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Shear induced crystallization of an amorphous system
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The influence of a stationary shear flow on the crystallization in a glassy system is studied by
means of molecular dynamics simulations and subsequent cluster analysis. The results reveal two
opposite effects of the shear flow on the processes of topological ordering in the system. Shear
promotes the formation of separated crystallites and suppresses the appearance of the large clusters.
The shear-induced ordering proceeds in two stages, where the first stage is related mainly with the
growth of crystallites, whereas the second stage is due to an adjustment of the created clusters and
a progressive alignment of their lattice directions. The influence of strain and shear rate on the
crystallization is also investigated. In particular, we find two plausible phenomenological relations
between the shear rate and the characteristic time scale needed for ordering of the amorphous system
under shear.

PACS numbers: 64.70.Pf, 05.70.Ln, 83.50.-v

I. INTRODUCTION

Most liquids, under cooling, undergo a first order
transition to a crystalline phase. The classical view
is that this transition takes place through an homoge-
neous nucleation process and can be reasonably well de-
scribed in the framework of classical nucleation theory
[1, 2, 3, 4, 5, 6]. Nucleation theory is based on the fact,
that a nucleation event is an activated process, taking
place on time scales much larger than the characteristic
time scale of the microscopic dynamics. The free energy
of forming a crystalline embryos from the metastable sur-
roundings is defined by a positive surface and a negative
bulk contributions. The surface term corresponds to the
cost in free energy for creation of an interface between
parent and incipient (say, crystalline) phases, whereas
the bulk term is proportional to the volume of the nu-
cleus. The crystal size, wherein the free energy reaches
a maximum and the system begins to crystallize, defines
the critical nucleus.

With the increase of the degree of supercooling ∆T the
description of the transition towards the ordered phase
becomes more complicated. On the one hand, the height
of nucleation barrier decreases with supercooling ∆T as
1/∆T 2, so that at supercooling ∼ 40% and higher a very
fast crystal nucleation could be expected [7]. On the
other hand, observations at a very large supercooling in-
dicate nascent droplets that exhibit a ramified structure
[8] and a crystallization process with a more extended,
collective and spatially scattered character that may be
attributed to a spinodal regime [9]. Such tendencies are,
however, balanced by the kinetic slowing down, which
makes the ordering process more and more difficult to ob-
serve as the temperature is lowered. In the limit, where
the system is deeply supercooled and becomes glassy,
crystal formation is completely unobservable on exper-
imental time scales.

The application of external field on a glassy ma-
terial may change considerably this picture of nucle-

ation. What influence has an external forcing, such as
shear flow and/or strain, on the nucleation process of a
glass? Experimental studies of amorphous (co)polymers
reveal the appearance of shear-induced crystallization
[10, 11, 12, 13]. This is verified by molecular dynamics
simulations, which provide some evidence for an increase
of ordering in a sheared polymeric and model binary
glasses [14, 15]. Recently, results of molecular dynam-
ics simulations showed that the oscillating shear strain

can promote crystallization in a model jammed systems
[16]. However, the influence of shear rate and strain on
the ordering processes as well as the possibility of crys-
tallization under stationary shear have remained unclear.

At a moderate supercooling, simulation results on the
sheared colloidal melts of Refs. [17, 18] demonstrate the
suppression of nucleation by a homogeneous shear flow.
More precisely, they reveal that the probability of the
nucleation decreases, while the size of critical nuclei in-
creases with the shear rate. In a glassy systems at low
temperatures, on the other hand, it is reasonable to sug-
gest that the external drive can activate dynamical pro-
cesses [19, 20]. A moderate external shear field will in-
crease the local diffusivity in the system, hence having
a positive influence on the kinetic factors for nucleation,
and thereby it will trigger crystallization. However, a
continued shear may destroy a crystalline nuclei as they
form and a steady nonequilibrium state can be expected.

