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Abstract

We lay down the fundations of the theory of groups of finite Morley

rank in which local subgroups are solvable and we proceed to the local

analysis of these groups. We prove a main Uniqueness Theorem, analogous

to the Bender method in finite group theory, and derive its corollaries. We

also consider homogeneous cases and study torsion.
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1 Introduction

In the Classification of the Finite Simple Groups [GLS94], the study of minimal
simple groups has been a fundamental minimal case for the whole process. The
local analysis of these finite simple groups, in which each proper subgroup is
solvable, has been delineated by J. Thompson, originally for the Odd Order
Theorem [FT63, BG94]. This work has later been used to get a classification of
minimal simple groups in presence of elements of order 2, and this classification
has then been slightly generalized to the case of finite “locally solvable” groups,
that is finite groups in which each normalizer of a nontrivial solvable subgroup is
also solvable. The simplicity assumption was replaced by a mere nonsolvability
assumption. This full classification, with only very few extra groups in addition
to the minimal simple ones, has been published in the series of papers [Tho68,
Tho70, Tho71, Tho73].

The present paper is the first of a series containing the same transfer of
arguments from the minimal simple case to the locally solvable case in the
context of groups of finite Morley rank. Indeed, a large body of work has been
accomplished in the last years about minimal connected simple groups of finite
Morley rank, that is connected simple groups of finite Morley rank in which
every proper definable connected subgroup is solvable, and we propose here to
transfer this work to the more general class of locally solvable groups of finite
Morley rank, that is groups of finite Morley rank in which N(A) is solvable for
each nontrivial definable abelian subgroup A.

As we prefer most of the time with groups of finite Morley rank to work in the
connected category, we will actually weaken this definition of local solvability
in the following three possible ways, by assuming solvability of the connected
components only of normalizers of nontrivial definable abelian groups A, in
which case we will use the terminology locally◦, and/or by considering nontrivial
definable connected abelian subgroups A only, in which case we will use the
terminology solvable◦. In particular, we will most of the time work with the
weakest definition of local◦ solvability◦, i.e. assuming only that N◦(A) is solvable
for each nontrivial definable connected abelian subgroup A of the ambient group.
In local◦ solvability we consider all nontrivial definable abelian (not necessarily
connected) subgroups A.

The only known infinite simple groups of finite Morley rank are algebraic
groups over algebraically closed fields, and a long-standing conjecture postulates
that there are no other such groups. Local solvability is a “smallness” condition
and as in Thompson’s final classification, the simplicity assumption is replaced
here generally by a mere nonsolvability assumption. In particular, the only
known nonsolvable connected locally◦ solvable groups of finite Morley rank are
of the form PSL 2 over some algebraically closed field K, and of the form SL 2

in the slightly more general locally◦ solvable◦ case. For example, if we consider
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in SL 3(K) the definable connected abelian subgroup

A =











t 0 0
0 t 0
0 0 t−2



 : t ∈ K×







,

then N◦(A) is a central product A · E where E is a definable connected sub-
group isomorphic to SL 2(K), so that N◦(A) is not solvable. More precisely, for
connected locally◦ solvable and locally◦ solvable◦ groups of finite Morley rank
there are in the classical algebraic case no other groups than PSL 2 and SL 2,
and in particular no groups of Lie rank 2 and more.

All the classes of locally solvable groups of finite Morley rank defined here
contain of course all solvable groups of finite Morley rank, groups of the form
PSL 2 or SL 2, but also many hypothetic configurations of semisimple so-called
bad groups of finite Morley rank which appear as potential counterexamples to
the main conjecture on simple groups.

Hence, all the results of the present papers will lead to a kind of trichotomy
(in a very large sense) for locally◦ solvable◦ groups as follows.

• Solvable groups.

• PSL 2 or SL 2.

• Semisimple bad groups.

In particular, the present work encapsulates the existing theory of solvable
groups of finite Morley rank on the one hand, and of minimal connected simple
groups on the other.

In this first paper we are going to recast all the theory of solvable and mini-
mal connected simple groups in this general context. In our second paper [DJ07]
we are going to concentrate on the case of groups with involutions. Contrarily
to the finite case, we cannot jump directly as in [Tho68] in the finite case to
the case of groups with involutions, as no analog of the Feit-Thompson theorem
is available in the context of groups of finite Morley rank. This is mostly due
to the possible existence of bad groups, and we refer to [Jal01a] for the con-
nection between the two problems. Our results towards algebraicity will only
be partial, even in presence of involutions, but with a very severe limitation of
nonalgebraic configurations. We refer to the introduction of [DJ07] for a more
precise description of the case with involutions.

The present paper contains a collection of results concerning the local analy-
sis of locally◦ solvable◦ and locally◦ solvable groups of finite Morley rank which
will be fully exploited in [DJ07]. That’s why it also contains no theorem easily
stated in the present introduction. The whole theory is naturally recasted in
terms of generous Carter subgroups with the appeal of [Jal06].

We will not consider the locally solvable/solvable◦ cases, which boil down
rather to finite group theory and hence to Thompson’s classification [Tho68]. We
will however insist on the differences between local◦ solvability, which in general
offers no new substantial phenomena compared to the minimal connected simple
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case, and the weaker local◦ solvabilty◦, where new phenomena can occur. This
is at least explained by the alternative SL 2 to PSL 2.

Terminology. A word should be said about the terminolgy adopted, as it might
be confusing with the more classical notion of local solvability. In general group
theory this refers usually to groups in which all finitely generated subgroups are
solvable. In finite group theory, a subgroup is called local if it is the normalizer
of a nontrivial p-subgroup for some prime p. This terminology goes back to
Alperin. In [Tho68] a group in which each local subgroup is solvable was called
an N -group, and Thompson’s classification was stated for nonsolvable N -groups.
We borrow the term “local” to speak of subgroups normalizing subgroups similar
to p-groups, and hence we hope that “locally solvable” is clear enough in this
context. We also note that a group of finite Morley rank in which every finitely
generated subgroup is solvable — the usual group theoretic notion — must be
solvable, and hence is locally solvable in our sense.

Historical remarks. A few historical remarks are necessary. Solvable groups of
finite Morley have been highly investigated, notably by Nesin and Frécon. As
mentionned already, this theory becomes incorporated to the present one.

With the ongoing work on simple groups of finite Morley rank with invo-
lutions, it became clear as corollaries of [Jal99] and [Jal01b] that there was no
“small” simple groups of finite Morley rank of mixed type, and that the only
specimen in even type was PSL 2(K), with K an algebraically closed field of
characteristic 2.

Then it was time to start the study of “small” simple groups of odd type,
even though there was almost nothing to start with. The fundations, notably the
notion of minimal connected simple group, were laid down in the preprint [Jal00]
which remained unpublished. It contained the first recognition of PSL 2 in
characteristic different from 2 in this context, though under strong assumptions
at that time. It also contained the embryo of local analysis of minimal connected
simple groups of finite Morley rank. The original lemma, which turned out
later to be an analog of the Bender method in finite group theory, was there
given in any characteristic. It has unfortunately been disseminated between
different characteristics later, and we will give here global forms and the general
Uniqueness Theorem in Section 4.1.

Because of the absence of a unipotence theory in characteristic zero at that
time, and in order to reduce the size of an overambitious project to manageable
size, the second author adopted the so-called “tameness” assumption for the
recognition of PSL 2 with the weakest expectable hypothesis in this context.
The nonalgebraic configurations were also studied in this tame context, and the
full analysis algebraic/nonalgebraic appeared in [CJ04].

In the meantime Cherlin suggested to develop a robust unipotence theory in
characteristic 0 for attacking certain problems concerning large groups of odd
type without the tameness assumption. This became the main tool in Burdges’
thesis [Bur04a] and this application corresponds to [Bur04b]. This new abstract
unipotence theory then allowed one to develop the local analysis of minimal
connected simple groups where the above mentionned uniqueness theorem fails
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[Bur07]. It was also Cherlin’s idea to use this in presence of involutions to study
other nonalgebraic configurations without tameness [BCJ07, Case II].

With a nice unipotence theory then available in any characteristic, the recog-
nition of PSL 2 started again in the context of minimal connected simple groups
of odd type without tameness, in the thesis of the first author [Del07b]. The
recognition of PSL 2 has then been obtained as in the tame case under the
weakest expectable assumptions and appeared in [Del07a]. Using this new ex-
perience for the algebraic case, the nonalgebraic configurations were studied in
[Del08], reaching essentially all the conclusions of [CJ04] in the general case.
The paper [DJ07] will at the same time improve and linearize the sequence
of arguments represented by [BCJ07, Del07a, Del08], and also greatly simplify
those in [Del08].

The final generalization from minimal connected simple groups to locally
solvable groups has been suggested by Borovik by analogy with finite group
theory.

Organization of the paper. Section 2 will contain background material, with
notably an emphasis on the abstract unipotence theory in groups of finite Morley
rank in Section 2.1 in continuation of [Bur06] and [FJ08]. We shall formalize
the notion of soapy subgroups, the finest approximation of unipotent subgroups
where all the finest computations will be done in [DJ07].

Section 3 will lay down the fundations concerning locally solvable groups of
finite Morley rank. In Sections 3.3 and 3.4 we will focus on the new phenomena
which can occur in the locally◦ solvable◦ case in comparison to the locally◦

solvable one.
Section 4 will concern the local analysis of locally solvable groups of finite

Morley rank, with in Section 4.1 the main Uniqueness Theorem (usually called
“Jaligot’s Lemma”) corresponding to the Bender method in finite group theory.
The analysis of a maximal pair of Borel subgroups from [Bur07], a parallel
technic, will follow in Section 4.3. We will also derive consequences of the
Uniqueness Theorem on generosity as in [CJ04].

Section 5 eventually concludes with several particular aspects concerning
homogeneous cases as well as torsion.

Notations and background. For the basic background on groups of finite Morley
rank we generally refer to [BN94]. The more recent [ABC08] is also a very
complete source. We will try to refer as much as possible to these when needed,
but we assume the reader familiar with certain background facts such as Zilber’s
generation lemma and its corollaries [Zil77] [BN94, §5.4], notably the definability
of subgroups generated by definable connected subgroups and corollaries on
commutator subgroups.

Fact 1.1 [BN94, Corollary 5.29] Let G be a group of finite Morley rank, H
a definable connected subgroup, and X an arbitrary subset of G. Then [H, X ] is
a definable connected subgroup of G.

We will also assume the reader familiar with the descending chain condition
on definable subgroups, the existence of connected components, the unique-
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ness of generic types in connected groups [Che79], and its immediate corollary
concerning actions on finite sets.

Fact 1.2 A connected group acting definably on a finite set fixes it pointwise.

