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Abstract 

In the Bose-Einstein condensation of interacting atoms or molecules such as 87Rb, 
23Na and 7Li, the theoretical understanding of the transition temperature is not always obvious 

due to the interactions or zero point energy which cannot be exactly taken into account. The 

S-wave collision model fails sometimes to account for the condensation temperatures. In this 

work, we look at the problem within the nonextensive statistics which is considered as a 

possible theory describing interacting systems. The generalized energy Uq and the particle 

number Nq of boson gas are given in terms of the nonextensive parameter q. q>1 (q<1) 

implies repulsive (attractive) interaction with respect to the perfect gas. The generalized 

condensation temperature Tcq is derived versus Tc given by the perfect gas theory. Thanks to 

the observed condensation temperatures, we find q ≈ 0.1 for 87Rb atomic gas, q ≈ 0.95 for 7Li 

and q ≈ 0.62 for 23Na. It is concluded that the effective interactions are essentially attractive 

for the three considered atoms, which is consistent with the observed temperatures higher than 

those predicted by the conventional theory. 
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Since 1995, the creation of Bose-Einstein condensation (BEC) in dilute atomic gases 

of 87Rb [1], 7Li [2] and 23Na [3] and others has stimulated a great deal of interest in the 

statistical investigation of interacting (imperfect) quantum particles systems. It is realized that 

the conventional Bose-Einstein statistics (BES) sometimes fails to yield the observed value of 

the transition temperature Tc. A good example is 4He for which the observed transition 

temperature is Tc = 2.17K and the theoretical one is Tc = 3.10K. For the dilute atomic gases 

trapped in harmonic potential mentioned above, there are also significant differences between 

the observed and theoretical Tc [1][2][3]. In addition, the non interacting gas picture gives an 

atom velocity distribution of the condensate which is not consistent with that observed in the 

atomic vapour [1][3].  

These failures are obviously due to the interaction between the particles neglected in 

BES. One of the treatments taking into account this interaction is proposed by Huang [4]   

with following approximations at very low temperature: 1) the particle interaction takes place 

through binary collision (short term interaction); 2) the effective interaction is weak; 3) a 

particle sees only average effect of the interaction (mean field); 4) only first order 

perturbation is considered. On this basis, Huang has given the interaction energy [4] 

δU ≈  
m

a 24 hπ   where a is called scattering length of S-waves of the atomic collision and m 

is the particle mass. In general, a is positive for predominantly repulsive interaction and 

negative for predominantly attractive one. For 87Rb atomic vapour at low temperature, a = 

200a0 (repulsive) [1], for 23Na gas, a = (92 ± 25)a0 (repulsive) [3] and for 7Li gas,                   

a = (-27±0.8)a0 (attractive) [2] (a0 is the Bohr radius). This theory has problem with 7Li gas 

because a < 0 leads to imaginary physical quantities of the gas [2][3] making the BEC of 7Li 

dilute gas impossible.  

In this work, we try to study the interacting quantum gas within nonextensive 

statistical mechanics (NSM) [5][6][7] which is considered as a possible theory for interacting 

system. Within NSM, a boson distribution is given by[8] 
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where nq is the average occupation number at a state with energy ε and chemical potential μ 

and the parameter q is a positive real number. NSM recovers BES when q = 1. In the q ≠ 1 

case, the internal energy of the system varies as q changes. According to previous 
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results[9][10], the interactions are repulsive (or attractive) for q > 1 (or q < 1). In what 

follows, this formalism will be applied to the dilute gases of 87Rb, 7Li and 23Na atoms trapped 

in harmonic potentials reported in [1][2][3].  

For imperfect boson gas trapped in a three-dimensional harmonic potential 
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condition [5]. For q > 1, xq = ∞ and yq depends on the living-space of the particles. If we let 

the quantum mechanical living space tend to infinity, then yq →∞ [11]. However, for large x 

and y, q must be limited in order that the integral (3) converges. For this purpose, we write the 

integrand as 
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leads to q<
3
4  for the convergence of the integral (note that q<

3
5  for free particle model 

[9][10]). Eq.(3) can be written as follows: 

N = N0 + QIqN(0) (4) 

where N is the total trapped particle number and 
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2
3

= , 32
3

3 )()()(
ωhh

kT
K
mkTQ ==  and 

1)])(1(1[

4)(
1

1

2/12/1

00
−−+−+

∫∫=
−q

yx

q

yxq

dydxyxNI
qq

υ
π

υ  (6) 

The critical temperature Tcq of Bose-Einstein condensation is defined by 

Q
NNIq =)0(  (7) 

So that 



   

 4

3/1)
)0(

(
NI
NkT

q
cq ωh= . (8) 

where ω is the average trapping frequency, h  the Planck constant and k the Boltzmann 
constant. The variation of the integral )0(NIq  with increasing q is given in Figure 1. 
 