In the present work we focus on the influence of a
stationary shear on the ordering processes in a glassy
system. In Sec. II we describe our model system and
the analysis used to identify crystallinity and solid-like
clusters. The simulation results and outcomes of cluster
analysis are shown in Sec. III, where we also study the
influence of strain and shear rate on the ordering. We
finish in Sec. IV with a discussion of the main results.
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II. SYSTEM AND PROCEDURES

Our system consists of 23328 particles interacting
through a standard truncated and shifted Lennard-Jones
potential

U(r) =
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(1)

ǫ and σ are the characteristic energy and length scales,
and rc = 2.5σ is the cutoff distance. The following re-
duced units are used in this work. The time is in units
of τ = σ

√
m/ǫ, where the mass m is set to unity. All

distances are given in units of σ. The temperature is in
units of ǫ/kB, whereas the pressure and the stress are in
units of ǫ/σ3. The time step △τ used in our simulations
is 0.005τ .

We start with a system equilibrated in the liquid state
at the temperature T = 1.65ǫ/kB in a cubic simulation
box (V = L3 and L = 30.2327σ) with periodic bound-
ary conditions in all directions. After this, the system
is quenched to the temperature T = 0.15ǫ/kB within
a time interval t = 2.5τ . In the case of argon atoms
with the Lennard-Jones parameters ǫ/kB = 120 K and
σ = 3.4Å this corresponds to a cooling rate ∼ 1013 K/s
[21]. After such a rapid quench, the system at this tem-
perature is in a glassy state [22, 23, 24, 25]. This is
evidenced by the zero slope of mean square displacement
on the time scale of our simulations, which is a signature
of “structural arrest”. The disordered character of the
structure is also evident from the split second peak of
the pair distribution function, typical of an amorphous
material.

Before shearing, the system is allowed to ”age” during
t = 10 000 τ without any external forcing. In order
to shear the system, we create two parallel solid walls
by freezing all the particles in the x-z plane over the
range of three inter-particle distances from both ends of
the simulation box in the y-direction. Both walls are
amorphous. By using walls, we can impose an average
strain rate without any assumptions about the resulting
flow inside of the sample. A snapshot of the simulation
cell is presented in Fig. 1. Twelve independent samples
were prepared with the same procedure.

A constant shear rate γ̇ is then applied by moving in
the x-direction all the atoms of the top wall with the
instantaneous velocity

Uwall = γ̇Lyex, (2)

whereas the particles of the bottom wall remain fixed;
Ly is the distance between the walls. Periodic bound-
ary conditions are applied along the x and z directions
only. All the results are for a constant normal pressure
Pyy = 1.1867ǫ/σ3 (corresponding to the pressure ob-
served initially). Temperature is controlled by rescaling

Figure 1: (Color online) A snapshot of the simulation cell.
Two parallel amorphous walls (dark particles) restrict the
sheared system. The particles of the top wall are removed
with the velocity proportional to the distance between the
walls Ly , which is variable with the time due to the normal
pressure Pyy. The particles of the bottom wall are fixed.

of velocity component of the particles along the neutral
z-direction, which is perpendicular to the shear x and the
velocity gradient y directions.

In order to identify the local structure and, in particu-
lar, the appearance of solid-like clusters, we use the local
order analysis introduced originally in the work of Stein-
hardt et al. [26] and developed by Frenkel and co-workers
[7, 27, 28]. An important advantage of this method is
that (i) it allows one to recognize the crystallinity regard-
less of a specific structure, and (ii) the crucial parameters
here, such as local and global order parameters, are ro-
tationally invariant, so that the orientation of clusters in
space is irrelevant.

