the key bounds of §2. We also show how to relate §3 to an Omega lower bound of the remainder. The section §5 is devoted to the analysis of the special cases δ ∈ n 2 -N in terms of the conformal theory of the infinity. Acknowledgement. Both authors are supported by ANR grant JC05-52556. C.G ackowledges support of NSF grant DMS0500788, ANR grant JC0546063 and thanks the Math department of ANU (Canberra) where part of this work was done.

Resolvent

We start in this section by analyzing the resolvent of the Laplacian for convex cocompact quotient of H n+1 and we give some estimates of its norms.

2.1. Geometric setting. We let Γ be a convex co-compact group of isometries of H n+1 with Hausdorff dimension of its limit set satisfying 0 < δ < n/2, we set X = Γ\H n+1 its quotient equipped with the induced hyperbolic metric and we denote the natural projection by

(2.1) π Γ : H n+1 → X = Γ\H n+1 , πΓ : Ω → ∂ X = Γ\Ω.
By assumption on the group Γ, for any element h ∈ Γ there exists α ∈ Isom(H n+1 ) such that for all (x, y)

∈ H n+1 = R n × R + , α -1 • h • α(x, y) = e l(γ) (O γ (x), y),
where O γ ∈ SO n (R), l(γ) > 0. We will denote by α 1 (γ), . . . , α n (γ) the eigenvalues of O γ , and we set

(2.2) G γ (k) = det I -e -kl(γ) O k γ = n i=1 1 -e -kl(γ) α i (γ) k .
The Selberg zeta function of the group is defined by

Z(λ) = exp - γ ∞ m=1 1 m e -λml(γ) G γ (m) ,
the sum converges for Re(λ) > δ and admits a meromorphic extension to λ ∈ C by results of Fried [START_REF] Fried | The zeta functions of Ruelle and Selberg[END_REF] and Patterson-Perry [START_REF] Patterson | The divisor of Selberg's zeta function for Kleinian groups. Appendix A by Charles Epstein[END_REF].

2.2. Extension of resolvent, resonances and zeros of Zeta. The spectrum of the Laplacian ∆ X on X is a half line of absolutely continuous spectrum [n 2 /4, ∞), and if we take for the resolvent of the Laplacian the spectral parameter λ(nλ)

R(λ) := (∆ X -λ(n -λ)) -1 , this is a bounded operator on L 2 (X) if Re(λ) > n/2.
It is shown by Mazzeo-Melrose [START_REF] Mazzeo | Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature[END_REF] and Guillopé-Zworski [START_REF] Guillopé | Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity[END_REF] that R(λ) extends meromorphically in C as continuous operators R(λ) : L 2 comp (X) → L 2 loc (X), with poles of finite multiplicity, i.e. the rank of the polar part in the Laurent expansion of R(λ) at a pole is finite. The poles are called resonances of ∆ X , they form the discrete set R included in Re(λ) < n/2, where each resonance s ∈ R is repeated with the mutiplicity

m s := rank(Res λ=s R(λ)).
A corollary of the analysis of divisors of Z(λ) by Patterson-Perry [START_REF] Patterson | The divisor of Selberg's zeta function for Kleinian groups. Appendix A by Charles Epstein[END_REF] and Bunke-Olbrich [START_REF] Bunke | Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group[END_REF] is the

Proposition 2.1 (Patterson-Perry, Bunke-Olbrich). Let s ∈ C \ (-N 0 ∪ (n/2 -N)), then Z(λ) is holomorphic at s,
and s is a zero of Z(λ) if and only if s is a resonance of ∆ X . Moreover its order as zero of Z(λ) coincide with the multiplicity m s of s as a resonance.

2.3.

Estimates on the resolvent R(λ) in the non-physical sheet. The series P λ (m, m ′ ) defined in (1.3) converges absolutely in Re(λ) > δ, is a holomorphic function of λ there, with local uniform bounds in m, m ′ , which clearly gives

∀ǫ > 0, ∃C ǫ (m, m ′ ) > 0, ∀λ with Re(λ) ∈ [δ + ǫ, n], |P λ (m, m ′ )| ≤ C ǫ,m,m ′
and C ǫ,m,m ′ is locally uniform in m, m ′ . We show the Proposition 2.2. With previous assumptions, there exists ǫ > 0 and a holomorphic family in {Re(λ) > δ -ǫ} of continuous operator K(λ) :

L 2 comp (X) → L 2 loc (X) such that the resolvent satisfies in Re(λ) > δ R(λ) = (2π) -n 2 Γ(λ) Γ(λ -n 2 ) P (λ) + K(λ)
where P (λ) is the operator with Schwartz kernel P λ (m, m ′ ). Moreover there exists M > 0 such that for any

χ 1 , χ 2 ∈ C ∞ 0 (X), there is a C > 0 such that ||χ 1 K(λ)χ 2 || L(L 2 (X)) ≤ C(|λ| + 1) M , Re(λ) > δ -ǫ
Proof : we choose a fundamental domain F for Γ with a finite number of sides paired by elements of Γ. By standard arguments of automorphic functions, the resolvent kernel

R(λ; m, m ′ ) for m, m ′ ∈ F is the average R(λ; m, m ′ ) = γ∈Γ G(λ; m, γm ′ ) = γ∈Γ σ(d h (m, γm ′ )) λ k λ (σ(d h (m, γm ′ ))) σ(d) := (cosh d) -1 = 2e -d (1 + e -2d ) -1 where G(λ; m, m ′ ) is the Green kernel of the Laplacian on H n+1 and k λ ∈ C ∞ ([0, 1)) is the hypergeometric function defined for Re(λ) > n-1 2 k λ (σ) := 2 3-n 2 π n+1 2 Γ(λ) Γ(λ -n+1 2 + 1) 1 0 (2t(1 -t)) λ-n+1 2 (1 + σ(1 -2t)) -λ dt
which extends meromorphically to C and whose Taylor expansion at order 2N can be written

k λ (σ) = 2 -λ-1 N j=0 α j (λ) σ 2 2j + k N λ (σ), α j (λ) := π -n 2 Γ(λ + 2j) Γ(λ -n 2 + 1)Γ(j + 1) with k N λ ∈ C ∞ ([0, 1)
) and the estimate for any ǫ 0 > 0

(2.3) |k N λ (σ)| ≤ σ 2N +2 C N (|λ| + 1) CN , σ ∈ [0, 1 -ǫ 0 ), Re(λ) > n 2 -N
for some C > 0 depending only on ǫ 0 , see for instance [START_REF] Guillarmou | Résonances sur les variétés asymptotiquement hyperboliques[END_REF]Lem. B.1]. Extracting the first term with α 0 in k λ , we can then decompose

