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LARGE DEVIATIONS FOR THE BOUSSINESQ EQUATIONS

UNDER RANDOM INFLUENCES

JINQIAO DUAN AND ANNIE MILLET

Abstract. A Boussinesq model for the Bénard convection under random influ-
ences is considered as a system of stochastic partial differential equations. This is
a coupled system of stochastic Navier-Stokes equations and the transport equation
for temperature. Large deviations are proved, using a weak convergence approach
based on a variational representation of functionals of infinite dimensional Brow-
nian motion.

1. Introduction

The need to take stochastic effects into account for modeling complex systems has
now become widely recognized. Stochastic partial differential equations (SPDEs)
arise naturally as mathematical models for nonlinear macroscopic dynamics under
random influences. It is thus desirable to understand the impact of such random
influences on the system evolution [24, 8, 20].

The Navier-Stokes equations are often coupled with other equations, especially,
with the scalar transport equations for fluid density, salinity, or temperature. These
coupled equations (often with the Boussinesq approximation) model a variety of phe-
nomena in environmental, geophysical, and climate systems [9, 10, 17]. We consider
the Boussinesq equations in which the scalar quantity is temperature, under differ-
ent boundary conditions for the temperature at different parts (top and bottom) of
the boundary. This is a Bénard convection problem. With other boundary condi-
tions, the Boussinesq equations model various phenomena in weather and climate
dynamics, for example. We take random forcings into account and formulate the
Bénard convection problem as a system of stochastic partial differential equations
(SPDEs). This is a coupled system of the stochastic Navier-Stokes equations and
the stochastic transport equation for temperature.

In various papers about large deviation principle (LDP) for solutions uε to SPDEs
or to evolution equations in a semi-linear framework [3, 5, 4, 6, 14, 15, 18, 21, 26], the
strategy used is similar to the classical one for diffusion processes. A very general
version of Schilder’s theorem yields the LDP for the Gaussian noise

√
εW driving the
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2 J. DUAN AND A. MILLET

stochastic forcing term, with a good rate function Ĩ written in terms of its reproduc-
ing kernel Hilbert space (RKHS). However, since the noise is not additive, the process
uε is not a continuous function of the noise, which creates technical difficulties. As if
the contraction principle were true, one defines deterministic controlled equations uh
which are similar to the stochastic one, replacing the stochastic integral with respect
to the noise

√
εW by deterministic integrals in terms of elements h of its RKHS.

Once well-posedness of this controlled equation is achieved, one proves that solution
uε to the stochastic evolution equation satisfies a LDP with a rate function I defined
in terms of Ĩ and of uh by means of an energy minimization problem. In order to
transfer the LDP from the noise to the process, there are two classical proofs, each of
which contains two main steps. One way consists in proving a continuity property of
the map h 7→ uh on level sets of the rate function Ĩ and then some Freidlin-Wentzell
inequality, which states continuity of the process with respect to the noise except on
an exponentially small set. Another classical method in proving LDP for evolution
equations is to establish both some exponential tightness and exponentially good
approximations for some approximating sequence where the diffusion coefficient is
stepwise constant. These methods require some time Hölder regularity that one can
obtain when the diffusion coefficient is controlled in term of the L2 norm of the
solution, but not in the framework we will use here, where the bilinear term cre-
ates technical problems. An alternative approach [11] for large deviations is based
on nonlinear semi-group theory and infinite dimensional Hamilton-Jacobi equations,
and it also requires to establish exponential tightness.

The method used in the present paper is related to the Laplace principle. One
proves directly that the level sets of the rate function I are compact and then
establishes weak convergence of solutions to stochastic controlled equations written
in terms of the noise

√
εW shifted by a random element hε of its RKHS. This

is again some kind of continuity property written in terms of the distributions.
Unlike [22], well-posedness and apriori estimates are proved directly for very general
stochastic controlled equations with a forcing term including a stochastic integral
and a deterministic integral with respect to a random element hε of the RKHS of
the noise, and for diffusion coefficients which may depend on the gradient. Indeed,
if the well-posedness for the stochastic controlled equation can be deduced from
that of the stochastic equation by means of a Girsanov transformation, the apriori
estimates uniform in ε > 0, which are a key ingredient of the proof of the weak
convergence result, cannot be deduced from the corresponding ones for the stochastic
Bénard equation since as ε → 0, the p > 1 moments of the Girsanov density go to
infinity exponentially fast. Well-posedness has been proved in [12] for the stochastic
Boussinesq equation only in the particular case of an additive noise on the velocity
component. This weak convergence approach has been introduced in [1, 2]. This
method has been recently applied to SPDEs [22, 25] or SDEs in infinite dimensions
[19]. Finally note that the proofs of the weak convergence and compactness property
require more assumptions on the diffusion coefficient σ which may not depend on
the gradient. Indeed, in order to prove convergence of integrals defined in terms of
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elements hε of the RKHS of the noise only using weak convergence of hε, we also
need to deal with localized integral estimates of time increments. With additional
assumptions on the diffusion coefficient we are able to provide complete details of
the proof of this statement which was missing in [22].

This paper is organized as follows. The mathematical formulation for the stochas-
tic Bénard model is in §2. Then the well-posedness and general apriori estimates for
the model are proved in §3. Finally, a large deviation principle is shown in §4.

2. Mathematical formulation

Let D = (0, l) × (0, 1) be a rectangular domain in the vertical plane. Denote by
x = (x1, x2) the spatial variable, u = (u1, u2) the velocity field, p the pressure field,
θ the temperature field, and (e1, e2) the standard basis in R

2.
We consider the following stochastic coupled Navier-Stokes and heat transport

equations for the Bénard convection problem [13]:

∂

∂t
uε + uε·∇uε − ν∆uε + ∇pε = θεe2 +

√
ε n1(t), ∇·uε = 0, (2.1)

∂

∂t
θε + uε·∇θε − uε2 − κ∆θε =

√
ε n2(t), (2.2)

with boundary conditions

uε = 0 & θε = 0 on x2 = 0 and x2 = 1, (2.3)

uε, pε, θε, uεx1
, θεx1

are periodic in x1 with period l, (2.4)

where n1, n2 are noise forcing terms and ε > 0 is a small parameter.

We consider the abstract functional setting for this system as in [13, 12]; see also
[7, 23]. Let L2(D) be endowed with the usual scalar product and the induced norm.
Consider another Hilbert space of vector-valued functions:

L̇
2
(D) ={u ∈ L2(D)2, ∇·u = 0, u|x2=0 = u|x2=1 = 0, u is periodic in x1 with period l}

L̇2(D) ={θ ∈ L2(D), θ|x2=0 = θ|x2=1 = 0, θ is periodic in x1 with period l}

Let H = L̇
2
(D) × L̇2(D) be the product Hilbert space. We denote by the same

notations, (·, ·) and | · |, the scalar product and the induced norm, in L̇
2
(D), L̇2(D)

and H,

(φ,ψ) =

∫

D

φ(x)ψ(x)dx, |φ| =
√

(φ, φ) =
√

|φ1|2 + |φ2|2.

Define V = V1 × V2, where

V1 ={v ∈ H1(D)2 : ∇·v = 0, v|x2=0 = v|x2=1 = 0; v is periodic in x1 with period l},
V2 ={f ∈ H1(D) : f |x2=0 = f |x2=1 = 0; f is periodic in x1 with period l}.
Then V is a product Hilbert space with the scalar product and the induced norm,

((φ,ψ)) =

∫

D

∇φ · ∇ψdx, ‖φ‖ =
√

((φ, φ)) =
√

‖φ1‖2 + ‖φ2‖2,
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where, to ease the notation, the space variable x is omitted when writing integrals
on D. Again, we also use the same notations for the scalar product and the induced
norm in V1 and V2. Let V ′ be the dual space of V . We have the dense and continuous
embeddings V →֒ H = H ′ →֒ V ′ and denote by 〈φ,ψ〉 the duality between φ ∈ V

(resp. Vi) and φ ∈ V ′ (resp. V ′
i ). Recall that there exists some positive constant c1

such that for u ∈ V1, θ ∈ V2,

|u|2L4(D)2 ≤ c1 |u| ‖u‖, and |θ|2L4(D) ≤ c1 |θ| ‖θ‖. (2.5)

Furthermore, the Poincaré inequality yields the existence of a positive constant c2
such that

|φ| ≤ c2 ‖φ‖, ∀φ ∈ V. (2.6)

To lighten the notations, we will set for φ = (u, θ), u ∈ L4, θ ∈ L4 and φ ∈ L4 for
vectors of dimension 2,1 and 3 whose components belong to L4(D) and denote the
corresponding norms by | |L4 .

Consider an unbounded linear operator A = (νA1, κA2) : H → H with D(A) =
D(A1) ×D(A2) where D(A1) = V1 ∩H2(D)2, D(A2) = V2 ∩H2(D) and define

〈A1u, v〉 = ((u, v)), 〈A2θ, η〉 = ((θ, η)), ∀u, v ∈ D(A1), ∀θ, η ∈ D(A2).

Both the Stokes operator A1 and the Laplace operator A2 are self-adjoint, positive,
with compact self-adjoint inverses. They map V to V ′. We also introduce the
bilinear operators B1 and B2 as follows: for u, v,w ∈ V1 and θ, η ∈ V2,

〈B1(u, v), w〉 =

∫

D

[u·∇v]wdx :=
∑

i,j=1,2

∫

D

ui ∂ivj wjdx,

〈B2(u, θ), η〉 =

∫

D

[u·∇θ]ηdx :=
∑

i=1,2

∫

D

ui ∂i θ η dx.

With the notation φε = (uε, θε) and under the above formulation, we assume that
the noise terms n1 and n2 are respectively σ1(t, φ) ∂

∂t
W 1(t) , σ2(t, φ) ∂

∂t
W 2(t), where

W 1(t),W 2(t) are independent Wiener processes defined on a filtered probability

space (Ω,F ,Ft,P), taking values in L̇
2
(D) and L̇2(D), with linear symmetric positive

covariant operators Q1 and Q2, respectively. We denote Q = (Q1, Q2). It is a linear
symmetric positive covariant operator in the Hilbert space H. We assume that
Q1, Q2 and thus Q are trace class (and hence compact [8]), i.e., tr(Q) <∞.

As in [22], let H0 = Q
1
2H. Then H0 is a Hilbert space with the scalar product

(φ,ψ)0 = (Q− 1
2φ,Q− 1

2ψ), ∀φ,ψ ∈ H0

together with the induced norm | · |0 =
√

(·, ·)0. The embedding i : H0 → H is
Hilbert-Schmidt and hence compact, and moreover, i i∗ = Q.

Let LQ be the space of linear operators S such that SQ
1
2 is a Hilbert-Schmidt

operator (and thus a compact operator [8]) from H to H. The norm in the space
LQ is defined by |S|2LQ

= tr(SQS∗), where S∗ is the adjoint operator of S.
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Note that the above formulation is equivalent to projecting the first governing
equation from L̇2(D)2 into the “divergence-free” space and thus the pressure term
is absent. With these notation, the above Boussinesq system (2.1)-(2.2) becomes

duε + [νA1u
ε +B1(u

ε, uε) − θεe2]dt =
√
ε σ1(t, φ

ε) dW 1(t), (2.7)

dθε + [κA2θ
ε +B2(u

ε, θε) − uε2]dt =
√
ε σ2(t, φ

ε) dW 2(t). (2.8)

Thus, we write this system for φε = (uε, θε) as

dφε + [Aφε +B(φε) +Rφε]dt =
√
ε σ(t, φε)dW (t), φε(0) = ξ := (uε0, θ

ε
0), (2.9)

where W (t) = (W 1(t),W 2(t)) and

Aφ = (νA1u, κA2θ), (2.10)

B(φ) = (B1(u, u), B2(u, θ)), (2.11)

Rφ = (−θe2,−u2), (2.12)

σ(t, φ) = (σ1(t, φ), σ2(t, φ)). (2.13)

The noise intensity σ : [0, T ]× V → LQ(H0,H) is assumed to satisfy the following:

Assumption A: There exist positive constants K and L such that
(A.1) σ ∈ C

(

[0, T ] ×H;LQ(H0,H)
)

(A.2) |σ(t, φ)|2LQ
≤ K(1 + ‖φ‖2), ∀t ∈ [0, T ] , ∀φ ∈ V .

