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LARGE DEVIATIONS FOR THE BOUSSINESQ EQUATIONS
UNDER RANDOM INFLUENCES

JINQIAO DUAN AND ANNIE MILLET

ABSTRACT. A Boussinesq model for the Bénard convection under random influ-
ences is considered as a system of stochastic partial differential equations. This is
a coupled system of stochastic Navier-Stokes equations and the transport equation
for temperature. Large deviations are proved, using a weak convergence approach
based on a variational representation of functionals of infinite dimensional Brow-
nian motion.

1. INTRODUCTION

The need to take stochastic effects into account for modeling complex systems
has now become widely recognized. Stochastic partial differential equations arise
naturally as mathematical models for nonlinear macroscopic dynamics under random
influences. It is thus desirable to understand the impact of such random influences
on the system evolution [4, §, BJ].

The Navier-Stokes equations are often coupled with other equations, especially,
with the scalar transport equations for fluid density, salinity, or temperature. These
coupled equations (often with the Boussinesq approximation) model a variety of phe-
nomena in environmental, geophysical, and climate systems [, [[{, [[7]. We consider
the Boussinesq equations in which the scalar quantity is temperature, under differ-
ent boundary conditions for the temperature at different parts (top and bottom) of
the boundary. This is a Bénard convection problem. With other boundary condi-
tions, the Boussinesq equations model various phenomena in weather and climate
dynamics, for example. We take random forcings into account and formulate the
Bénard convection problem as a system of stochastic partial differential equations
(SPDEs). This is a coupled system of the stochastic Navier-Stokes equations and
the stochastic transport equation for temperature.

In various papers about large deviation principle (LDP) for solutions u® to SPDEs
or to evolution equations in a semi-linear framework [E, E, E, E, E, @, @, , ], the
strategy used is similar to the classical one for diffusion processes. A very general
version of Schilder’s theorem yields the LDP for the Gaussian noise /eW driving the
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2 J. DUAN AND A. MILLET

stochastic forcing term, with a good rate function I written in terms of its reproduc-
ing kernel Hilbert space (RKHS). However, since the noise is not additive, the process
uf is not a continuous function of the noise, which creates technical difficulties. As if
the contraction principle were true, one defines deterministic controlled equations wuy,
which are similar to the stochastic one, replacing the stochastic integral with respect
to the noise \/eW by deterministic integrals in terms of elements h of its RKHS.
Once well-posedness of this controlled equation is achieved, one proves that solution
uf to the stochastic evolution equation satisfies a LDP with a rate function I defined
in terms of I and of u; by means of an energy minimization problem. In order to
transfer the LDP from the noise to the process, there are two classical proofs, each of
which contains two main steps. One way consists in proving a continuity property of
the map h — wuy, on level sets of the rate function I and then some Freidlin-Wentzell
inequality, which states continuity of the process with respect to the noise except on
an exponentially small set. Another classical method in proving LDP for evolution
equations is to establish both some exponential tightness and exponentially good
approximations for some approximating sequence where the diffusion coefficient is
stepwise constant. These methods require some time Holder regularity that one can
obtain when the diffusion coefficient is controlled in term of the L? norm of the
solution, but not in the framework we will use here, where the bilinear term cre-
ates technical problems. An alternative approach [[[J]] for large deviations is based
on nonlinear semi-group theory and infinite dimensional Hamilton-Jacobi equations,
and it also requires to establish exponential tightness.

The method used in the present paper is related to the Laplace principle. One
proves directly that the level sets of the rate function I are compact and then
establishes weak convergence of solutions to stochastic controlled equations written
in terms of the noise /eW shifted by a random element h. of its RKHS. This
is again some kind of continuity property written in terms of the distributions.
Unlike [RJ], well-posedness and apriori estimates are proved directly for very general
stochastic controlled equations with a forcing term including a stochastic integral
and a deterministic integral with respect to a random element h. of the RKHS of
the noise, and for diffusion coefficients which may depend on the gradient. Indeed,
if the well-posedness for the stochastic controlled equation can be deduced from
that of the stochastic equation by means of a Girsanov transformation, the apriori
estimates uniform in ¢ > 0, which are a key ingredient of the proof of the weak
convergence result, cannot be deduced from the corresponding ones for the stochastic
Bénard equation since as ¢ — 0, the p > 1 moments of the Girsanov density go to
infinity exponentially fast. Well-posedness has been proved in [[J] for the stochastic
Boussinesq equation only in the particular case of an additive noise on the velocity
component. This weak convergence approach has been introduced in [, P]. This
method has been recently applied to SPDEs P2, RJ] or SDEs in infinite dimensions
[[9). Finally note that the proofs of the weak convergence and compactness property
require more assumptions on the diffusion coefficient ¢ which may not depend on
the gradient. Indeed, in order to prove convergence of integrals defined in terms of
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elements h. of the RKHS of the noise only using weak convergence of h., we also
need to deal with localized integral estimates of time increments. With additional
assumptions on the diffusion coefficient we are able to provide complete details of
the proof of this statement which was missing in [J).

This paper is organized as follows. The mathematical formulation for the stochas-
tic Bénard model is in §f. Then the well-posedness and general apriori estimates for
the model are proved in §f Finally, a large deviation principle is shown in §f.

2. MATHEMATICAL FORMULATION

Let D = (0,1) x (0,1) be a rectangular domain in the vertical plane. Denote by
x = (x1,x2) the spatial variable, u = (u1,u2) the velocity field, p the pressure field,
6 the temperature field, and (eg,es) the standard basis in R2.

We consider the following stochastic coupled Navier-Stokes and heat transport
equations for the Bénard convection problem [[[J]:

gu +us-Vu® —vAu® +Vp = 0e5+ e n(t), V- =0, (2.1)

ot
%96 +us VO —uj — kAT = ens(l), (2.2)
with boundary conditions
uw=0 & 6°=0 on xo =0and x5 =1, (2.3)
u®,p, 0%, u;, , 05, are periodic in 1 with period [, 2.4)

where n1,n9 are noise forcing terms and ¢ > 0 is a small parameter.

We consider the abstract functional setting for this system as in [[[3, [J]; see also
[, BJ]. Let L?(D) be endowed with the usual scalar product and the induced norm.
Consider another Hilbert space of vector-valued functions:
LQ(D) —{u € L*(D)?, V-u =0, t|py—0 = U|s,—1 = 0, u is periodic in z; with period [}
L*(D) ={0 € L*(D), 0|ysy—0 = 0|z,—1 =0, 6 is periodic in z; with period I}

Let H = L2(D) x L?(D) be the product Hilbert space. We denote by the same

notations, (+,-) and | - |, the scalar product and the induced norm, in 1'12(D)7 L%(D)
and H,

0.0) = [ oaywia)de, 16 = VT80) = VIBPF TP
Define V= V7 x V5, where
={v e H'(D)?: V-v =0, 0|gp—0 = V|zy—1 = 0; v is periodic in z; with period I},
Vo ={f € HY(D) : floy=0 = fles=1 = 0; f is periodic in z; with period }.

Then V is a product Hilbert space with the scalar product and the induced norm,

(6 /w Vede, ||6] = V(@.9) = Ve 16l
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where to ease the notation the space variable x is omitted when writing integrals on
D. Again, we also use the same notations for the scalar product and the induced
norm in V4 and V5. Let V'’ be the dual space of V. We have the dense and continuous
embeddings V — H = H' — V' and denote by (¢, 1) the duality between ¢ € V
(resp. V;) and ¢ € V' (resp. V/).

Consider an unbounded linear operator A = (vAy,kA2) : H — H with D(A) =
D(Al) X D(AQ) where D(Al) =Vin H2(D)2, D(AQ) =VonN HQ(D) and define

(Ar1u,v) = ((u,v)), (A20,m) = ((0,n)), Yu,v € D(A;y), ¥Y0,n € D(Asg).

Both the Stokes operator A; and the Laplace operator As are self-adjoint, positive,
with compact self-adjoint inverses. They map V to V'. We also introduce the
bilinear operators By and By as follows: for u,v,w € Vi and 6,7 € V5,

(Bi(u,v),w) = /D[u-Vv]wdx = Z /l)uiaivjwjdm,

i,j=1,2

(Ba(u,0),m) = /D[u-VH]ndx = Z/Dui@ﬂndx.

i=1,2

With the notation ¢° = (u, %) and under the above formulation, we assume that the
noise terms ny and ngy are taken as, respectively o (t, ¢)%W1(t) , oo(t, (ﬁ)%WQ(t),
where W1(t), W?(t) are independent Wiener processes defined on a filtered proba-
bility space (2, F, F;,P), taking values in LQ(D) and L?(D), with linear symmetric
positive covariant operators @)1 and @, respectively. We denote Q = (Q1,Q2). It is
a linear symmetric positive covariant operator in the Hilbert space H. We assume
that @1, Q2 and thus @ are trace class (and hence compact [f]), i.e., tr(Q) < co.

As in [RT], let Hy = Q%H . Then Hj is a Hilbert space with the scalar product

_1 _1
(@5,7/))0:(62 2¢’Q 27,1)), ngﬂ/)GHO
together with the induced norm |- |p = 1/(+,-)o. The embedding i : Hy — H is

Hilbert-Schmidt and hence compact, and moreover, ¢ i* = Q.

Let Lg be the space of linear operators S such that SQ% is a Hilbert-Schmidt
operator (and thus a compact operator [f]) from H to H. The norm in the space
L is defined by \S\%Q = tr(SQS*), where S* is the adjoint operator of S.