First of all, the local surroundings of each atom can be
characterized by a (2×6+1)-dimensional complex vector
with the following components:

q6m(i) =
1

Nb(i)

Nb(i)∑

j=1

Y6m(θij , ϕij), (3)

where Y6m(θij , ϕij) are the spherical harmonics, Nb(i)
denotes the number of the nearest neighbors of particle
i; θij and ϕij are the polar and azimuthal angles formed
by the radius-vector rij and some reference system. We
define “neighbors” as all atoms located within a given
radius rc = 1.5σ around an atom i, i.e. |rij | < rc, where
rc corresponds practically to the first minimum in the
pair distribution function. The local orientational order
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parameter can be defined for each atom i as

q6(i) =

(
4π

13

6∑

m=−6

|q6m(i)|2

)1/2

, (4)

which is a rotationally invariant. Thus, the global orien-
tational order parameter can be defined as an average of
q6m(i) over all N particles:

Q6 =
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1/2

.

(5)
For perfect fcc, bcc and hcp systems one has Q6 = 0.5745
and Q6 = 0.5106 and Q6 = 0.4848, respectively, whereas
in a fully disordered system in the limit of large sizes,
(e.g. a liquid) Q6 is close to zero [29]. Hence, an increase
of this quantity provides the evidence for the formation
of local crystallites. To estimate the degree of ordering
(crystallinity) in our system we use, along with Q6, the
potential energy as well as the number of “solid-like” par-
ticles.

The occurrence of ordered structures can also be ob-
served in the behavior of the radial distribution function.
However, this function corresponds to the averaged result
for the whole system, and, as a consequence of this, can
be insensitive to the appearance of a few local clusters.

For the study of local structures we apply the following
cluster analysis [7]. For every pair of nearest neighbors,
say i and j, the following condition is considered:

∣∣∣∣∣

6∑

m=−6

q̃6m(i)q̃∗6m(j)

∣∣∣∣∣ > 0.5, (6)

where q̃6m(i) is the complex vector q6m(i) defined by Eq.
(3) and normalized in accordance with

6∑

m=−6

q̃6m(i)q̃∗6m(i) = 1. (7)

Condition (6) allows one to verify that atom j belongs to
an ordered structure around atom i. If atom i has seven
or more neighbors satisfying the condition (6), then this
atom is considered as a solid-like, i.e. it is included in an
ordered crystalline structure.

III. RESULTS

We now turn to the results, which quantify the effect
of shear on an initially amorphous sample. The time evo-
lution of the global orientational order parameter Q6 for
various values of the shear rate γ̇ is shown in Fig. 2.
Note that the results presented here have been averaged
over different runs. From these results, it appears clearly
that the degree of order in the system is enhanced by
shear. Moreover, at the larger values of the shear rate γ̇

Figure 2: (Color online) The evolution of the global orien-
tational order parameter Q6 at the various shear rates γ̇ as
a function of time. The shear rate increases from bottom to
top. The full lines are linear fits to the data. The arrow
indicates the value of Q6 for a perfect fcc structure.

the ordering takes place rather rapidly, Q6 levels off af-
ter this initial transient. For γ̇ = 0.01 and 0.005τ−1 the
order parameter reaches a plateau value with Q6 ≈ 0.42
over the time scale of observation. At lower values of γ̇
the rate of ordering (defined as the time derivative of the
order parameter) is lower and decreases with the time,
as it is clear seen from the change in slope in the curves
shown in Fig. 2. As a result, the time window t = 2500τ
presented in Fig. 2 is not sufficient to achieve a maximal
ordering at slow shear rates. It is particularly notewor-
thy that the shear can initially prevent the formation of
small clusters, which would appear even in the absence of
shear. This week suppression effect is observed for very
small shear rates γ̇ = 0.0001 and 0.000 01 τ−1, where the
values of Q6 are lower in comparison with the case of a
sample at rest. Nevertheless, the increase of the order
parameter with time is clearly detected even for these
small shear rates. Our first conclusion is therefore that
shear enhances crystallinity with a rate, which depends
on the shear rate.