If X is a subset, or a single element, of a group of finite Morley rank, we
denote by H(X) the definable hull of X , that is the smallest definable subgroup
containing X . In the litterature it is the notation “d(·)” which is commonly used,
but we prefer to keep the latter for certain integer-valued unipotence “d”egrees,
and instead use “H(·)” for “H”ulls which are definable subgroups.

If x and y are elements of a group, we write xy for y−1xy, and if X and Y
are two subsets we denote by XY the set of elements xy . (This notation might
be floppy, as we may for example use xG for the conjugacy class of x in G.) We
denote by N(X) the set of elements g such that Xg = X (with an index if one
wants to specify in which particular subset elements g are taken).

2 Background

2.1 Unipotence theory

For the following abstract unipotence theory in groups of finite Morley rank
[Bur04a, Bur04b, Bur06], we follow essentially the general exposition of [FJ08].
We denote by P the set of all prime numbers.

A decent torus is a divisible abelian group of finite Morley rank which co-
incides with the definable hull of its (divisible abelian) torsion subgroup. The
latter is known to be in the finite Morley rank context a direct product, with
p varying in P , of finite products of the Prüfer p-group Zp∞ [BP90], and by
divisibility decent tori are connected.

If p is a prime, a p-unipotent group of finite Morley rank is a definable
connected nilpotent p-group of bounded exponent.

A unipotence parameter is a pair

p̃ = (characteristic p, unipotence degree r) ∈ ({∞} ∪ P) × (N ∪ {∞})

satisfying p < ∞ if and only if r = ∞. A group of finite Morley rank is a p̃-group
if it is nilpotent and of the following form, depending on the value of p̃.

• if p̃ = (∞, 0), a decent torus.

• if p̃ = (∞, r), with 0 < r < ∞, a group generated by its definable inde-
composable subgroups A such that A/Φ(A) is torsion-free and of rank r.
Here a group of finite Morley rank is indecomposable if it is abelian and
not the sum of two proper definable subgroups. An indecomposable group
A must be connected [Bur06, Lemma 1.2], and Φ(A) denotes its maximal
proper definable conected subgroup.

• if p̃ = (p,∞), with p prime, a p-unipotent subgroup.
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We note that nilpotence of p̃-groups is imposed by definition, and that these
groups are in any case generated by definable connected subgroups, and hence
always connected by Zilber’s generation lemma [BN94, Corollary 5.28]. A Sylow
p̃-subgroup of a group of finite Morley rank is a maximal definable (connected)
p̃-subgroup.

The term “characteristic” for p in a unipotence parameter (p, r) clearly refers
to the characteristic of the ground field for p-unipotent groups in algebraic
groups when p is finite. When p is infinite and 0 < r < ∞, it refers to nontrivial
torsion-free groups, which are potentially additive groups of fields of character-
istic 0. When p is infinite and r = 0, i.e. for decent tori, it conveys no special
meaning. The term “unipotence degree” (one can also speak of “weight”) is
explained in Fact 2.12 below by the constraints on actions of such groups on
others.

A group of finite Morley rank is (p, r)-homogeneous if every definable con-
nected nilpotent subgroup is a (p, r)-group. We say that it is homogeneous if it
is (p, r)-homogeneous for some unipotence parameter (p, r). Following [Che05],
a divisible abelian (∞, 0)-homogeneous group of finite Morley rank is usually
called a good torus.

Fact 2.1 [FJ08, Lemma 2.17] Depending on the value of p̃, the p̃-homogene-
ity of a p̃-group is equivalent to the following:

(1) if p̃ = (∞, 0), to being a good torus.

(2) if p̃ = (∞, r), with 0 < r < ∞, to having only p̃-subgroups as definable
connected abelian subgroups.

(3) if p̃ = (p,∞), with p prime, then a p̃-group is always p̃-homogeneous.

Fact 2.2 [FJ08, Theorem 2.18] Let G be a connected group of finite Morley
rank acting definably on a p̃-group H. Then [G, H ] is a definable p̃-homogeneous
subgroup of H.

Proof. The main point is when the unipotence degree r of H satisfies 0 < r < ∞
and is proved in [Fré06a, Theorem 4.11]. When the unipotence degree of H is
infinite, this is just Fact 2.1 (3). Decent tori are centralized by any connected
group acting on them as an easy consequence of Fact 1.2 called rigidity of decent
tori (see Fact 2.12 (1) below). Hence [G, H ] is trivial when r = 0. �

Corollary 2.3 Let G be any p̃-group. Then Gn and G(n) are definable homo-
geneous p̃-subgroups for any n ≥ 1.

If G is a group of finite Morley rank and π̃ is a set of unipotence parameters,
we define

Uπ̃(G) = 〈Σ | p̃ ∈ π and Σ is a definable p̃-subgroup of G〉.
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The latter subgroup is always definable and connected by Zilber’s generation
lemma. When π̃ is empty it is trivial and when π̃ consists of a single unipotence
parameter p̃ we simply write Up̃(G). If p̃ = (p,∞) for some prime p, we also
write Up(G) for Up̃(G). A Uπ̃-group is a group G such that Uπ̃(G) = G.

Fact 2.4 [FJ08, Lemma 2.13] Let f : G −→ H be a definable homomor-
phism between two groups of finite Morley rank. Then

(1) (Push-forward) f(Uπ̃(G)) ≤ Uπ̃(H) is a Uπ̃-group.

(2) (Pull-back) Assume all unipotence degrees involved in π̃ are finite, or that
G is solvable. If Uπ̃(H) ≤ f(G), then f(Uπ̃(G)) = Uπ̃(H).

In particular, an extension of a solvable Uπ̃-group by a solvable Uπ̃-group is a
Uπ̃-group.

Fact 2.5 [Bur06, §3] Let G be a nilpotent group of finite Morley rank.

(1) G is the central product of its Sylow p-subgroups and its Sylow (∞, r)-
subgroups.

(2) If G is connected, then G is the central product of its Sylow p̃-subgroups.

Proof. The connected case corresponds to [FJ08, Theorem 2.7]. Without con-
nectedness we refer to the decomposition of G as the central product of a defin-
able divisible (connected) subgroup D and a definable subgroup B of bounded
exponent of [Nes91] [BN94, Theorem 6.8], and to the decomposition of a nilpo-
tent group of bounded exponent as the central product of its (definable) Sylow
p-subgroups. �

Fact 2.6 A p̃-group of finite Morley rank cannot be a q̃-group when q̃ 6= p̃.

Proof. It suffices to use the commutation provided by Fact 2.5 (2) to reduce
the problem to abelian groups. Then it follows easily from the definitions. �

The following fact is a variation on the usual normalizer condition in finite
nilpotent groups.

Fact 2.7 ([Bur06, Lemma 2.4], [FJ08, Proposition 2.8]) Let G be a p̃-
group and H < G a proper definable subgroup. If S1 and S2 denote the Sylow
p̃-subgroups of H and of NG(H) respectively, then S1 < S2.

Fact 2.8 [FJ08, Lemma 2.9] Let G be a group of finite Morley rank, S a
subset of G, and H a definable p̃-subgroup of G normalized by S. Then [H, S]
is a p̃-subgroup of H.
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Fact 2.9 Let p̃ be a unipotence parameter and q a prime number. Let H be a
p̃-group of finite Morley rank without elements of order q, and assume K is a
definable solvable q-group of automorphisms of H of bounded exponent. Then
CH(K) is a definable p̃-subgroup of H.

Proof. By descending chain condition on centralizers, CH(K) is the centralizer
of a finitely generated subgroup of K, and by local finiteness of the latter we
may assume K finite. In particular CH(K) is connected by [Bur04b, Fact 3.4].

When p̃ = (∞, 0), H is a good torus, and in particular (∞, 0)-homogeneous,
and the connected subgroup CH(K) is also a good torus. Otherwise, CH(K)
is also a p̃-group, by [Bur04a, Lemma 3.18] [Bur04b, Lemma 3.6] when the
unipotence parameter is finite or Fact 2.1 (3) when the characteristic is finite.
�

Definition 2.10 Let G be a group of finite Morley rank.

(1) We say that G admits the unipotence parameter p̃ if Up̃(G) 6= 1.

(2) We denote by d∞(G) the maximal unipotence degree in characteristic ∞,
i.e. the maximal integer r ∈ N such that G admits the unipotence param-
eter (∞, r), and −1 if G admits none such.

(3) If p is a prime, we denote by dp(G) the maximal unipotence degree in
characteristic p, i.e. the ∞ symbol if G admits the unipotence parameter
(p,∞), and −1 otherwise.

(4) A unipotence parameter p̃ = (p, r) is maximal in its characteristic for G
if dp(G) = r (notice here that the characteristic p can be ∞ or prime).
This is equivalent to saying that r is the maximal unipotence parameter in
characteristic p.

(5) Finally, we define the absolute unipotence degree d(G) of G as the maxi-
mum of d∞(G) and maxp∈P{dp(G)}.

We say that a unipotence parameter (p, r) is absolutely maximal for G if
d(G) = dp(G) = r, i.e. if G contains nontrivial p-unipotent subgroups if p < ∞
and otherwise admits (∞, r) and contains no nontrivial definable connected
nilpotent subgroup of bounded exponent and no nontrivial definable (∞, r′)-
subgroup with r′ > r.

We say that a unipotence parameter (p, r) is maximal for G if d(G) = 0
whenever r = 0, or dp(G) = r otherwise. This has essentially the effect of
not considering good tori of PSL 2 over a pure field of positive charateristic as
having maximal unipotence degree. We will often mention this special example
separately.

The following lemma makes known facts more transparent in our notation.

Lemma 2.11 Let G be a group of finite Morley rank.
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(1) G is finite if and only if d(G) = −1.

(2) G is a good torus if and only if G is connected solvable and d(G) ≤ 0.

Proof. If d(G) ≥ 0, then G has a nontrivial definable connected nilpotent
subgroup, and hence it cannot be finite. Conversely, if G is infinite, then its
minimal infinite definable subgroups are abelian by Reineke’s Theorem [BN94,
Theorem 6.4]. As such subgroups are also connected, they contain a nontrivial
Sylow p̃-subgroup for some unipotence parameter p̃ = (p, r) by Fact 2.5 (2), and
hence d(G) ≥ r ≥ 0 > −1.

If G is a good torus, then it is abelian and connected, and any definable
connected subgroup is a good torus, in particular a decent torus, and by Fact
2.6 d(G) ≤ 0. Conversely, if G is a connected solvable group which admits no
unipotence parameter p̃ = (p, r) with r ≥ 1, then G is a good torus by [Bur04b,
Theorem 2.15]. �

For any group G of finite Morley rank we define, similarly to Up(G), the
unipotent radical in characteristic ∞ as

U∞(G) = U(∞,d∞(G))(G).

One can also define the absolute unipotent radical U(G) as

U(G) = 〈Up(G) | p prime 〉 if it is nontrivial and U∞(G) otherwise.