R(λ; m, m ′ ) = π n 2 Γ(λ) 2Γ(λ -n 2 + 1) γ∈Γ e -λd h + γ∈Γ e -(λ+1)d h f λ (e -d h ) + γ∈Γ σ(d h ) λ k 0 λ (σ(d h )) f λ (x) := (1 + x 2 ) -λ -1 x ,
and where d h means d h (m, γm ′ ) here. Thus to prove the Proposition, we have to analyze the term K(λ)

:= 2 -1 α 0 (λ)K 1 (λ) + K 2 (λ) with K 1 (λ) := γ∈Γ e -(λ+1)d h f λ (e -d h ), K 2 (λ) := γ∈Γ σ(d h ) λ k 0 λ (σ(d h ))
The first term K 1 is easy to deal with since |f λ (x)| ≤ C(|λ| + 1) for x ∈ [0, 1], thus we can use the fact that P λ+1 (m, m ′ ) converges absolutely in Re(λ) > δ -1, is holomorphic there, and is locally uniformly bounded in (m, m ′ ) thus

|α 0 (λ)χ 1 (m)χ 2 (m ′ )K 1 (λ)| ≤ C(|λ| + 1) n 2 +1
the same bound holds for the operator in L(L 2 (X)) with Schwartz kernel χ 1 (m)χ 2 (m)F 1 (λ). Note that α 0 (λ) has no pole in Re(λ) > 0, thus no pole in Re(λ) > δ/2 > 0.

For K 2 (λ) we can decompose it as follows: for m ∈ Supp(χ 1 ), m ′ ∈ Supp(χ 2 ) (which are compact in F), for ǫ 0 > 0 fixed there is only a finite number of elements Γ 0 = {γ 0 , . . . , γ L ∈ Γ} such that d h (m, γm ′ ) > ǫ 0 for any γ / ∈ Γ 0 and any m, m ′ ∈ F, this is because the group acts properly discontinuously on H n+1 . Thus we split the sum in K 2 (λ) into

(2.4) K 2 (λ) = γ∈Γ0 σ(d h ) λ k 0 λ (σ(d h )) + γ / ∈Γ0 σ(d h ) λ k 0 λ (σ(d h )).
We first observe that the second term is a convergent series, holomorphic in λ, for Re(λ) > δ -1 and locally uniformly bounded in (m, m ′ ). Indeed it is easily seen to be bounded by

(2.5) CN (|λ| + 1) N j=1 |α j (λ)|P Re(λ)+2j (m, m ′ ) + C N (|λ| + 1) CN P Re(λ)+2N +1 (m, m ′ )
by assumption on Γ 0 and using (2.3), C depending on ǫ 0 only. Moreover since α j (λ) is polynomially bounded by C(|λ| + 1) 2j we have a polynomial bound for (2.5) of degree depending on N . The first term in (2.4) has a finite sum thus it suffices to estimate each term, but because of the usual conormal singularity of the resolvent at the diagonal, it explodes as d h (m, m ′ ) → 0. We want to use Schur's lemma for instance, so we have to bound

sup m∈F F |χ 1 (m)χ 2 (m ′ )K 2 (λ; m, m ′ )|dm ′ H n+1 , sup m ′ ∈F F |χ 1 (m)χ 2 (m ′ )K 2 (λ; m, m ′ )|dm H n+1 .
First we recall that H n+1 = (0, ∞) x × R n y has a Lie group structure with product

(x, y).(x ′ , y ′ ) = (xx ′ , y + xy ′ ), (x, y) -1 = ( 1 x , - y x )
and neutral element e := (1, 0). Then if (u, v)

:= (x ′ , y ′ ) -1 .(x, y) = (x/x ′ , (y -y ′ )/x ′ ) we get (2.6) (cosh(d h (x, y; x ′ , y ′ ))) -1 = 2xx ′ x 2 + x ′ 2 + |y -y ′ | 2 = 2u 1 + u + |v| 2 = (cosh(d h (u, v; 1, 0))) -1 . Moreover the diffeomorphism (u, v) → m ′ = m.(u, v) -1 on H n+1 pulls the hyperbolic measure dm ′ H n+1 = x ′ -n-1
dx ′ dy ′ back into the right invariant measure u -1 dudv for the group action. This is to say that we have to bound

(2.7) sup m∈F F -1 .m |χ 1 (m)χ 2 (m.(u, v) -1 )K 2 (λ; m, m.(u, v) -1 )| dudv u
where

F -1 .m := {m ′ -1 .m; m ′ ∈ F} and similarly (2.8) sup m ′ ∈F F -1 .m ′ |χ 1 (m ′ .(u, v) -1 )χ 2 (m ′ )K 2 (λ; m ′ .(u, v) -1 , m ′ )| dudv u .
Because m, m ′ are in compact sets, the estimate (2.5) with N = n gives a polynomial bounds in λ in {Re(λ) > δ -ǫ} for the terms coming from γ / ∈ Γ 0 . To deal with the term of (2.4) containing elements γ ∈ Γ 0 , we use Lemma B.1 of [START_REF] Guillarmou | Résonances sur les variétés asymptotiquement hyperboliques[END_REF] which proves that for any compact K of H n+1 , there exists a constant C K such that (2.9)

K |G(λ; (u, v), e)| dudv u ≤ C N K (|λ| + 1) n-1 dist(λ, -N 0 ) , Re(λ) > n 2 -N. Now to bound (2.7) with K 2 (λ, •, •) replaced by σ(d h (•, γ•)) λ k ′ λ (σ(d h (•, γ•)))
we note that before we did our change of variable in (2.7), we can make the change of variable m ′ → γ -1 m ′ which amounts to bound sup

m∈F (γF) -1 .m χ 1 (m)χ 2 (γ -1 m.(u, v) -1 ) G(λ; (u, v), e)-2 -λ-1 α 0 (λ)σ λ (d h ((u, v), e))
dudv u

where we used (2.6). But again, since χ 1 , χ 2 have compact support, we get a polynomial bound in λ using (2.9) and a trivial polynomial bound for k λ (0). The term (2.8) can be dealt with similarly and we finally deduce that for some M ,

||χ 1 K 2 (λ)χ 2 || L(L 2 (X)) ≤ C(|λ| + 1) M , Re(λ) > δ -ǫ
and the Proposition is proved.