Although the largest value of the order parameter Q6

obtained by shearing the glass is low in comparison with
Q6 of a perfect fcc structure, it indicates a high level of
crystallinity in the system. The formation of crystalline
ordered structures in a sample can be also observed from
the radial distribution function as shown in Fig. 3(a) for
a particular shear rate γ̇ = 0.001 and different times after
starting up of the shear. In the first three curves the ap-
pearance of crystalline structures is evident from the rise
of the extra-peak between the first and second maxima in
the distribution, which is a typical signature of fcc struc-
tures. The pair correlation function calculated at large
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times shows that the order extends over large distances,
with oscillations extending up to r > 4σ. Such a long-
range ordering could also be associated with layering of
the system under shear. To check this, we evaluated the
density profiles at different times as a function of the dis-
tance from the walls. As can be seen in Fig. 3(b), which
presents the density profiles at t = 500 and 2500τ (the
curves for intermediate times are very similar to those
presented in Fig. 3(b)), the transverse order is present,
but not particularly pronounced.

Figure 3: Structural characteristics of the sample under shear
(at the shear rate γ̇ = 0.001τ−1): (a) Radial distribution
function at the different times after starting the shear flow:
t = 0, 250, 500, 750, 1500 and 2500τ (from bottom to top).
The curves are shifted upwards for clarity. (b) Density profiles
for two different times as averaged over a time window of 10τ .

Moreover, the layering is weaker for t = 2500τ , whereas
the pair correlation function displays the more pro-
nounced structure. This observation leads to the con-
clusion that the long-range order observed in the pair
correlations is caused mainly by the formation of a crys-
talline clusters.

A. Strain and strain rate dependance

The strain dependence of the global order parameter
Q6 is shown in Fig. 4. It can be seen that the order
parameter increases with the strain γ for all values of the
shear rate. Moreover, the evolution of the order param-
eter with strain is clear separated into two steps. The
first stage, during which the the order parameter rises
rapidly, is shear rate dependent. After this fast increase,
Q6 reaches an “universal” (shear rate independent) be-
havior shown by a straight dashed line in Fig. 4. At
this stage, the order parameter demonstrates a very slow
increase and eventually levels off at large strains.

In order to quantify the influence of shear rate on the
ordering, we introduce the “ordering strain” γm. This
quantity defines the strain scale, where the evolution of
Q6 merges with the universal behavior shown by a dashed
line in Fig. 4. The shear rate dependence of γm is plotted
in the inset of Fig. 4. The data for γm(γ̇) can be fitted
either by a power-law or by a logarithmic dependency on
the strain rate:

γm ∝ γ̇1+n, n = −2/3, (8a)

γm = γ0 +
1

2
ln(γ̇), γ0 = const. (8b)

It should be noted, that the power law behavior is sup-
ported by the idea that the typical relaxation time tα of
a sheared glassy system decreases with the strain rate as
γ̇−2/3 (see Ref. [30]). Assuming that a similar depen-
dency holds in our crystallizing system and the initial
rise of Q6 corresponds to a typical relaxation time, we
obtain

tm ∼ γ̇−2/3. (9)

where tm = γm/γ̇. Such a power-law decay of the crys-
tallization time with the shear rate could also be related
to the one found experimentally in Refs. [11, 13].

Although the possible relation between the characteris-
tic time scale tα and the time of ordering tm under shear
is attractive [30], it is seen in the inset of Fig. 4 that
the power-law with (8a) does not provide a perfect fit of
γm at shear rates γ̇ ≈ 0.01τ−1 and higher, whereas the
logarithmic dependence (8b) gives a good fit to the data
for all values of the shear rate.

We finally discuss our results with regard to recent
observations reported by Duff and Lacks [16]. These au-
thors studied the ordering of a similar system under an
oscillatory strain in the low temperature and low shear
rate limit. A degree of ordering comparable to the one
observed in our study was obtained after two cycles with
the amplitude 0.25. As a result, it would correspond to a
total strain γm = 0.5, which is comparable to the values
obtained by us at the lowest shear rates.
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Figure 4: (Color online) Main: Strain dependence of the
global orientational order parameter Q6 at the different shear
rates γ̇ = 0.0001, 0.0005, 0.001, 0.005 and 0.01τ−1 (from left
to right). The correspondence between curves and shear rates
is the same as in Fig. 2. The dashed line is the linear interpo-
lation, indicating the steady behavior (plateau) in the strain
dependence of order parameter. Inset: Shear rate dependence
of the strain γm, at which the order parameter reaches the
plateau value. Errors are defined by the change of slope in
Q6(γ). The solid and dotted curves are the logarithmic and
power-law approximations, respectively (see text).