(A.3) |σ(t, φ) − σ(t, ψ)|2LQ
≤ L‖φ− ψ‖2, ∀t ∈ [0, T ], ∀φ,ψ ∈ V .

In the sequel, to ease the notation, we will suppose that σ(t, φ) = σ(φ); however,
all the results have a straightforward extension to time-dependent noise intensity
under the assumption A. When no confusion arises, we set Lp := Lp(D) for 1 ≤ p <

+∞ and denote by C a constant which may change from one line to the next one.

3. Well-posedness

The goal for this paper is to show the large deviation principle for (φε, ε > 0) as
ε→ 0, where φε denotes the solution to the stochastic Bénard equation (2.9).

Let A be the class of H0−valued (Ft)−predictable stochastic processes φ with the

property
∫ T

0 |φ(s)|20ds <∞, a.s. Let

SM =
{

h ∈ L2(0, T ;H0) :

∫ T

0
|h(s)|20ds ≤M

}

.

The set SM endowed with the following weak topology is a Polish space (complete

separable metric space) [2]: d1(h, k) =
∑∞

i=1
1
2i

∣

∣

∫ T

0

(

h(s) − k(s), ẽi(s)
)

0
ds

∣

∣, where

{ẽi(s)}∞i=1 is a complete orthonormal basis for L2(0, T ;H0). Define

AM = {φ ∈ A : φ(ω) ∈ SM , a.s.}. (3.1)

As in [22], we prove existence and uniqueness of the solution to the Bénard equation.
However, in the sequel, we will need some precise bounds on the norm of the solution
to a more general equation, which contains an extra forcing (or control) term driven
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by an element of AM . These required estimates cannot be deduced from the corre-
sponding ones by means of a Girsanov transformation. More precisely, let h ∈ A,
ε ≥ 0 and consider the following generalized Bénard equation with initial condition
φεh(0) = ξ. For technical reasons, we need to add some control in the forcing term,
with intensity σ̃ ∈ C([0, T ] ×H;LQ(H0,H)) satisfying similar stronger conditions:

Assumptions Ã: There exist positive constants K̃ and L̃ such that:
(Ã.1) |σ̃(t, φ)|2LQ

≤ K̃(1 + |φ|2
L4), ∀t ∈ [0, T ], ∀φ ∈ L4(D)3.

(Ã.2) |σ̃(t, φ) − σ̃(t, ψ)|2LQ
≤ L̃|φ− ψ|2

L4 , ∀t ∈ [0, T ], ∀φ,ψ ∈ L4(D)3.

Notice that since V ⊂ L4(D)3, the assumption Ã is stronger that A. For σ ,

σ̃ ∈ C(H;LQ(H0,H)) which satisfy Assumption A and Ã respectively, set

dφεh(t)+
[

Aφεh(t)+B(φεh(t))+Rφ
ε
h(t)

]

dt =
√
εσ(φεh(t))dW (t)+σ̃(φεh(t))h(t)dt. (3.2)

Recall that a stochastic process φεh(t, ω) is called the weak solution for the gener-
alized stochastic Bénard problem (3.2) on [0, T ] with initial condition ξ if φεh is in
C([0, T ];H) ∩ L2((0, T );V ), a.s., and satisfies

(φεh(t), ψ) − (ξ, ψ) +

∫ t

0

[

(φεh(s), Aψ) +
〈

B(φεh(s)), ψ
〉

+ (Rφεh(s), ψ)
]

ds

=
√
ε

∫ t

0

(

σ(φεh(s))dW (s), ψ
)

+

∫ t

0

(

σ̃(φεh(s))h(s) , ψ
)

ds, a.s., (3.3)

for all ψ ∈ D(A) and all t ∈ [0, T ]. In most of the analysis here, we work in the
Banach space X := C

(

[0, T ];H
)

∩ L2
(

(0, T );V
)

with the norm

‖φ‖X =
{

sup
0≤s≤T

|φ(s)|2 +

∫ T

0
‖φ(s)‖2ds

}
1
2
. (3.4)

Theorem 3.1. (Well-posedness and apriori bounds)

Fix M > 0; then there exists ε0 := ε0(ν, κ,K,L, K̃, L̃, T,M) > 0, such that the
following existence and uniqueness result is true for 0 ≤ ε ≤ ε0. Let the initial
datum satisfy E|ξ|4 < ∞, let h ∈ AM and ε ∈ [0, ε0]; then there exists a pathwise
unique weak solution φεh of the generalized stochastic Bénard problem (3.2) with
initial condition φεh(0) = ξ ∈ H and such that φεh ∈ X a.s. Furthermore, there exists
a constant C1 := C1(ν, κ,K,L, T,M) such that for ε ∈ [0, ε0] and h ∈ AM ,

E‖φεh‖2
X ≤ 1 + E

(

sup
0≤t≤T

|φεh(t)|4 +

∫ T

0
‖φεh(t)‖2 dt

)

≤ C1

(

1 + E|ξ|4
)

. (3.5)

Remark 3.2. Note that if σ = 0, i.e., when the noise term is absent, we deduce
the existence and uniqueness of the solution to the “deterministic” control equation
defined in terms of an element h ∈ L2((0, T );H0) and an initial condition ξ ∈ H

dφ(t) +
[

Aφ(t) +B(φ(t)) +Rφ(t)
]

dt = σ̃(φ(t))h(t)dt, φ(0) = ξ. (3.6)

If h ∈ SM , the solution φ to (3.6) satisfies

sup
0≤s≤T

|φ(s)|2 +

∫ T

0
‖φ(s)‖2ds ≤ C̃1(ν, κ, K̃, L̃, T,M, |ξ|). (3.7)
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Remark 3.3. Finally, note that when φεh is a solution to the stochastic Boussinesq
equation (2.9), a similar argument shows that Theorem 3.1 holds for any ε ≥ 0 if
the coefficients σ (resp. σ̃) belong to C([0, T ] ×H;LQ(H0,H)) and are such that in
the upper estimates of the LQ-norm appearing in the right hand sides of conditions

(A.2) and (A.3) (resp. (Ã.1) and (Ã.2), one replaces the V (resp. the L4) norms
of φ and φ− ψ by their H-norms.

Indeed, in that case, for any fixed ε > 0, the control of the V -norm of the solution,
or of its finite-dimensional approximation, only comes from the operators A and B.
Thus Lemmas 3.6 and 3.7 below prove that for α small enough, the V -norm can be
dealt with.

The proof of this theorem will require several steps. The following lemmas gather
some properties of B1 and B2. We send the reader to [7] or [23] for the results on
B1 which are classical and sketch some proofs of the corresponding results on B2.

Lemma 3.4. For u, v,w ∈ V1 and θ, η ∈ V2,

〈B1(u, v), v〉 = 0, 〈B2(u, θ), θ〉 = 0,

〈B1(u, v), w〉 = −〈B1(u,w), v〉, 〈B2(u, θ), η〉 = −〈B2(u, η), θ〉.
Let u ∈ V1, θ ∈ V2 and φ = (u, θ) ∈ V ; note that |φ|2 = |u|2 + |θ|2 and ‖φ‖2 =

‖u‖2 + ‖θ‖2. The following lemma provides upper bound estimates of B1 and B2.

Lemma 3.5. Let c1 denote the constant in (2.5); then for any u ∈ V1, θ, η ∈ V2

and φ = (u, θ), one has

|B1(u, u)|V ′

1
≤ |u|2L4 ≤ c1 |u| ‖u‖, (3.8)

|〈B2(u, θ), η〉| ≤ |u|L4 |θ|L4 ‖η‖ ≤ c1 |φ| ‖φ‖‖η‖. (3.9)

Proof. We only check the properties on B2. For φ = (u, θ) ∈ V and η ∈ V2, Lemma
3.4, Hölder’s inequality, and (2.5) imply

∣

∣

〈

B2(u, θ), η
〉
∣

∣ =
∣

∣

〈

B2(u, η), θ
〉
∣

∣ ≤ ‖η‖ |u|L4 |θ|L4 ≤ c1‖η‖ |u|
1
2 ‖u‖ 1

2 |θ| 12 ‖θ‖ 1
2 .

This yields (3.9). �

Lemma 3.6. Let φ = (u, θ) ∈ V , and let v ∈ L4(D)2 and η ∈ L4(D). For any
constant α > 0, the following estimates hold:

|〈B1(u, u), v〉| ≤ α ‖u‖2 +
33 c21
44α3

|u|2 |v|4L4 , (3.10)

|〈B2(φ), η〉| ≤ α ‖φ‖2 +
33 c21
44α3

|u|2 |η|4L4 . (3.11)

Proof. We only check (3.11). The first part of (3.9) and Young’s inequality yield

|〈B2(φ), η〉| = |〈B2(u, η) , θ〉| ≤ |η|L4 |u|L4 |∇θ|L2 ≤ √
c1 |η|L4 |u|

1
2

L2 |∇u|
1
2

L2 |∇θ|L2

≤ √
c1 |η|L4 |u|

1
2

L2 ‖φ‖ 3
2 ≤ α ‖φ‖2 +

33 c21
44α3

|u|2 |η|4L4 .

�
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The following lemma allows to rewrite differences of Bi for i = 1, 2 and to deduce
estimates for the difference of B.

Lemma 3.7. Let φ = (u, θ) and ψ = (v, η) belong to V . Then
〈

B1(u, u) −B1(v, v), u − v
〉

= −
〈

B1(u− v, u− v), v
〉

,
〈

B2(φ) −B2(ψ), θ − η
〉

= −
〈

B2(φ− ψ), η
〉

.

Furthermore, for some constant c > 0 and for any constant α > 0,

|〈B(φ) −B(ψ), φ − ψ〉| ≤ c |φ − ψ| ‖φ − ψ‖ ‖ψ‖ (3.12)

≤ α ‖φ− ψ‖2 +
33 c2

24 α3
|φ− ψ|2 |ψ|4L4 . (3.13)

Proof. Integration by parts, the boundary conditions and div(u) = ∇ · u = 0 yield

〈

B2(φ) −B2(ψ), θ − η
〉

=

∫

D

(

u.∇θ)(θ − η)dx−
∫

D

(

v.∇η)(θ − η)dx

= −
∫

D

(

u.∇(θ − η)
)

θdx+

∫

D

(

v.∇(θ − η)
)

ηdx

Since 〈B2(u,w) , w〉 =
∫

D

(

u.∇w
)

wdx = 0 for any w ∈ V2, we deduce that

〈

B2(φ) −B2(ψ), θ − η
〉

= −
∫

D

(

u.∇(θ − η))ηdx +

∫

D

(

v.∇(θ − η)
)

ηdx,

which completes the proof of the second identity. The proof of the first one, which is
similar and classical; is omitted. Finally, combining these identities with the upper
estimates in Lemmas 3.5 and 3.6 concludes the proof. �

For φ = (u, θ) ∈ V , define

F (φ) = −Aφ−B(φ) −Rφ. (3.14)

We at first prove crucial monotonicity properties of F . Let ν ∧ κ := min(ν, κ).

Lemma 3.8. Assume that φ = (u, θ) ∈ V and ψ = (v, η) ∈ V ; then for some
constant c > 0 we have
〈

F (φ) − F (ψ), φ − ψ
〉

+ (ν ∧ κ)‖φ− ψ‖2 ≤ c |φ− ψ|‖φ− ψ‖‖ψ‖ + |φ− ψ|2. (3.15)

Proof. Set U := u− v, Θ := θ− η and Φ = φ−ψ = (U,Θ). Integrating by parts we
deduce from Lemma 3.7

〈

F (φ) − F (ψ),Φ
〉

= −ν‖U‖2 − κ‖Θ‖2 − 〈B1(U,U), v〉 − 〈B2(Φ), η〉 + 2(U2,Θ).