This clearly shows that the resolvent extends to {Re(λ) > δ} analytically. Actually, Patterson [START_REF] Patterson | On a lattice-point problem for hyperbolic space and related questions in spectral theory[END_REF] (see also [START_REF] Perry | The Laplace operator on a hyperbolic manifold II, Eisenstein series and the scattering matrix[END_REF]Prop 1.1]) showed the following. 

∂ ∞ H n+1 = R n ∪ {∞} = S n .
We can but notice that δ ∈ n/2 -N is a special case since the resolvent becomes holomorphic at λ = δ. We postpone the analysis of this phenomenon to section §5.

A rough exponential estimate in the non-physical sheet also holds using determinants methods (used for instance in [START_REF] Guillopé | Scattering asymptotics for Riemann surfaces[END_REF]).

Lemma 2.4. For χ 1 , χ 2 ∈ C ∞ 0 (X), j ∈ N 0 , and η > 0 there is C > 0 such that for |λ| ≤ N/16 and dist(λ, R} > η,

||∂ j λ χ 1 R(λ)χ 2 || L(L 2 (X)) ≤ e C(N +1) n+3
, Proof : we apply the idea of [START_REF] Guillopé | Scattering asymptotics for Riemann surfaces[END_REF]Lem. 3.6] with the parametrix construction of R(λ) written in [START_REF] Guillopé | Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity[END_REF]. Let x be a boundary defining function of ∂ X in X, which can be considered as a weight to define Hilbert spaces x α L 2 (X), for any α ∈ R. For any large N > 0 that we suppose in 2N for convenience, Guillopé and Zworski [START_REF] Guillopé | Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity[END_REF] construct operators

P N (λ, λ 0 ) : x N L 2 (X) → x -N L 2 (X), K N (λ, λ 0 ) : x N L 2 (X) → X N L 2 (X)
meromorphic with finite multiplicity in O N := {Re(λ) > (n -N )/2}, whose poles are situated at -N 0 , and such that

(∆ X -λ(n -λ))P N (λ, λ 0 ) = 1 + K N (λ, λ 0 )
with λ 0 large depending on N , take for instance

λ 0 = n/2 + N/8. Moreover K N (λ, λ 0 ) is compact with characteristic values satisfying in O N,η := O N ∩ {dist(λ, -N 0 ) > η} (2.11) µ j (K N (λ, λ 0 )) ≤ C(1 + |λ -λ 0 |)j -1 n + e CN if j ≤ CN n+1 e -N/C j 2 if j ≥ CN n+1
for some 0 < η < 1/4 and C > 0 independent of λ, N . They also have

||K N (λ 0 , λ 0 )|| ≤ 1/2 in L(x N L 2 (X)), thus by Fredholm theorem R(λ) = P N (λ, λ 0 )(1 + K N (λ, λ 0 )) -1 : x N L 2 (X) → x -N L 2 (X)
is meromorphic with poles of finite multiplicity in O N . By standard method as in [START_REF] Guillopé | Scattering asymptotics for Riemann surfaces[END_REF]Lem. 3.6] we define d N (λ) := det(1 + K N (λ, λ 0 ) n+2 ) which exists in view of (2.11), and we have the rough bound (2.12) 

||(1 + K N (λ, λ 0 )) -1 || L(x N L 2 (X)) ≤ det(1 + |K N (λ, λ 0 )| n+2 ) |d N (λ)| in O N,
J N (λ + λ 0 )d N (λ + λ 0 )/(J N (λ 0 )d N (λ 0 )) is holomorphic in {|λ| ≤ N/4} and satisfies in this disk |f N (λ)| ≤ e C(N +1) n+3 , f N (0) = 1,
where we used the maximum principle in disks around each -k to estimate the norm there. Thus we may apply Cartan's estimate for this function in |λ| < N/4: for all α > 0 small enough there exists C α > 0 such that, outside a family of disks the sum of whose radii is bounded by αN

log |f N (λ)| > -C α log sup |λ|≤N/4 |f N (λ)|
and |λ| ≤ N/4. Fixing α sufficiently small, there exists β N ∈ (3/4, 1) so that

|d N (λ)| > e -C(N +1) n+3 for |λ -λ 0 | = β N N 4 .
Note that we can also choose β N so that dist(β N N/4, N) > η for some small η uniform with respect to N . Thus the same bound holds for ||(1

+ K N (λ, λ 0 )) -1 || L(x N L 2 (X)) using (2.
12). Now we need a bound for P N (λ, λ 0 ) and it suffices to get back to its definition in the proof of Proposition 3.2 of [START_REF] Guillopé | Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity[END_REF]: it involves operators of the form ι * ϕR H n+1 (λ)ψι * for some cut-off functions ψ, ϕ ∈ C ∞ (H n+1 ) and isometry

ι : U ⊂ X → {(x, y) ∈ (0, ∞) × R n ; x 2 + |y| 2 < 1} ⊂ H n+1 ,
and operators whose norm is explicitely bounded in [START_REF] Guillopé | Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity[END_REF]Sect. 4] by e C(N +1) in O N,η . The appendix B of [START_REF] Guillarmou | Résonances sur les variétés asymptotiquement hyperboliques[END_REF] gives an estimate of the same form for ||ϕR H n+1 (λ)ψ|| as an operator in L(x N L 2 (X), x -N L 2 (X)) for λ ∈ O N,η (this is actually a direct consequence of (2.9) and (2.3)) thus we have the bound

||R(λ)|| L(x N L 2 (X),x -N L 2 (X)) ≤ e C(N +1) 3 in {|λ -λ 0 | = β N N/4}
. Let R N be the set of poles of R(λ) in O N , each pole being repeated according to its order; R N has at most CN n+2 elements so we may multiply R(λ) by

F N (λ) := s∈RN E(λ/s, n + 2)
where E(z, p) := (1z) exp(z + • • • + p -1 z p ) is the Weierstrass elementary function. It is rather easy to check that for all ǫ > 0 small, we have the bounds

(2.13) e Cǫ(N +1) n+3 ≥ |F N (λ)| ≥ e -Cǫ(N +1) (n+3)
for some C ǫ and for all λ ∈ O N such that dist(λ, R) > ǫ. Thus R(λ)F N (λ) is holomorphic in {|λλ 0 | ≤ β N N/4} and we can use the maximum principle which gives a upper bound

||F N (λ)R(λ)|| L(x N L 2 ,x -N L 2 ) ≤ exp(C ǫ (N + 1) n+3 ) in {|λ -λ 0 | ≤ β N N/4}
. We get our conclusion using (2.13), the fact that χ i is bounded by e CN as an operator from L 2 to x N L 2 , and the Cauchy formula for the case j > 0 (estimates of the derivatives with respect to λ).