Finally, a unipotent radical U(p,r)(G) is maximal for G if (p, r) is maximal for
G.

2.2 Carter and soapy subgroups

The preceding abstract unipotence theory in groups of finite Morley rank gives
important approximations of semisimple and unipotent subgroups of algebraic
groups. On the one hand it gives a good approximation of maximal tori in any
group of finite Morley rank via the notion of Carter subgroup. On the other
hand it detects, and it is a more difficult task, approximations of unipotent
subgroups in locally solvable groups via the notion of soapy subgroups.

All this is due to a good understanding of possible actions of p̃-subgroups
onto each other in groups of finite Morley rank. These constraints can be sum-
marized as follows. The first item is often called rigidity of decent tori.

Fact 2.12 Let G be a group of finite Morley rank, π̃1 and π̃2 two sets of unipo-
tence parameters, and r ∈ N ∪ {∞}.

(1) Assume G = TH where T is a definable decent torus of G and H is a
definable connected subgroup normalizing T . Then T ≤ Z(G). In particu-
lar, if T is a definable decent torus in a group of finite Morley rank, then
C◦(T ) = N◦(T ).
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(2) Assume G = U1U2 where each Ui = Uπ̃i
(Ui) is a definable nilpotent sub-

group and U1 is normal. Assume that all unipotence degrees involved in
π̃1 are ≤ r and that all unipotence degrees involved in π̃2 are ≥ r. Then
U1U2 is nilpotent.

(3) Assume G = H1H2 where each Hi = Uπ̃i
(Hi) is definable and H1 is

normal and nilpotent. Assume that all unipotence degrees involved in π̃1

are ≤ r and that all unipotence degrees involved in π̃2 are > r. Then
G = H1C

◦(H1).

(4) Assume G = U1U2 where U1 is a normal nilpotent subgroup such that
U1 = Uπ̃1(U1), will all unipotence degrees involved in π̃1 infinite, and
U2 = Uπ̃1(U2), where all unipotence degrees r involved in π̃2 satisfy 0 <
r < ∞. Then U2 ≤ C(U1).

Proof. The first item, which was the main key tool in [Che05], is a mere appli-
cation of Fact 1.2 together with the fact that Prüfer p-ranks of decent tori are
finite for any prime p [BP90].

The second item is [FJ08, Proposition 2.10]. See also [FJ05, §3] and [Bur06,
§4] for earlier versions of the same fact.

For the third item, we notice that if p̃ ∈ π̃2 and Σ is any definable connected
p̃-subgroup of H2, then H1 ·Σ is nilpotent by the second point, and both factors
commute by our assumption on the unipotence degrees involved and Fact 2.5
(2). In particular Up̃(H2) ≤ C◦(H1) and as H2 = 〈Up̃(H2) | p̃ ∈ π̃2〉, our claim
follows.

For the last item we refer to [Bur06, Lemma 4.3] for the fact that an (∞, r)-
group, with 0 < r < ∞, which normalizes a p-unipotent group must centralize
it. This is essentially a corollary of [Wag01, Corollary 8]. Then one can argue
as in the third point. �

Fact 2.12 has as a general consequence the existence of a very good approx-
imation of semisimple subgroups of algebraic groups in the context of groups of
finite Morley rank. If π̃ is a set of unipotence parameters, a Carter π̃-subgroup
of a group of finite Morley rank is a definable connected nilpotent subgroup Qπ̃

such that Uπ̃(N(Q)) = Q. A Carter subgroup of a group of finite Morley rank
is a definable connected nilpotent subgroup Q such that N◦(Q) = Q. By Fact
2.4 this corresponds to a Carter π̃-subgroup for the set π̃ of all unipotence pa-
rameters, or merely the set of unipotence parameters admitted by the ambient
group.

The existence of Carter subgroups in arbitrary groups of finite Morley rank,
which appeared in [FJ05], has been looked for by the second author originally
in the context of minimal connected simple groups in order to generalize [CJ04].
It follows essentially from Fact 2.12, by considering p̃-subgroups from the least
to the most unipotent.
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Fact 2.13 [FJ08, Theorem 3.3] Let G be a group of finite Morley rank and π̃
a set of unipotence parameters. Let r be the smallest unipotence degree involved
in π̃. Then any Sylow (p, r)-subgroup of G is contained in a Carter π̃-subgroup
of G.

A definable subset X of a group G of finite Morley rank is generous in
G if the union XG of its G-conjugates is generic in G. In simple algebraic
groups maximal tori are generous. In groups of finite Morley rank we only have
equivalent conditions to this property.

Fact 2.14 [Jal06, Corollary 3.8] Let G be a group of finite Morley rank and
Q a Carter subgroup of G. Then the following are equivalent.

(1) Q is generous in G.

(2) There exists a definable generic subset Y of Q such that, for each y ∈ Y ,
Q is the unique maximal definable connected nilpotent subgroup containing
y.

(3) Q is generically disjoint from its conjugates.

(4) There exists a definable generic subset of Q all of whose elements are
contained in only finitely many conjugates of Q.

At the opposite of semisimple groups, we pass now to the approximations
of unipotent subgroups. We denote by F (G) the Fitting subgroup of any group
G, i.e. the subgroup generated by all normal nilpotent subgroups. It is always
definable and nilpotent in the finite Morley rank case [BN94, Theorem 7.3]. A
consequence of Fact 2.12 dual to Fact 2.13 is the following.

Fact 2.15 Let H be a connected solvable group of finite Morley rank and p̃ =
(p, r) a unipotence parameter with r > 0. Assume dp(H) ≤ r. Then Up̃(H) ≤
F ◦(H).

Proof. See [FJ08, Lemma 2.11], and [Bur04b, Theorem 2.16] for the original
version. It suffices to use Fact 2.12 (2) and (4) to conclude that F ◦(H)·Up̃(H) is
nilpotent, and then to use the fact that H/F ◦(H) is abelian (Fact 2.22 below).
�

We note that the assumption r > 0 is necessary in Fact 2.15. In the standard
Borel subgroup B of PSL 2 in positive characteristic, d∞(B) = 0, but maximal
tori of B are not in the unipotent radical of B.

Unipotent subgroups are usually not generous in linear algebraic groups, and
thus in general more difficult to detect. Every nontrivial subgroup Up̃(H) as in
Fact 2.15 is generally a good approximation of unipotent radical, at least much
finer than the Fitting subgroup. We will need even finer approximations when
considering locally solvable groups of finite Morley rank, notably the property
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of being homogeneous and central in the Fitting subgroup. This issues from the
minimal subgroups used originally in [Jal00], after the considerable reworking
in [Del07a, Del08].

Recall that, for every connected solvable group H of finite Morley rank, a
unipotence parameter q̃ = (q, d) is maximal for H if d(H) = 0 whenever d = 0,
or dq(H) = d otherwise. By Lemma 2.11, a nontrivial connected solvable group
H is a good torus if and only if its unique maximal unipotence parameter is
(∞, 0). Otherwise, maximal unipotence parameters are all the (p,∞) such that
Up(H) 6= 1 and the (∞, d) with d ≥ 1 and d∞(H) = d if it exists.

Definition 2.16 Let H be a connected solvable group of finite Morley rank.
A subgroup U of H is soapy (resp. characteristically soapy) in H if the two
following conditions hold.

(1) U is a nontrivial definable connected subgroup of Z(F ◦(H)), q̃-homoge-
neous for some unipotence parameter q̃ maximal for H.

(2) U is normal (resp. definably characteristic) in H.

We haven’t found a better name for these subgroups. We will see in Section
4.1.4 that in locally◦ solvable◦ groups these subgroups have a strong tendency to
escape from intersections of distincts Borel subgroups, like unipotent subgroups
in PSL 2 and like a soap between to hands. Another not less serious reason for
this name is that these groups were born near Marseilles, which is famous for
its soap.

We could also specify a set of maximal unipotence parameters for H , and
define these interesting subgroups as products of the present ones. In practice
only one unipotence parameter will suffice for us.

The next lemma says that the existence of soapy subgroups is not essentially
weaker than that of characteristically soapy subgroups.

Lemma 2.17 Let H be a connected solvable group of finite Morley rank and q̃
a unipotence parameter maximal for H. If H contains a q̃-homogeneous soapy
subgroup, then it contains a q̃-homogeneous characteristically soapy subgroup as
well.

Proof. If q̃ = (∞, 0) then H is a good torus, and H itself is the desired group.
In general one can proceed as follows. Let U be a q̃-homogeneous soapy sub-

group of H . Let Ũ be the subgroup of Z(F ◦(H)) generated by all q̃-homogeneous
soapy subgroups of H . It is nontrivial, definable and connected as the product
of finitely many soapy subgroups by Zilber’s generation lemma, and one sees
easily that it is q̃-homogeneous with Fact 2.4 (see also [Fré06a, Corollary 3.5]).
It is clearly definably characteristic in H . Hence Ũ is characteristically soapy
in H . �

We finish this section with a general criterion for building characteristically
soapy subgroups.
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Lemma 2.18 Let H be a connected solvable group of finite Morley rank and q̃
a unipotence parameter maximal for H. If Uq̃(Z(F ◦(H))) is not central in H,
then H contains a q̃-homogeneous characteristically soapy subgroup.

Proof. Set U = [Uq̃(Z(F ◦(H))), H ]. By assumption U is nontrivial. It is a de-
finable connected homogeneous q̃-subgroup by Fact 2.2, contained in Z(F ◦(H))
as the latter is normal in H , and obviously definably characteristic in H . �

2.3 Conjugacy theorems

As far as unipotence theory in concerned, there are two general conjugacy the-
orems in groups of finite Morley rank. The first one has a nontrivial content
only in presence of divisible torsion.

Fact 2.19 [Che05] Let G be a group of finite Morley rank. Then C◦(T ) is
generous in G◦ for every definable decent torus T of G◦, and maximal definable
decent tori of G◦ are G◦-conjugate.

The following corollary of Fact 2.19 has been known for a long time in
presence of 2-divisible torsion [BN94, Lemma 10.22].

Corollary 2.20 (Control of fusion) Let G be a group of finite Morley rank,
p a prime, and T a p-torus of G. If X and Y are two G-conjugate subsets
of G such that CT (X), CT (Y ), and C(Y ) all have the same Prüfer p-ranks,
then Y = Xg for some g conjugating C◦

T (X) to C◦
T (Y ). In particular if T is

a maximal p-torus of G then any two G-conjugate subsets of C(T ) are N(T )-
conjugate.

Proof. First notice that there are always maximal p-tori, by finiteness of the
Prüfer p-rank [BP90] and compactness.