Thus (3.12) yields (3.15). �

The proof of Theorem 3.1 involves Galerkin approximations. Let {ϕn}n≥1 be
a complete orthonormal basis of the Hilbert space H such that ϕn ∈ Dom(A),
domain of definition of the operator A. For any n ≥ 1, let Hn = span(ϕ1, · · · , ϕn) ⊂
Dom(A) and Pn : H → Hn denotes the orthogonal projection onto Hn. Note that
Pn contracts the H and V norms and that its norm as linear operator of L4(D)3
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is bounded in n. Suppose that the H−valued Wiener process W with covariance
operator Q is such that

PnQ
1
2 = Q

1
2Pn, n ≥ 1,

which is true if Qh =
∑

n≥1 λnϕn with trace
∑

n≥1 λn < ∞. Then for H0 = Q
1
2H

and (φ,ψ)0 = (Q− 1
2φ,Q− 1

2ψ) given φ,ψ ∈ H0, we see that Pn : H0 → H0 ∩Hn is a
contraction both of the H and H0 norms. Let Wn = PnW , σn = Pnσ and σ̃n = Pnσ̃.

For h ∈ AM , consider the following stochastic ordinary differential equation on
the n-dimensional space Hn defined by

d(φεn,h, ψ) =
[

〈F (φεn,h), ψ〉 + (σ̃n(φ
ε
n,h)h, ψ)

]

dt+
√
ε (σn(φ

ε
n,h)dWn, ψ), (3.16)

for ψ = (v, η) ∈ Hn and φεn,h(0) = Pnξ.

Note that for ψ = (v, η) ∈ V , the map φ ∈ Hn 7→ 〈(A+R)(φ), ψ〉 is globally Lips-
chitz, while using Lemma 3.5 the map φ = (u, θ) ∈ Hn 7→

∑

i,j=1,2

∫

D
ui vj ∂iuj dx+

∑

i=1,2

∫

D
ui η ∂i θ dx is locally Lipschitz. Furthermore, conditions (A.3) and (Ã.2)

imply that the maps φ ∈ Hn → σn(φ) and φ ∈ Hn → σ̃n(φ) are globally Lipschitz
from Hn to n×n matrices. Hence by a well-posedness result for stochastic ordinary
differential equations [16], there exists a maximal solution to (3.16), i.e., a stopping
time τ εn,h ≤ T such that (3.16) holds for t < τ εn,h and as t ↑ τ εn,h < T , |φεn,h(t)| → ∞.
For every N > 0, set

τN = inf{t : |φεn,h(t)| ≥ N} ∧ T. (3.17)

Almost surely, φεn,h ∈ C([0, T ],Hn) on {τN = T}. The following proposition shows
that τ εn,h = T a.s. and gives estimates on φεn,h depending only on the physical

constants ν and κ, K, K̃, T , M , E|ξ|2p which are valid for all n and all ε ∈ [0, ε0]
for some ε0 > 0. Its proof depends on the following version of Gronwall’s lemma.

Lemma 3.9. Let X, Y and I be non decreasing, non-negative processes, ϕ be a non
negative process and Z be a non-negative integrable random variable. Assume that
∫ T

0 ϕ(s) ds ≤ C almost surely and that there exist positive constants α, β ≤ 1
2(1+CeC)

,

γ ≤ α
2(1+CeC)

and C̃ > 0 such that for 0 ≤ t ≤ T ,

X(t) + αY (t) ≤ Z +

∫ t

0
ϕ(r)X(r) dr + I(t), a.s. (3.18)

E(I(t)) ≤ β E(X(t)) + γ E(Y (t)) + C̃. (3.19)

Then if X ∈ L∞([0, T ] × Ω), we have for t ∈ [0, T ]

E
[

X(t) + αY (t)
]

≤ 2(1 + CeC)
(

E(Z) + C̃
)

. (3.20)

Proof. Iterating the inequality (3.18) and ignoring Y , an induction argument on n

yields for t ∈ [0, T ], n ≥ 1

X(t) ≤ Z +

∫ t

0
ϕ(s1)

[

Z +

∫ s1

0
ϕ(s2)X(s2)ds2 + I(s1)

]

ds1 + I(t)



10 J. DUAN AND A. MILLET

≤ Z + I(t) +
∑

1≤k≤n

∫ t

0
ϕ(s1)

∫ s1

0
ϕ(s2) · · ·

∫ sk−1

0
ϕ(sk) [Z + I(sk)] dsk · · · ds1

+

∫ t

0
ϕ(s1)

∫ s1

0
ϕ(s2) · · ·

∫ sn

0
ϕ(sn+1)X(sn+1) dsn+1dsn · · · ds1.

Recall that X(s, ω) is a.e. bounded and
∫ T

0 ϕ(s) ds ≤ C; thus X(t) ≤ eC [Z + I(t)].
Using this inequality in (3.18) and the fact that I is non-decreasing, we deduce that
X(t) + αY (t) ≤

[

Z + I(t)
] (

1 + CeC
)

. Taking expected values and using (3.19), we
conclude the proof. �

Proposition 3.10. There exists ε0,p := ε0,p(ν, κ,K, K̃, T,M) such that for 0 ≤ ε ≤
ε0,p the following result holds for an integer p ≥ 1 (with the convention x0 = 1).
Let h ∈ AM and ξ ∈ L2p(Ω,H). Then τn,h = T a.s. and the equation (3.16) has a
unique solution with a modification φεn,h ∈ C([0, T ],Hn) and satisfying

sup
n

E

(

sup
0≤t≤T

|φεn,h(t)|2p +

∫ T

0
‖φεn,h(s)‖2 |φεn,h(s)|2(p−1)ds

)

≤ C(p, ν, κ,K, K̃, T,M)
(

E|ξ|2p + 1
)

. (3.21)

Proof. Itô’s formula yields that for t ∈ [0, T ] and τN defined by (3.17),

|φεn,h(t ∧ τN )|2 = |Pnξ|2 + 2
√
ε

∫ t∧τN

0

(

σn(φ
ε
n,h(s))dWn(s), φ

ε
n,h(s)

)

(3.22)

+ 2

∫ t∧τN

0

〈

F (φεn,h(s)), φ
ε
n,h(s)〉ds+ 2

∫ t∧τN

0

(

σ̃n(φ
ε
n,h(s))h(s), φ

ε
n,h(s)

)

ds

+ ε

∫ t∧τN

0
|σn(φεn,h(s))Pn|2LQ

ds. (3.23)

Apply again Itô’s formula for xp when p ≥ 2 and then use Lemma 3.4. With the
convention p(p− 1)xp−2 = 0 for p = 1 , this yields for t ∈ [0, T ],

|φεn,h(t ∧ τN )|2p + 2p

∫ t∧τN

0
|φεn,h(r)|2(p−1)

[

ν‖uεn,h(r)‖2 + κ‖θεn,h(r)‖2
]

dr

≤ |Pnξ|2p +
∑

1≤j≤5

Tj(t), (3.24)

where

T1(t) = 4p

∫ t∧τN

0
|(θεn,h(r), uεn,h,2(r))||φεn,h(r)|2(p−1)dr,

T2(t) = 2p
√
ε

∣

∣

∣

∫ t∧τN

0

(

σn(φ
ε
n,h(r)) dWn(r), φ

ε
n,h(r)

)

|φεn,h(r)|2(p−1)
∣

∣

∣
,

T3(t) = 2p

∫ t∧τN

0
|(σ̃n(φεn,h(r)) h(r), φεn,h(r))| |φεn,h(r)|2(p−1)dr,
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T4(t) = p ε

∫ t∧τN

0
|σn(φεn,h(r)) Pn|2LQ

|φεn,h(r)|2(p−1)dr,

T5(t) = 2p(p − 1)ε

∫ t∧τN

0
|Πn σ

∗
n(φ

ε
n,h(r)) φ

ε
n,h(r)|2H0

|φεn,h(r)|2(p−2)dr.

The Cauchy-Schwarz inequality implies that 2|(θεn,h(r), uεn,h,2(r))| ≤ |φεn,h(r)|2. Hence

T1(t) ≤ 2p

∫ t∧τN

0
|φεn,h(r)|2p dr. (3.25)

Since h ∈ AM , the Cauchy-Schwarz inequality, (Ã.2), (2.5) and the Poincaré in-
equality (2.6) imply the existence of some positive constant c such that for every
δ1 > 0,

T3(t) ≤ 2p

∫ t∧τN

0

[

K̃(1 + c ‖φεn,h(r)‖2)
]

1
2 |h(r)|0 |φεn,h(r)|2p−1dr

≤ δ1

∫ t∧τN

0
‖φεn,h(r)‖2 |φεn,h(r)|2(p−1) dr +

p2K̃c

δ1

∫ t∧τN

0
|h(r)|20 |φεn,h(r)|2p dr

+ δ1

∫ t∧τN

0
|φεn,h(r)|2(p−1)dr. (3.26)

Using (A.2), we deduce that

T4(t) + T5(t) ≤ 2p2K ε

∫ t∧τN

0
‖φεn,h(r)‖2 |φεn,h(r)|2(p−1) dr

+2p2K ε

∫ t∧τN

0
|φεn,h(r)|2(p−1) dr. (3.27)

Finally, the Burkholder-Davies-Gundy inequality, (A.2) and Schwarz’s inequality
yield that for t ∈ [0, T ] and δ2 > 0,

E

(

sup
0≤s≤t

|T2(s)|
)

≤ 6p
√
εE

{

∫ t∧τN

0
|φεn,h(r)|2(2p−1) |σn,h(φεn,h(r)) Pn|2LQ

dr
}

1
2

≤ δ2E

(

sup
0≤s≤t∧τN

|φεn,h(s)|2p
)

+
9p2Kε

δ2
E

∫ t∧τN

0
|φεn,h(r)|2(p−1)dr

+
9p2Kε

δ2
E

∫ t∧τN

0
‖φεn,h(r)‖2 |φεn,h(r)|2(p−1)dr. (3.28)

Consider the following property I(i) for an integer i ≥ 0:

I(i) There exists ε0,i := ε0,i(ν, κ,K, K̃, T,M) > 0 such that for 0 ≤ ε ≤ ε0,i

sup
n

E

∫ t∧τN

0
|φεn,h(r)|2idr ≤ C(i) := C(i, ν, κ,K, K̃, T,M) < +∞.

The property I(0) obviously holds with ε0,0 = 1 and C(0) = T . Assume that for
some integer i with 1 ≤ i ≤ p, the property I(i-1) holds; we prove that I(i) holds.
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Set δ1 = (ν∧κ) i
2 , ϕi(r) = 2i + i2 cK̃

δ1
|h(r)|20, Z = δ1

∫ τN
0 |φεn,h(r)|2(i−1)dr + |ξ|2i,

X(t) = sup0≤s≤t |φεn,h(s∧τN )|2i, Y (t) =
∫ t∧τN
0 ‖φεn,h(s)‖2 |φεn,h(s)|2(i−1) ds and I(t) =

sup0≤s≤t 2i
√
ε

∣

∣

∣

∫ t∧τN
0

(

σn(φ
ε
n,h(r)) dWn(r), φ

ε
n,h(r)

)

|φεn,h(r)|2(i−1)
∣

∣

∣
.

Then
∫ T

0 ϕi(s)ds ≤ Ci(M) := 2iT + i2cK̃
δ1

M . Let α = i (ν ∧ κ), β = δ2 =
1

2
[

1+Ci(M)eCi(M)
] and C̃ = 9i2K

δ2
E

∫ τN
0 |φεn,h(s)|2(i−1)ds. Let

ε0,i = 1 ∧ ν ∧ κ
8iK

∧ ν ∧ κ
144 iK [1 + Ci(M)eCi(M)]2

∧ ε0,i−1.

Then for 0 ≤ ε ≤ ε0,i the inequalities (3.24)-(3.28) show that the assumptions of

Lemma 3.9 hold with γ = 9i2Kε
δ2

≤ αβ, which yields I(i).

An induction argument shows that I(p − 1) holds, and hence the previous com-
putations with i = p and Lemma 3.9 yield that for t = T and 0 ≤ ε ≤ ε0,p,

sup
n

E

(

sup
0≤s≤τN

|φεn,h(s)|2p+
∫ τN

0
‖φεn,h(s)‖2 φεn,h(s)|2(p−1) ds

)

≤ C(p, ν, κ,K, K̃, T,M).

As N → ∞, τN ↑ τn,h and on {τn,h < T}, sup0≤s≤t∧τN |φn,h(s)| → ∞. Hence
P(τn,h < T ) = 0 and for almost all ω, for N(ω) large enough, τN(ω)(ω) = T and
φn,h(.)(ω) ∈ C([0, T ],Hn). By the Lebesgue monotone convergence theorem, we
complete the proof of the proposition. �

We now have the following bound in L4(D)3.