Note that the above formulation is equivalent to projecting the first governing

equation from I./Q(D)2 into the “divergence-free” space and thus the pressure term
is absent. With these notation, the above Boussinesq system (R.1))-(R.3) becomes

du® + [VA1uE + By (uf,uf) — OFeg]dt = /e oy(t,¢°) dW(t), (2.5)
dO° + [kA20° 4+ Bo(u®,0°) —uldt = /€ oo(t, ¢°) dW?(t). (2.6)

Thus, we write this system for ¢¢ = (u, 6%) as

do® + [A¢® + B(¢%) + ReFldt = Ve o(6F)dW (t), ¢°(0) = & := (uf,05), (2.7)
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where W (t) = (W(t), W2(t)) and

A¢p (vA1u, kA20), (2.8)
B(¢) = (Bi(u,u),Ba(u,0)), (2.9)
Ry = (—fey,—u2), (2.10)
o(t,p) = (01(t,9),02(t,9)). (2.11)

The noise intensity o : [0,7] x V' — Lg(Hp, H) is assumed to satisfy the following:

Assumption A: There exist positive constants K and L such that
(A1) 0 € C([0,T) x H; Lo(Ho, H))
(A.2) o(t,9)7, < K(1+l¢*), Vte[0,T].VpeV.

(A.3) |o(t,¢) —o(t, )7, < Ll¢— [ Vte[0,T],Vo,¢ €V.

In the sequel, to ease the notation, we will suppose that o(t, ) = o(¢); however,
all the results have a straightforward extension to time-dependent noise intensity
under the assumption A. When no confusion arises, we set LP := LP(D) for 1 < p <
+o0 and denote by C' a constant which may change from one line to the next one.

3. WELL-POSEDNESS

The solution for the Bénard problem under random influences (R.7) is denoted as
¢°. The goal for this paper is to show the large deviation principle for (¢, > 0)
as e — 0.

Let A be the class of Hy—valued (F;)—predictable stochastic processes ¢ with the

property fOT\(b(s)\%ds < 00, a.s. Let

T
Sy = {h € L*(0,T; Hy) : / |h(s)|3ds < M}.
0

The set Sy endowed with the following weak topology is a Polish space (complete
separable metric space) [|: di(h,k) = 3%, % fOT (h(s) — k(s),éi(s))ods‘, where
{€;(5)}32, is a complete orthonormal basis for L?(0,T; Hy). Define

Ay = {6 € A: ¢(w) € Sar, a.s.}. (3.1)

As in [PJ], we prove existence and uniqueness of the solution to the Bénard equation.
However, in the sequel, we will need some precise bounds on the norm of the solution
to a more general equation, which contains an extra forcing (or control) term driven
by an element of Aj;. These required estimates cannot be deduced from the corre-
sponding ones by means of a Girsanov transformation. More precisely, let h € A,
€ > 0 and consider the following generalized Bénard equation with initial condition
¢5.(0) =&, and for 0 , 6 € C(H; Lo(Ho, H)) which satisfy Assumption A

dgj, () + [Adf, (1) + B(5, (1)) + Ry, (1) dt = veo (6, () dW () +6 (¢4 (1)) h(t)dt. (3.2)

Recall that a stochastic process ¢7 (t,w) is called the weak solution for the gener-
alized stochastic Bénard problem (B.2) on [0, 7] with initial condition £ if ¢ is in
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C([0,T); H) N L%((0,T); V), a.s., and satisfies
(@h(1), ) = (§,9) +/0 [(65,(5), Av) + (B(,(5)), 1) + (R, (s), )]ds

=z /0 (o(65,())dW (s), ) + /0 (G5 ()h(s), ¥) ds, as. (33)

for all v € D(A) and all ¢t € [0,7]. In most of the analysis here, we work in the
Banach space X := C([0,T]; H) N L*((0,7T); V) with the norm

T 1
Jollx = { sup ()2 + [ lo(s)|as} (34

Theorem 3.1. (Well-posedness and apriori bounds)

Fiz M > 0; then there exists eg := eo(v,k, K, L,T, M) > 0, such that the following
existence and uniqueness result is true for 0 < e < eg. Let the initial datum satisfy
El¢[* < oo, let h € Ay and € € [0,e0]; then there exists a pathwise unique weak
solution ¢ of the generalized stochastic Bénard problem (B2) with initial condition
#5,(0) = &€ € H and such that ¢ € X a.s. Furthermore, there exists a constant
Cy :=Ci(v,k, K,L,T, M) such that for e € [0,e0] and h € Ay,

T
Bléilk <1+ E( sw 60 + [ Ioi0IPd) <0 (14 B, @5)
0<t<T 0

Remark 3.2. Note that if o = 0, i.e., when the noise term is absent, we deduce
the existence and uniqueness of the solution to the “deterministic” control equation
defined in terms of an element h € L*((0,T); Hy) and an initial condition & € H

d(t) + [A(t) + B(6(t)) + Ro(t)]dt = 5(4(t))h(t)dt, ¢(0)=¢&  (3.6)
If h € Sy, the solution ¢ to (B.6) satisfies
T
sup [0+ [ () °ds < G, K. LT, M ¢, (37)
0<s<T 0

Remark 3.3. Finally, note that when ¢5, is a solution to the stochastic Boussinesq
equation (R7), a similar argument shows that Theorem [3.1 holds for any ¢ > 0 if
the coefficients o and & belong to C([0,T) x H; Lo(Ho, H)) and are such that in
the upper estimates of the Lgo-norm appearing in the right hand sides of conditions
(A.2) and (A.3), one replaces the V. norms of ¢ and ¢ — 1 by their H-norms.

The proof of this theorem will require several steps. The following lemmas gather
some properties of By and By. We send the reader to [ or [R3 for the results on
B1 which are classical and sketch some proofs of the corresponding results on Bs.

Lemma 3.4. For u,v,w € Vi and 0,n € Vs,
<B1(U,U),U> = 07 <B2(u79)76> = Oa
(Bi(u,v),w) = —(Bi(u,w),v), (Ba2(u,0),m) = —(Ba2(u,n),0).
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Let u € Vi, 0 € Vo and ¢ = (u,0) € V; note that |¢> = |u|> + |0|?> and |6|* =
|lu/|? + ||6]|?. The following lemma provides upper bound estimates of By and Bs.

Lemma 3.5. For some positive constant ¢ and any u € Vi, 0,1 € Vo and ¢ = (u,0),
one has

| B (u, w)lvy [ulZs < clul [Jul], (3.8)
[(Ba(u, 0),m)]| |ulga 10124 Inll < clél (|91l (3.9)

Proof. We only check the properties on Bs. For ¢ = (u,0) € V and n € V5, Lemma
B.4, Holder’s inequality, and the second part of (@) imply

L L1 1
|[(Ba(u, 0),m)| = |(Ba(w,n),0)| < 10l fulzs 0]+ < elnll [ul=[lull=|0]=|6]|=.
This yields (B.9). O

Lemma 3.6. Let ¢ = (u,0) € V, and let v and n be in L*(D). For any constant
a > 0, the following estimates hold:

<
<

[(Bi(u,u),0)] < allul® + a3 Jul [v[74, (3.10)
33
(Bo@)ml < a9 + oy Il . (311)

Proof. We only check (B-I1)). The second half of (B.§) and Young’s inequality yield

1 1
[(B2(#),m)| = [(Bz2(u,m),0)| < nlpa [ulps (V0|2 < |nlpa [ulfs [Vulf, VO]
33
4403

[ul® [nl74.

O

1 3
< nlpa ulZ gll2 < allgl® +

The following lemma allows to rewrite differences of B; for i = 1, 2.
Lemma 3.7. Let ¢ = (u,0) and ¢ = (v,n) belong to V.. Then
(Bi(u,u) — Bi(v,v),u —v) = —(Bi(u—v,u—v),v),
(B2(¢) = Ba(y),0 —n) = —(Ba(d—),n).
Proof. Integration by parts, the boundary conditions and div(u) = V -u = 0 yield

(Bal0) = B0 =) = [ (@90)0 =iz~ [ (0.90)(0 = )iz
= —/ (u.V(G—n))de—i—/ (v.V(0 —n))ndx
D D

Since (Ba(u,w), w) = [, (uv.Vw)wdz = 0 for any w € V5, we deduce that

(Ba(6) — Ba(u)).0 — ) = — / (w.V (0 — n))ndz + /D (0.9(6 — ),

D
which completes the proof. O
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For ¢ = (u,0) € V, define
F(¢) = —A¢ — B(¢) — Ro. (3.12)

The following lemma gives a crucial monotonicity property of F. Let v A k :=
min(v, k).

Lemma 3.8. Let r > 0. Assume that ¢ = (u,0) € V and ¢» = (v,n) € V are such
that |vlpa <7 and |n|pa < r. Then

33T4

(F(6) = F@),0 =)+ "5 6 — 0l < (g +1) lo =l (313)

Proof. Set U =u—v, © =0—nand ® = ¢ —1 := (U, 0). Integrating by parts and
using Lemmas B.q and B.7, we obtain for o > 0,

(F(¢) = F(¥),®) = —v||[U|* = k]|OI* = (B1(U,U),v) — (B2(®),n) + 2(U>,©)

33
< —v|UIP = sl + (U7 + 1@1%) + 75 U (olzs + Inlza) + U + [OF.
Choosing a = ¥5%, we deduce (B.13). O

The proof of Theorem B.J] involves Galerkin approximations. Let {¢y,}n>1 be
a complete orthonormal basis of the Hilbert space H such that ¢, € Dom(A),
domain of definition of the operator A. For any n > 1, let H,, = span(¢1, - ,¢n) €
Dom(A) and P, : H — H, denotes the orthogonal projection onto H,. Note that
P, contracts the H and V norms. Suppose that the H—valued Wiener process W
with covariance operator @ is such that

PaQ? = Q2P n>1,
which is true if Qh = anl Antpn with trace anl Ap < 00. Then for Hy = Q%H

and (¢,9)g = (Q_%tb,Q_%w), for ¢,1 € Hy, we see that P, : Hy — HyoN H, is a
contraction both of the H and Hy norms. Let W,, = P,W, 0, = P,0 and 6,, = P,0.