Assume Y = Xg for some g ∈ G. Then C◦
T (X)g and C◦

T (Y ) are both
contained in the definable subgroup C◦(Y ). By Fact 2.19 and the assumption,
C◦

T (X)g = C◦
T (Y )γ for some γ ∈ C◦(Y ). Then gγ−1 conjugates C◦

T (X) to
C◦

T (Y ) and as Y γ = Y = Xg the element gγ−1 conjugates X to Y .
When X and Y are two subsets of C(T ) and T is maximal we can apply the

preceding and the new element g conjugating X to Y will now normalize T . �

There is no reason why an arbitrary group of finite Morley rank should
contain nontrivial torsion as in Fact 2.19. However the next general conjugacy
theorem relies on an assumption which is likely to be true in general [Jal06, §4].

Fact 2.21 [Jal06] Let G be a group of finite Morley rank. Then generous
Carter subgroups of G are generous in G◦ and G◦-conjugate.

In our study of locally solvable groups of finite Morley rank we will of course
use much more conjugacy theorems where they are much more aboundant, that
is in solvable groups.
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2.4 Solvable groups

Fact 2.22 [Nes90] Let H be a connected solvable group of finite Morley rank.
Then H/F ◦(H) is divisible abelian.

Fact 2.23 ([Fré00, Corollaire 7.15], [BN92]) Let H be a connected solvable
group of finite Morley rank, and π any set of prime numbers. Then Hall π-
subgroups of H are connected.

Fact 2.24 [BP90] Let p be a prime and S a p-subgroup of a solvable group of
finite Morley rank, or more generally a locally finite p-subgroup of any group of
finite Morley rank. Then

(1) S◦ is a central product of a p-torus and a p-unipotent subgroup.

(2) If S is infinite and of bounded exponent, then Z(S) contains infinitely
many elements of order p.

Lemma 2.25 Let H be a connected solvable group of finite Morley rank and p
a prime. If Up(H) = 1, then the Sylow p-subgroup of F (H) is central in H.

Proof. Assume Up(H) = 1, and let S denote the Sylow p-subgroup of F (H).
By Fact 2.5, S is the product of a finite p-subgroup and of a p-torus. As each
of these two subgroups is normal in H , each is central in H , by Facts 1.2 and
2.12 (1) respectively. �

The following fact gradually appeared in [Wag94], [Fré00], and [CJ04, 3.5].

Fact 2.26 [FJ08, Theorem 3.11] Let H be a connected solvable group of
finite Morley rank. Then Carter subgroups of H are generous, conjugate and
self-normalizing.

Corollary 2.27 Let G be a group of finite Morley rank, Q a Carter subgroup
and σ an element normalizing Q and not in Q. Then σ /∈ C◦(X) for every
X ⊆ Z(Q) such that C◦(X) is solvable. In particular such σ and X cannot be
in the same definable connected abelian subgroup.

Proof. Assuming the contrary, then σ ∈ NC◦(X)(Q) = Q by the selfnormaliza-
tion given in Fact 2.26, a contradiction. For the second point we simply notice
that otherwise σ ∈ C◦(X). �

Following [FJ08, §4-5] there are nice links between Carter π̃-groups and cov-
ering properties in connected solvable groups of finite Morley rank, the so-called
connected subformation theory. In particular one knows that the collection N
of connected nilpotent groups of finite Morley rank is a connected subforma-
tion. The main link between Carter subgroup theory and subformation theory
in connected solvable groups is then a guarantee that Carter subgroups of a
connected solvable group G of finite Morley rank are N -covering subgroups of
G, which provides the following important result.
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Fact 2.28 [FJ08, Proposition 5.1] In any connected solvable group of finite
Morley rank, Carter subgroups are exactly the N -covering subgroups and the
N -projectors.

Here the properties of N -covering subgroups and N -projectors which interest
us are that these groups cover all nilpotent connected sections containing them.

Fact 2.29 [FJ08, Theorem 5.8] Let G be a connected solvable group of finite
Morley rank and π̃ a set of unipotence parameters. Then Carter π̃-subgroups
are exactly the Nπ̃-projectors and the Nπ̃-covering subgroups of G, and are in
particular conjugate.

We note that when π̃ is a single unipotence parameter, Carter p̃-subgroup
coincide with Sylow p̃-subgroups [FJ08, §3.2], so that Sylow p̃-subgroups are
conjugate in connected solvable groups of finite Morley rank. There is also struc-
tural information concerning Carter π̃-subgroups of connected solvable groups of
finite Morley rank [FJ08, Corollary 5.9], and we will use this only with π̃ = {p̃}.

Fact 2.30 ([FJ08, Corollary 5.11], [Bur06, Theorem 6.7]) Let G be a
connected solvable group of finite Morley rank. Then the Sylow p̃-subgroups of
G are exactly the subgroups of the form Up̃(G

′)Up̃(Q) for some Carter subgroup
Q of G.

If G is a group of finite Morley rank, we denote by

Op′(H)

the largest normal definable connected subgroup without p-torsion. It exists
by ascending chain condition on definable connected subgroups and elementary
properties of lifting of torsion [BN92].

The following facts will be useful when dealing with p-strongly embedded
subgroups in Section 5.5 below.

Fact 2.31 (Compare with [CJ04, Lemma 3.2]) Let H be a connected solv-
able group of finite Morley rank such that Up(H) = 1. Then H/Op′(H) is
divisible abelian.

Proof. Dividing by Op′(H), we may assume it is trivial and we want to show
that H is divisible abelian.

Let F = F ◦(H). As Op′(H) = 1, Op′(F ) = 1 as well, and Uq(H) = 1 for
any prime q different from p. By assumption Up(H) = 1 also, and F is divisible
by Fact 2.5. As F ′ is torsion-free, by [BN94, Theorem 2.9] or Fact 2.5 and
Corollary 2.3, it must be trivial by assumption. Hence F is divisible abelian.

To conclude it suffices to show that F is central in H , as then H is nilpotent,
hence equal to F , and hence divisible abelian, as desired. Let h be any element
of H ; we want to show that [h, F ] = 1. But [h, F ] is torsion-free, as the torsion
subgroup of F is central in H by Fact 2.12 (1), or using Fact 2.2. Hence
[h, F ] ≤ Op′(H) = 1, as desired. �
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Fact 2.32 [Bur04b, Fact 3.7] Let H be a solvable group of finite Morley rank
without elements of order p for some prime p. Let E be a finite elementary
abelian p-group acting definably on H. Then

H = 〈CH(E0) | E0 ≤ E, [E : E0] = p〉.

Lemma 2.33 Let H be a connected solvable group of finite Morley rank such
that Up(H) = 1 for some prime p. Assume H contains an elementary abelian
p-group E of order p2. Then

H = 〈C◦
H(E0) | E0 is a cyclic subgroup of order p of E〉.

Proof. By assumption and Facts 2.23 and 2.24, Sylow p-subgroups of H are
p-tori. Hence E is in a maximal p-torus of H , which is included in a Carter
subgroup Q of H by Fact 2.13. By Fact 2.31, H/Op′(H) is abelian. As Carter
subgroups cover all abelian quotients in connected solvable groups of finite Mor-
ley rank by Fact 2.28, H = Op′(H) · Q. As E ≤ Z(Q), it suffices to show that

Op′(H) = 〈C◦

Op′ (H)(E0) | E0 is a cyclic subgroup of order p of E〉.

But the generation by the full centralizers is given by Fact 2.32, and these
centralizers are connected by [Bur04b, Fact 3.4]. �

Corollary 2.34 Let H be a connected solvable group of finite Morley rank with
a toral subgroup E of order p2 for some prime p. Then

H = 〈C◦
H(E0) | E0 is a cyclic subgroup of order p of E〉.

Proof. For a connected nilpotent group of finite Morley rank L, we define the
“complement” Cp(L) of Up(L), namely the product of all factors of L as in Fact
2.5 (2), except Up(L).

Now if H is any connected solvable group of finite Morley rank and Q a
Carter subgroup of H , then H is the product of the definable connected sub-
group Cp(Q)Cp(F

◦(H)) with the normal definable connected subgroup Up(H),
and the first factor has trivial p-unipotent subgroups.

In our particular case, E is by torality contained in a p-torus, and the latter is
contained in a Carter subgroup Q of H . By Facts 2.23 and 2.24 E centralizes the
normal definable connected subgroup Up(H), so it suffices to show the generation
by centralizers◦ in Cp(Q)Cp(F

◦(H)). But this follows from Lemma 2.33. �

2.5 Genericity

Lemma 2.35 Let H be a connected solvable group of finite Morley rank gener-
ically covered by a uniformly definable family of finite subgroups. Then H is
nilpotent and of bounded exponent.
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Proof. We first note that any group generically covered by a uniformly definable
family of finite groups is generically of bounded exponent. In fact, by elimination
of infinite quantifiers [BC02, Proposition 2.2], there is a uniform bound on the
cardinals of the finite groups involved.

Now H/F ◦(H) is divisible abelian by Fact 2.22. As Prüfer p-ranks are
finite for each prime p, there is a finite subgroup of H/F ◦(H) containing all
images modulo F ◦(H) of the finite groups. This shows by generic covering that
H/F ◦(H) is trivial. Hence H is nilpotent. Now it suffices to use the generic
covering again and Fact 2.5 (2) with Fact 2.4 (1). �

The following lemma has its roots in [Jal00, Lemme 2.13] (see [CJ04, Fact
2.36]).

Lemma 2.36 Let G be a connected group of finite Morley rank and X a non-
empty definable G-invariant subset of G. If M is a definable subgroup of G such
that X∩M is generic in X, then X∩M contains a definable G-invariant subset
generic in X.

Proof. By assumption X is a union of G-conjugacy classes. By assumption
also, X ∩ M is nonempty.

Let Y1 be a definable generic subset of X∩M consisting of elements of X∩M
whose G-conjugacy classes have traces on X ∩ M of constant ranks. Let Y2 be
a definable generic subset of Y1 consisting of elements of Y1 whose G-conjugacy
classes in G have constant ranks. Both exist as we have, by definability of the
rank, finite definable partitions in each case. Now Y2 is generic in Y1 which is
generic in X ∩ M , so Y2 is generic in X ∩ M and in X . Replacing X by Y G

2 ,
one can thus assume that G-conjugacy classes in G of elements of X , as well
as their traces on M , are of constant ranks. We also have then that xG ∩ M is
nonempty for any x in X .

Now, as X is the union of the G-conjugacy classes of its elements in X ∩M
and reduced to the situation where all relevant ranks are constant, the assump-
tion that X ∩ M is generic in X implies easily by additivity of the rank that
xG ∩ M is generic in xG for any x in X .

Let N =
⋂

g∈G Mg. By descending chain condition on definable subgroups,
N = Mg1 ∩ · · · ∩ Mgn for finitely many elements g1, ..., gn of G. As G is
connected, xG, which is in definable bijection with G/C(x), has Morley degree
1 for any x in X . By taking conjugates one also has xG ∩Mgi generic in xG for
each x in X and each gi. Hence xG ∩ N , which can be written as

(xG ∩ Mg1) ∩ · · · ∩ (xG ∩ Mgn),

is also generic in xG, for any x in X . Now the fact that all ranks involved are
constant implies that X ∩ N is generic in X as well.