B. Nature of the semi-crystalline state

Although the system clearly becomes more ordered un-
der the influence of strain, the degree of order achieved
by our system is low in comparison to that of a perfect
crystal. A very remarkable fact is that, at large strains,
the order parameter Q6 appears to be dependent only
on strain and not on strain rate. This observation in-
dicates some “universality” of the semi-crystalline state
created in the system. This observation is, however, eas-
ily explained by considering the velocity profiles in the
sheared systems. The velocity profiles presented in Fig.
5 exhibit a strong localization of the shear in two shear
bands located near the solid walls. The semi-crystalline
part of the sample, on the contrary, flows with an almost
uniform velocity (although some plastic activity is also
taking place in this “non-flowing” part). The situation
described here is very similar to the shear localization
observed in a flowing glass by Varnik et al. [31]. The
nanocrystalline solid is submitted to a stress, which is in-
sufficient to cause flow, while two strongly fluidized bands
sustain the shear entirely. What is remarkable here, this
is a high value of the shear rate and the stress, at which
this coexistence is observed (see Fig. 6). While the yield
of the solid in Ref. [31] was observed for a strain rate
slightly above 0.001τ−1 and a stress of 0.6ǫ/σ3, our re-
sults indicate here a yield stress σY > 0.8ǫ/σ3.

We expect that this nanocrystalline state consists in
an assembly of crystallites with disordered orientations.
This set of crystallites can be quantitatively described by

Figure 5: (Color online) Rescaled velocity profile as a function
of distance from the bottom (unmoved) wall. Main: shear
with γ̇ = Uwall/Ly = 0.01τ−1 at different points of the strain
γ above γm = 3. The broken line corresponds to u/Uwall =
0.36. Inset: shear rate γ̇ = 0.001τ−1 at two different strains
above γm. Results are averaged over the time window t =
∆γ/γ̇, where ∆γ = 0.01 is the strain scale. All runs exhibit
a similar behavior.

means of the cluster analysis presented in Sec. II. The
results of this analysis are shown in Fig. 7 as a function
of the strain γ for a particular shear rate, since the results
for other values of the shear rate are very similar. The

Figure 6: Connected empty circles: Shear stress versus strain
rate in the sheared part of the velocity profiles shown in Fig.
5. Connected full circles: stress as a function of the average
shear rate in the sample. These curves are indicative of a
coexistence between a rapidly flowing shear band and a non-
flowing solid below its yield stress.

sample is imperfectly crystallized in such a way that only
∼ 80% of the particles are involved in crystalline clus-
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Figure 7: Different characteristics vs. strain at the shear rate
γ̇ = 0.001τ−1 after a single run: (a) Number of solid-like par-
ticles in a whole system (connected full circles) and potential
energy per particle (solid line). (b) Number of crystallites
(connected open circles). The dashed line corresponds to the
value 415.

ters. Obviously, the rapid build up of crystalline order
between γ = 0 and γm corresponds to a rapid decrease in
the potential energy [see Fig. 7(a)]. The next interest-
ing feature is that the number of solid-like clusters [see
Fig. 7(b)], after a significant growth with the strain, re-
mains essentially constant, whereas the evolution of the
potential energy and of the order parameter indicates a
continued ordering process in the system. This leads to
the conclusion that the system under shear decomposes
rapidly into a set of crystalline “grains”. The subsequent
evolution consists in rearrangements involving the grind-
ing of grain boundaries and the alignment of neighboring
grains without any significant coarsening.