For h € Ay, consider the following stochastic ordinary differential equation on
the n-dimensional space H,, defined by

d( ;:LJN w) - [<F( €n,h)a 1/}> + (6n( €n,h)ha 1/})] dt + \/E (O'n((ﬁen,h)dea 1/})7 (314)
for ¢ = (v,n) € Hy and ¢f, ,(0) = Pu&.

Note that for ¢ = (v,n) € V, the map ¢ € H,, — ((A+ R)(¢), ) is globally Lips-
chitz, while using Lemma B.§ the map ¢ = (u,0) € H, — Zi7j=1,2 Jp i vj dyuy dr+
Zi:m I} puin 0; 0 dx is locally Lipschitz. Furthermore, condition (A.3) implies that
the map ¢ € H,, — o0,(¢) is globally Lipschitz from H,, to n x n matrices. Hence
by a well-posedness result for stochastic ordinary differential equations [[[6], there
exists a maximal solution to (B.14), i.e., a stopping time 7, < T such that (B14)
holds for t <7, and as t | 7, , < T, |}, ;,(¢)| — oo. For every N > 0, set

v = inf{t: [¢5,(0)] > N}AT. (3.15)
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Almost surely, ¢% , € C([0,T], H,) on {ry = T'}. The following proposition shows
that 77, = T a.s. and gives estimates on ¢7 , depending only on the physical
constants v and x, T, M, E|¢|?? which are valid for all n and all € € [0, &) for some
go > 0. Its proof depends on the following version of Gronwall’s lemma.

Lemma 3.9. Let X, Y and I be non decreasing, non-negative processes, ¢ be a non
negative process and Z be a non-negative integrable random variable. Assume that

fOT p(s)ds < C aln’fost surely and that there exist positive constants o, f < m,
’ygm and C > 0 such that for 0 <t <T,
t
Xt)+aY(t) < Z+ / o(r) X (r)dr + I(t), a.s. (3.16)
0
E(I(t)) < BEX(@®)+~EY () +C. (3.17)
Then if X € L>([0,T] x Q), we have fort € [0,T]
E[X(t) +aY (t)] <2(1+ Ce®)(E(Z) + C). (3.18)

Proof. Tterating the inequality (B.16) and ignoring Y, an induction argument on n
yields for t € [0,7], n > 1

X(t) < Z+/Ot<p<sl)[2+/o
<z+10)+ Y [ (o) et [ et (24 Tl s ds

1<k<n

S1

©(s2) X (s2)dse + I(sl)} dsy + I(t)

t S1 Sn
T / o(s1) / o(s2) - / P(5n1) X (5n01) dsps1dsy -~ sy
0 0 0

Recall that X (s,w) is a.e. bounded, I is non decreasing and ¢(s) < C; thus X (t) <
e®[Z + I(t)]. Using this inequality in (B.1d), we deduce that X(t) + aY(t) <
[Z + I(t)] (1 + Ce®). Taking expected values and using (B-I7), we conclude the
proof. O

Proposition 3.10. There exists €, 0 = epo(v, &, K, T, M) such that for 0 <e < e,
the following result holds for an integer p > 1 (with the convention z° = 1). Let
h € Ay and & € L*(Q,H). Then 7,5, = T a.s. and the equation (B.14) has a
unique solution with a modification bnn € C([0,T), H,) and satisfying

T
supE ( sup o5, ,(£)|* +/ l65,(s)1? |¢Z,h(8)l2(”‘”d8)
n 0<t<T 0

< C(p,v,k, K, T,M)(E[§]* + 1). (3.19)

Proof. 1t0’s formula yields that for ¢ € [0,7] and 7y defined by (B.19),

165 (6 A )2 = [ Ptl? + 22 /0 7 (0n(65 () AW(5), 65, n(5)) (3.20)
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tATN tATN
+2/ (F( i,h(s)),¢i,h(5)>d5+2/ (Gn (D5 n(8)R(s), ¢ 1 (5)) ds
0 0

IATN
e [ onléino) Pl ds. (3.21)
0

Apply again It6’s formula for 2”7 when p > 2 and then use Lemma B.4 With the
convention p(p — 1)zP~2 = 0 for p = 1, this yields for ¢ € [0, 7],

tATN
|05 (E A TN+ 229/0 |65, 1 (D PEY [wllus, 5, (7)1 + 51165, 1, (7)) dr

< P+ Y T, 5:2)
1<5<5

tATN

Ti(t) = 4p /0 |05, (1), 2 (P65, 5, (r) PPV,

tATN

T(t) = 2VE| [ (u(6ha0) W) 650)) 167400V,
tATN

Tt) = 2p /O |60 (S5,4(r)) (r), &5, (r))] 165, 4 (r)P®~Dar,
tATN

Lu(t) = pe /0 |0 (85.1(r) Paliy 65,0 (r) PPV,

tIATN
150 = 20Dz [ 1026000 Gl 165 (PP P

The Cauchy-Schwarz inequality implies that 2|(6], ;, (1), un,n,2(r))| < |¢i,h(r)|2' Hence

tATN
Ty(t) < 2 /0 165, ()22 - (3.23)

Since h € Ay, the Cauchy-Schwarz inequality and (A.2) imply that for §; > 0,
tATN 1
Ty(t) < 2p /0 LKL+ 650 (M) 2] 2 R0 165(r) 2P Adr
tATN 9 5 1 p2K tIATN 9 5
<5 /O 65,0 05 ) 20D 4 25 /0 ()[R 15 0(r) 2P dir

tATN
+ 0, o2, (r))2PVar., (3.24)
0 n,h

Using again (A.2), we deduce that
tATN
T+ T5(0) < 2P Ke [ 165001 650070 dr
0

tATN
+20° K e / |65, ()PP~ D dr. (3.25)
0
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Finally, the Burkholder-Davies-Gundy inequality, (A.2) and Schwarz’s inequality
yield that for ¢t € [0,7] and d3 > 0,

—

tATN 1
E( sup [T5(s)) < 6pvEE{ /0 67 )P o (65,0(r)) Pl dr )

0<s<t

2K tATN
<GB( swp 6 P) + LB [ 6P Var
0<s<tATny 1) 0 '
9 2K tATN
g [ P PV @26)
2 0

Consider the following property I(i) for an integer i > 0:
I(i) There exists €o; := €0 (v, &, K, T, M) > 0 such that for 0 < e < ¢ep;

tATN )
SupE/ |¢;’h(r)|2zdr < C(i):=C,v,k K, T,M) < 4+00.
n 0

The property I(0) obviously holds with g9 = 1 and C(0) = T. Assume that for
some integer i with 1 < i < p, the property I(i-1) holds; we prove that I(i) holds.

Set 01 = WAL oi(r) = 2 + SEIW(E, Z = 61 J7 |65 4 ()P dr + ¢,

X(t) = supgcacy |65 4 (SATN) 2, Y (1) = Jo" ™ 105, 1, ()12 |65, ()20 ds and (1) =
WPzt [20VE | S ™ (0n(5,r)) dWa(r). 65,,(r)) 165, () 207

T 9y 2K _ — 5 = 1
Then [y ¢;i(s)ds < Ci(M) = 2iT+5 M. Let a =i (VAK), B = b2 = 2 [1C ()07

and C' = %K [ ¢, (5)[20~Dds. Let

A VAR A VAR

8K 1440 K [1 + C;(M)eCi(M)]2
Then for 0 < & < g;¢ the inequalities (B.23)-(B.2q) show that the assumptions of
Lemma B.g hold with v = %ﬁ(s < af3, which yields I(i).

An induction argument shows that I(p — 1) holds, and hence the previous com-
putations with i = p and Lemma .9 yield that for t =T and 0 < e < €p,0,

€0, = 1 NEi-10-

TN
supE( sup [0, ()% + / 65, ()I 65, ()PP~ ds) < Clp,v, i, K, T, M),

n \o<s<ry 0
As N — oo, 7v 1 T and on {7, < T}, suPpcscinry [Pnn(s)| — oo. Hence
P(7,, < T) = 0 and for almost all w, for N(w) large enough, 7y, (w) = T and
énn(.)(w) € C([0,T],Hy,). By the Lebesgue monotone convergence theorem, we
complete the proof of the proposition. O

We now have the following bound in L.

Proposition 3.11. Let h € Ay and € € LY, H). Let ea be defined as in
Proposition with p = 2. Then there exists a constant Cy := Cy(v, K, K, T, M)
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such that
T
supE/ 650 (5)[Lads < Co(1 +EJEY). (3.27)
n 0

Proof. Let fnpn(t) = wyp,i(t) or 65 ,(t), with i = 1,2. Then (B.19) with p = 2 implies
that

T
S [ fun (9P| fon(s) s < ol KT, M)(1 -+ BIET)
nJo
Hence by the second part of (B.§), we finish the proof of (B.27). O

We are now ready to prove the main result of this section.

Proof of Theorem B.1}:

Let Qp = [0,T] x © be endowed with the product measure ds @ dP on B([0,7T]) ® F.
Let €29 be defined by Proposition B.1(J with p = 2 and set ¢ := €20 A ”/\“ The
proof consists of several steps.