But X ∩ N is G-invariant as both sets involved are. Hence X ∩ N is the
desired definable G-invariant subet of X ∩ M generic in X . �
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3 Locally solvable groups

3.1 Fundations

Definition 3.1 We say that a group of finite Morley rank is

(1) locally solvable if N(A) is solvable for each nontrivial definable abelian
subgroup A.

(2) locally solvable◦ if N(A) is solvable for each nontrivial definable abelian
connected subgroup A.

(3) locally◦ solvable if N◦(A) is solvable for each nontrivial definable abelian
subgroup A.

(4) locally◦ solvable◦ if N◦(A) is solvable for each nontrivial definable abelian
connected subgroup A.

Lemma 3.2 Let G be a group of finite Morley rank.

(1) If G satisfies one of the Definitions 3.1 (1), (2), (3), or (4), then so does
any definable subgroup of G.

(2) If G is locally solvable, then is it locally solvable◦ and locally◦ solvable, and
if G has any of the two latter properties, then it is locally◦ solvable◦.

Proof. Obvious. �

Definition 3.3 Let G be a group of finite Morley rank and H a subgroup of G.
We say that a subgroup L of G is

(1) H-local if L ≤ N(H).

(2) H-local◦ if L ≤ N◦(H).

Then we say that a subgroup L is local if it is H-local for some subgroup
H , and local◦ if it is H-local◦ for some subgroup H . We can give conditions a
priori stronger, but actually equivalent, to Definitions 3.1 (1)–(4) in terms of
local subgroups.

Lemma 3.4 Let G be a group of finite Morley rank. Then G is

(1) locally solvable if and only if X-local subgroups subgroups are solvable for
every nontrivial solvable subgroup X.

(2) locally solvable◦ if and only if X-local subgroups are solvable for every
infinite solvable subgroup X.

(3) locally◦ solvable if and only if X-local◦ subgroups are solvable for every
nontrivial solvable subgroup X.
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(4) locally◦ solvable◦ if and only if X-local◦ subgroups are solvable for every
infinite solvable subgroup X.

Proof. Clearly the right conditions are stronger than the left ones.
Assume now a left condition, and suppose X is some nontrivial solvable

subgroup of G, and L is an X-local subgroup, i.e. L ≤ N(X). Then L normalizes
the definable hull H(X) of X , and its connected component H◦(X) as well. Now
a classical corollary of Zilber’s generation lemma on derived subgroups (Fact 1.1)
implies that the last nontrivial term of the derived series of H(X), as well as
H◦(X), is definable . It is abelian by definition, and as it is characteristic in
H(X) (resp. H◦(X)), it is normalized by L. Then ones sees in each case which
has to be considered that the latter is solvable by the left condition. �

Nontrivial solvable groups H of finite Morley rank contain certain nontrivial
definable characteristic Sylow p̃-subgroups or Sylow p-subgroups, by Fact 2.5
applied in F (H). Hence H-local subgroups normalize nontrivial p̃-groups or
p-groups, so that our definitions are coherent with the notion due to Alperin of
local subgroup in finite group theory [Tho68], as subgroups normalizing non-
trivial p-subgroups. Before stating this a little bit more precisely in the locally◦

solvable◦ case, we look at quotients.

Lemma 3.5 Let G be a group of finite Morley rank and N a definable normal
solvable subgroup.

(1) If G is locally solvable, then so is G/N .

(2) If G is locally solvable◦, then so is G/N .

(3) If G is locally◦ solvable, then so is G/N .

(4) If G is locally◦ solvable◦, then so is G/N .

Proof. We denote by G the quotients by N .
(1). Let A be a nontrivial definable abelian subgroup of G. The preimage of

NG(A) normalizes AN , which is solvable and nontrivial, and hence it is solvable
by local solvability of G. As N is solvable, NG(A) is also solvable.

(2). One can proceed as in (1), taking A infinite modulo N , and looking at
the normalizer of (AN)◦.

(3). One can proceed as in (1), taking connected components of normalizers
throughout.

(4). It suffices to mix the two preceding cases. �

We continue with trivial remarks. In a group of finite Morley rank we call
Borel subgroup any maximal definable connected solvable subgroup.
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Lemma 3.6 Let G be a locally◦ solvable◦ group of finite Morley rank. Then a
subgroup B is a Borel subgroup if and only if B is a maximal X-local◦ subgroup
for some infinite solvable subgroup X. Furthermore X can be chosen to be any,
and has to be an infinite normal subgroup of B.

Proof. Let B be a Borel subgroup of G. Then B ≤ N◦(X) ≤ N◦(H(X))
for any infinite normal subgroup X of B, and N◦(H(X)) is solvable by local◦

solvability◦ of G. Hence we get equality by maximality of B, and hence B is a
connected X-local◦ subgroup. If B is contained in a Y -local◦ subgroup L of G
for some infinite solvable subgroup Y , then B ≤ N◦(H(Y )) and as N◦(H(Y ))
is solvable by local◦ solvability◦ one gets B = N◦(H(Y )) again by maximality
of B. As B ≤ L ≤ N◦(H(Y )), B = L.

Let now B be a maximal X-local◦ subgroup of G for some infinite solvable
subgroup X . By local◦ solvability◦ B is contained in a Borel subgroup B1. Now
B1 is Y -local◦ for some infinite solvable subgroup Y , and the maximality of B
implies that B = B1.

Now if a Borel subgroup B normalizes an infinite solvable subgroup X , then
X · B is solvable, as well as its definable hull, and by maximality H◦(X) ≤ B,
and H◦(X) is an infinite normal subgroup of B. �

Lemma 3.7 Let G be a locally◦ solvable◦ group of finite Morley rank. Then
the following are equivalent.

(1) N◦(A) < G◦ for each nontrivial definable connected abelian subgroup A.

(2) G◦ is not solvable.

(3) G◦ has two distinct Borel subgroups.

Proof. If G◦ is solvable, then G◦ ≤ N◦(A) where A is the last nontrivial term
of the derived series of G, which is definable and connected by Fact 1.1. Hence
the first condition implies the second one.

If G◦ has two distinct Borel subgroups, then clearly G◦ cannot be solvable.
Finally, assume G◦ = N◦(A) for some nontrivial definable connected abelian

subgroup A. By local◦ solvability◦ G◦ is then solvable, and hence cannot have
two distinct Borel subgroups. Hence the last condition implies the first one. �

Lemma 3.7 can be refined as follows in the locally◦ solvable case.

Lemma 3.8 Let G be a locally◦ solvable group of finite Morley rank. Then the
following are equivalent.

(1) N◦(A) < G◦ for each nontrivial definable abelian subgroup A of G.

(2) G◦ is not solvable.

(3) G◦ has two distinct Borel subgroups.

22



Proof. As in Lemma 3.7. If N◦(A) = G◦ for some nontrivial definable abelian
subgroup A of G, then G◦ is now solvable by local◦ solvability. �

In PSL 2, normalizers◦ of unipotent subgroups correspond to Borel sub-
groups. The following is a first approximation of this in locally◦ solvable◦

groups.

Lemma 3.9 Let G be a locally◦ solvable◦ group of finite Morley rank. Assume
that for q prime or infinite dq(G) ≥ 1, and let U be a Sylow (q, dq(G))-subgroup
of G. Then N◦(U) is a Borel subgroup of G.

Proof. By local◦ solvability◦ of G, N◦(U) ≤ B for some Borel subgroup B.
Now Fact 2.15 implies U ≤ F ◦(B), and in particular B ≤ N◦(U) by maximality
of U . Hence N◦(U) = B is a Borel subgroup of G. �

Lemma 3.10 Let G be a locally◦ solvable◦ group of finite Morley rank, p̃ =
(p, r) a unipotence parameter with r > 0, and B a Borel subgroup of G such
that dp(B) = r. Then Up̃(B) is a Sylow p̃-subgroup of G.

Proof. By Fact 2.15, U := Up̃(B) is in F ◦(B), and in particular is a p̃-group. It
is obviously definably characteristic in B. If U < V for some Sylow p̃-subgroup
V of G, then U < Up̃(NV (U)) by normalizer condition, Fact 2.7. But as N◦(U)
is solvable by local◦ solvability◦ of G, and contains B, it is B by maximality of
B. Hence U < Up̃(NV (U)) ≤ Up̃(B) = U , a contradiction. �

When r = 0 Lemma 3.10 fails. For example, in the standard Borel sub-
group B of PSL 2 over a pure algebraically closed field of positive characteristic,
U(∞,0)(B) = B. However the lemma becomes true for r = 0 if one assumes that
the absolute unipotence degree of B satisfies d(B) = 0.

3.2 Semisimple groups

Obviously with locally solvable groups one becomes quickly interested in normal
solvable subgroups.

Fact 3.11 [BN94, Theorem 7.3] Let G be a group of finite Morley rank.
Then G has a largest normal solvable subgroup, which is definable. It is denoted
by R(G) and called the solvable radical of G.

Definition 3.12 Let G be a group of finite Morley rank. We say that

(1) G is semisimple if R(G) = 1, or equivalently if N(A) < G for each non-
trivial abelian subgroup A of G.

(2) G is semisimple◦ if R◦(G) = 1, or equivalently if N(A) < G for each
nontrivial connected abelian subgroup A of G.
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Of course, if G is any group of finite Morley rank, then G/R(G) is semisimple
and G/R◦(G) is semisimple◦, as solvable-by-solvable groups are solvable.

Fact 3.13 [BN94, Lemma 6.1] Let G be a connected group of finite Morley
rank with a finite center. Then G/Z(G) has a trivial center.

The following fact has certainly been implicit in previous arguments, and we
just state it precisely.

Fact 3.14 Let G be a connected group of finite Morley rank with R(G) finite.
Then R(G) = Z(G) and G/R(G) is semisimple.

Proof. The connected group G acts by conjugation on its finite solvable radical
R(G), and thus by Fact 1.2 R(G) ≤ Z(G). As the center is always contained in
the solvable radical one gets R(G) = Z(G). The semisimplicity of G/R(G) is
always true. �

Lemma 3.15 Let G be a group of finite Morley rank and H a nonsolvable
definable connected subgroup of G.

(1) If G is locally◦ solvable◦, then H is semisimple◦, R(H) = Z(H) is finite
and H/R(H) is semisimple.

(2) If G is locally◦ solvable, then H is semisimple.

Proof. This is obvious by definitions and Fact 3.14. �

3.3 New configurations

All the work concerning minimal connected simple groups of finite Morley rank
generalizes identically to the case of locally◦ solvable groups of finite Morley
rank. The reason is that in the study of minimal connected simple groups
every argument is based on the consideration of normalizers◦ of nontrivial sub-
groups X . If such a subgroup X is finite, then its normalizer◦ coincides with its
centralizer◦ by Fact 1.2.