Another interesting information about the final state
of the system can be extracted from the size distribution
of the crystalline grains, which is presented in Fig. 8
at three different shear rates. As can be seen from these
histograms, the distribution is dominated by small grains
involving less than 50 particles. At first sight, the distri-
bution appears to be, within the accuracy of our data,
shear rate independent. This is consistent with the uni-
versal behavior of the order parameter observed in Fig. 4.
Nevertheless, the distribution displays a relatively slow
decaying tail for cluster sizes larger than 100 particles.
This decay can be well approximated by a power law
(see inset of Fig. 8). Closer examination reveals that
the weight of this tail depends weakly on shear rate and
that larger clusters can be observed at lower shear rates.
Unfortunately, the small number of large clusters makes

Figure 8: (Color online) Main: Cluster size distribution at the
different shear rates γ̇ = 0.01, 0.001 and 0.0001τ−1 (dashed,
thin and thick lines, respectively) and for a strain of 400%,
where the system is characterized by the order parameter
Q6 ≈ 0.37 for all shear rates (see Fig. 4). Each histogram
is averaged over different runs. Inset: The same distribution
in log-log representation. The solid line is the interpolation
of the tail of the distribution at γ̇ = 0.01τ−1 by a power-law
dependence.

a systematic investigation of this effect difficult.

IV. DISCUSSION: SHEAR SUPPRESSION

VERSUS SHEAR ENHANCEMENT

Our results demonstrate clearly that the shear in-
creases initially the tendency of a one-component amor-
phous system towards crystalline order. This behavior
should be discussed in the context of the recent studies
by Blaak and Löwen, who demonstrated on the contrary
a shear suppression of the nucleation rate at moderate
undercooling [17], and of the recent results of Ref. [9]
concerning the evolution of the nucleation barrier with
temperature. Clearly, the main influence of shear at low
temperature will be on the kinetic, rather than on the
thermodynamic, aspects of the transition. In the absence
of shear, the diffusivity is essentially zero, so that the
system does not evolve with time. However, according
to the classical nucleation picture, one would expect the
appearance of crystallinity in the form of a few isolated
nuclei after a significant time lag associated with the free
energy barrier. Our results, on the contrary, indicate an
instantaneous increase of crystalline order as soon as the
shear is started, that is more consistent with a spinodal
description. The system is rapidly driven towards a new
energy minimum as soon as a mobility is reinstalled by
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the shear flow. The order appears uniformly inside the
system, which relaxes locally towards a crystalline struc-
ture on a time scale, which is characteristic of a sheared
glass.

After this initial relaxation, a much slower stage of
defect and grain boundary annealing takes place. Dur-
ing this second stage, the state of the system appears
to be independent on the strain rate and is determined
by the amount of strain only. The system consists of
two rapidly flowing sheared bands, separated by a slab
of a nanocrystalline solid, which undergoes a very pro-
gressive evolution through plastic rearrangements. This
nanocrystalline solid appears to have a high yield stress
in comparison with a similar Lennard-Jones glass.

It is remarkable that, although the flow rate at the
boundary increases, the evolution of the solid slab seems
to be insensitive to this flow rate. A possible explanation
is in the fact that the energy in a yield stress system is
dissipated by the flow, which will serve to activate an-
nealing processes in the solid slab. As a result, the local
structural transformations are defined essentially by de-
formations and insensitive to strain rate.

The non-flowing part of the system can be mainly de-
scribed as a collection of the crystalline grains of rela-

tively small size. The stationarity in the number of crys-
tallites indicates that the disruption of crystalline order
by the shear at the boundaries compensates completely
the coarsening process, which would be expected in a
system with a nonzero atomic diffusion.

Finally, it appears that the shearing of an initially
amorphous one-component system constitutes a repro-
ducible way to obtain a nanocrystalline state, which was
sometimes taken in the past as a possible model of an
amorphous systems. It will be interesting to study such a
state for its structural, vibrational and rheological prop-
erties, that should be intermediate between those of a
glass and of a perfect crystal.
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