Step 1:  The inequalities (B.1) and (B.27) imply the existence of a subsequence
of {7, 5 }n>0 (still denoted by the same notation), of processes ¢ € L2(Qr, V) N
LY(Qr, LY(D)) N LY(Q, L=([0,T), H)), Ff € L*(Qr, V') and S5, 55 € L*(Qr, Lg),
and of random variables QEZ(T) € L*(Q, H), for which the following properties hold:
(i) ¢n 5 — ¢, weakly in L?(Qp, V),
ii) — ¢5 weakly in L*(Qp, L*(D)),
iii) qﬁfl 1, is weak star converging to ¢f, in LA(Q, L>=([0,T], H)),
iv) ¢, ,(T) — 5 (T) weakly in L?(Q, H),
V) ( nn) — Py, weakly in L*(Qr, V'),
vi) o0 (b, ;) P — Sf, weakly in L*(Qr, Lg),
vil) G, (4% ,)h — S in the o(LY(Qr, H), L=(Qr, H)) topology.

Indeed, () (iv) are straightforward consequences of Propositions and B.11],

(
(
(
(
(
(vi

and of uniqueness of the limit of E fo n.n(t)Y(t)dt for appropriate 1.
Furthermore, given ¢ = (v,n) € LZ(QT, V), we have

T
B [ [P0 00 000 + {43050, 0]
T T
_ K /0 (Vi (1), Volt))dt — wE /O (V65 (1), Vi (8)) de

T T
R / (Vs (1), Vo(#))dt — wE / (VO (1), V() dt. (3.28)
0 0

Using (B.19) with p = 2, (B.§), (B.9), the Cauchy-Schwarz and Poincaré inequalities,
we deduce

T
sup E /0 (B (5, (8), 15 0 (8)), 0(0)) + (B (D)) m(0)) + (R, (1), (1)) dt

n
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T
<C S%PE/O {lug, O] s, O + 050 O 654 ([0
+ 1605, 5 (O] o2 (t)] + |us, jo(8)] [n())] }dt
< Cy(v,m, K, T, M)(1 + Elg") +E/ 1(0)|2dt.
0

Hence {B(¢; ,(t)) + R¢: ,(t), n > 1} has a subsequence converging weakly in
L?(Qr, V'), which proves (v).
Since P, contracts the |- |o and | - | norms, (A.2) and (B.19) imply that

T T
supE /0 0u(é5 (D) Pal? b < K supE /0 (1+ 65 APt < oo,

which proves (vi).

Let A\ denote the Lebesgue measure on [0, 7]. We finally check that for h € Ay,
the sequence ‘an ok | Lo |h]o, m > 1) is uniformly integrable on Q7 with respect to
the measure A ® P, and hence relatively compact for the weak topology on L'(Qr).
Let a €]0,1[ and for any N > 0 set C(N) = Ni. Then if A(n,N) ={(s,w) € Qr:
|h(s)o 65,1, (8)]] > N}, we deduce that

T
T(n,N) = E /0 Lan ()]0 165, 4(3)]| ds < Ty (n, N) + Ty(n, N),

where

T
Ti(n,N) = E /0 Lnazcvn )l 1654(5)] ds,

T
Ty(n,N) = C(N)'°E /0 Lago ) |(9)[G [165(5)]) ds.

Since |h(.)|3 € L*(Qr), it is uniformly integrable. Thus, Schwarz’s inequality and
(B-19) with p =1 yield

T 2 % T e 2 %
T N) < (B[ tgzconlh@)lids) (B | 16u6)1Pds)",

so that limy s supn>1 Tl(n N) — 0. Using twice Holder’s inequality with conju-
gate exponents 1= and =, then with 1+ao‘ and 1+°‘ , we deduce

1+

2 2a —
Tyn, N) <C ()~ ( / 6P as) ™ (B [ Lagu 6™ 1670155 0)

11—«

<com)= (B [ Il a1 )" (3 PG, 1) T

Using Markov’s and Schwarz’s inequalities, we deduce that

T T 1
(A& P)AmN) < NTE [ oo 64 l1ds < (ME [ 67 (5)ds)* N
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Hence using (B.19) with p = 1 and

1+

_l-a T e 2 4
Ty(n,N) < C N~ (ME/ [65(s)%ds) *
0

we obtain imy oo sup,,>; T2(n, N) — 0. This completes the proof of the uniformly
integrability of the sequence (|hlo [|¢5, ;[|, 7 > 1). Finally, using (A2) and the uni-
form integrability of ||, we deduce that the sequence (|5(¢ o !L |hlo, n > 1)
is uniformly integrable with respect to A ® P. Since H is a Hllbert space, this
immediately proves (vii).

Step 2: For § > 0, let f € H'(—6,T + 6) be such that ||f||s = 1, f(0) = 1 and
for any integer j > 1 set g;(t) = f(t)p;, where {¢;};>1 is the previously chosen
orthonormal basis for H. The It6 formula implies that for any 7 > 1, and for
0<t<T,

4
(65,4(T), 95(T)) = (65,4(0), g5(0)) + > I 1, (3.29)
=1
where
T
Bi = [ Gialshers)ds
’ T
B2, = & / (0 (651 (5)) Pad Wi (), 95(5)),
. 0
Bi = [ (FGa): s
0T
i = [ (Galdine)hts).a;(9)ds.

Since f' € L?([0,T]) and for every X € LQ(Q) (t, w) — i X (w) f(t) € L*(Q, H),
(i) above implies that as n — oo, I} nk fo (65 (), ;) f'(s)ds weakly in L?(Q).
Similarly, (v) implies that as n — oo, I;?k — fo (F(s),g;(s))ds weakly in L?(Q),
while (vii) implies that If;k — fOT (S}i(s),gj(s))ds in the o(L'(Q), L*>°(9)) topology.

To prove the convergence of Ii o @S in [B], let Pr denote the class of predictable
processes in L*(Qr, Lo(Ho, H)) with the inner product

T T
(G, J)p, = E/o (G(s),J(S))PTds = IE/O trace(G(s)QJ(s)")ds

The map 7 : Pr — L?(Q) defined by 7 (G fo (G(s)dW (s),g;j(s)) is linear
and continuous because of the It isometry. Furthermore (Vl) shows that for every

G € Pr, as n — 00, (0n (5, 1,) Pr, G)PT — (S5, G)p, weakly in L?(1).
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Finally, as n — oo, P,§ = ¢;,,(0) — £ in H and by (iv), (¢}, ,(T),9;(T)) —
(65 (T), g;(T)) weakly in L*(Q). Therefore, (B:29) leads to, as n — oo,

: T T
(@h(T), 5) F(T) = (E,%)Jr/o (¢Z(S),soj)f’(8)ds+\/5/0 (Si(s)dW (s), g;(s))

T T
—i—/o (F,f(s),gj(s»cls—i—/o (Sz(s),gj(s))ds. (3.30)

For 6 >0,k > %, t€[0,T], let fy € H'(—6,T+6) be such that || fylloc =1, fr =1
on (—0,t — %) and fr =0 on (¢,7 + ). Then f, — L—s4) in L% and f{ — —d; in
the sense of distributions. Hence as k — oo, (B.30) written with f := f; yields

0 = (&¢5) — (6t es) +VE /O (S5(5)dW (), g5 (5))
T / (FE(5), g5(s))ds + / (85(5). 95(s)) ds.

Note that j is arbitrary and EfOT ]Si(s)\%@ ds < 0o; we deduce that for 0 <t < T,

oh(t) =&+ \/5/0 Si(s)dW (s) +/O Fy (s)ds +/O S5(s)ds € H. (3.31)

Indeed, fot Fj(s)ds, as linear combination of H—valued terms, also belongs to H.
Moreover, let f = 1(_575). Using (B.30) again, we obtain

T T T
o(T) =6+ \/E/ Si(s)dW (s) +/ Fr(s)ds + / Si(s)ds.
0 0 0
This equation and (B:31)) yield that ¢ (T') = ¢5(T) a.s.
Step 3: In (B.31)) we still have to prove that ds ® dP a.s. on Qr, one has

Si(s) = o (5 (s)), Fi(s) = F(f(s) and S(s) = 5(5(s)) h(s).
Let
X = {y e L*Qr, LY D)) N L (Q,L®([0,T],H)) N L*(Qp, V) :
T
/0 (I @I + 165, (O1%) 12 (t) = 65, (1) dt < +oo}.
Then (i)-(iii) yield ¢5 € X and since ||ul| < C(m)|u| for every u € H,,, using (B.§)

and the fact that ¢ € L?(Qp, V), we deduce that for any m > 1, L>=(Qp, Hy,) C X.
Let ¢ = (v,n) € L*(Qp, Hy,). For every t € [0,T], if a A b:= inf(a,b), set

1= [ [ grrars () + o)) + 2+

Sy L23(v Ak)3 L4 TN VAK

Then 7(t) < oo for all ¢ € [0, 7] and Fatou’s lemma implies
E(l65(T)*e ™) < E(liminf |5, ,(T)* e ™)) < liminf E(|¢7 ,(T)" e D).

yh(s)yg] ds.  (3.32)
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Apply It6’s formula to (B-31) and (B.14), and for ¢ = ¢5 or ¢ = G5y let ¢ =
¥+ (¢ — ). After simplification, this yields