When dealing with the more general class of locally◦ solvable◦ groups centra-
lizers◦ of elements of finite order might be nonsolvable. In the present papers
we try to concentrate exclusively on the more general class of locally◦ solvable◦

groups, and hence new phenomena can appear. In the present section we try to
give an overview of the new pathological configurations which might occur in this
context. We see these new configurations as some kind of “speed limits” when
generalizing arguments from the minimal connected simple/locally◦ solvable
case to the more general locally◦ solvable◦ case.

Recall from Lemma 3.2 that

{locally◦ solvable groups} ( {locally◦ solvable◦ groups},
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the inclusion being strict. The main (and unique) example in the algebraic cat-
egory of a connected group which is locally◦ solvable◦ but not locally◦ solvable
is SL 2(K), with K an algebraically closed field of characteristic different from
2: its solvable radical consists of a cyclic group of order 2.

In the context of groups of finite Morley rank there might be other con-
figurations occuring, contradicting even the latter property a priori. In what
follows we just make a list of potential pathological configurations of connected
locally◦ solvable◦ groups of finite Morley rank which are not locally◦ solvable,
and which remain at the end of our classification.

A full Frobenius group is a group G with a proper subgroup H such that

H is malnormal in G and G = HG

and we often use the sentence “H < G is a full Frobenius group” to specify the
subgroup H . The existence of such groups of finite Morley rank is the main
obstacle to the Algebraicity Conjecture for simple groups of finite Morley rank.
We just record a few basic properties of such groups, if they exist.

Fact 3.16 [Jal01a, Propositions 3.3 and 3.4] Let H < G be a full Frobenius
group, with G of finite Morley rank and connected. Then

(1) C(x) ≤ H and is infinite for each nontrivial element x of H.

(2) H is definable in the pure group G and connected.

(3) HgH ∩ Hg−1H = ∅ for any element g in G \ H.

(4) rk (G) ≥ 2rk (H) + 1.

(5) There exists a nontrivial definable simple subgroup G̃ of G such that (H ∩
G̃) < G̃ is a full Frobenius group.

We often call a group G as in Fact 3.16 and with H nilpotent a bad group.
(This notion is floppy.) In any case these groups have no involutions, and hence
their torsion can involve only odd primes.

We view the following potential configuration of locally◦ solvable◦ group,
or any of its natural variations, as a kind of “universal conterexample” to the
algebraic case as far as torsion is concerned. Elements belonging to a decent
torus are called toral.

Configuration 3.17 G is a connected locally◦ solvable◦ group of finite Morley
rank with a proper (definable connected) subgroup H such that

(1) H < G is a full Frobenius group.

(2) R(H) = Z(H) is finite and nontrivial, consisting of p-toral elements of H
for some prime p.

(3) H/Z(H) is a full Frobenius group for some proper definable connected
solvable subgroup B/Z(H).
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(4) B/Z(H) has nontrivial p-unipotent subgroups, for some prime p dividing
|Z(H)|, and also nontrivial q-unipotent subgroups for other primes q.

A group G as in Configuration 3.17 would have p-mixed type, i.e. con-
taining both nontrivial p-tori and p-unipotent subgroups, and have nontrivial
q-unipotent subgroups for several primes q.

In SL 2, a generic element belongs to a maximal torus, and in particular
to the connected component of its centralizer. Here is another potential new
pathological phenomenon with locally◦ solvable◦ groups.

Configuration 3.18 G is a connected locally◦ solvable◦ group of finite Morley
rank with a proper (definable connected) subgroup B such that.

(1) B < G is a full Frobenius group.

(2) B is a nilpotent group such that, for x generic in B, x /∈ C◦(x).

A generic element x of a group G as in Configuration 3.18 would satisfy
x /∈ C◦(x). We note that examples of connected nilpotent groups B of finite
Morley rank as in clause (2) of Configuration 3.18 are provided by [BN94, §3.2.3]
or the Baudisch 2-nilpotent group [Bau96]. With such subgroups B a group G
as in Configuration 3.18 would be locally◦ solvable, but if G had the prescribed
property modulo a nontrivial finite center, then it would not be locally◦ solvable.

Even with involutions and algebraic subgroups one can imagine the following
configuration which seems to remain open at the end of our second paper [DJ07].

Configuration 3.19 G is a connected locally◦ solvable◦ group of finite Morley
rank with an involution i such that C(i) < G and C(i) ≃ SL 2(K) for some
algebraically closed field K of characteristic different from 2.

In [CJ04] all nonalgebraic configurations are known to have nongenerous
Borel subgroups. Even assuming all Borel subgroups generous does not seem to
be helpful in [DJ07] toward finding a contradiction in Configuration 3.19. This
is a major new phenomenon possibly occuring in the locally◦ solvable◦ case as
opposed to the minimal connected simple/locally◦ solvable one.

3.4 Local◦ solvability/solvability◦

In Section 3.3 we saw certain speed limits when considering generalizations to
the wider class of locally◦ solvable◦ groups, which usually rely on the existence
of certain semisimple◦ but not semisimple groups. We nevertheless intend in
this section to start dealing with these aspects in the general class of locally◦

solvable◦ groups of finite Morley rank, bearing in mind the speed limits of
Section 3.3. For this purpose it is useful to study systematically subgroups
of the form C◦(x) in locally◦ solvable◦ groups. When such a subgroup is not
solvable it has a finite solvable radical, which is then the center, and its quotient
modulo the center is semisimple. This boils down to the study of semisimple
locally◦ solvable◦ groups.

We start with some generalities.
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Lemma 3.20 Let G be a locally◦ solvable◦ group of finite Morley rank. If H is
a nonsolvable definable connected subgroup of G, then CG(H) is finite.

Proof. Assume C◦
G(H) infinite. Then it contains a nontrivial definable con-

nected solvable subgroup B by Lemma 2.11. We then have H ≤ C◦(B) ≤
N◦(B), which must be solvable by local◦ solvability◦ of G. �

In a locally◦ solvable◦ group G of finite Morley rank, we call a subset X
exceptional in G if C◦(X) is nonsolvable. Such sets are finite by Lemma 3.20,
and as C(X) = C(〈X〉) any such subset X can always be identified with the
finite subgroup it generates.

Dually, we call a definable connected subgroup H exceptional in G if H is
nonsolvable. Then C(H) centralizes the nonsolvable definable connected sub-
group H and is an exceptional subset of G.

We denote by Ef and Es the set of finite exceptional subgroups of G and
the set of nonsolvable definable connected subgroups respectively (E stands for
“e”xceptional, f for “f”inite, and s for “s”emisimple). Both sets are nonempty
if and only if G◦ is nonsolvable. Of course both sets are naturally ordered by
inclusion.

Taking centralizers◦ C◦(·) from Ef to Es and centralizers C(·) from Es to
Ef defines a Galois connection between Ef and Es (see [Bir67]). That is, and
following a similar exposition in [ABC08], they satisfy the following properties.

Lemma 3.21

(1) The mappings C◦ and C are order-reversing.

(2) If X ∈ Ef then X ≤ C(C◦(X)) and if H ∈ Es then H ≤ C◦(C(H)).

As in any Galois connection, this has the following consequence.

Proposition 3.22 Let X ∈ Ef and H ∈ Es. Then C◦(X) = C◦(C(C◦(X)))
and C(H) = C(C◦(C(H))).

If we denote for X in Ef and H in Es

X = C(C◦(X)) and H = C◦(C(H)),

then the two operations are closure operations on Ef and Es respectively.
That is, they satisfy the following.

Corollary 3.23

(1) For X ∈ Ef and H ∈ Ef , we have X ≤ X = X and H ≤ H = H.

(2) Monotonicity: For X1 ⊆ X2 in Ef and H1 ≤ H2 in Es, we have X1 ≤ X2

and H1 ≤ H2.
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The closed elements of Ef and Es are those of the form X and H respectively.

One can also refine Lemma 3.20 by giving a uniform bound on cardinals of
elements of Ef . We first note the following general fact.

Lemma 3.24 Let G be a group of finite Morley rank. Then there exists a
natural number m such that, for any subset X of G, |C(X)| ≤ m or C(X) is
infinite.

Proof. As G is stable, it satisfies the Baldwin-Saxl chain condition [Poi87, §1.3].
This means that there exists a fixed integer k such that, for every subset X of
G, C(X) = C(x1, · · · , xk) for some elements x1, ..., xk of X , and the family of
all subgroups of the form C(X) is uniformly definable (by a formula without
parameters).

Now the uniform bound m on the cardinals of the finite sets of the family is
provided by elimination of infinite quantifiers [BC02, Proposition 2.2]. �

Lemma 3.25 Let G be a locally◦ solvable◦ group of finite Morley rank. Then
there exists a natural number m bounding uniformly the cardinals of finite ex-
ceptional subsets of G.

Proof. Let m be as in Lemma 3.24. If X is a finite exceptional subset of G, then
C◦(X) is nonsolvable and C(C◦(X)) is finite by Lemma 3.20. As C(C◦(X)) is a
finite centralizer, its cardinal is uniformly bounded by m. Now X ⊆ C(C◦(X)),
and thus the cardinal of X is uniformly bounded by m. �

If G is a locally◦ solvable◦ group of finite Morley rank, we call exception
index and denote by e(G) the maximal integer m such that G has an excep-
tional nonsolvable definable connected subgroup centralizing a subset X with m
elements. Notice that X coincides with 〈X〉, so that e(G) is the largest cardinal
of an exceptional subgroup in Ef .

Maximal exceptional subgroups of Ef correspond to minimal exceptional
subgroups of Es, and vice-versa. A case of particular interest is the following.

Lemma 3.26 Minimal nontrivial exceptional subgroups are cyclic of prime or-
der.

Proof. Obvious. �

One can clarify the structure of elements of Es as follows.

Lemma 3.27 Let G be a locally◦ solvable◦ group of finite Morley rank and H an
exceptional nonsolvable definable connected subgroup. Then H is semisimple◦,
R(H) = Z(H) is finite and H/R(H) is semisimple.
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Proof. Lemma 3.15 (1). �

Of course, the sets of closed sets in Ef and Es are at most reduced to {1}
and {G◦} in the locally◦ solvable case (in case G◦ is nonsolvable, and empty
otherwise).

The next lemma seems to be the only way to get locally◦ solvable groups
out of locally◦ solvable◦ ones.

Lemma 3.28 Let G be a locally◦ solvable◦ group of finite Morley rank and H
a nonsolvable definable connected subgroup exceptional in G, which is minimal
with respect to this property. Then H/R(H) is locally◦ solvable.