Proposition 3.11. Let h ∈ AM and ξ ∈ L4(Ω,H). Let ε0,2 be defined as in

Proposition 3.10 with p = 2. Then there exists a constant C2 := C2(ν, κ,K, K̃, T,M)
such that for 0 ≤ ε ≤ ε0,2,

sup
n

E

∫ T

0
|φεn,h(s)|4L4ds ≤ C2(1 + E|ξ|4). (3.29)

Proof. Let fn,h(t) = un,h,i(t) or θεn,h(t), with i = 1, 2. Then (3.21) with p = 2 implies
that

sup
n

E

∫ T

0
‖fn,h(s)‖2|fn,h(s)|2ds ≤ C2(ν, κ,K, K̃, T,M)(1 + E|ξ|4).

Hence by the second part of (3.8), we finish the proof of (3.29). �

The following result is a consequence of Itôs formula; it will be used in the sequel
for various choices of coefficients.

Lemma 3.12. Let ξ ∈ L4(Ω,H) be F0-measurable, ρ′ : [0, T ] × Ω → [0 + ∞[ be
adapted such that for almost every ω the map t → ρ′(t, ω) ∈ L1([0, T ]) and for

t ∈ [0, T ], set ρ(t) =
∫ t

0 ρ
′(s) ds. For i = 1, 2, let σi satisfy assumption (A.1), σ̄i ∈

C([0, T ] ×H,L2
Q) and let σ̄ satisfy Assumption Ã. Let F satisfy condition (3.15),
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hε ∈ AM and φi ∈ L2([0, T ], V ) ∩ L∞([0, T ],H) a.s. and be such that φi(0) = ξ and
satisfy the equation

dφi(t) = F (φi(t))dt+
√
εσi(t, φi(t)) dW (t)+

(

σ̄(t, φi(t))+σ̄i(t, φi(t))
)

hε(t) dt. (3.30)

Let Φ = φ1 − φ2 and c1 and c2 denote the constants in (2.5) and (2.6) respectively.
Then for every t ∈ [0, T ],

e−ρ(t) |Φ(t)|2 ≤
∫ t

0
e−ρ(s)

{

− (ν ∧ κ) ‖Φ(s)‖2 + ε
∣

∣σ1(s, φ1(s)) − σ2(s, φ2(s))
∣

∣

2

L2
Q

+|Φ(s)|2
[

− ρ′(s) + 2 +
8 c21
ν ∧ κ ‖φ2(s)‖2 +

2L̃ c1 c2
ν ∧ κ |hε(s)|20

]}

ds

+ 2

∫ t

0
e−ρ(s)

(

σ̄1(s) − σ̄2(s) , Φ(s)
)

ds+ I(t), (3.31)

where I(t) = 2
√
ε

∫ t

0 e
−ρ(s)

(

[

σ1(s, φ1(s)) − σ2(s, φ2(s))
]

dW (s) , Φ(s)
)

.

Proof. Itô’s formula, (3.15) and condition (Ã.2) imply that for t ∈ [0, T ],

e−ρ(t) |Φ(t)|2 =

∫ t

0
e−ρ(s)

{

− ρ′(s)|Φ(s)|2 + ε
∣

∣σ1(s, φ1(s)) − σ2(s, φ2(s))
∣

∣

2

LQ

+ 2 〈F (φ1(s)) − F (φ2(s)) , Φ(s)〉 + 2
(

σ̄(s, φ1(s)) − σ̄(s, φ2(s)) , Φ(s)
)

}

ds

+

∫ t

0
e−ρ(s)2

([

σ̄1(s) − σ̄2(s)
]

hε(s) , Φ(s)
)

ds+ I(t)

≤
∫ t

0
e−ρ(s)

{

− ρ′(s) |Φ(s)|2 + ε
∣

∣σ1(s, φ1(s)) − σ2(s, φ2(s))
∣

∣

2

LQ
− 2(ν ∧ κ) ‖Φ(s)‖2

+ 4c1|Φ(s)| ‖Φ(s)‖ ‖φ2(s)‖ + 2|Φ(s)|2 + 2

√

L̃ c1 c2‖Φ(s)‖ |hε(s)|0 |Φ(s)|
}

ds

+

∫ t

0
e−ρ(s)2

(

σ̄1(s) − σ̄2(s) , Φ(s)
)

ds+ I(t).

The inequalities 4c1|Φ(s)| ‖Φ(s)‖ ‖φ2(s)‖ ≤ (ν∧κ)
2 ‖Φ(s)‖2 +

8c21
ν∧κ‖φ2(s)‖2|Φ(s)|2 and

2
√

L̃ c1 c2‖Φ(s)‖ |hε(s)|0 |Φ(s)| ≤ (ν∧κ)
2 ‖Φ(s)‖2 + 2L̃ c1 c2

ν∧κ |hε(s)|20 |Φ(s)|2 conclude the
proof of (3.31). �

We are now ready to prove the main result of this section.

Proof of Theorem 3.1:
Let ΩT = [0, T ]×Ω be endowed with the product measure ds⊗ dP on B([0, T ])⊗F .
Let ε0,2 be defined by Proposition 3.10 with p = 2 and set ε0 := ε0,2 ∧ ν∧κ

2L . The
proof consists of several steps.

Step 1: The inequalities (3.21) and (3.29) imply the existence of a subsequence
of {φεn,h}n≥0 (still denoted by the same notation), of processes φεh ∈ L2(ΩT , V ) ∩
L4(ΩT , L

4(D)3) ∩ L4(Ω, L∞([0, T ],H)), F εh ∈ L2(ΩT , V
′), Sεh, S̃

ε
h ∈ L2(ΩT , LQ), and

of random variables φ̃εh(T ) ∈ L2(Ω,H), for which the following properties hold:
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(i) φεn,h → φεh weakly in L2(ΩT , V ),

(ii) φεn,h → φεh weakly in L4(ΩT , L
4(D)3),

(iii) φεn,h is weak star converging to φεh in L4(Ω, L∞([0, T ],H)),

(iv) φεn,h(T ) → φ̃εh(T ) weakly in L2(Ω,H),

(v) F (φεn,h) → F εh weakly in L2(ΩT , V
′),

(vi) σn(φ
ε
n,h)Pn → Sεh weakly in L2(ΩT , LQ),

(vii) σ̃n(φ
ε
n,h)h→ S̃εh weakly in L

4
3 (ΩT ,H).

Indeed, (i)-(iv) are straightforward consequences of Propositions 3.10 and 3.11,

and of uniqueness of the limit of E
∫ T

0 φεn,h(t)ψ(t)dt for appropriate ψ.

Furthermore, given ψ = (v, η) ∈ L2(ΩT , V ), we have

E

∫ T

0

[

ν〈A1(u
ε
n,h(t), v(t)〉 + κ〈A2(θ

ε
n,h(t)), η(t)〉

]

dt

= −νE

∫ T

0
(∇uεn,h(t),∇v(t))dt − κE

∫ T

0
(∇θεn,h(t),∇η(t))dt

→ −νE

∫ T

0
(∇uεh(t),∇v(t))dt − κE

∫ T

0
(∇θεh(t),∇η(t))dt. (3.32)

Using (3.21) with p = 2, (3.8), (3.9), the Cauchy-Schwarz and Poincaré inequalities,
we deduce

sup
n

E

∫ T

0

∣

∣〈B1(u
ε
n,h(t), u

ε
n,h(t)), v(t)〉 + 〈B2(φ

ε
n,h(t)) , η(t)〉 + (Rφεn,h(t), ψ(t))

∣

∣ dt

≤ C sup
n

E

∫ T

0

{

‖uεn,h(t)‖ |uεn,h(t)|‖v(t)‖ + ‖φεn,h(t)‖ |φεn,h(t)| ‖η(t)‖

+ |θεn,h(t)| |v2(t)| + |uεn,h,2(t)| |η(t))|
}

dt

≤ C3(ν, κ,K, T,M)
(

1 + E|ξ|4
)

+ E

∫ T

0
‖ψ(t)‖2dt.

Hence {B(φεn,h(t)) + Rφεn,h(t) , n ≥ 1} has a subsequence converging weakly in

L2(ΩT , V
′). This convergence and (3.32) prove (v).

Since Pn contracts the | · |0 and | · | norms, (A.2) and (3.21) imply that

sup
n

E

∫ T

0
|σn(φεn,h(t))Pn|2LQ

dt ≤ K sup
n

E

∫ T

0
(1 + ‖φεn,h(t)‖2)dt < ∞,

which proves (vi). Finally, using Assumption (Ã.1), Hölder’s inequality and (3.29),
we deduce that for h ∈ AM , for any n ≥ 1,

E

∫ T

0
|σ̃n(φεn,h(s))h(s)|

4
3
H ds ≤ E

∫ T

0

[

K̃(1 + |φεn,h(s)|2L4)
]

2
3 |h(s)|

4
3
0 ds

≤ K̃
4
3

(

E

∫ T

0
|h(s)|20 ds

)
2
3
(

E

∫ T

0
[1 + |φεn,h(s)|2L4 ] ds

)
1
3
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≤ C(M,T,K, K̃, ν, κ).

This completes the proof of (vii).

Step 2: For δ > 0, let f ∈ H1(−δ, T + δ) be such that ‖f‖∞ = 1, f(0) = 1 and
for any integer j ≥ 1 set gj(t) = f(t)ϕj , where {ϕj}j≥1 is the previously chosen
orthonormal basis for H. The Itô formula implies that for any j ≥ 1, and for
0 ≤ t ≤ T ,

(

φεn,h(T ) , gj(T )
)

=
(

φεn,h(0) , gj(0)
)

+

4
∑

i=1

Iin,k, (3.33)

where

I1
n,k =

∫ T

0
(φεn,h(s), ϕj)f

′(s)ds,

I2
n,k =

√
ε

∫ T

0

(

σn(φ
ε
n,h(s))PndWn(s), gj(s)

)

,

I3
n,k =

∫ T

0
〈F (φεn,h(s)), gj(s)〉ds,

I4
n,k =

∫ T

0

(

σ̃n(φ
ε
n,h(s))h(s), gj(s)

)

ds.

Since f ′ ∈ L2([0, T ]) and for every X ∈ L2(Ω), (t, ω) 7→ ϕjX(ω) f ′(t) ∈ L2(Ω,H),

(i) above implies that as n → ∞, I1
n,k →

∫ T

0 (φεh(s), ϕj)f
′(s)ds weakly in L2(Ω).

Similarly, (v) implies that as n → ∞, I3
n,k →

∫ T

0 〈F εh(s), gj(s)〉ds weakly in L2(Ω),

while (vii) implies that I4
n,k →

∫ T

0

(

S̃εh(s), gj(s)
)

ds weakly in L
4
3 (Ω). To prove the

convergence of I2
n,k, as in [22], let PT denote the class of predictable processes in

L2(ΩT , LQ(H0,H)) with the inner product

(G,J)PT
= E

∫ T

0

(

G(s), J(s)
)

PT
ds = E

∫ T

0
trace(G(s)QJ(s)∗)ds.

The map T : PT → L2(Ω) defined by T (G)(t) =
∫ T

0

(

G(s)dW (s), gj(s)
)

is linear
and continuous because of the Itô isometry. Furthermore, (vi) shows that for every
G ∈ PT , as n→ ∞,

(

σn(φ
ε
n,h)Pn, G

)

PT
→ (Sεh, G)PT

weakly in L2(Ω).