Remark: Notice that similar estimates are obtained independently by Borthwick [START_REF] Borthwick | Upper and lower bounds on resonances for manifolds hyperbolic near infinity[END_REF].

In the case of surfaces the second author [START_REF] Naud | Expanding maps on Cantor sets and analytic continuation of zeta functions[END_REF] used the powerful estimates developped by Dolgopyat [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF] to prove that the Selberg zeta function Z(λ) is analytic and non-vanishing in {Re(λ) > δǫ, λ = δ} for some ǫ > 0. In higher dimension, the same result holds, as was shown recently by Stoyanov [START_REF] Stoyanov | Ruelle zeta functions and spectra of transfer operators for some axiom A flows[END_REF].

Theorem 2.5 (Naud, Stoyanov). There exists ǫ > 0 such that the Selberg zeta function Z(λ) is holomorphic and non-vanishing in {λ ∈ C; Re(λ) > δǫ, λ = δ}.

Using Proposition 2.1, this implies that the resolvent R(λ) is holomorphic in a similar set (possibly by taking ǫ > 0 smaller). Then an easy consequence of the maximum principle as in [START_REF] Tang | Resonance expansions of scattered waves Comm[END_REF][START_REF] Bony | Resolvent estimates and local energy decay for hyperbolic equations[END_REF] together with a rough exponential bound for the resolvent allows to get a polynomial bound for ||χ 1 R(λ)χ 2 || on the {Re(λ) = δ; λ = δ}. Corollary 2.6. There is ǫ > 0 such that the resolvent R(λ) is meromorphic in Re(λ) > δǫ with only possible pole the simple pole λ = δ, the residue of which is given by

Res λ=δ R(λ) = A X Γ( n 2 -δ + 1) u δ ⊗ u δ
where u δ is the Patterson generalized eigenfunction of (2.10), A X = 0 a constant. Moreover for all j ∈ N 0 , χ 1 , χ 2 ∈ C ∞ 0 (X), there exists L ∈ N, C > 0 such that for |λ -δ| > 1 

||∂ j λ χ 1 R(λ)χ 2 || L(L 2 (X)) ≤ C(|λ| + 1) L in {Re(λ) ≥
λ (m, m ′ )| ≤ |P Re(λ) (m, m ′ )|, we have the estimate ||χ 1 R(λ)χ 2 || L(L 2 (X)) ≤ |Re(λ) -δ| -1 C(|λ| + 1) M
for Re(λ) ∈ (δ, n/2). This implies by the Cauchy formula that

||∂ j λ χ 1 R(λ)χ 2 || L(L 2 (X)) ≤ |Re(λ) -δ| -1-j C(|λ| + 1) M .
Let A > 0, and ϕ, ψ ∈ L 2 (X), we can apply the maximum principle to the function

f (λ) = e iA(-i(λ-δ)) n+4 ∂ j λ χ 1 R(λ)χ 2 ϕ
, ψ which is holomorphic in the domain Λ bounded by the curves

Λ + := {δ+u -n-3 +iu; u > 1}, Λ -:= {δ-ǫ+iu; u > 1}, Λ 0 := {i+u; δ-ǫ < u < δ+1}.
Then it is easy to check as in [2, Prop. 1] that by choosing A > 0 large enough

|f (λ)| < C(|λ| + 1) L ||ϕ|| L 2 ||ψ|| L 2
in Λ for some L depending only on M . In particular, applying the same method in the symmetric domain Λ := { λ; λ ∈ Λ}, we obtain the polynomial bound

||∂ j λ χ 1 R(λ)χ 2 || ≤ C(|λ| + 1) L on {Re(λ) = δ, |Im(λ)| > 1}.

Width of the strip with finitely many resonances

As stated in Theorem 2.5, we know that there exists a strip {δǫ < Re(λ) < δ} with no resonance for ∆ g , or equivalently no zero for Selberg zeta function. However the proof of this result does not provide any effective estimate on the width of this strip (i.e. on ǫ above). More generally it is of interest to know the following ρ Γ := inf s ∈ R; Z(λ) has at most finitely many zero in {Re(λ) > s} or equivalently ρ Γ = inf s ∈ R; R(λ) has at most finitely many poles in {Re(λ) > s} .

In this work, we give a lower bound for ρ Γ : Theorem 3.1. Let X = Γ\H n+1 be a convex co-compact hyperbolic manifold and let δ ∈ (0, n) be the Hausdorff dimension of its limit set. Then for all ε > 0, there exist infinitely many resonances in the strip {-nδ-ε < Re(s) < δ}. If moreover Γ is a Schottky group, then there exist infinitely many resonances in the strip {-δ 2ε < Re(s) < δ}.

Remark:

In particular, we have ρ Γ ≥ -δn in general and ρ Γ ≥ -δ 2 for Schottky manifolds. The limit case δ → 0 may be viewed as a cyclic elementary group Γ 0 , and resonances of the Laplace operator on Γ 0 \H 2 are given explicitely [START_REF] Guillopé | Zworski Upper bounds on the number of resonances for non-compact complete Riemann surfaces[END_REF]Appendix], they form a lattice {-k + iαℓ; k ∈ N 0 , ℓ ∈ Z} for some α ∈ R, in particular there are infinitely many resonances on the vertical line {Re(s) = 0}. This heuristic consideration suggests that for small values of δ, our result is rather sharp.

Proof : The proof is based on the trace formula of [START_REF] Guillarmou | Wave 0-Trace and length spectrum on convex co-compact hyperbolic manifolds[END_REF] and estimates on the distribution of resonances due to Patterson-Perry [START_REF] Patterson | The divisor of Selberg's zeta function for Kleinian groups. Appendix A by Charles Epstein[END_REF], Guillopé-Lin-Zworski [START_REF] Guillopé | The Selberg zeta function for convex co-compact Schottky groups[END_REF] (see also Zworski [40] for dimension 2). To make some computations clearer (Fourier transforms), we will use the spectral parameter z with λ = n 2 + iz and Imz > 0 in the non-physical half-plane. We set β := δ if X is Schottky or n + 1 = 2, while β := n if n + 1 > 2 and X not Schottky. We proceed by contradiction and assume that there is ρ = n/2 + βδ + ε for some ε > 0 such that there are at most finitely many resonances in Im(z) < ρ. Let us first recall the trace formula of [START_REF] Guillarmou | Wave 0-Trace and length spectrum on convex co-compact hyperbolic manifolds[END_REF]: as distributions of t ∈ R \ {0}, we have the identity