Proof. The conclusions of Lemma 3.27 are valid in H and we will use them
freely. Denote by the quotients by R(H), and let A be the preimage in H
of a nontrivial definable abelian subgroup A of H . Of course A is a definable
solvable subgroup of H .

Let N be the preimage of N◦

H
(A) in H . We have N ≤ N(A) and N

◦
= N◦,

so that N = N◦R(H).
If A is infinite modulo R(H), then A is infinite as well, and as N◦ ≤ N◦(A)

we get N◦ solvable by local◦ solvability◦ of G and Lemma 3.2 (1). Then N =
N◦R(H) is solvable, as well as N◦

H
(A).

If A is finite modulo R(H), then A is finite as well as R(H) is. Now N◦ acts
on the nontrivial finite group A, and therefore centralizes it by Fact 1.2. The
minimality of H yields N◦ solvable or N◦ = H . In the first case one concludes
that N = N◦R(H) is solvable, as well as N◦

H
(A). The second case implies that

A ≤ Z(H) = R(H), and is thus impossible as A is nontrivial modulo R(H). �

Lemma 3.28 seems to be a very rough indication that the new locally◦

solvable◦ groups which are not locally◦ solvable are more or less as in Con-
figuration 3.17.

We also note that exceptional nonsolvable definable connected subgroups
attached to a nontrivial finite exceptional subgroup are of finite index in their
normalizers.

Lemma 3.29 Let G be a locally◦ solvable◦ group of finite Morley rank. If X is
an exceptional finite subset of G, then N◦(C◦(X)) = C◦(X).

Proof. N◦(C◦(X)) normalizes C(C◦(X)), which is finite and contains X . So
it centralizes X by Fact 1.2, and we are done. �

A natural question is to know whether exceptional finite subsets X are con-
tained in their attached exceptional nonsolvable definable connected subgroups,
i.e. whether X ⊆ C◦(X). This would follow from the more general, but similarly
natural, question to know whether nonsolvable definable connected subgroups

29



are selfnormalizing. This is the kind of problem which seems optimistically
trackable when C◦(X) is generous in the ambient group, since the intensive
experience on Weyl groups from [CJ04], and we will get positive answers in the
most interesting situations in Section 4.2 below.

We are now going to look more closely at the interesting case in which
an exceptional finite subgroup X of Ef satisfies X ≤ C◦(X). In this case
X ≤ Z(C◦(X)), and X is in particular an abelian finite subgroup. Typical
finite abelian groups belonging to the connected component of their centralizers
are the finite subgroups of decent tori. (And this is in general not true around
groups of bounded exponent, as noticed after Configuration 3.18.)

Lemma 3.30 Let G be a locally◦ solvable◦ group of finite Morley rank and T a
maximal definable decent torus of G. Then the union of elements of Ef contained
in T is finite and invariant under any automorphism of G leaving T invariant.

Proof. For the finiteness we can use Lemma 3.25 to get a uniform bound,
at most the exception index e(G) of G, on the cardinals of the finite groups
involved. Then, as Prüfer p-ranks are finite for any prime p in a decent torus,
subgroups of order at most e(G) must be contained in a finite subgroup of T .

The second point is obvious. �

A question, which might be difficult, is to know whether the union in Lemma
3.30 is necessarily a (finite) subgroup of T , and is itself exceptional. If this
were the case, then calling this group E, one would have a nonsolvable group
C◦(E)/R(C◦(E)) where nontrivial toral elements are not exceptional anymore.
This is a desirable property for certain questions such as bounding Prüfer ranks,
as we will see later, in our treatment of odd type groups [DJ07]. This desirable
property can however be obtained as follows.

Lemma 3.31 Let G be a connected nonsolvable locally◦ solvable◦ group of finite
Morley rank, and T a maximal definable decent torus of G. Then G has an
exceptional nonsolvable definable connected subgroup H containing T and such
that C◦(t) is solvable for any nontrivial toral element t of H/R(H).

Proof. Let X be a maximal exceptional finite subgroup of T . Then H = C◦(X)
is nonsolvable. As X ≤ T and T is abelian and connected, X ≤ T ≤ H .

Let now t be a nontrivial toral element of H = H/R(H). By pullback of
decent tori, Fact 2.4 (2) or rather [Fré06b, Lemma 3.1], and Fact 2.19, we may
assume t in TR(H), i.e. t = t′r for some t′ ∈ T and some r ∈ R(H). As in
Lemma 3.28, one sees that the preimage of the centralizer◦ of t modulo R(H)
cannot be nonsolvable: otherwise its connected component would centralize
t = t′r, and as r ∈ R(H) = Z(H) it would centralize t′, so that X〈t′〉 would
be an exceptional finite subgroup of T containing X properly, a contradiction.
This finishes our proof. �
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Before moving ahead we close the present section by describing more pre-
cisely the set of exceptional subsets of a decent torus T as in Lemma 3.31, or
more generally of an arbitrary subset T of a locally◦ solvable◦ group G of finite
Morley rank.

First we naturally consider the notion of closure relative to T . For X an
exceptional subset of T , we say that X is closed in T if X = CT (C◦(X)). Of
course the notion of relative closedness is robust.

Remark 3.32 Any set of the form CT (C◦(X)) is closed in T .

Proof. As X ⊆ CT (C◦(X)) ⊆ X, X = C(C◦(CT (C◦(X)))) by taking the
closure in G, and CT (C◦(CT (C◦(X)))) = CT (C◦(X)) by taking the intersection
with T . �

The poset of exceptional subsets of T is best described as follows by the no-
tion of minimal extensions of closed subsets. We say that (X1, X2) is a minimal
extension of closed sets of T if X1 ( X2 are two exceptional subsets of T closed
in T and any closed subset Y of T such that X1 ⊆ Y ⊆ X2 is either X1 or
X2. The relation “(X1, X2) is a minimal extension of closed sets of T ” defines
an oriented graph on the set of closed sets of T , which is clearly irreflexive,
antisymmetric, and loop-free, that is without cycles preserving the orientation
(but possibly with cycles not preserving the orientation). We call this graph the
graph of exceptional subsets of T . Its main properties are the following.

Lemma 3.33 Let G be a locally◦ solvable◦ group of finite Morley rank and T
an arbitrary subset of G.

(1) Assume (X1, X2) is a minimal extension in the graph of exceptional subsets
of T and Y is a subset such that X1 ( Y ⊆ X2. Then CT (C◦(Y )) = X2.
Moreover C◦(X2) < C◦(X1).

(2) Assume (X, X1) and (X, X2) are two minimal extensions in the graph of
exceptional subsets of T . Then either X1 = X2 or X1 ∩ X2 = X.

Proof. (1). X1 ( Y ⊆ CT (C◦(Y )) ⊆ X2 and as CT (C◦(Y )) is closed in T by
Remark 3.32 it must be X2 by minimality of the extension (X1, X2).

The claim that C◦(X2) < C◦(X1) follows merely from the fact that X1 6= X2

are closed in T .
(2). Let Y = X1 ∩ X2. If X ( Y , then the first point implies that X1 =

CT (C◦(Y )) = X2. �

Finally, we note that the graph of exceptional subsets of T as in Lemma 3.33
always has a “minimal” element, namely T ∩ Z(G), and “maximal” elements,
corresponding to the maximal traces on T of exceptional sets in Ef , which are
of cardinal at most e(G). We also note that the graph has a finite height: the
length of a maximal chain of exceptional closed sets in T is at most e(G).
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When T is a nilpotent divisible subgroup of G (for example as in Lemmas
3.30 and 3.31), then exceptional subsets of T are necessarily in a same decent
torus (the maximal decent torus of the definable hull of T ) and by Lemma 3.30
applied in this decent torus the graph of exceptional subsets of T is finite.

3.5 Genericity

Fact 3.34 (Compare with [FJ08, Theorem 7.3]) Let G be a locally◦ solv-
able◦ group of finite Morley rank with a nontrivial decent torus T , and Q a
Carter subgroup of G containing T . Then Q is generous in G◦, and T ≤ T̃ ≤ Q
for some maximal definable decent torus T̃ of G.

Proof. The existence of Q is guaranteed by Fact 2.13, as decent tori are of
minimal unipotence degree.

By Fact 2.19, C◦(T ) is generous in G◦. Now C◦(T ) is solvable by local◦

solvability◦ of G, and the Carter subgroup Q is generous in C◦(T ) by Fact 2.26.
It follows that Q is generous in G◦ by the transitivity of generosity provided in
[Jal06, Lemma 3.9].

Doing the same argument as above for a maximal definable decent torus T̃
containing T , one gets a generous Carter subgroup Q̃ of G◦ containing T̃ , and as
generous Carter subgroups are conjugate by Fact 2.21 one gets that Q contains
a maximal definable decent torus, which necessarily contains T . �

We record here an application of Lemma 2.36 in the case of locally solvable
groups of finite Morley rank. This will be the clé de voûte for a concentration
argument in one of the most prominent theorem on odd type groups in [DJ07].

Lemma 3.35 (Compare with [Del07a, Corollaire 2.4]) Let G be a group
of finite Morley rank and X a nonempty definable G◦-invariant subset of G◦.
Let M be a definable solvable subgroup of G◦ such that X ∩M is generic in X.

(1) If G is locally◦ solvable and X 6= {1}, then G◦ is solvable.

(2) If G is locally◦ solvable◦ and X is infinite, then G◦ is solvable.

Proof. (1). Let Y be the definable G◦-invariant subset of X ∩ M generic in
X provided by Lemma 2.36. As X is nonempty, Y is also nonempty, and
G◦ = N◦(〈Y 〉). Now 〈Y 〉 is a subgroup of M , and hence is solvable. If it is
nontrivial, then G◦ must be solvable by Lemma 3.4 (3). Otherwise, {1} is a
generic subset of X , and X must be finite. Hence X is a finite set of finite
conjugacy classes, with one nontrivial by assumption. This nontrivial finite
G◦-conjugacy class must be central in G◦ by Fact 1.2, and as G◦ has then a
nontrivial center it must again be solvable by local◦ solvability.

(2). One argues in the same way. Now, as X is infinite, Y is also infinite
by genericity. As G◦ = N◦(〈Y 〉) is 〈Y 〉-local◦ with 〈Y 〉 infinite and solvable, as
contained in M , Lemma 3.4 (4) now gives the solvability of G◦. �
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4 Local analysis

We now proceed to the local analysis of locally solvable groups of finite Morley
rank, that is the analysis of intersections of their (most interesting) subgroups.