T
El¢| + E/O e [—1'(5){[¢5.(5) = ()" +2(S5() = w(s) s $(s))} + 2(F5 (5), 6 (s))
+ el Si(s)l7z, +2( 5i(s) , #i(s))] ds < lim inf (E[P,(€)]” + Xa), (3.33)

where

T
X, =E /0 e[ = 1/ (){| 65 (5) — 0(5)[* + 2(65(5) — (s), ¥(s)) }
2AF (G5 (9): G () + elon(@5 (NPl + 25067 4(5)(s) . 65.4(5))] ds

Set a\Vb := max(a,b). The inequalities (B.1J), (A.3), (B.33) and Schwarz’s inequality
imply that for 0 < e <eo < %%,

T
Y, = E /0 e[ = 17(8)|5 () — w(s)?
+ [2AF(65,4(5) — FS)), 65n(5) = 005)) + elon(5n(5)) P — on((s) Pl
+ 2({Fn(65.1()) — En(¥(5))} h(s), 650 (5) = v(s)) | ds

T

< E/O e T(s) "bi,h(s) _ 7/1(3)’2{ —(s)
3

+ 23(,/37/\,{)3 [[o(s)[74 V In(s)|74] +2+ im( Jjds <0 (3.39)

Furthermore, X,, = Y;, + Y2_, Z!, with
T
Z, = E/O 677’(5){—27“'(5)( nn(8)) = P(s),9(s)) + 2(F (0, (s)), ¥ (5))
+2(F(1(s)), $nn(8)) = 2(F(¥(5)), ¥(5)) + 22 (0 (S, (8)) P o (¥(5)) 1,
+2(Gn(¢np(5)) 1(s), ¥(5)) +2(5(8(5)) h(s), & 5 (5)) — 2(Pnd (1(s))h(s), ¥(s)) } ds,
T
22 = [ 7O 2(0n(650 (6D Pa )P = a0, P (WP s,

The weak convergence properties (i)-(vii) imply that, as n — oo, Z} — Z' where

T
z' = E/O e~ = 2'(5)(¢7,(5) — ¥(5),0(s)) + 2(F};(5),9(s)) + 2F ((5)), 65, ()
= 2(F(9(5)),9(s)) +2¢ (S5(5), o(1(5)) , +2(55(5),9(s))
+2(6(¥(s)) h(s), 67,(s)) — 2(5(1(5))A(s), P(s)) ] ds. (3.35)
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Now we study (Z); when n — oo, |o(¢(s)) (P, — Idm,)|z, — 0 a.s., and by (A.2),

T
E / e " sup o (1(5))(Po — Idm,)[7 ,ds < .
0

n

Hence the Lebesgue dominated convergence theorem implies that, as n — oo,
T
E / e "o (())(Pn — Idm,)[7 ,ds — 0.
0

Since suanfoT e ") o ( ;’h(s))Pn@les < 00, by the Cauchy-Schwarz inequality,
we see that Z2 — —cE fOT e_r(5)|a(1/)(s))|%Qd5.
Thus, (B.33)-(B.35) imply that for any m > 1 and any ¢ € L>®(Qr, H,,,),

T
E /0 O 1/ (5)[65(5) — $() + 2F5 (5) — F(6(5)), 67 (5) — w(s)

+ el S5(5) = (9, + 2(Si(s) = F()A(s), 6i(s) = (s)) fds 0. (3.36)

By a density argument, this inequality extends to all ¢ € X. Taking ¢ = ¢} € X,
we conclude that S5(s) = o(45(s)), ds @ dP a.e. For a real number \, ¢ = (v,7) €
L>(Qr, Hy,) for some m, set 1) = ¢j — A\ € X. Thus applying (B-39) to v and
neglecting elo (¢, (s)) — U(¢A(S))|%Q’ we obtain

E | T < X I + [ (FE(5) — Flun o)), 55)
0
+ (Si(s) = 5(Ua(s)A(s), B(5)) }| ds < 0. (3.37)

Using (A.3), we have for almost every (s,w) € Qp as A — 0,

[([6(¢a(5)) = 65, (sNVa(s) , ©(s)) | < VIA(s)Il R(s)lo [(s)] — 0.
Furthermore, (A.2) implies that

B [ s | (55 165 566)

|AI<1

ds

T
0

< \/EE/ (L4265, + 25D h(s)lo [d(s)]ds

IN

T
KMAE [ [{L+ 6167617 + 4la(s)} e (s) = 6706 s < o

Hence, the Lebesgue dominated convergence theorem yields, as A — 0,
T _ _ T _ _

E /0 ({55(5) = 6(0(5) }1(s), B(5) ) ds — E /0 ({85(5) = 6(0n() }(s), 0 (s) ) ds.

Furthermore, Lemmas .5 and B.7 yield for A # 0

[(F(W(5) = F(95(5)), ¥(s)] < wAllu(s)]* + wAlln(s)]|?
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+[Bi(Ww(s), Ao(s))lvy [0(s)[| + [B2(Mp(s)) vy In(s)ll + 2X[3(s) [
< [ () + [[D(s)I? + Allo() 2o (s)] + Mn(s) 120 (s)[]-
Using again the dominated convergence theorem, we deduce as A — 0,
T B T B
B [ (Fi(s) ~ PA@)), (s))ds — E [ (F(s) = F(6(s). D).
0 0

Thus, dividing (B:37) by A > 0 and letting A — 0 we obtain that for every m and
Y € L>(Qr, Hy,),

T
B[ [P = P 666)) + ({85 = 5(6h(:)h(e).55) s <,

while a similar calculation for A < 0 yields the opposite inequality. Therefore for
almost every (s,w) € Qr,, for every ¢ in a dense subset of L2(Qr, V),

T
B [ [(Fi(6) = Foh(o). 506)) + ([7(5) — 5(6h ) }lo). ()] ds = 0. (338
Hence a.e. for t € [0,T], (B.31]) can be rewritten as
0
Furthermore, (i), (iv) and (B.19) for p = 2 imply that

B( [ Ioion )

B( sup |¢7()") < supE(
0<t<T n 0

60 =€+ VE [ ateiNaW.+ [ [F@i) + 5@ h)])ds. (339

IN

T
up [ 65010 < OO+ BIET). ()
sup [65,4(0]1) < C (1+Elgl'). (3.41)
<I<T

Since |z|> < 1V |z|* for any = € R, this completes the proof of (B.5).

Step 4: To complete the proof of Theorem B.1], we show that ¢5, has a C'([0,T, H)-
valued modification and that the solution to (B.39) is unique in X := C([0,7],H) N
L2([0,T],V). Note that (B.5) implies that if 7 = inf{t > 0: |¢5(t)| > N} AT for
N >0, P(7y < T) < CN~2. The Borel-Cantelli lemma yields 7y — T a.s. when
N — oo. We at first prove uniqueness. Let ¢ = (v,n) € X be another solution
to (B-39). Then if 7y = inf{t > 0 : [¢(t)] > N} AT for N > 0, since |1(.)| is a.s.
bounded on [0,7], as N — oo, Ty — T a.s. and 7v =T ATy — T,  a.s.

Let ¢f = (u5,05), ® = (U,0) = ¢5 — 1), § = Y% and a = } = -2, Itd’s formula,
Lemmas B.J and B.7, and (A.3) imply that if 0 < e < gp < %,

tAT tATN s
Ee~aJo" ™ WMIPdr| g4 A 7y) 2 = —aE/ [ (s)||2|®(s)[2eJo I¥MIPdr gg
0

tATN R 5
+B [ el L au(s)? - 2nl0(s)
0

= 2(Bu(uj(s), uj(s)) = Bu(v(s),v(s)), U(s)) — 2(Ba(®(s)) — Ba(¢(s)), O(s))
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+ el (@7 (5) — o), + 2([F(67(5) — 5()IAs), B(s) +4U(s)] [6(s)|} ds
<E [ e BINORE{aly(s)Ple(s)? - 2 UG + xl6()P)
0

+O[[UIP + 12 ()7 + % (TP [v()IF + @) In()]1?]
+ [L + 0] |(s) 2 + L8 [@(s) P[1(s) } + 2 |@(5)|? }ds

t SAT
gE/ o= o ll(r)|dr (Lo h(s An)[2+2) |@(s ATn)|* ds.
0

Since supp<s<r e=alo"™ [oMI*dr|@ (s A 73)|2 < 2N and s +— Lo |h(s)|3 belongs
to L1(Q7), by the Gronwall lemma, we conclude that
sup E efafOS/\TN |I¢(7’)||2d” ‘@(8 VAN TN)‘2 =0. (342)
0<s<T

Since imy .00 77 = T a.s., we thus have |®(s,w)| = 0 a.s. on Q7. Thus if ¢} is in
C([0,T], H), we conclude that ¢3 (t) = v(t), a.s., for every t € [0,T].
Finally, set

p(t) = /t [373 (Jo(s)[74 + |n(s)[74) + 2+ <i + 1) ]h(s)ﬂ ds. (3.43)
o L22(wAK)3 L L VAK I
Set @7, = ¢, — ¢j, and let 0 < e < gp < Y25 By the Ito formula, (A3) , (B.13)
and Schwarz’s inequality, for every t € [0, T,
t
Bl 005, 0F) <E [ ¢ = o) 85,5) — 200 h ) [,
0
(PO + el
25(v A k)3

+2VL[®5, ), (3)I1 17(5)lo|®5, 4 ()] + 2195, ()] |Pad (65(5)) — 3(5,(5))] g \h(S)\o} ds

+ 2) |5, (8)” + 26 LI| @, 1, ()1 + €| Paor (65, () P — 0 (7)) 7,

< E/O e " [e o (5,()) Pu — o(¢7,(5)) 1, + [Pad(657.(5)) — 3(5())I1,, ] ds-

Furthermore, for almost every (s,w), one has |P,a (¢ (s)) Py — (¢5,(s))|L, — 0
and | P, (¢5,(s)) — 6(5(s))|Ly — 0 as n — oo. Thus the dominated convergence
theorem shows that lim,,_.. I(n) = 0, where

T
1) = sup B(e V)@, (0)F) +E [ e g, (5)|ds = 0.
0<t<T ’ 0 ’

Using again the It6 formula and the Burkholder-Davies-Gundy inequality, an argu-
ment similar to that used in the proof of (B.34) yields for 0 < e <o < 4%

1
B( e, e O OF) < 5E( s, IO )
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T
188 [ Jon(65.(5) P — oG (5D ds
0

t
B sup [ e[ p(s)|05,(0) - 20 A ) 05, 5) P
0<t<T JO

<33(\U(8) 14+ 1n(s)[74)
2(v A k)3
+2VL[ @5, ), (3)I1 17(5)lol®5, 4 ()] + 2195, ()] [Pad (65,(5)) — 3(5,(5))| 2 \h(s)\o] ds
< CI(n).