(3.1) 1 2 n 2 +iz∈R e iz|t| + k∈N d k e -k|t| = γ∈P ∞ m=1 ℓ(γ)e -n 2 mℓ(γ) 2G γ (m) δ(|t| -mℓ(γ)) + χ( X) cosh t 2 (2 sinh |t| 2 ) n+1
, where P denotes the set of primitive closed geodesics on X = Γ\H n+1 , ℓ(γ) stands for the length of γ ∈ P, G γ (m) is defined in (2.2), d k := dim ker P k if P k is the k-th GJMS conformal Laplacian on the conformal boundary ∂ X, R is the set of resonances of ∆ X counted with multiplicity and χ( X) denotes the Euler characteristic of X. Next we choose ϕ 0 ∈ C ∞ 0 (R) a positive weight supported on [-1, +1] with ϕ 0 (0) = 1 and 0 ≤ ϕ 0 ≤ 1. We set

ϕ α,d (t) = ϕ 0 t -d α ,
where d will be a large positive number and α > 0 will be small when compared to d (typically α = e -µd ). Pluging it into the trace formula (3.1) and assuming that d coincides with a large length of a closed geodesic, we get that for d large enough,

γ,m ℓ(γ)e -n 2 mℓ(γ) 2G γ (m) ϕ α,d (ml(γ)) ≥ Ce -n 2 d ,
with a constant C > 0, whereas the other term can be estimated by

αχ( X) 1 -1 ϕ(t) cosh((d + tα)/2) (2 sinh(|d + tα|/2)) n+1 dt = O(α)e -n 2 d .
The key part of the proof is to estimate carefully the spectral side of the formula, i.e. we must examinate

n 2 +iz∈R ϕ α,d (-z) + n 2 +iz=-k k∈N0 d k ϕ α,d (-z),
where ϕ is the usual Fourier transform. Standard formulas on Fourier transform on the Schwartz space show that for all integer M > 0, there exists a constant C M > 0 such that

(3.2) | ϕ α,d (-z)| ≤ αC M e -dIm(z)+α|Im(z)| (1 + α|z|) M .
To simplify, we denote by R the set {z ∈ C; n 2 + iz ∈ R ∪ iN} where each element z is repeated with the multiplicity

m n/2+iz if z / ∈ iN m n/2-k + d k if z = ik with k ∈ N .
Our assumption now is that

{0 ≤ Im(z) ≤ ρ} ∩ R is finite for ρ = n 2 + βδ + ε. We set ρ > ρ ≥ 0.
The idea is to split the sum over resonances as

z∈ RX ϕ α,d (-z) = n 2 -δ≤Im(z)≤ρ ϕ α,d (-z) + ρ≤Im(z)≤ρ ϕ α,d (-z) + ρ≤Im(z) ϕ α,d (-z),
and estimate their contributions using dimensional and fractal upper bounds. Using (3.2) we can bound the last term (for d large) by

ρ≤Im(z) ϕ α,d (-z) ≤ C M αe -ρ(d-α) +∞ ρ dN(r) (1 + αr) M ,
where N(r) = #{z ∈ R; |z| ≤ r}. By [30, Th. 1.10] (see also [START_REF] Guillarmou | Wave 0-Trace and length spectrum on convex co-compact hyperbolic manifolds[END_REF]Lemma 2.3] for a discussion about the d k terms), we know that N(r) = O(r n+1 ), thus we can choose M = n + 2 and obtain, after a Stieltjes integration by parts, the following upper bound

ρ≤Im(z) ϕ α,d (-z) = O(α -n e -ρd ).
Similarly, we have the estimate (for d large and α small)

ρ≤Im(z)≤ρ ϕ α,d (-z) ≤ C M αe -ρ(d-α) +∞ ρ d N(r) (1 + αr) M , where N(r) = #{z ∈ R : ρ ≤ Im(z) ≤ ρ, |z| ≤ r}.
This counting function is known to enjoy the "fractal" upper bound N(r) = O(r 1+δ ) when X is Schottky [START_REF] Guillopé | The Selberg zeta function for convex co-compact Schottky groups[END_REF] (see also [START_REF] Zworski | Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces[END_REF] when n = 1), thus we can write N(r) = O(r 1+β ) where β is defined above. In other words, one obtains by choosing M = n + 2,

ρ≤Im(z)≤ρ ϕ α,d (-z) = O(α -β e -ρd ).
Since we have assumed that {0 ≤ Im(z) ≤ ρ} ∩ R is finite, and using the fact that resonances (in the z plane) have all imaginary part greater than n 2δ, we also get

n 2 -δ≤Im(z)≤ρ ϕ α,d (-z) = O(αe (δ-n 2 )d ).
Gathering all estimates, we have obtained as d → +∞,

e -n 2 d (C + O(α)) = O(αe (δ-n 2 )d ) + O(α -β e -ρd ) + O(α -n e -ρd ),
where all the implied constants do not depend on d and α. If we now set α = e -µd , we get a contradiction as d → +∞, provided that

   nµ -ρ < -n 2 δ < µ ρ -βµ > n 2 . Set µ := δ + ε and ρ = βµ + n 2 + ε = βδ + n 2 + ε(1 + β),
we can then choose ρ := nµ + n 2 + 2ε which is larger than ρ and we have our contradiction for all ε > 0.

The proof reveals that any precise knowledge in the asymptotic distribution of resonances in strips has a direct impact on resonances with small imaginary part.