Finally, as n → ∞, Pnξ = φεn,h(0) → ξ in H and by (iv), (φεn,h(T ), gj(T )) →
(φ̃εh(T ), gj(T )) weakly in L2(Ω). Therefore, (3.33) leads to, as n→ ∞,

(φ̃εh(T ), ϕj) f(T ) =
(

ξ, ϕj
)

+

∫ T

0

(

φεh(s), ϕj
)

f ′(s)ds+
√
ε

∫ T

0

(

Sεh(s)dW (s), gj(s)
)

+

∫ T

0
〈F εh(s), gj(s)〉ds+

∫ T

0

(

S̃εh(s), gj(s)
)

ds. (3.34)
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For δ > 0, k > 1
δ
, t ∈ [0, T ], let fk ∈ H1(−δ, T +δ) be such that ‖fk‖∞ = 1, fk = 1

on (−δ, t − 1
k
) and fk = 0 on

(

t, T + δ
)

. Then fk → 1(−δ,t) in L2, and f ′k → −δt in
the sense of distributions. Hence as k → ∞, (3.34) written with f := fk yields

0 =
(

ξ, ϕj
)

−
(

φεh(t), ϕj
)

+
√
ε
(

∫ t

0
Sεh(s)dW (s), ϕj

)

+
〈

∫ t

0
F εh(s) ds , ϕj

〉

+
(

∫ t

0
S̃εh(s) ds , ϕj

)

.

Note that j is arbitrary and E
∫ T

0 |Sεh(s)|2LQ
ds <∞; we deduce that for 0 ≤ t ≤ T ,

φεh(t) = ξ +
√
ε

∫ t

0
Sεh(s)dW (s) +

∫ t

0
F εh(s)ds+

∫ t

0
S̃εh(s)ds ∈ H. (3.35)

Indeed,
∫ t

0 F
ε
h(s)ds, as linear combination of H−valued terms, also belongs to H.

Moreover, let f = 1(−δ,T+δ). Using (3.34) again, we obtain

φ̃εh(T ) = ξ +
√
ε

∫ T

0
Sεh(s)dW (s) +

∫ T

0
F εh(s)ds +

∫ T

0
S̃εh(s)ds.

This equation and (3.35) yield that φ̃εh(T ) = φεh(T ) a.s.

Step 3: In (3.35) we still have to prove that ds⊗ dP a.s. on ΩT , one has

Sεh(s) = σ(φεh(s)), F
ε
h(s) = F (φεh(s)) and S̃εh(s) = σ̃(φεh(s)) h(s).

Let

X := {ψ ∈ L4(ΩT , L
4(D)3) ∩ L4

(

Ω, L∞([0, T ],H)
)

∩ L2(ΩT , V ) :
∫ T

0

(

‖ψ(t)‖2 + ‖φεh(t)‖2
)

|ψ(t) − φεh(t)|2 dt < +∞ a.s.}.

Then (i)-(iii) yield φεh ∈ X and since ‖u‖ ≤ C(m)|u| for every u ∈ Hm, using (3.8)
and the fact that φεh ∈ L2(ΩT , V ), we deduce that for any m ≥ 1, L∞(ΩT ,Hm) ⊂ X .
Let ψ = (v, η) ∈ L∞(ΩT ,Hm). For every t ∈ [0, T ], if a ∧ b := inf(a, b) and c1 is the
constant in (2.5), set

r(t) =

∫ t

0

[

2 +
8c21
ν ∧ κ ‖ψ(s)‖2 +

2c1c2L̃

ν ∧ κ |h(s)|20
]

ds. (3.36)

Then r(t) <∞ for all t ∈ [0, T ] and Fatou’s lemma implies

E
(

|φεh(T )|2 e−r(T )
)

≤ E
(

lim inf
n

|φεn,h(T )|2 e−r(T )
)

≤ lim inf
n

E
(

|φεn,h(T )|2 e−r(T )
)

.

Apply Itô’s formula to (3.35) and (3.16), and for φ = φεh or φ = φεn,h, let φ =

ψ + (φ− ψ). After simplification, this yields

E|ξ|2 + E

∫ T

0
e−r(s)

[

− r′(s)
{
∣

∣φεh(s) − ψ(s)
∣

∣

2
+ 2

(

φεh(s) − ψ(s) , ψ(s)
)

} + 2〈F εh(s), φεh(s)〉

+ ε|Sεh(s)|2L2
Q

+ 2
(

S̃εh(s) , φ
ε
h(s)

)]

ds ≤ lim inf
n

(

E|Pn(ξ)|2 +Xn

)

, (3.37)
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where

Xn = E

∫ T

0
e−r(s)

[

− r′(s)
{
∣

∣φεn,h(s) − ψ(s)
∣

∣

2
+ 2

(

φεn,h(s) − ψ(s) , ψ(s)
)}

+ 2〈F (φεn,h(s)), φ
ε
n,h(s)〉 + ε|σn(φεn,h(s))Pn|2L2

Q
+ 2

(

σ̃(φεn,h(s))h(s) , φ
ε
n,h(s)

)]

ds.

Set a ∨ b := max(a, b). The inequalities (3.15), (A.3), (Ã.2), (3.36), the Poincaré
and Schwarz inequalities imply that for 0 ≤ ε ≤ ε0 ≤ ν∧κ

2L ,

Yn := E

∫ T

0
e−r(s)

[

− r′(s)|φεn,h(s) − ψ(s)|2

+
[

2〈F (φεn,h(s)) − F (ψ(s)), φεn,h(s) − ψ(s)〉 + ε|σn(φεn,h(s)) Pn − σn(ψ(s)) Pn|2LQ

+ 2
({

σ̃n(φ
ε
n,h(s)) − σ̃n(ψ(s))

}

h(s), φεn,h(s) − ψ(s)
)

]

ds

≤ E

∫ T

0
e−r(s) |φεn,h(s) − ψ(s)|2

{

− r′(s) + 2 +
8c21
ν ∧ κ‖ψ(s)‖2 +

2c1c2L̃

ν ∧ κ |h(s)|20
}

ds

≤ 0. (3.38)

Furthermore, Xn = Yn +
∑2

i=1 Z
i
n, with

Z1
n = E

∫ T

0
e−r(s)

[

− 2r′(s)(φεn,h(s) − ψ(s), ψ(s)) + 2〈F (φεn,h(s)), ψ(s)〉

+ 2〈F (ψ(s)), φεn,h(s)〉 − 2〈F (ψ(s)), ψ(s)〉 + 2ε
(

σn(φ
ε
n,h(s))Pn , σ(ψ(s)

)

LQ

+ 2
(

σ̃n(φ
ε
n,h(s)

)

h(s), ψ(s)
)

+ 2
(

σ̃(ψ(s)) h(s), φεn,h(s)) − 2(Pnσ̃(ψ(s))h(s), ψ(s)
)

]

ds,

Z2
n = E

∫ T

0
e−r(s)

[

2ε
(

σn(φ
ε
n,h(s))Pn, [σ(ψ(s))Pn − σ(ψ(s))]

)

LQ
− ε|Pnσ(ψ(s))Pn|2LQ

]

ds.

The weak convergence properties (i)-(vii) imply that, as n→ ∞, Z1
n → Z1 where

Z1 = E

∫ T

0
e−r(s)

[

− 2r′(s)
(

φεh(s) − ψ(s), ψ(s)
)

+ 2〈F εh(s), ψ(s)〉 + 2〈F (ψ(s)), φεh(s)〉

− 2〈F (ψ(s)), ψ(s)〉 + 2ε
(

Sεh(s) , σ(ψ(s))
)

LQ
+ 2(S̃εh(s), ψ(s))

+ 2
(

σ̃(ψ(s)) h(s), φεh(s)
)

− 2
(

σ̃(ψ(s))h(s), ψ(s)
) ]

ds. (3.39)

Now we study (Z2
n); when n→ ∞, |σ(ψ(s))(Pn − IdH0)|LQ

→ 0 a.s., and by (A.2),

E

∫ T

0
e−r(s) sup

n
|σ(ψ(s))(Pn − IdH0)|2LQ

ds <∞.

Hence the Lebesgue dominated convergence theorem implies that, as n→ ∞,

E

∫ T

0
e−r(s)|σ(ψ(s))(Pn − IdH0)|2LQ

ds → 0.
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Since supn E
∫ T

0 e−r(s)|σn(φεn,h(s))Pn|2LQ
ds < ∞, by the Cauchy-Schwarz inequality,

we see that Z2
n → −εE

∫ T

0 e−r(s)|σ(ψ(s))|2LQ
ds.

Thus, (3.37)-(3.39) imply that for any m ≥ 1 and any ψ ∈ L∞(ΩT ,Hm),

E

∫ T

0
e−r(s)

{

− r′(s)|φεh(s) − ψ(s)|2 + 2〈F εh(s) − F (ψ(s)), φεh(s) − ψ(s)〉

+ ε|Sεh(s) − σ(ψ(s))|2LQ
+ 2

(

S̃εh(s) − σ̃(ψ(s))h(s) , φεh(s) − ψ(s)
)}

ds ≤ 0. (3.40)

By a density argument, this inequality extends to all ψ ∈ X . Taking ψ = φεh ∈ X ,

we conclude that Sεh(s) = σ(φεh(s)), ds ⊗ dP a.e. For a real number λ, ψ̃ = (v, η) ∈
L∞(ΩT ,Hm) for some m, set ψλ = φεh − λψ̃ ∈ X . Thus applying (3.40) to ψλ and
neglecting ε|σ(φεh(s)) − σ(ψλ(s))|2LQ

, we obtain

E

∫ T

0
e−r(s)

[

− λ2r′(s)|ψ̃(s)|2 + 2λ
{

〈F εh(s) − F (ψλ(s)), ψ̃(s)〉

+
(

S̃εh(s) − σ̃(ψλ(s))h(s), ψ̃(s)
)}]

ds ≤ 0. (3.41)

Using (Ã.2), (2.5) and (2.6), we have for almost every (s, ω) ∈ ΩT as λ→ 0,

∣

∣

([

σ̃(ψλ(s)) − σ̃(φεh(s))]h(s) , ψ̃(s)
)∣

∣ ≤
√

˜Lc1 c2 λ ‖ψ̃(s)‖ |h(s)|0 |ψ̃(s)| → 0.

Furthermore, (Ã.1) (2.5) and (2.6) imply that for some constant c > 0,

E

∫ T

0
sup
|λ|≤1

∣

∣

∣

(

σ̃(ψλ(s)) h(s), ψ̃(s)
)
∣

∣

∣
ds

≤
√

K̃cE

∫ T

0

(

1 + 2‖φεh(s)‖2 + 2‖ψ̃(s))‖2
)

1
2 |h(s)|0 |ψ̃(s)|ds

≤ c K̃M + E

∫ T

0

[

{

1 + 2‖φεh(s)‖2 + 2‖ψ̃(s)‖2
}

|ψ̃(s)|2
]

ds <∞.

Hence, the Lebesgue dominated convergence theorem yields, as λ→ 0,

E

∫ T

0

(

{

S̃εh(s) − σ̃(ψλ(s))
}

h(s), ψ̃(s)
)

ds→ E

∫ T

0

(

{

S̃εh(s) − σ̃(φh(s))
}

h(s), ψ̃(s)
)

ds.

Furthermore, (3.15) yields for λ 6= 0

∣

∣〈F (ψλ(s)) − F (φεh(s)), ψ̃(s)〉
∣

∣ ≤ λ2
[

(ν ∧ κ) ‖ψ̃(s)‖2 + 2c1‖ψ̃(s)‖2|ψ̃(s)| + |ψ̃(s)|2
]

.

Using again the dominated convergence theorem, we deduce as λ→ 0,

E

∫ T

0
〈F εh(s) − F (ψλ(s)), ψ̃(s)〉ds → E

∫ T

0
〈F εh(s) − F (φεh(s)), ψ̃(s)〉ds.
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Thus, dividing (3.41) by λ > 0 and letting λ → 0 we obtain that for every m and

ψ̃ ∈ L∞(ΩT ,Hm),

E

∫ T

0

[

〈F εh(s) − F (φεh(s)), ψ̃(s)〉 +
({

S̃εh(s) − σ̃(φεh(s))
}

h(s), ψ̃(s)
)

]

ds ≤ 0,

while a similar calculation for λ < 0 yields the opposite inequality. Therefore for
almost every (s, ω) ∈ ΩT ,, for every ψ̃ in a dense subset of L2(ΩT , V ),

E

∫ T

0

[

〈

F εh(s) − F (φεh(s)) , ψ̃(s)
〉

+
({

S̃εh(s) − σ̃(φεh(s))
}

h(s), ψ̃(s)
)

]

ds = 0. (3.42)

Hence a.e. for t ∈ [0, T ], (3.35) can be rewritten as

φεh(t) = ξ +
√
ε

∫ t

0
σ(φεh(s))dWs +

∫ t

0

[

F (φεh(s)) + σ̃(φεh(s))h(s)
]

ds. (3.43)

Furthermore, (i), (iv) and (3.21) for p = 2 imply that

E
(

∫ T

0
‖φεh(t)‖2 dt

)

≤ sup
n

E

∫ T

0
‖φεn,h(t)‖2dt ≤ C

(

1 + E|ξ|4
)

, (3.44)

E
(

sup
0≤t≤T

|φεh(t)|4
)

≤ sup
n

E

(

sup
0≤t≤T

|φεn,h(t)|4
)

≤ C
(

1 + E|ξ|4
)

. (3.45)

Since |x|2 ≤ 1 ∨ |x|4 for any x ∈ R, this completes the proof of (3.5).