Therefore, ¢y, has a subsequence converging a.s. uniformly to ¢5 in H. Because
¢;, € C([0,T], H), we conclude that ¢7 has a modification in C([0,77], H).

+ 2) 95,4 (8)° + 26 L[5, 4 (s)II + el Paor(05,(5)) P — (51,

4. LARGE DEVIATIONS

We consider large deviations via a weak convergence approach [[, B, based on
variational representations of infinite dimensional Wiener processes. The solution
to the stochastic Bénard model (R.7) is denoted as ¢° = G°(,/eW) for a Borel mea-
surable function G° : C([0,T], H) — X. The space X = C([0,T]; H) N L*((0,T); V)
endowed with the metric associated with the norm defined in (B.4) is Polish. Let
B(X) denote its Borel o—field. We recall some classical definitions.

Definition 4.1. The random family {¢°} is said to satisfy a large deviation principle
on X with the good rate function I if the following conditions hold:

I is a good rate function. The function function I : X — [0,00] is such that
for each M € [0, 00[ the level set {¢p € X : I(¢) < M} is a compact subset of X.
For A € B(X), set I(A) = infyca I(0).

Large deviation upper bound. For each closed subset F of X:

limsup elogP(¢® € F) < —I(F).
e—0

Large deviation lower bound. For each open subset G of X:
lim inf0 elogP(¢° € G) > —I(G).
E—>

To establish the large deviation principle, we need to strengthen the hypothesis
on the growth condition and Lipschitz property of o as follows:
Assumption A Bis There exist positive constants K and L such that
(A4) |o(t.9)|7, < K (L+]¢]*), Vt € [0,T], Vo€ V.

(A5) [o(t,¢) —o(t, V)7, < Llp—¢|* Vt€[0,T], Vo, € V.

Note that due to the continuous embedding V' — H, the assumptions (A4-A5)
imply (A2-A3). Thus the conclusions of Theorem B.1] hold under the assumptions
(A4-A5).

The proof of the large deviation principle will use the following technical lemma
which studies time increments of the solution to the stochastic control equation. For
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any integer k = 0,---,2" — 1, and s € [kT27",(k + 1)T27"], set s,, = k727" and
5p = (k+1)T2". Given N > 0, h € Apr, € > 0 small enough, let ¢} denote the
solution to (B.4) given by Theorem B.1, and for ¢ € [0, T}, let

Gvtt) = o+ (s 16@P) v ([ Ioio@as) < 6.

Lemma 4.2. Let M,N >0, o and & satisfy the Assumptions (A1),(A4) and (A5),
¢ € LY(H). Then there exists a positive constant C' := C(v,r, K,L, T, M,N,&q)
such that for any h € Ay, € € [0, 0],

T n
Lhi2) = B[lgym) [ 168) - dilonds] < 2 (4.1)
Proof. Let h € Ay, € > 0; 1t6’s formula yields I, (h,e) = 3 o;<6 Ini» Where
s =VE B layiry [ s [ (o)W ) - 65.6)
Iz = B, / is [Tlot6i ol dr),
I3 =28 (16, / is [T H0) . 630 - (o) ).
Iyy=-— QE 1GN(T / ds/ v(Aug (r), up (r) — uj,(s)) + w(A205 (1), 05(r) — 92(3))](17“),
s =~ 2816, [0 [ [(Bl<uz<r>>,uz<r>—uz<s>>+(Bz<¢z<r>>,ez<r>—G;i(s))]dr)
0 s
T Sn
T =28 (i) [ s [ 10520 050) = 05() + (05(0). 07,0(r) = p(s)) ).

Clearly Gn(T) € Gn(r) for r € [0,7]. The Burkholder-Davis-Gundy inequality,
(A4) and the definition of G (r) yield for 0 < e < g9

T Sn
Ll < 2VEE /0 s / (o(65,(M)dW,, 65.() — 65.(5)) L)

NI

T Sn
< 6VE /0 as B( [ o) olh0) ~ 65(5) Layedr)
< 12\/5\/KN(1+N)/Tds (T27)% < C(eo, K,N,T)275. (4.2)
0

The property (A4) implies that for € < g,

T Sn
|In2| < gKE(lGN(T)/ ds/ (1+ ](pi(r)’?)dr) <eK(14+N)T?27™. (4.3
0 s
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Schwarz’s inequality, Fubini’s theorem, (A4) and the definition of Ay, yield

T 5 N
Tal < 2R E(gum [ ds [ 0+16100P)F 110Dl 610) = (9] )

IN

IN

T r
2KN(1+N) E/ |h(r)o dr/ ds <C(K,N,M,T)2™".  (4.4)
0 r

—n

Schwarz’s inequality implies that for some constant C' := C (€0, v, k, K, T) from equa-

tion (3,
Ins < 28 (16, r / ds / dr[ = vjus, () = 5105 ()1 + w5 () (5)]
+ )65 ()165.)1])
T Sn
< B(1oum [ dsloiP [ ar) <

The inequalities (B.§) and (B.9), and Schwarz’s inequality imply

(4.5)

sl < 22 (1a(r) / ds / [, () 1 () ) + [ (9)1])
1GOOI+ 10 ]
T r
< 3VNE /0 dr (Il (1) 2 + 165,07 12) / s

T
T £ _
+ \/m-z/ ds([|ug, ()] + [|65 (s)]1%) / dr <8TVNC2™".  (4.6)
0 s
Finally, Schwarz’s inequality implies that

T Sn )
| In6| < 4E<1GN(T)/O dS/ (|u2(7“)| + |u2(5)|)(|92(7«)| + |92(S)|)d7‘) < 16T N.

2n

(4.7)
Collecting the upper estimates from (f.9)-(f7), we conclude the proof of ([E1)). O

Let g be defined as in Theorem B.1] and (h.,0 < ¢ < &g) be a family of random
elements taking values in Ay Let ¢, or strictly speaking, ¢f,_, be the solution of
the corresponding stochastic control equation with initial condition ¢, (0) =& € H:

Note that ¢p, = G° (\/E(W + % IN hg(s)ds)) due to the uniqueness of the solution.

For all h € L?([0,T], Hp), let ¢; be the solution of the corresponding control
equation ([.2(]) with initial condition ¢ (0) = &:

don + [Apn + B(én) + Ropldt = o(¢n)hdt. (4.9)
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Let Co = { J; h( :he L2([0 T, Ho)} € C([0,T], Hy). Define G° : C([0,T], Hy) —
X by G%g) = qﬁh for g = [y h(s)ds € Cy and G°(g) = 0 otherwise.

Proposition 4.3. (Weak convergence)

Suppose that o satisfies the Assumptions (A1), (A4) and (A5). Let & be Fy-measurable
such that E|&|3 < +o0, and let he converge to h in distribution as random ele-

ments taking values in Apr. (Note that here Apyr is endowed with the weak topol-

ogy induced by the norm (B4)). Then as ¢ — 0, ¢p. converges in distribution

to ¢, in X = C([0,T); H) N L?((0,T); V) endowed with the norm . That 1is,

Gg® <\/E(W + % IN he(s)ds)) converges in distribution to go(fo ds) n X, as
e —0.

Proof. Since Ay is a Polish space (complete separable metric space), by the Sko-
rokhod representation theorem, we can construct processes (ﬁs, h, W) such that the
joint distribution of (h, W) is the same as that of (he, W), the distribution of A
coincides with that of h, and he — h a.s., in the (weak) topology of Sy;. Hence a.s.
for every t € [0,T7, fo <( fo ds — 0 weakly in Hy. Let &, = ¢p_ — ¢y, or
in component form ¢, = (UE,G) )= (uhE Up, Op. — Op); then

49, + [A. + B(¢p.) — B(én) + R®.dt
= [0(én.)he — o(Pp)h]dt + /e o (¢n. )dW (t), ®-(0)=0. (4.10)

Let g9 be defined as in Theorem B.J. On any finite time interval [0,¢] with ¢t < T,
It6’s formula, Lemmas B and B, (A4) and (A5) yield for 0 < e < e A 4