 

  
 

Figure 1, (a) q variation of  integral 
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If T < Tcq (μ = 0), we can write: 
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which gives the percentage of degenerated (condensed) particles when T < Tcq. In the case of 

q = 1, Eq.(7) gives the conventional result of BEC: 

(a) (b) 
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From Eqs.(7) and (12), we can straightforwardly find the relation between the generalized 

critical temperature Tcq and the conventional one Tc: 
3/1
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From the q-dependence of Iq(0) shown in Figure 1a, we can calculate the variation of Tcq or 

Tcq /Tc with increasing q. This Tcq behaviour is plotted in Figure 1b. Note that Tcq = 0 for q = 

3
4 = 1.333. Note that Eq.(11) can be written as  
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Which is plotted in figure 2.  

 

 

Figure 2, The variation of the ratio 
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 Now let us consider the internal energy of the systems 
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With the same variable changes as in Eq. (3), Eq. (15) can be recast as 
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From Eq. (7), Eq.(16) can be written as follows: 
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With the same method as for Eq.(3), we can see that Uq diverges for q ≥ 6/5, i.e. the system is 

no longer stable due to the strong repulsive interaction represented by q larger than unity. 

  

Figure 3, (a) q variation of  integral 
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 Numerical evaluation shows that IqU(0) for T < Tcq is a monotonic increasing function 

of q up to q = 1.2 at which it diverges (see figure 3a). When q = 1, I1U(0) = 3.25 and U1 = 

3.25QkT = 2.7NkT (conventional value). The numerical result of Eq.(18) is plotted in Figure 

2b for υ=0. It is worth noticing in figure (3b) that 11 7.2 ≥≤ ≤≤ qq UNkTU . This means that, 

with respect to the conventional condensate (U1 = 2.7NkT), the neglected interaction is 

repulsive for q > 1 and attractive for q < 1. This point of view will help us to understand the 

differences between the observed transition temperatures and theoretical ones given by the 

conventional BES. In what follows, the q-variation of Tcq can be used to find the experimental 

value of the BEC temperature.  

  For 87Rb gas, the theoretical Tc = 74nK (calculated from Eq.(12) with Nc = 2×104 

observed at the transition). Let Tcq = 170nK, the observed condensation temperature[1], from 

Eq.(13), we obtain IqN(0)=1.202/2.2973=0.0991 corresponding to q≈0.1. This means that the 

interaction represented by q is attractive making it possible to observe the condensation at a 

higher temperature than the theoretical prediction without interaction. 

For 23Na gas, Tc = 1350nK (calculated with observed Nc = 15×106 and ω=2π×123 Hz) and 

Tcq = 2000nK (observed temperature[3]), which yields IqN(0)=1.202/1.4823 =0.37 

corresponding to q≈0.62, and implies an attractive interaction as well. 

For 7Li gas, Tc = 386nK (calculated with observed Nc=2×105 and ω=2π×146 Hz) and Tcq = 

400nK (observed temperature)[2] yield IqN(0)=1.202/1.0363 =1.08 and q ≈ 0.95 implying a 

weak attractive interaction.   

The conclusion of this work is: 

1) The three observed transition temperatures are all higher than the theoretically 

predicted values. So it turns out that the empirical values of q are all smaller than unity, which 

means there are attractive interatomic interactions in the three condensates. These attractions 

make the particles easier to be condensed at higher temperatures than those predicted by BES. 

2) Above interpretation seems natural and coherent, but it is in conflict with Huang’s 

theory for 87Rb and 23Na because these gases have positive scattering length a corresponding 

to repulsive interaction with δU>0. In our opinion, repulsive interaction would make the 

particles more difficult to be condensed hence need a lower transition temperature than 

predicted. This is not the observed cases. However, considering the experimental uncertainty 

and the crude approximation in the theory of Huang, we perhaps have to wait for future 

experimental results on other properties of these condensates which may shed light on this 
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doubt, i.e., attractive or repulsive interaction in the condensates which have higher Tc than that 

predicted by BES. 

3) This work makes it possible to give a clear physical content to the parameter q of NSM 

which can be used to represent neglected interactions in the treatment of perfect gas like 

model of NSM. However, in view of the uncertainty of the experimental measurements, the q 

values found in this work are also subject to uncertainty. Further study with more precise 

experimental results would be useful to confirm the present work. 
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