Wave asymptotic

4.1. The leading term. Let f, χ ∈ C ∞ 0 (X), it is sufficient to describe the large time asymptotic of the function

u(t) := χ sin(t ∆ X -n 2 4 ) ∆ X -n 2 4
f and ∂ t u(t). We proceed using same ideas than in [START_REF] Christiansen | Resonance wave expansions: two hyperbolic examples[END_REF]. We first recall that from Stone formula the spectral measure is

dΠ(v 2 ) = i 2π R( n 2 + iv) -R( n 2 -iv) dv in the sense that for h ∈ C ∞ ([0, ∞)) we have h ∆ X - n 2 4 = ∞ 0 h(v)dΠ(v 2 )2vdv.
Since sin is odd, then it is clear that u(t) can be expressed by the integral (4.1)

u(t) = 1 2π ∞ -∞ e itv χR( n 2 + iv)f -χR( n 2 -iv)f dv which is actually convergent since f ∈ C ∞ 0 (this is shown below).
We want to move the contour of integration into the non-physical sheet {Im(v) > 0} (which correponds with λ = n/2 + iv to {Re(λ) < n/2}) for the part with e itv and into the physical sheet {Im(v) < 0} for the part with e -itv . After setting Proof : it suffices to prove inverse polynomial bounds for L(v) as |Re(v)| → ∞. Actually we can rewrite L(v) using Green formula [START_REF] Guillopé | Fonctions Zêta de Selberg et surfaces de géométrie finie[END_REF][START_REF] Perry | The Laplace operator on a hyperbolic manifold II, Eisenstein series and the scattering matrix[END_REF] 

L(v) := χR( n 2 + iv)f -χR( n 2 
(4.2) L(v; m) = -2iv X ∂ X χ(m)E n 2 + iv; m, y E n 2 -iv; m ′ , y f (m ′ )dy ∂ X dm ′ X
where E(λ; m, y) denotes the Eisenstein function, or equivalently the Schwartz kernel of the Poisson operator (see [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF]), they satisfy for all y ∈ ∂ X

∆ X - n 2 4 -v 2 E n 2 + iv; •, y = 0.
Using this equation, integrating by parts N times in m ′ in (4.2) and using the assumed polynomial bound of

|L(v)| in |Im(v)| ≤ β, we get for all N > 0 (recall f ∈ C ∞ 0 (X)) (4.3) |L(v)| ≤ C N (|Re(v)| + 1) M-N
for some constant C N . Then it suffices to take N ≫ M large enough and the Lemma is proved.

Now we get estimates in t for I 1 (R, η, t). Since L(u + iβ) has a pole at u = 0, we can write

L(u + iβ) = a u + h(u)
for some residue a ∈ C and h(u) analytic on R. Set ψ ∈ C ∞ 0 ((-1, 1)) even and equal to 1 near 0, then by (4.3) and properties of Fourier transform the integral

η<|u|<R e itu (1 -ψ(u))L(u + iβ) + ψ(u)h(u) du, converges as R → ∞, η → 0 to a function that is a O(t -∞ ) when t → ∞. Now it remains to consider a η<|u|<R e itu ψ(u)u -1 du = 2ia R η sin(ut) u ψ(u)du
which clearly has a limit as R → ∞, η → 0, we denote by s(t) this limit. Then since s(0) = 0 and ψ(-u) = ψ(u), we have

∂ t s(t) = 2ia ∞ 0 ψ(u) cos(tu)du = ia ψ(t), s(t) = ia t 0 ψ(ξ)dξ = 1 2 ia t -t ψ(ξ)dξ
and it is clear that

s(t) = lim t→∞ s(t) + O(t -∞ ) = πia + O(t -∞ ).
The same arguments show that ∂ t s(t) = O(t -∞ ) and this proves the result.

Now we can conclude

Theorem 4.3. Let χ ∈ C ∞ 0 (X), then the solution u(t) of we wave equation (1.1) satisfies the asymptotic

χu(t) = A X Γ( n 2 -δ + 1) e -t( n 2 -δ) u δ , (δ -n/2)f 0 + f 1 χu δ + O L 2 (e -t( n 2 -δ) t -∞ )
as t → +∞, where u δ is the Patterson generalized eigenfunction.

Proof : we apply the residue theorem after changing the contour in (4.1) as explained above. This gives for instance for f = (0, f 1 ),

R -R e itv L(v)dv = I 1 (R, η, t) + I 2 (R, t) + v=iβ+η exp(iθ)
-π<θ<0

e itv L(v)dv

The limit of the last integral as η → 0 is given πie -βt Res v=iβ L(v). It suffices to conclude by taking the limits R → ∞, η → 0 and using Lemmas 4.1 and 4.2. Then the case f = (f 0 , 0) is dealt with similarly by differentiating in t the equation above and using Lemmas 4.2, 4.1.

We now show a lower bound in t for the remainder in u(t) using Theorem 3.1. Proof : Let us define Ω. If λ 0 is a resonance, we denote by Π λ0 the polar part in the Laurent expansion of R(λ) at λ 0 . It is a finite rank operator of the form

Π λ0 = k j=1 (λ -λ 0 ) -j mj (λ0) m=1 ϕ jm ⊗ ψ jm
where m j (λ 0 ), k ∈ N and ψ jm , ϕ jm ∈ C ∞ (X), see for instance Lemma 3.1 of [START_REF] Guillarmou | Resonances and scattering poles on asymptotically hyperbolic manifolds[END_REF]. Thus it is a continuous operator from C ∞ (K) to C ∞ (X) and thus the kernel of

χΠ λ0 | C ∞ (K) is a closed nowhere dense set of C ∞ (K), we thus define Ω = ∩ s∈R (C ∞ (K) \ ker χΠ s | C ∞ (K) ) which is a generic set of C ∞ (K) (recall that C ∞ (K) is a Frechet space by compactness of K).
The idea now is to use the existence of a resonance, say λ 0 , in the strip {-nδ + ε > Re(λ) > δ} proved in Theorem 3.1 and the formula (for Re(λ) > δ)

χR(λ)f = ∞ 0 e t( n 2 -λ) χu(t)dt. Indeed, if r(t) = O(e -t( n 2 +nδ+ε) ), the integral ∞ 0 e t( n 2 
-λ) r(t)dt converges for Re(λ) > -nδε, and so it provides a holomorphic continuation of χR(λ)f in λ there. Now a straightforward computation combined with Corollary 2.6 shows that for Re

(λ) > δ ∞ 0 e ( n 2 -λ)t r(t)dt = χR(λ)f -(λ -δ) -1 χRes λ=δ R(λ)f.
This leads to a contradiction when f 1 ∈ Ω since ker χΠ λ0 | C ∞ (K) ∩ Ω = ∅ and so χR(λ)f has a singularity at λ = λ 0 . We thus obtain our conclusion. The same method applies when X is Schottky and the finer estimates are valid.