Step 4: To complete the proof of Theorem 3.1, we show that φεh has a C([0, T ],H)-
valued modification and that the solution to (3.43) is unique in X := C([0, T ],H) ∩
L2([0, T ], V ). Note that (3.5) implies that if τ̃N = inf{t ≥ 0 : |φεh(t)| ≥ N} ∧ T for
N > 0, P(τ̃N < T ) ≤ CN−2. The Borel-Cantelli lemma yields τ̃N → T a.s. when
N → ∞.

We at first prove uniqueness. Let ψ = (v, η) ∈ X be another solution to (3.43).
Then if τ̄N = inf{t ≥ 0 : |ψ(t)| ≥ N} ∧ T for N > 0, since |ψ(.)| is a.s. bounded on
[0, T ], as N → ∞, we have τ̄N → T a.s. and hence τN = τ̃N ∧ τ̄N → T, a.s.

Let φεh = (uεh, θ
ε
h), Φ = φεh − ψ, and a =

8c21
ν∧κ , where c1 is the constant defined in

(2.5). Set ρ′(t) := a‖ψ(t)‖2 with a =
8c21
ν∧κ , hε := h, σ1 = σ2 = σ, σ̄ = σ̃, σ̄1 = σ̄2 = 0.

Then φ1 = φεh and φ2 = ψ satisfy (3.30). Set

I(t) = sup
τ≤t

2
√
ε

∫ τ

0
e−a

∫ s

0 ‖ψ(r)‖2dr
(

[

σ(φεh(s)) − σ(ψ(s))
]

dW (s) , Φ(s)
)

,

Then using Lemma 3.12 and condition (A.3) yields for 0 ≤ ε ≤ ε0 ≤ ν∧κ
2L

ζ(t) : = e−ρ(t∧τN )|Φ(t ∧ τN )|2

≤ I(t ∧ τN ) +

∫ t∧τN

0
e−ρ(s)

{

[

εL− ν ∧ κ
]

‖Φ(s)‖2

+|Φ(s)|2
[

− a‖ψ(s)‖2 + 2 +
8c21
ν ∧ κ‖ψ(s)‖2 +

2L̃c1c2
ν ∧ κ |h(s)|20

]

}

ds.
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Thus

ζ(t) +
ν ∧ κ

2
Y (t) ≤

∫ t

0

(2L̃ c1 c2
ν ∧ κ |h(s ∧ τn)|20 + 2

)

ζ(s) ds+ I(t ∧ τn),

where Y (t) =
∫ t∧τn
0 e−ρ(s) ‖Φ(s)‖2 ds. Burkholder’s inequality and Assumption

(A.3) imply that for all β > 0 and ε ∈ [0, ε0],

EI(t∧τn) ≤ 6
√
ε0E

(

∫ t∧τN

0
e−2ρ(s)L‖Φ(s)‖2 |Φ(s)|2 ds

)
1
2 ≤ βE sup

0≤s≤t
ζ(s)+

9Lε0
β

EY (t).

Since
∫ T

0

(

2L̃c1c2
ν∧κ |h(s ∧ τN )|20 + 2

)

ds ≤ 2M L̃ c1c2
ν∧κ + 2T := C, Lemma 3.9 implies that

for β =
(

2[1 + CeC ])−1 and ε0 L small enough to have 9 ε0 L
β

≤ ν∧κ
2 β, one has

E sup
0≤s≤T

e−a
∫ s∧τN
0 ‖ψ(r)‖2dr |Φ(s ∧ τN )|2 = 0. (3.46)

Since limN→∞ τN = T a.s., we thus deduce |Φ(s, ω)| = 0 a.s. on ΩT . Thus if φεh is
in C([0, T ],H), we conclude that φεh(t) = ψ(t), a.s., for every t ∈ [0, T ].

Finally, set

ρ̃′(t) =
8c21
ν ∧ κ ‖φεh(s)‖2 + 2 +

2L̃c1c2
ν ∧ κ |h(s)|20, (3.47)

let hε := h, σ1 = PnσPn, σ2 = σ, σ̄1 = 0, σ̄2 =
[

σ̃(φεh(s)) − Pnσ̃(φεh(s))
]

h(s) and

σ̄ = Pnσ̃. Then ρ̃(t) =
∫ t

0 ρ̃
′(s) ds < +∞ a.s. Then φ1 = φεn,h and φ2 = φεh satisfy

(3.30). Set Φε
n,h = φεn,h − φεh and let 0 ≤ ε ≤ ε0 ≤ ν∧κ

4L . By Lemma 3.12 and

condition (A.3), we deduce that for every t ∈ [0, T ],

E
(

e−ρ̃(t)|Φε
n,h(t)|2

)

≤ E

∫ t

0
e−ρ̃(s)

{

[

2εL− (ν ∧ κ)
]

‖Φε
n,h‖2 + 2ε|Pnσ(φεh(s))Pn − σ(φεh(s))|2LQ

+ |Φε
n,h(s)|2

[

− ρ̃′(s) + 2 +
8 c21
ν ∧ κ‖φ

ε
h(s)‖2 +

2L̃ c1 c2
ν ∧ κ |h(s)|20

]

}

ds

+ E

∫ t

0
e−ρ̃(s) 2 |Φε

n,h(s)| |Pnσ̃(φεh(s)) − σ(φεh(s)|LQ
|h(s)|0 ds

≤ R(t, n) − ν ∧ κ
2

E

∫ t

0
e−ρ̃(s)‖Φε

n,h(s)‖2 ds,

where

R(t, n) = E

∫ t

0

[

2ε|Pnσ(φεh(s))Pn − σ(φεh(s))|2LQ
+ |Pnσ̃(φεh(s)) − σ̃(φεh(s))|2LQ

]

ds,

and the last inequality follows from Schwarz’s inequality and the definition of ρ̃.
Furthermore, for almost every (s, ω), one has |Pnσ(φεh(s))Pn − σ(φεh(s))|LQ

→ 0
and |Pnσ̃(φεh(s)) − σ̃(φεh(s))|LQ

→ 0 as n → ∞. Thus the dominated convergence
theorem shows that limn suptR(t, n) → 0, and thus that limn→∞ I(n) = 0, where

I(n) = sup
0≤t≤T

E
(

e−ρ̃(t)|Φε
n,h(t))|2

)

+ E

∫ T

0
e−ρ̃(s)‖Φε

n,h(s)‖2 ds.
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Using again Lemma 3.12 and the Burkholder-Davies-Gundy inequality, a similar
computation yields that for 0 ≤ ε ≤ ε0 ≤ ν∧κ

4L :

E

(

sup
0≤t≤T

e−ρ̃(t)|Φε
n,h(t)|2

)

≤ 1

2
E

(

sup
0≤t≤T

e−ρ̃(t)|Φε
n,h(t)|2

)

+ 18εE

∫ T

0
e−ρ̃(s) |σn(φεn,h(s))Pn − σ(φεh(s))|2LQ

ds

+ E

∫ T

0

[

2ε|Pnσ(φεh(s))Pn − σ(φεh(s))|2LQ
+ |Pnσ̃(φεh(s)) − σ(φεh(s)|2LQ

]

ds

≤ C
[

I(n) + R(T, n)
]

.

Therefore, φεn,h has a subsequence converging a.s. uniformly to φεh in H. Because

φεn,h ∈ C([0, T ],H), we conclude that φεh has a modification in C([0, T ],H). 2

4. Large deviations

We consider large deviations via a weak convergence approach [1, 2], based on
variational representations of infinite dimensional Wiener processes. The solution
to the stochastic Bénard model (2.9) is denoted as φε = Gε(√εW ) for a Borel mea-
surable function Gε : C([0, T ],H) → X. The space X = C([0, T ];H) ∩ L2((0, T );V )
endowed with the metric associated with the norm defined in (3.4) is Polish. Let
B(X) denote its Borel σ−field. We recall some classical definitions.

Definition 4.1. The random family {φε} is said to satisfy a large deviation principle
on X with the good rate function I if the following conditions hold:
I is a good rate function. The function function I : X → [0,∞] is such that

for each M ∈ [0,∞[ the level set {φ ∈ X : I(φ) ≤M} is a compact subset of X.
For A ∈ B(X), set I(A) = infφ∈A I(φ).

Large deviation upper bound. For each closed subset F of X:

lim sup
ε→0

ε log P(φε ∈ F ) ≤ −I(F ).

Large deviation lower bound. For each open subset G of X:

lim inf
ε→0

ε log P(φε ∈ G) ≥ −I(G).

To establish the large deviation principle, we need to strengthen the hypothesis
on the growth condition and Lipschitz property of σ (and σ̃) as follows:
Assumption A Bis There exist positive constants K and L such that
(A.4) |σ(t, φ)|2LQ

≤ K (1 + |φ|2), ∀t ∈ [0, T ], ∀φ ∈ V .

(A.5) |σ(t, φ) − σ(t, ψ)|2LQ
≤ L |φ− ψ|2, ∀t ∈ [0, T ], ∀φ,ψ ∈ V .

Note that due to the continuous embedding V →֒ H, the assumptions (A.4-A.5)

imply (A.2-A.3) as well as (Ã.1-Ã.2). Thus the conclusions of Theorem 3.1 hold if
σ̃ = σ satisfy the assumptions (A.4-A.5).
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The proof of the large deviation principle will use the following technical lemma
which studies time increments of the solution to the stochastic control equation. For
any integer k = 0, · · · , 2n − 1, and s ∈ [kT2−n, (k + 1)T2−n[, set sn = kT2−n and
s̄n = (k + 1)T2n. Given N > 0, h ∈ AM , ε ≥ 0 small enough, let φεh denote the
solution to (3.2) given by Theorem 3.1, and for t ∈ [0, T ], let

GN (t) =
{

ω :
(

sup
0≤s≤t

|φεh(s)(ω)|2
)

∨
(

∫ t

0
‖φεh(s)(ω)‖2ds

)

≤ N
}

.

Lemma 4.2. Let M,N > 0, σ and σ̃ satisfy the Assumptions (A.1),(A.4) and
(A.5), ξ ∈ L4(Ω,H) be F0 measurable and φε be a solution to (3.2). Then there
exists a positive constant C := C(ν, κ,K,L, T,M,N, ε0) such that for any h ∈ AM ,
ε ∈ [0, ε0],

In(h, ε) := E

[

1GN (T )

∫ T

0
|φεh(s) − φεh(s̄n)|2 ds

]

≤ C 2−
n
2 . (4.1)

Proof. Let h ∈ AM , ε ≥ 0; Itô’s formula yields In(h, ε) =
∑

1≤i≤6 In,i, where

In,1 =2
√
ε E

(

1GN (T )

∫ T

0
ds

∫ s̄n

s

(

σ(φεh(r))dWr , φ
ε
h(r) − φεh(s)

)

)

,

In,2 =ε E

(

1GN (T )

∫ T

0
ds

∫ s̄n

s

|σ(φεh(r))|2LQ
dr

)

,

In,3 =2E

(

1GN (T )

∫ T

0
ds

∫ s̄n

s

(

σ̃(φεh(r))h(r) , φ
ε
h(r) − φεh(s)

)

dr
)

,

In,4 = − 2E

(

1GN (T )

∫ T

0
ds

∫ s̄n

s

[

ν
(

A1u
ε
h(r), u

ε
h(r) − uεh(s)

)

+ κ
(

A2θ
ε
h(r), θ

ε
h(r) − θεh(s)

)]

dr
)

,

In,5 = − 2 E

(

1GN (T )

∫ T

0
ds

∫ s̄n

s

(

B(φεh(r)), φ
ε
h(r) − φεh(s)

)

dr
)

,

In,6 =2E

(

1GN (T )

∫ T

0
ds

∫ s̄n

s

[(

uεh,2(r), θ
ε
h(r) − θεh(s)

)

+
(

θεh(r), u
ε
h,2(r) − uεh,2(s)

)]

dr
)

.