(1) +2 / AU() 12 + 502 (5)]?] ds
:4/ (@E(s),UE,g(s))ds—Q/ (Bi(un (), un.(s)) — Bi(un(s),un(s)), U(s))ds
0 0
. /0 (Ba1.(5)) — Ba(n(5)), Oc(s))ds
2 [ (060 ()hels) = o 0n(5) h(s). Be(5)) s
+2f/ o(n. () AW (s) +a/ 0 (6n. (5)) Q% 21, ds
<2 / B (s)|2ds + 2 / [10-()] [T-() | fun(s) | + 12c()] [ @(3)]] 16n(5)]] ds
0 0
+2/ VI [.(5)2 |he(s)lo ds+2/ (0(@n(s)) (hels) — h(s)) , B(s)) ds
+2f/ o (6n.(5)) AW (s)) +€K/ (1+ |6, (5)?)ds
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3 ¢ , .
) S 2 s Z s 2 s 2 wr (s 2 s 2 s
S;Tz(t,e)JrZ/o | (s)|* d +2/0 |1U-(s)]d +V/O un ()2 U (5)2 d
5 [ 1as+ [P (o IonI + 2VE o)) ds. (@)

where

(1 e) =2vZ / o (6n. () W (s))
Tot.e) =<K | (14 I6n. ()2,
Ty(t,e) =2 /0 (0(6n(9)) (he(s) — h(s)) , ®c(s)) ds

Thus, ([.11)) yields the following inequality
t 3
| (1)* + (v A H)/ 1@c(s)[*ds < > Ti(t,e)
0 i=1

2 /O 1+ (Gt )o@+ 2VE (o)l ] B ds. (@12

Our goal here is to show that as ¢ — 0, supg<scr [P=(£)> + fOT [ ®:(s)||?ds — 0
in probability, which implies that ¢, — ¢, in distribution in X := C([0,T]; H) N
L%((0,T); V). Fix N > 0 and for t € [0, T let

Gntt) = { s lon <N { [ lonPas < v},
Grelt) = Gun { s om0 <N { [ fon(olPas < v}

Claim 1. For any g >0, sup  sup P(Gne(T)°) —0as N — oc.
0<e<eo hhe€An
Indeed, for € > 0, h, h. € Ay, the Markov inequality and the estimate (B.J) imply

P(Go(T)%) B sup [gn(s)P > N) +P( sup_|on.(s)P > N)
0<s<T 0<s<T

+p(f " (len(o)Pds > ) + B / " (8)1?)ds > )

T
sup B sup (on(s) + sup [on. ()P + [ (1on(s)IP + [n.(5)])ds)
0<s<T 0

<1
N hheeAy No<s<T
< Ci(v,k, K, L, T, M) (1+ E|¢[Y)N~!
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Claim 2. For fixed N > 0, h, h. € Ay such that as e — 0, h — h a.s. in the weak
topology of L2([0,T], Hp), one has as ¢ — 0

T
16, sup [P + [ [.(0)|F dt)] —o. (113)
0<t<T 0
Indeed, ({.12) and Gronwall’s lemma imply that on Gy (T,

2 2
sup |®.(4)? < [ sup (Ti(t,e)+T5(t, e))+eKT(1+N)} exp (2T+ [—+—} N+2\/M>.
0<t<T 0<t<T v VAR
Thus, using again (f.19) we deduce that for some constant C=C(v,k K,T,M,N),
one has for every ¢ > 0:

E(lgy . |®-%) < C(sKTN n E[lGN’E(T) sup (Ty(t,e) + Ti(t, e))} ) (4.14)

Since the sets Gy .(.) decrease, E(lGN,E(T) supg<s<r |T1(t,€)]) < E(A:), where
t
Ao = 2VE sup | / 1y (0) (®=(5), 7 (0, (5))AW (5)) .
o<t<T ' Jo

The scalar-valued random variables \. converge to 0 in L' as e — 0. Indeed, by the
Burkholder-Davis-Gundy inequality, (A4) and the definition of Gy (s), we have

T 1
B0 < OVEE{ [ 1y 060 lo(on. () Eds}
T ) %
< OVEE[{aN [ oy K (14 o) P)is} ]
0
< 12\EVKT(1+N). (4.15)
For k=0,---,2" set ty, = kT27™; for s €|tg, ty11], set 5, = tx+1 and s, = tx. Then

for any n > 1,

3
E(lGN @ sup |T5(t,e ) Z (N, n,e) + 2 E(Ty(N,n,e,w)),

<t<T

where

(N, n.¢) =E[16, 0 Oi%‘ / o(6n(5)) (he(s) — h(s)) . [@(s) — @ (5,)] )as||.
Ty(N,n,e) =E 1GN OiltlET ‘ / — U(¢h(§n))] (hg(s) - h(s)) , <I>5(§n)>ds ],
T3(N,n,e) =E :IGN&(T) sup sup  |(o(on(tk)) /t (he(s) — h(s))ds, ®(ty)) H

1<k<2m t), 1 <t<ty te—1

T(¥,m,6) e S (e(ont)) | " (heto)  h(e)) ds. -(00))|
k=1

te—1
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Using Schwarz’s inequality, (A4) and Lemma [£.3, we deduce that for some constant
Cy:=C(v,k,K,T,M,N) and any ¢ €]0, g¢],

1

T
Ty(N.n.e) < VEE|la, ) /0 (L4 18n(5)) 2 |he(s) = h(s)lo [-(s) = @(5,)] ds|

< V2K +N) (E/OT|h€(s) —h(s)|gds)5

T 1
B[l [ {1605 = 6150+ lons) — an(opas])
<Cp 274, (4.16)

A similar computation based on (A5) and Lemma E.3 yields for some constant
Cy:=C(v,k, K, T,M,N) and any ¢ €]0, o]

T 1
To(N,n,¢) S\/Z(E[lGNﬁ(T)/ 161(5) — 61(5n) \zds / e (s \Oszs>
0
< Cy 277, (4.17)

Using Schwarz’s inequality and (A4) we deduce for C3 = C(K,N, M) and any
e €]0, 0]

T3(N,n,¢) < \/?E{lc;N,E(T) sup (1+ ‘¢h(tk)’2)% / ) |he(s) = h(s)|ods |Pc(t1)]

1<k<2an th_1

173
KN(1+ N) E< sup |he(s) — h(s)lo ds)
1<k<2n Jiy,_

<4/KNA+N)VM 275 =C32753. (4.18)

Finally, note that the weak convergence of h. to h implies that for any a,b € [0, 7],
a < b, the integral fab he(s)ds — f; h(s)ds in the weak topology of Hy. Therefore,
since for ¢ € H the operator o(¢) is compact from Hy to H, we deduce that
!a(qﬁ)(ff he(s)ds — fab h(s)ds)|, — 0 as ¢ — 0. Hence a.s. for fixed n as e — 0,
Ty(N,n,e,w) — 0. Furthermore, Ty(N,n,e,w) < VK1 + NvV2NvM and hence
the dominated convergence theorem proves that for any fixed n, E(Ty(N,n,c)) — 0
as e — 0.

Thus, given a > 0, we may choose ng large enough to have (Cy + 62)27% +
(5273 < a for n > ng. Then for fixed n > ng, let & €]0,e0] be such that for
0 <e <ey, E[Ty(N,n, )] < a. Using (I16)-([EI), we deduce that for £ €]0,&1],

E{lGN (T) S?ET‘Tg(t 5)]} < 2a. (4.19)

Claim 2 is a straightforward consequence of the inequalities (§.14), (f.15) and (§.19).
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To conclude the proof of the Proposition .3, let § > 0 and a > 0 and set
T
Aim 0% = sup [Bo(t)2 + / 19 (s)|2ds.
0<t<T 0

Then the Markov inequality implies that

1
P(A: > 8) = P(Gye1)) + 3B (1ay )22/ )

Using Claim 1, one can choose N large enough to make sure that P(Gn(T)°) < o
for every . Fix N ; Claim 2 shows that for e small enough, E(lGN’E(T) ’(bff’?X) < da.
This concludes the proof of the proposition.

The following compactness result will show that the rate function of the LDP

satisfied by the solution to ([£.§) is a good rate function. The proof is similar to that
of Proposition [.3 and easier.

Proposition 4.4. (Compactness)
Let M be any fixed finite positive number. Define

Ky = {én € C(0,T1: H) N L*((0,T); V) : h € Sur},
where ¢y, is the unique solution of the deterministic control equation:
den(t) + [Agn(t) + B(on(t)) + Ren(t)]dt = o (n(t))h(t)dt, ¢n(0) =€, (4.20)
and o satisfies (A1), (A4) and (A5). Then Ky is a compact subset of X.

Proof. Let (¢,) be a sequence in Ky, corresponding to solutions of ({.20)) with
controls (hy) in Sy

dpn(t) + [Adn(t) + B(on(t)) + Ron(t)|dt = o(dn(t))hn(t)dt, ¢n(0) =¢. (4.21)

Since Sy is a bounded closed subset in the Hilbert space L2((0,7T); Hp), it is weakly
compact. So there exists a subsequence of (h,,), still denoted as (h,, ), which converges
weakly to a limit h in L2((0,T); Hp). Note that in fact h € Sy as Sy is closed.
We now show that the corresponding subsequence of solutions, still denoted as (¢y,),
converges in X to ¢ which is the solution of the following “limit” equation

do(t) + [Ad(t) + B(¢(t)) + Ro(t)ldt = o(o(t))h(t)dt, $(0) = &. (4.22)
This will complete the proof of the compactness of Kj;. To ease notation we will

often drop the time parameters s, ¢, ... in the equations and integrals.
Let ®,, = ¢, — ¢, or in component form ®,, = (U, 0,,) = (u, — u, 0, — 0); then

d®, + [Aq)n + B(¢n) - B(¢) + R(I)n]dt = [0(¢n)hn - U((ﬁ)h]dt, (I)n(o) =0. (4'23)
Using Lemmas B.J and B.7, (A5) and Young’s inequality, we deduce that for t € [0, 7],

|Pn(t) + 2/0 @NUa()]* + £]1©n()]?) ds = 4/0 (On(s), Una(s))ds

_ 2/0 {<B1(un(3)aun(3)) — Bi(u(s),u(s)), Un(s)) + (Ba(dn(s)) — Ba(e(s)), @n(s)>} ds
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+2 /0 {([0(0n(s)) = 0(&n()] hn(s), @u(5) ) ds + (5(80(5)) (n(s) = h(s)) , Pu(s)) }ds
t 9 v [t 9 vAk (1 9