Conformal resonances

In this section, we try to explain the special cases δ ∈ n/2 -N in term of conformal theory of the conformal infinity. As emphasized before, a convex co-compact hyperbolic manifold (X, g) compactifies into a smooth compact manifold with boundary X = X ∪∂ X, where ∂ X = Γ\Ω if Ω is the domain of discontinuity of the group Γ defined in the introduction. If x is a smooth boundary defining function of ∂ X, x 2 g extends smoothly to X as a metric, the restriction h 0 = x 2 g| T ∂ X is a metric on ∂ X inherited from g but depending on the choice of x, however its conformal class [h 0 ] is clearly independent of x, it is then called the conformal infinity of X. By Graham-Lee [START_REF] Graham | Einstein metrics with prescribed conformal infinity on the ball[END_REF][START_REF] Graham | Volume and area renormalizations for conformally compact Einstein metrics[END_REF], there is an identification between a particular class of boundary defining functions and elements of the class [h 0 ]: indeed, for any h 0 ∈ [h 0 ], there exists near ∂ X a unique boundary defining function x such that |dx| x 2 g = 1 and x 2 g| T ∂ X = h 0 , this function will be called a geodesic boundary defining function.

We now recall the definition of the scattering operator S(λ) as in [START_REF] Graham | Scattering matrix in conformal geometry[END_REF][START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF]. Let λ ∈ C with Re(λ) / ∈ n/2 + Z and let x be a geodesic boundary defining function, then for all

f ∈ C ∞ (∂ X) there exists a unique function F (λ, f ) ∈ C ∞ (X) which satisfies the boundary value problem    (∆ X -λ(n -λ))F (λ, f ) = 0, ∃F 1 (λ, f ), F 2 (λ, f ) ∈ C ∞ ( X) such that F (λ, f ) = x n-λ F 1 (λ, f ) + x λ F 2 (λ, f ) and F 1 (λ, f )| ∂ X = f.
Then the operator S(λ) :

C ∞ (∂ X) → C ∞ (∂ X) is defined by S(λ)f = F 2 (λ, f )| ∂ X .
It is clear that S(λ) depends on choice of x, but it is conformally covariant under change of boundary defining function: if x := xe ω is another such function, then the related scattering operator is Ŝ(λ) = e -λω0 S(λ)e (n-λ)ω0 , ω 0 := ω| ∂ X .

It is proved in [START_REF] Graham | Scattering matrix in conformal geometry[END_REF] that S(λ) has simple poles at λ = n/2 + k for all k ∈ N, and after renormalizing S(λ) into

S(λ) := 2 2λ-n Γ(λ -n 2 ) Γ( n 2 -λ) S(λ)
we obtain by the main result of [START_REF] Graham | Scattering matrix in conformal geometry[END_REF] that S(n/2 + k) = P k is the k-th GJMS conformal Laplacian on (∂ X, h 0 ) defined previously in [START_REF] Graham | Conformally invariant powers of the Laplacian. I. Existence[END_REF]. In general S(λ) is a pseudodifferential operator of order 2λn with principal symbol |ξ| 2λ-n h0 but for λ = n/2 + k, it becomes differential.

Proposition 5.1. If δ = n/2k with k ∈ N, then the j-th GJMS conformal Laplacian P j > 0 for j < k while P k has a kernel of dimension 1 with eigenvector given by f n/2-k defined below in (5.3) in term of Patterson-Sullivan measure.

Proof : Let us fix δ ∈ (0, n/2) not necessarily in n/2 -N for the moment. In [START_REF] Guillarmou | Resonances and scattering poles on asymptotically hyperbolic manifolds[END_REF], the first author studied the relation between poles of resolvent and poles of scattering operator. If λ ∈ C, we define its resonance multiplicity by m(λ) := rank Res s=λ ((2sn)R(s)) while its scattering pole multiplicity is defined by ν(λ) := -Tr Res s=λ (∂ s S(s)S -1 (s)) .

We proved in [START_REF] Guillarmou | Resonances and scattering poles on asymptotically hyperbolic manifolds[END_REF] (see also [START_REF] Guillarmou | Wave 0-Trace and length spectrum on convex co-compact hyperbolic manifolds[END_REF] for point in pure point spectrum) that for Re(λ) < n/2 ν(λ) = m(λ)m(nλ) + 1l n 2 -N (λ) dim ker S(nλ), which in our case reduces to (5.1) ν(λ) = m(λ) + 1l n 2 -N (λ) dim ker S(nλ) by the holomorphy of R(λ) in {Re(λ) ≥ n/2}, stated in Proposition 2.3. We know from [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF][START_REF] Graham | Scattering matrix in conformal geometry[END_REF] that the Schwartz kernel of S(λ) is related to that of R(λ) by (5.2) S(λ; y, y ′ ) = 2 2λ-n+1 Γ(λ -n 2 + 1) Γ( n 2λ)

[x -λ x ′ -λ R(λ; x, y, x ′ y ′ )]| x=x ′ =0
where (x, y) ∈ [0, ǫ) × ∂ X are coordinates in a collar neighbourhood of ∂ X, x being the geodesic boundary defining function used to define S(λ). This implies with Proposition 2.3 that S(λ) is analytic in {Re(λ) > δ} and has a simple pole at δ with residue

Res λ=δ S(λ) = A X 2 -2k+1 (k -1)! f δ ⊗ f δ , f δ := (x -δ u δ )| x=0 .
Note that Perry [START_REF] Perry | Asymptotics of the length spectrum for hyperbolic manifolds of infinite volume[END_REF] proved that f δ is well defined and in C ∞ (∂ X). The functional equation S(λ)S(nλ) = Id (see for instance Section 3 of [START_REF] Graham | Scattering matrix in conformal geometry[END_REF]) and the fact that S(λ) is analytic in {Re(λ) > δ} clearly imply that ker S(λ) = 0 for Re(λ) ∈ (δ, nδ), thus in particular ker P j = 0 for any j ∈ N with j < n/2δ. Moreover, using [START_REF] Patterson | The divisor of Selberg's zeta function for Kleinian groups. Appendix A by Charles Epstein[END_REF]Lemma 4.16] and the fact that m n/2 = 0 since R(λ) is holomorphic in {Re(λ) > δ}, one obtains S(n/2) = Id thus S(λ) > 0 for all λ ∈ (δ, nδ) by continuity of S(λ) with respect to λ. We also deduce from the functional equation and the holomorphy of S(s) at nδ that S(nδ)f δ = 0.

We thus see from this discussion and Proposition 2. To summarize the discussion, if δ < n/2, the Patterson function u δ is an eigenfunction for ∆ X with eigenvalue δ(nδ), it is not an L 2 eigenfunction though and it has leading asymptotic behaviour u δ ∼ x δ f δ as x → 0, where f δ ∈ C ∞ (∂ X) is in the kernel of the boundary operator S(nλ). When δ / ∈ n/2 -N, this is a resonant state for ∆ X with associated resonance δ while when δ ∈ n/2 -N it is still a generalized eigenfunction of ∆ X but not a resonant state anymore, and δ is not a resonance yet in that case: the resonance disappear when δ reaches n/2k and instead the k-th GJMS at ∂ X gains an element in its kernel given by the leading coefficient of u n/2-k in the asymptotic at the boundary.