Clearly GN (T ) ⊂ GN (r) for r ∈ [0, T ]. The Burkholder-Davis-Gundy inequality,
(A.4) and the definition of GN (r) yield for 0 ≤ ε ≤ ε0

|In,1| ≤ 2
√
ε E

∫ T

0
ds

∣

∣

∣

∫ s̄n

s

(

σ(φεh(r))dWr , φ
ε
h(r) − φεh(s)

)

1GN (r)

∣

∣

∣

≤ 6
√
ε

∫ T

0
ds E

(

∫ s̄n

s

|σ(φεh(r))|2LQ
|φεh(r) − φεh(s)|21GN (r)dr

)
1
2

≤ 12
√
ε
√

KN(1 +N)

∫ T

0
ds (T2−n)

1
2 ≤ C(ε0,K,N, T )2−

n
2 . (4.2)

The property (A.4) implies that for ε ≤ ε0,

|In,2| ≤ εKE

(

1GN (T )

∫ T

0
ds

∫ s̄n

s

(

1 + |φεh(r)|2
)

dr
)

≤ ε0K(1 +N)T 2 2−n. (4.3)
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Schwarz’s inequality, Fubini’s theorem, (A.4) and the definition of AM yield

|In,3| ≤ 2
√
K E

(

1GN (T )

∫ T

0
ds

∫ s̄n

s

(

1 + |φεh(r)|2
)

1
2 |h(r)|0|φεh(r) − φεh(s)| dr

)

≤ 4
√

KN(1 +N) E

∫ T

0
|h(r)|0 dr

∫ r

rn

ds ≤ C(K,N,M,T )2−n. (4.4)

Schwarz’s inequality and (3.5) imply that for some constant C̃ := C(ε0, ν, κ,K, T )

In,4 ≤ E

(

1GN (T )

∫ T

0
ds

∫ s̄n

s

dr
[

− ν‖uεh(r)‖2 − κ‖θεh(r)‖2 + ν‖uεh(r)‖‖uεh(s)‖

+ κ‖θεh(r)‖‖θεh(s)‖
]

)

≤ ν + κ

2
E

(

1GN (T )

∫ T

0
ds‖φεh(s)‖2

∫ s̄n

s

dr
)

≤ C̃ 2−n. (4.5)

The inequalities (3.5), (3.8) and (3.9), Schwarz’s inequality and Fubini’s theorem

imply that for some constant C̃ := C(ε0, ν, κ,K, T ),

|In,5| ≤ 2c1 E

(

1GN (T )

∫ T

0
ds

∫ s̄n

s

dr
[

|uεh(r)|‖uεh(r)‖
(

‖uεh(r)‖ + ‖uεh(s)‖
])

+ |φεh(r)|‖φεh(r)‖
(

‖θεh(r)‖ + ‖θεh(s)‖
)

]

≤ 3 c1
√
NE

∫ T

0
dr

(

‖uεh(r)‖2 + ‖φεh(r)‖2
)

∫ r

rn

ds

+ c1
√
NE

∫ T

0
ds

(

‖uεh(s)‖2 + ‖φεh(s)‖2
)

∫ s̄n

s

dr ≤
√
NC̃2−n. (4.6)

Finally, Schwarz’s inequality implies that

|In,6| ≤ 4E

(

1GN (T )

∫ T

0
ds

∫ s̄n

s

(

|uεh(r)| + |uεh(s)|
)(

|θεh(r)| + |θεh(s)|
)

dr
)

≤ 16T 2N

2n
.

(4.7)
Collecting the upper estimates from (4.2)-(4.7), we conclude the proof of (4.1). �

Let ε0 be defined as in Theorem 3.1 and (hε, 0 < ε ≤ ε0) be a family of random
elements taking values in AM . Let φεhε

be the solution of the corresponding stochastic
control equation with initial condition φεhε

(0) = ξ ∈ H:

dφεhε
+ [Aφεhε

+B(φεhε
) +Rφεhε

]dt = σ(φεhε
)hεdt+

√
ε σ(φεhε

)dW (t). (4.8)

Note that φεhε
= Gε

(√
ε
(

W.+
1√
ε

∫ .

0 hε(s)ds
)

)

due to the uniqueness of the solution.

For all ω and h ∈ L2([0, T ],H0), let φh be the solution of the corresponding control
equation (3.6) with initial condition φh(0) = ξ(ω):

dφh + [Aφh +B(φh) +Rφh]dt = σ(φh)hdt. (4.9)
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Note that here we may assume that h and ξ are random, but φh may defined
pointwise by (3.6).

Let C0 = {
∫ .

0 h(s)ds : h ∈ L2([0, T ],H0)} ⊂ C([0, T ],H0). For every ω ∈ Ω, define

G0 : C([0, T ],H0)× → X by G0(g)(ω) = φh(ω) for g =
∫ .

0 h(s)ds ∈ C0 and G0(g) = 0
otherwise.

Proposition 4.3. (Weak convergence)
Suppose that σ does not depend on time and satisfies the Assumptions (A.1), (A.4)
and (A.5). Let ξ ∈ H, be F0-measurable such that E|ξ|4H < +∞, and let hε converge
to h in distribution as random elements taking values in AM . (Note that here AM

is endowed with the weak topology induced by the norm (3.4)). Then as ε → 0, φεhε

converges in distribution to φh in X = C([0, T ];H) ∩ L2((0, T );V ) endowed with

the norm (3.4). That is, Gε
(√

ε
(

W. +
1√
ε

∫ .

0 hε(s)ds
)

)

converges in distribution to

G0
( ∫ .

0 h(s)ds
)

in X, as ε→ 0.

Proof. Since AM is a Polish space (complete separable metric space), by the Sko-

rokhod representation theorem, we can construct processes (h̃ε, h̃, W̃ ) such that the

joint distribution of (h̃ε, W̃ ) is the same as that of (hε,W ), the distribution of h̃

coincides with that of h, and h̃ε → h̃, a.s., in the (weak) topology of SM . Hence a.s.

for every t ∈ [0, T ],
∫ t

0 h̃ε(s)ds−
∫ t

0 h̃(s)ds → 0 weakly in H0. Let Φε = φεhε
− φh, or

in component form Φε = (Uε,Θε) = (uεhε
− uh, θ

ε
hε

− θh); then

dΦε +
[

AΦε +B(φεhε
) −B(φh) +RΦε

]

dt

=
[

σ(φεhε
)hε − σ(φh)h

]

dt+
√
ε σ(φεhε

)dW (t), Φε(0) = 0. (4.10)

Let ε0 be defined as in Theorem 3.1. Set σ1 = σ, σ2 = 0, σ̄ = σ, σ̄1 = 0, σ̄2(s) =
σ(φh(s))

(

hε(s)− h(s)
)

and ρ = 0. Then φ1 = φεhε
and φ2 = φh satisfy (3.30). Thus,

Lemma 3.12, (A.4) and (A.5) yield for 0 ≤ ε ≤ ε0 ∧ ν∧κ
4L :

|Φε(t)|2+(ν ∧ κ)
∫ t

0
‖Φε(s)‖2 ds ≤

3
∑

i=1

Ti(t, ε)

+

∫ t

0
|Φε(s)|2

[

2 +
8c21
ν ∧ κ‖φh(s)‖

2 +
2Lc1c2
ν ∧ κ |h(s)|20

]

ds, (4.11)

where

T1(t, ε) =2
√
ε

∫ t

0

(

Φε(s), σ(φεhε
(s)) dW (s)

)

T2(t, ε) =εK

∫ t

0
(1 + |φεhε

(s)|2)ds,

T3(t, ε) =2

∫ t

0

(

σ(φh(s))
(

hε(s) − h(s)
)

, Φε(s)
)

ds.

Our goal here is to show that as ε → 0, sup0≤t≤T |Φε(t)|2 +
∫ T

0 ‖Φε(s)‖2ds → 0
in probability, which implies that φhε

→ φh in distribution in X := C([0, T ];H) ∩
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L2((0, T );V ). Fix N > 0 and for t ∈ [0, T ] let

GN (t) =
{

sup
0≤s≤t

|φh(s)|2 ≤ N
}

∩
{

∫ t

0
‖φh(s)‖2ds ≤ N

}

,

GN,ε(t) = GN (t) ∩
{

sup
0≤s≤t

|φεhε
(s)|2 ≤ N

}

∩
{

∫ t

0
‖φεhε

(s)‖2ds ≤ N
}

.

Claim 1. For any ε0 > 0, sup
0<ε≤ε0

sup
h,hε∈AM

P(GN,ε(T )c) → 0 as N → ∞.

Indeed, for ε > 0, h, hε ∈ AM , the Markov inequality and the estimate (3.5) imply

P(GN,ε(T )c) ≤ P

(

sup
0≤s≤T

|φh(s)|2 > N
)

+ P

(

sup
0≤s≤T

|φεhε
(s)|2 > N

)

+ P

(

∫ T

0

(

‖φh(s)‖2ds > N
)

+ P

(

∫ T

0
‖φεhε

(s)‖2
)

ds > N
)

≤ 1

N
sup

h,hε∈AM

E

(

sup
0≤s≤T

|φh(s)|2 + sup
0≤s≤T

|φεhε
(s)|2 +

∫ T

0
(‖φh(s)‖2 + ‖φεhε

(s)‖2)ds
)

≤ C1(ν, κ,K,L, T,M)
(

1 + E|ξ|4
)

N−1.

Claim 2. For fixed N > 0, h, hε ∈ AM such that as ε→ 0, hε → h a.s. in the weak
topology of L2([0, T ],H0), one has as ε→ 0

E

[

1GN,ε(T )

(

sup
0≤t≤T

|Φε(t)|2 +

∫ T

0
‖Φε(t)‖2 dt

)]

→ 0. (4.12)

Indeed, (4.11) and Gronwall’s lemma imply that on GN,ε(T ),

sup
0≤t≤T

|Φε(t)|2 ≤
[

sup
0≤t≤T

(

T1(t, ε) + T3(t, ε)
)

+ εKT (1 +N)
]

e2T+
8 c21 N

ν∧κ
+

2 L c1 c2 M

ν∧κ .

Thus, using again (4.11) we deduce that for some constant C̃ = C(ν, κ,K,L, T,M,N),
one has for every ε > 0:

E
(

1GN,ε(T ) |Φε|2X
)

≤ C̃
(

εKT (1 +N) + E

[

1GN,ε(T ) sup
0≤t≤T

(

T1(t, ε) + T3(t, ε)
)

])

.

(4.13)
Since the sets GN,ε(.) decrease, E

(

1GN,ε(T ) sup0≤t≤T |T1(t, ε)|
)

≤ E(λε), where

λε := 2
√
ε sup

0≤t≤T

∣

∣

∣

∫ t

0
1GN,ε(s)

(

Φε(s), σ(φεhε
(s))dW (s)

)

∣

∣

∣
.