<2 [P s+ d [P+ 5 [ 00017

2 t 2 t t
2 / ()| [Un(5)P? ds + —— / 10(5)[12 |0 ()| ds + 21 / 1B (5)]? [ (5)]0 ds
0 VNAK 0 0

t
+ 2/0 (0(0(5)) [hn(s) — h(s)] , ®n(s))ds. (4.24)
Thus ([.24) yields the following integral inequality

B ()24 A 1) /O 1@ ()] 2ds < 2 /O (0(6()) [on(s) — (5)], Bu(s)) dis

t 2 2
2+ 2L -
+/0{ + ]hn(S)!o—F(er

For N> 1and k=0,---,2Y set t = k27N, For s €]tj_1,t], 1 < k < 2V, let
5y = tg. The inequality (B.7) implies that there exists a constant C' > 0 such that

o2} |@n(s)Pds. (4.25)

VAR

T —
sup | sup (|60 + [6a (D)) + /0 (95112 + n(5)II?)ds| = C < +o0.

n Lo<i<T

Thus Gronwall’s inequality implies

oup 800 < oxp ([ {22060+ (242 ) IoGo)as) S I (120

v+ K
=T + i=1

where
T
By = [ 1006 hals) = ho), Ba(s) - a(sx)| ds.
0

ds,

By = /OTt([ow(s))—a<¢<5N>>][hn<s>—h<s>],<1>n<er>)

Iy = s sw (o) /t“<h€<s>—h<s>>ds, (k).
oN th

By = (oot [ Ihals) = h(s))ds, @),
k=1 tr—1

Schwarz’s inequality, (A4), (A5) and Lemma [.J imply that for some constant C
which does not depend on n,

< ([ KO+ 00at6) ~ 1Rs)* (2 [ 16006) — an(Em) +1606) — 6602 s)

<027, (4.27)

1
2
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1

T 1 T 1 N
By< (L /0 6(s) — 6(5n)ds) * (C /0 ha(s) ~ ()3 ds)* < 2% (a28)
Inx < K(1+sup|é(t)]) sup (|o(0)] + on(D)))2752M < CC27 % (4.29)

Thus, given a > 0, one may choose N large enough to have sup,, Z?:1 IfLN < a.

Then, for fixed N and k = 1,---,2", as n — oo, the weak convergence of h, to h
implies that of ftt:,l(h"(s) — h(s))ds to 0 weakly in Hy. Since o(¢(ty)) is a compact

operator, we deduce that for fixed k the sequence o(¢(t)) [** (hn(s) — h(s))ds

th—1
converges to 0 strongly in H as n — oco. Since sup,, supy, |®,(t;)| < 2C, we have
lim,, IS,N = 0. Thus as n — 00, sUpg<;<7 |®n(t)|> — 0. Using this convergence and
(f.24), we deduce that ||®,|x — 0 as n — oo. This shows that every sequence in
Ky has a convergent subsequence. Hence K, is a compact subset of X. O

With the above results, we have the following Large Deviation theorem.

Theorem 4.5. Let o satisfy (A1), (A4) and (A5), ¢° be the solution of the sto-
chastic Bénard problem (R.1). Then {¢°} satisfies the large deviation principle in
C([0,T); H) N L2((0,T); V), with the good rate function

Le() = inf {% /0 L) s} (4.30)

 {(h€L2(0,T;Ho): =G ([; h(s)ds)}
Here the infimum of an empty set is taken as infinity.

Proof. Propositions [£.4 and [£.J imply that {¢} satisfies the Laplace principle which
is equivalent to the large deviation principle in X = C([0,T], H)NL?((0,T), V) with
the above-mentioned rate function; see Theorem 4.4 in [[] or Theorem 4.4 in [f]. O

Acknowledgements. This work was partially done while J. Duan was a Professor
Invité at the Université Paris 1, France. J. Duan would like to thank this University
for financial support and the colleagues at Samos-Matisse, Centre d’Economie de la
Sorbonne, for their hospitality. It was completed while A. Millet was visiting the
Mittag Leffler Institute, Sweden, which provided financial support. She would like
to thank the center for excellent working conditions and a very friendly atmosphere.
The authors would also like to thank Padma Sundar for helpful discussions.

REFERENCES

[1] A. Budhiraja & P. Dupuis, A variational representation for positive functionals of infinite
dimensional Brownian motion, Prob. and Math. Stat. 20 (2000), 39-61.

[2] A. Budhiraja, P. Dupuis & V. Maroulas, Large deviations for infinite dimensional stochastic
dynamical systems. Preprint, 2007.

[3] S. Cerrai and M. Rockner, Large deviations for stochastic reaction-diffusion systems with
multiplicative noise and non-Lipschitz reaction term, Ann. Prob. 32 (2004), 1100-1139.

[4] F. Chenal and A. Millet, Uniform large deviations for parabolic SPDEs and applications.
Stochastic Process. Appl. 72 (1997), no. 2, 161-186.



30

[5]

J. DUAN AND A. MILLET

M. H. Chang, Large deviations for the Navier-Stokes equations with small stochastic pertur-
bations. Appl. Math. Comput. 76 (1996), 65-93.

P. L. Chow, Large deviation problem for some parabolic Ito equations. Comm. Pure Appl.
Math. 45 (1992), 97-120.

P. Constantin and C. Foias, Navier-Stokes Equations, U. of Chicago Press, Chicago, 1988.

G. Da Prato & J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University
Press, 1992.

H. A. Dijkstra, Nonlinear Physical Oceanography, Kluwer Academic Publishers, Boston, 2000.
J. Duan, H. Gao and B. Schmalfuss, Stochastic Dynamics of a Coupled Atmosphere-Ocean
Model, Stochastics and Dynamics 2 (2002), 357—-380.

J. Feng and T. G. Kurtz, Large Deviations for Stochastic Processes. AMS, 2007.

B. Ferrario, The Bénard Problem with random perturbations: Dissipativity and invariant
measures. Nonlinear Differential Equations and Applications (NoDEA) 4 (1997), 101-121.

C. Foias, O. Manley & R. Temam, Attractors for the Bénard Problem: Existence and physical
bounds on their fractal dimension. Nonlinear Analysis 11 (1987), 939-967.

M. I. Freidlin & A. D. Wentzell, Reaction-diffusion equation with randomly perturbed boundary
condition, The Annals. of Prob. 20(2) (1992),963-986.

G. Kallianpur and J. Xiong, Large deviations for a class of stochastic partial differential equa-
tions. Ann. Prob. 24 (1996), 320-345.

H. Kunita, Stochastic flows and stochastic differential equations. Cambridge ; New York :
Cambridge University Press, 1990.

T. Ozgokmen, T. Iliescu, P. Fischer, A. Srinivasan and J. Duan. Large eddy simulation of
stratified mixing in two-dimensional dam-break problem in a rectangular enclosed domain.
Ocean Modeling 16 (2007), 106-140.

S. Peszat, Large deviation estimates for stochastic evolution equations. Prob. Theory Rel.
Fields. 98 (1994), 113-136.

J. Ren and X. Zhang, Freidlin-Wentzell’s large deviations for homeomorphism flows of non-
Lipschitz SDEs. Bull. Sci. Math. 129 (2005), 643-655.

B. L. Rozovskii, Stochastic Evolution Equations. Kluwer Academic Publishers, Boston, 1990.
R. Sowers, Large deviations for a reaction-diffusion system with non-Gaussian perturbations.
Ann. Prob. 20 (1992), 504-537.

S. S. Sritharan & P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations
with multiplicative noise, Stoch. Proc. and Appl. 116 (2006), 1636-1659.

R. Temam, Navier-Stocks Equations and Nonlinear Functional Analysis, 2nd Edition, STAM,
Philadelphia, 1995.

E. Waymire & J. Duan (Eds.), Probability and Partial Differential Equations in Modern Applied
Mathematics. Springer-Verlag, New York, 2005.

W. Wang & J. Duan, Reductions and deviations for stochastic partial differential equations
under fast dynamical boundary conditions. Stochastics and Dynamics, Submitted, 2007.

J. Zabczyk, On large deviations for stochastic evolution equations. Stochastic Systems and
Optimization. Lecture Notes on Control and Inform. Sci., Springer, Berlin, 1988.

(J. Duan) DEPARTMENT OF APPLIED MATHEMATICS, ILLINOIS INSTITUTE OF TECHNOLOGY,
CHIcAcO, IL 60616, USA
E-mail address, J. Duan: duan@iit.edu

(A. Millet) SAMOS-MATISSE, CENTRE D’ECONOMIE DE LA SORBONNE (UMR 8174), UNI-
VERSITE PARIS 1, CENTRE PIERRE MENDES FRANCE, 90 RUE DE TOLBIAC, F- 75634 PARIS CEDEX
13, FRANCE and LABORATOIRE DE PROBABILITES ET MODELES ALEATOIRES (UMR 7599), UNI-
VERSITES PARIS 6-PARIS 7, BOITE COURRIER 188, 4 PLACE JUSSIEU, 75252 PARIS CEDEX 05,
FRANCE

E-mail address, A. Millet: amillet@univ-parisl.fr and amil@ccr.jussieu.fr