Remark: Notice that the positivity of P j for j < n/2-δ has been proved by Qing-Raske [START_REF] Qing | On positive solutions to semilinear conformally invariant equations on locally conformally flat manifolds[END_REF] and assuming a positivity of Yamabe invariant of the boundary. Our proof allows to remove the assumption on the Yamabe invariant, which, as we showed, is automatically satisfied if δ < n/2.

Proposition 2 . 3 (

 23 Patterson). The family of operators Γ(λ-n/2+1)R(λ) is holomorphic in {Re(λ) > δ}, has no pole on {Re(λ) = δ, λ = δ} and has a pole of order 1 at λ = δ with rank 1 residue given byRes λ=δ Γ(λn/2 + 1)R(λ) = A X u δ ⊗ u δwhere A X = 0 is some constant depending on Γ and u δ is the Patterson generalized eigenfunction defined by(2.10) π * Γ u δ (m) =∂∞H n+1 P(m, y) δ dµ Γ (y) P being the Poison kernel of H n+1 and dµ Γ the Patterson-Sullivan measure associated to Γ on the sphere

1 2

 1 η and where |A| := (A * A) for A compact. The term in the numerator is easily shown to be bounded by exp(C(N + 1) n+2 ) in O N,η from (2.11), actually this is written in[START_REF] Guillopé | Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity[END_REF] Lem. 5.2]. It remains to have a lower bound of |d N (λ)|. In Lemma 3.6 of[START_REF] Guillopé | Scattering asymptotics for Riemann surfaces[END_REF], they use the minimum modulus theorem to obtain lower bound of a function using its upper bound, but this means that the function has to be analytic in C. Here there is a substitute which is Cartan's estimate[START_REF] Levin | Distribution of Zeros of Entire Functions[END_REF] Th. I.11]. We first need to multiply d N (λ) by a holomorphic function J N (λ) with zeros of sufficient multiplicity at {-k; k = 0, . . . , N/2} to make J N (λ)d N (λ) holomorphic in O N , for instance the polynomialJ N (λ) := N/2 k=0 (λk) CN n+2for some large integer C > 0 suffices in view of the order (≤ CN n+2 ) of each -k as a pole of d N (λ) proved in[START_REF] Guillopé | Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity[END_REF] Lem. A.1]. Then clearly f N (λ) :=

  iv)f and η > 0 small, we study the following integral for β := n/2δ I 1 (R, η, t) := Im(v)=β η<|Re(v)|<R e itv L(v)dv, I 2 (R, t) := |Re(v)|=R 0<Im(v)<β e itv L(v)dv, In particular let us first show that Lemma 4.1. If |L(v)| ≤ C(|v| + 1) M in {|Im(v)| ≤ β} for some C, M > 0, then lim R→∞ I 2 (R, t) = lim R→∞ ∂ t I 2 (R, t) = 0

Lemma 4 . 2 .

 42 If |L(v)| ≤ C(|v| + 1) M in |Imv| ≤ β for some C, M > 0, then I 1 (R, η, t) and ∂ t I 1 (R, η, t) have a limit as R → ∞, η → 0 and lim η→0 lim R→∞ I 1 (R, η, t) = πie -βt Res v=iβ (L(v)) + O(e -βt t -∞ ), t → ∞, lim η→0 lim R→∞ ∂ t I 1 (R, η, t) = -πβie -βt Res v=iβ (L(v)) + O(e -βt t -∞ ), t → ∞Proof : Let us first consider I 1 (R, η, t), it can clearly be written as e -tβ η<|u|<R e itu L(u + iβ)du.

  3 that, in(5.1), the relation m(δ) = ν(δ) = 1 holds when δ / ∈ n/2 -N while ν(δ) = dim ker P k when δ = n/2k with k ∈ N since m(δ) = 0 in that case by holomorphy of R(λ) at δ = n/2k. To compute dim ker P k when δ = n/2k, one can use for instance Selberg's zeta function. Indeed by Proposition 2.1 of[START_REF] Perry | Asymptotics of the length spectrum for hyperbolic manifolds of infinite volume[END_REF], Z(λ) has a simple zero at δ but it follows from Theorems 1.5-1.6 of Patterson-Perry[START_REF] Patterson | The divisor of Selberg's zeta function for Kleinian groups. Appendix A by Charles Epstein[END_REF] that Z(λ) has a zero atλ = n/2k of order ν(n/2k) if k ∈ N, k < n/2, therefore ν(n/2k) = 1 and thus dim ker P k = 1.One can now describe a bit more precisely the function f δ . The Poisson kernel of Proposition 2.3 in the half-space modelR n y × R + yn+1 of H n+1 is P(λ; y, y n+1 , y ′ ) = y n+1 y 2 n+1 + |yy ′ | 2 thus ifx is the boundary defining function used to define S(λ) and if (π * Γ x/y n+1 )| yn+1=0 = k(y) (recall π Γ , πΓ are the projections of (2.1)) for some k(y) ∈ C ∞ (R n ), so we can describe rather explicitely f δ , we have (5.3) π * Γ f δ (y) = k(y) -δ R n |yy ′ | -2δ dµ Γ (y ′ ), y ∈ Ω.

  δ} Proof : This is a consequence of Proposition 2.2, Proposition 2.3, Theorem 2.5 and the maximum principle as in [2, Prop. 1]. First we remark from Proposition 2.2 and Proposition 2.3 that P λ has a first order pole with rank one residue at λ = δ and, since |P

  Proposition 4.4. Let K ⊂ X be a compact set, then there exists a generic set Ω ⊂ C ∞ (K) (i.e. a countable intersection of open dense sets) such that for all f 1 ∈ Ω and all ε > 0, we have r(t) = O L 2 (e -( n is the remainder in the expansion of the solution u(t) of the wave equation (1.1) with initial data (0, f 1 ). The lower bound can be improved by r(t) = O L 2 (e -( n 2 +δ 2 +ε)t ) if X is Schottky.

	2 +nδ+ε)t ) where	
	r(t) := χu(t) -	A X 2 -δ + 1) Γ( n	e -t( n 2 -δ) u δ , f χu δ

This kind of result was predicted in[START_REF] Naud | Classical and Quantum lifetimes on some non-compact Riemann surfaces, Special issue on "Quantum chaotic scattering[END_REF].