The scalar-valued random variables λε converge to 0 in L1 as ε→ 0. Indeed, by the
Burkholder-Davis-Gundy inequality, (A.4) and the definition of GN,ε(s), we have

E(λε) ≤ 6
√
ε E

{

∫ T

0
1GN,ε(s) |Φε(s)|2 |σ(φεhε

(s))|2LQ
ds

}
1
2

≤ 6
√
ε E

[{

4N

∫ T

0
1GN,ε(s)K (1 + |φεhε

(s)|2)ds
}

1
2
]
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≤ 12
√
ε
√
KT (1 +N). (4.14)

For k = 0, · · · , 2n set tk = kT2−n; for s ∈]tk, tk+1], set s̄n = tk+1 and sn = tk. Then
for any n ≥ 1,

E

(

1GN,ε(T ) sup
0≤t≤T

|T3(t, ε)|
)

≤ 2

3
∑

i=1

T̃i(N,n, ε) + 2 E
(

T̄4(N,n, ε, ω)
)

,

where

T̃1(N,n, ε) =E

[

1GN,ε(T ) sup
0≤t≤T

∣

∣

∣

∫ t

0

(

σ(φh(s))
(

hε(s) − h(s)
)

,
[

Φε(s) − Φε(s̄n)
]

)

ds
∣

∣

∣

]

,

T̃2(N,n, ε) =E

[

1GN,ε(T ) sup
0≤t≤T

∣

∣

∣

∫ t

0

(

[

σ(φh(s)) − σ(φh(s̄n))
](

hε(s) − h(s)
)

, Φε(s̄n)
)

ds
∣

∣

∣

]

,

T̃3(N,n, ε) =E

[

1GN,ε(T ) sup
1≤k≤2n

sup
tk−1≤t≤tk

∣

∣

∣

(

σ(φh(tk))

∫ t

tk−1

(hε(s) − h(s)) ds , Φε(tk)
)

∣

∣

∣

]

T̄4(N,n, ε) =1GN,ε(T )

2n
∑

k=1

∣

∣

∣

(

σ(φh(tk))

∫ tk

tk−1

(

hε(s) − h(s)
)

ds , Φε(tk)
)
∣

∣

∣
.

Using Schwarz’s inequality, (A.4) and Lemma 4.2, we deduce that for some constant
C̄1 := C(ν, κ,K, T,M,N) and any ε ∈]0, ε0],

T̃1(N,n, ε) ≤
√
KE

[

1GN,ε(T )

∫ T

0

(

1 + |φh(s)|2
)

1
2 |hε(s) − h(s)|0

∣

∣Φε(s) − Φε(s̄n)
∣

∣ ds
]

≤
√

2K(1 +N)
(

E

∫ T

0
|hε(s) − h(s)|20 ds

)
1
2

×
(

E

[

1GN,ε(T )

∫ T

0

{

|φεhε
(s) − φεhε

(s̄n)|2 + |φh(s) − φh(s̄n)|2
}

ds
])

1
2

≤ C̄1 2−
n
4 . (4.15)

A similar computation based on (A.5) and Lemma 4.2 yields for some constant
C̄2 := C(ν, κ,K,L, T,M,N) and any ε ∈]0, ε0]

T̃2(N,n, ε) ≤
√
L

(

E

[

1GN,ε(T )

∫ T

0
|φh(s) − φh(s̄n)|2 ds

])
1
2
(

E

∫ T

0
|hε(s) − h(s)|20 4N ds

)
1
2

≤ C̄2 2−
n
4 . (4.16)

Using Schwarz’s inequality and (A.4) we deduce for C̄3 = C(K,N,M) and any
ε ∈]0, ε0]

T̃3(N,n, ε) ≤
√
KE

[

1GN,ε(T ) sup
1≤k≤2n

(

1 + |φh(tk)|2
)

1
2

∫ tk

tk−1

|hε(s) − h(s)|0 ds |Φε(tk)|
]

≤ 2
√

KN(1 +N) E

(

sup
1≤k≤2n

∫ tk

tk−1

|hε(s) − h(s)|0 ds
)
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≤ 8
√

KN(1 +N)
√
M 2−

n
2 = C̄3 2−

n
2 . (4.17)

Finally, note that the weak convergence of hε to h implies that for any a, b ∈ [0, T ],

a < b, as ε → 0, the integral
∫ b

a
hε(s)ds →

∫ b

a
h(s)ds in the weak topology of H0.

Therefore, since for φ ∈ H the operator σ(φ) is compact from H0 to H, we deduce

that
∣

∣σ(φ)
( ∫ b

a
hε(s)ds−

∫ b

a
h(s)ds

)
∣

∣

H
→ 0 as ε→ 0. Hence a.s. for fixed n as ε→ 0,

T̄4(N,n, ε, ω) → 0. Furthermore, T̄4(N,n, ε, ω) ≤
√
K
√

1 +N
√

4N
√
M and hence

the dominated convergence theorem proves that for any fixed n, E(T̄4(N,n, ε)) → 0
as ε→ 0.

Thus, given α > 0, we may choose n0 large enough to have (C̄1 + C̄2)2
−n

4 +

C̄32
−n

2 ≤ α for n ≥ n0. Then for fixed n ≥ n0, let ε1 ∈]0, ε0] be such that for
0 < ε ≤ ε1, E

[

T̄4(N,n, ε)
]

≤ α. Using (4.15)-(4.17), we deduce that for ε ∈]0, ε1],

E

[

1GN,ε(T ) sup
0≤t≤T

|T3(t, ε)|
]

≤ 2α. (4.18)

Claim 2 is a straightforward consequence of the inequalities (4.13), (4.14) and (4.18).

To conclude the proof of the Proposition 4.3, let δ > 0 and α > 0 and set

Λε := |Φε|2X = sup
0≤t≤T

|Φε(t)|2 +

∫ T

0
‖Φε(s)‖2ds.

Then the Markov inequality implies that

P(Λε > δ) = P(GN,ε(T )c) +
1

δ
E

(

1GN,ε(T )|Φε|2X
)

Using Claim 1, one can choose N large enough to make sure that P(GN,ε(T )c) < α

for every ε ≤ ε0. Fix N ; Claim 2 shows that for ε small enough, E

(

1GN,ε(T )|Φε|2X
)

<

δα. This concludes the proof of the proposition. �

The following compactness result will show that the rate function of the LDP
satisfied by the solution to (4.8) is a good rate function. The proof is similar to that
of Proposition 4.3 and easier.

Proposition 4.4. (Compactness)
Let M be any fixed finite positive number and let ξ ∈ H be deterministic. Define

KM = {φh ∈ C([0, T ];H) ∩ L2((0, T );V ) : h ∈ SM},
where φh is the unique solution of the deterministic control equation:

dφh(t) +
[

Aφh(t) +B(φh(t)) +Rφh(t)
]

dt = σ(φh(t))h(t)dt, φh(0) = ξ, (4.19)

and σ does not depend on time and satisfies (A.1), (A.4) and (A.5). Then KM is
a compact subset of X.

Proof. Let (φn) be a sequence in KM , corresponding to solutions of (4.19) with
controls (hn) in SM :

dφn(t) +
[

Aφn(t) +B(φn(t)) +Rφn(t)
]

dt = σ(φn(t))hn(t)dt, φn(0) = ξ. (4.20)
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Since SM is a bounded closed subset in the Hilbert space L2((0, T );H0), it is weakly
compact. So there exists a subsequence of (hn), still denoted as (hn), which converges
weakly to a limit h in L2((0, T );H0). Note that in fact h ∈ SM as SM is closed.
We now show that the corresponding subsequence of solutions, still denoted as (φn),
converges in X to φ which is the solution of the following “limit” equation

dφ(t) + [Aφ(t) +B(φ(t)) +Rφ(t)]dt = σ(φ(t))h(t)dt, φ(0) = ξ. (4.21)

This will complete the proof of the compactness of KM . To ease notation we will
often drop the time parameters s, t, ... in the equations and integrals.

Let Φn = φn − φ, or in component form Φn = (Un,Θn) = (un − u, θn − θ); then

dΦn + [AΦn +B(φn) −B(φ) +RΦn]dt = [σ(φn)hn − σ(φ)h]dt, Φn(0) = 0. (4.22)

Set σ1 = σ2 = 0, σ̄ = σ, σ̄1 = 0, σ̄2(s) = σ(φ(s)) [h(s) − hn(s)], hε = hn, ρ = 0.
Then φ1 := φn and φ2 := φ satisfy (3.30).

Thus Lemma 3.12 yields the following integral inequality

|Φn(t)|2+(ν ∧ κ)
∫ t

0
‖Φn(s)‖2ds ≤ 2

∫ t

0

(

σ(φ(s)) [h(s) − hn(s)] , Φn(s)
)

ds

+

∫ t

0

{

2 +
8c21
ν ∧ κ‖φ(s)‖2 +

2Lc1c2
ν ∧ κ |hn(s)|20

}

|Φn(s)|2ds. (4.23)

For N ≥ 1 and k = 0, · · · , 2N , set tk = k2−N . For s ∈]tk−1, tk], 1 ≤ k ≤ 2N , let
s̄N = tk. The inequality (3.7) implies that there exists a constant C̄ > 0 such that

sup
n

[

sup
0≤t≤T

(

|φ(t)|2 + |φn(t)|2
)

+

∫ T

0

(

‖φ(s)‖2 + ‖φn(s)‖2
)

ds
]

= C̄ < +∞.

Thus Gronwall’s inequality implies

sup
t≤T

|Φn(t)|2 ≤ exp
(

2T +
8c21C̄

ν ∧ κ +
2Lc1c1M

ν ∧ κ
)

4
∑

i=1

Iin,N , (4.24)

where

I1
n,N =

∫ T

0

∣

∣

(

σ(φ(s)) [hn(s) − h(s)] , Φn(s) − Φn(s̄N )
)
∣

∣ ds,

I2
n,N =

∫ T

0

∣

∣

∣

(

[

σ(φ(s)) − σ(φ(s̄N ))
]

[hn(s) − h(s)] , Φn(s̄N )
)
∣

∣

∣
ds,

I3
n,N = sup

1≤k≤2N

sup
tk−1≤t≤tk

∣

∣

∣

(

σ(φ(tk))

∫ t

tk−1

(hn(s) − h(s))ds , Φn(tk)
)
∣

∣

∣
,

I4
n,N =

∣

∣

∣

2N
∑

k=1

(

σ(φ(tk))

∫ tk

tk−1

[hn(s) − h(s)] ds , Φn(tk)
)∣

∣

∣
.
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Schwarz’s inequality, (A.4), (A.5) and Lemma 4.2 imply that for some constant C
which does not depend on n and N ,

I1
n,N ≤

(

∫ T

0
K(1 + C̄)|hn(s) − h(s)|20ds

)
1
2

×
(

2

∫ T

0

(

|φn(s) − φn(s̄N )|2 + |φ(s) − φ(s̄N )|2
)

ds
)

1
2

≤ C2−
N
4 , (4.25)

I2
n,N ≤

(

L

∫ T

0
|φ(s) − φ(s̄N )|2ds

)
1
2
(

C̄

∫ T

0
|hn(s) − h(s)|20 ds

)
1
2 ≤ C2−

N
4 , (4.26)

I3
n,N ≤ K

(

1 + sup
t

|φ(t)|) sup
t

(

|φ(t)| + φn(t)|
)

2−
N
2 2M ≤ C 2−

N
2 . (4.27)

Thus, given α > 0, one may choose N large enough to have supn
∑3

i=1 I
i
n,N ≤ α.

Then, for fixed N and k = 1, · · · , 2N , as n → ∞, the weak convergence of hn to h
implies that of

∫ tk
tk−1

(hn(s)−h(s))ds to 0 weakly in H0. Since σ(φ(tk)) is a compact

operator, we deduce that for fixed k the sequence σ(φ(tk))
∫ tk
tk−1

(hn(s) − h(s))ds

converges to 0 strongly in H as n → ∞. Since supn supk |Φn(tk)| ≤ 2C̃, we have
limn I

4
n,N = 0. Thus as n → ∞, sup0≤t≤T |Φn(t)|2 → 0. Using this convergence and

(4.24), we deduce that ‖Φn‖X → 0 as n → ∞. This shows that every sequence in
KM has a convergent subsequence. Hence KM is a compact subset of X. �

With the above results, we have the following large deviation theorem.

Theorem 4.5. Let σ does not depend on time and satisfy (A.1), (A.4) and (A.5),
φε be the solution of the stochastic Bénard problem (2.9). Then {φε} satisfies the
large deviation principle in C([0, T ];H) ∩ L2((0, T );V ), with the good rate function

Iξ(ψ) = inf
{h∈L2(0,T ;H0): ψ=G0(

∫ .

0 h(s)ds)}

{1

2

∫ T

0
|h(s)|20 ds

}

. (4.28)

Here the infimum of an empty set is taken as infinity.

Proof. Propositions 4.4 and 4.3 imply that {φε} satisfies the Laplace principle which
is equivalent to the large deviation principle in X = C([0, T ],H)∩L2((0, T ), V ) with
the above-mentioned rate function; see Theorem 4.4 in [1] or Theorem 5 in [2]. �
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