In Section 4.1 we deal with a series of results which correspond to the Bender
method in finite group theory. In general these lemmas say in our context that
sufficiently unipotent subgroups of locally solvable groups of finite Morley rank
are disjoint, like unipotent subgroups in PSL 2 or SL 2. They are the main tool
for analyzing locally solvable groups, notably the only trick involving unipotence
in the recognition of PSL 2 in the algebraic parts of our second paper [DJ07].
The original form was first proved in the context of minimal connected simple
groups in the unpublished [Jal00]. It was in a form embryonal in characteristic
0 compared to the one provided later by the general abstract unipotence the-
ory of Burdges as in Section 2.1, but both in positive and null characteristic.
Then they appeared in the tame context in [CJ04, Section 3.4] where they were
treated essentially as the positive characteristic case, i.e. involving no partic-
ular graduation in the unipotence theory. The positive characteristic case was
recalled as the outline of [Bur07], and later the characteristic 0 case appeared
in [Del07a, §3.2] for the recognition of PSL 2 in characteristic different from 2.
We are going to give forms of these lemmas entirely uniform in the unipotence
degrees, in particular independent of the characteristics, and in the most general
context of locally◦ solvable◦ groups.

Section 4.3 will then concern the situation in which a particular consequence
of such uniqueness theorems fails. This is a priori a possibility when the sub-
groups considered are not unipotent enough relative to the ambient group. The
pathological situation appearing can be analyzed somehow by replacing the max-
imality in terms of unipotence degrees by a maximality for inclusion concerning
a pair of Borel subgroups involved. The endless, but very precise, description
resulting is the bulk of [Bur07], and in the context of locally◦ solvable◦ groups
we will follow the exposition of this paper verbatim. This full description will
be applied one time in a nonalgebraic situation in [DJ07] and that’s why we
need to restate, slightly more generally but in its full detail, this analysis from
[Bur07].

4.1 Uniqueness Theorem

4.1.1 The main theorem

The following Uniqueness Theorem is our analog of the Bender method in groups
of finite Morley rank and is the main tool for analyzing locally◦ solvable◦ groups
of finite Morley rank. There are various forms of this theorem but the present
one seems to be the most relevant, at least for our applications in [DJ07]. Its con-
sequences on Borel subgroups in Section 4.1.2 below will be the closest analogs
of the Uniqueness Theorem of Bender in finite group theory [Ben70a] [Ben70b]
[Gag76, §5-7] [BG94, Chapter II]
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Theorem 4.1 Let G be a locally◦ solvable◦ group of finite Morley rank, p̃ =
(p, r) a unipotence parameter with r > 0, and U a Sylow p̃-subgroup of G.
Assume that U1 is a nontrivial definable p̃-subgroup of U containing a nonempty
(possibly trivial) subset X of G such that dp(C

◦(X)) ≤ r. Then U is the unique
Sylow p̃-subgroup of G containing U1, and in particular N(U1) ≤ N(U).

Before the proof, a few remarks.

(1) If G◦ is solvable and r = dp(G) > 0, then assuming that F ◦(G◦) has a non-
trivial normal definable p̃-subgroup U1 one gets with Theorem 4.1 (applied
with X = 1 for example!) that G◦ has a unique Sylow p̃-subgroup, which
is thus normal and contained in F ◦(G◦). In the event of the absence of
such a subgroup U1 one easily gets the same conclusion with Fact 2.12 (3)
and (4). Hence in some sense Theorem 4.1 can be seen as a generalization
from solvable groups to locally◦ solvable◦ groups of Fact 2.15.

(2) The nontriviality of U1 is needed in Theorem 4.1, as in a hypothetic p̃-
homogeneous semisimple bad group the trivial subgroup would be con-
tained in infinitely many conjugates of the Sylow p̃-subgroup.

(3) Theorem 4.1 fails if p̃ = (∞, 0). For exemple if G is of the form T×(U ⋊T ),
with U p-unipotent for some prime p and T a good torus, whose second
copy acts faithfully on U , then d∞(G) = 0, so that all assumptions of
Theorem 4.1 are satisfied with U1 the central copy of T , but the latter is
contained in infinitely many conjugates of the maximal good torus T ×T .
We will give in Lemma 4.2 below a version of Theorem 4.1 specific for
the unipotence parameter p̃ = (∞, 0), by replacing dp(C

◦(X)) by the
absolute unipotence degree d(C◦(X)) but with no more local solvability
assumption.

After these comments we pass to the proof of Theorem 4.1.

Proof. Assume V is a Sylow p̃-subgroup of G distinct from U and containing
U1, and chosen so as to maximize the rank of Up̃(U ∩ V ). Let T denote U ∩ V .
As U1 ≤ T , the subgroup T is infinite. As T is nilpotent, N := N◦(T ) is
solvable by local◦ solvability◦ of G and Lemma 3.4 (4). Notice that T < U , as
otherwise U = (U ∩ V ) ≤ V and U = V by maximality of U . Similarly T < V ,
as otherwise V = (U ∩V ) ≤ U and V = U by maximality of V . In particular by
normalizer condition, Fact 2.7, Up̃(T ) < Up̃(NU (T )) and Up̃(T ) < Up̃(NV (T )).

We claim that dp(N) = r. If dp(N) > r, then r < ∞, p = ∞, and N contains
a nontrivial Sylow (∞, r′)-subgroup Σ with r′ > r. Notice that dp(T ) ≤ r
by Corollary 2.3 and Fact 2.5 and our assumption that the subset X of T
satisfies dp(C(X)) ≤ r. Then T · Σ is nilpotent by Fact 2.12 (3) and (4),
and T commutes with Σ by Fact 2.5. In particular Σ commutes with X and
dp(C

◦(X)) ≥ r′ > r, a contradiction to our assumption. Hence dp(N) ≤ r, and
as N contains Up̃(NU (T )) (or Up̃(NV (T ))) which is nontrivial and of unipotence
degree r we get dp(N) = r.
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By Fact 2.15 and the assumption that r ≥ 1 we get Up̃(N) ≤ F ◦(N). In
particular Up̃(N) is nilpotent, and contained in a Sylow p̃-subgroup Γ of G.
Now U1 ≤ Up̃(T ) < Up̃(NU (T )) ≤ Γ, so our maximality assumption on V
implies that Γ = U . In particular Up̃(NV (T )) ≤ Γ = U . But then Up̃(T ) <
Up̃(NV (T )) ≤ Up̃(U ∩ V ) = Up̃(T ), a contradiction which finishes the proof of
our first statement.

The inclusion N(U1) ≤ N(U) follows from the uniqueness. �

We conclude with a version of Theorem 4.1 specific for the unipotence pa-
rameter p̃ = (∞, 0), and which indeed does not rely on local solvability.

Lemma 4.2 Let G be a group of finite Morley rank, T a maximal definable
decent torus of G, and x an element of T such that C◦(x) is solvable and
d(C◦(x)) ≤ 0. Then T is the unique maximal definable decent torus of G con-
taining x, and in particular N(〈x〉) ≤ N(T ).

Proof. By assumption and Lemma 2.11 (2), C◦(x) is a good torus. As x ∈ T
and T is connected abelian, T ≤ C◦(x), and T = C◦(x) by maximality of T .
Now any maximal definable decent torus containing x must be in C◦(x) for the
same reason, hence in T , and hence equal to T by maximality of T . Furthermore,
N(〈x〉) ≤ N(C◦(x)) = N(T ). �

4.1.2 Consequences on Borel subgroups

Applied to the case of Borel subgroups Theorem 4.1 has the following corollaries.
These can be seen as absolute approximations in the context of locally◦ solvable◦

groups of finite Morley rank of the fact that any unipotent subgroup of PSL 2

belongs to a unique Borel subgroup of the ambient group.

Corollary 4.3 Let G be a locally◦ solvable◦ group of finite Morley rank, p̃ =
(p, r) a unipotence parameter with r > 0, and B a Borel subgroup of G such that
dp(B) = r. Let U1 be a nontrivial definable p̃-subgroup of Up̃(B) containing a
nonempty subset X such that dp(C

◦(X)) ≤ r. Then Up̃(B) is the unique Sylow
p̃-subgroup of G containing U1, and in particular N(U1) ≤ N(Up̃(B)) = N(B).
Furthermore, B is the unique Borel subgroup containing U1 and admitting p̃ as
a unipotence parameter maximal in its characteristic.

Proof. The fact that Up̃(B) is a Sylow p̃-subgroup of G is Lemma 3.10. The
uniqueness of Up̃(B) among Sylow p̃-subgroups containing U1, as well as the
inclusion N(U1) ≤ N(Up̃(B)), is then Theorem 4.1.

Let now B1 be a Borel subgroup of G containing U1 and admitting p̃ = (p, r)
as maximal in its characteristic. Notice that Up̃(B1) is a Sylow p̃-subgroup of G
by Lemma 3.10. As it contains U1, Theorem 4.1 now implies Up̃(B1) = Up̃(B).
Now the normalizers◦ of these (equal) groups are solvable by local◦ solvability◦

of G, contain B1 and B respectively, hence are equal to B1 and B respectively
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by maximality, and are equal. Hence B1 = B, as desired for our second claim.
�

PSL 2 in positive characteristic offers a counterexample to Corollary 4.3 when
r = 0. It suffices to consider for U1 a maximal torus of the standard Borel
subgroup B, so that N(T ) � N(B) and T ≤ Bw where w is a nontrivial Weyl
group element associated to T . For the case r = 0 we refer to Lemma 4.2.

Corollary 4.3 takes the following form when (p, r) is maximal in its charac-
teristic over the whole ambient group G.

Corollary 4.4 Let G be a locally◦ solvable◦ group of finite Morley rank, p̃ =
(p, r) a unipotence parameter with r > 0 such that dp(G) = r. Let B be a Borel
subgroup of G such that dp(B) = r. Then Up̃(B) is a Sylow p̃-subgroup of G,
and if U1 is a nontrivial definable p̃-subgroup of B, then Up̃(B) is the unique
Sylow p̃-subgroup of G containing U1, N(U1) ≤ N(Up̃(B)) = N(B), and B is
the unique Borel subgroup of G containing U1.

Proof. Let X = 1. Then dp(C
◦(X)) = dp(G) = r, so Corollary 4.3 applies with

X = 1. Notice that p̃ is maximal in its characteristic for any Borel subgroup
admitting it, and that when U1 is a nontrivial definable p̃-group then any Borel
subgroup containing it admits p̃. �

As for Corollary 4.3, PSL 2 in positive characteristic offers a counterexample
when r = 0 in Corollary 4.4.

The preceding uniqueness theorems are often used as follows to “fusion”
Borel subgroups sharing too unipotent subgroups.

Lemma 4.5 Let G be a locally◦ solvable◦ group of finite Morley rank. Assume
that, for i = 1 and 2, p̃i = (pi, ri) are two unipotence parameters with ri > 0
and Bi are two distinct Borel subgroups of G such that dpi

(Bi) = ri. Then
there is no Borel subgroup B3 of G such that dpi

(Bi ∩ B3) = dpi
(B3) = ri and

dpi
(C◦(Up̃i

(Bi ∩ B3))) ≤ ri.

Proof. Assume the contrary. Applying Corollary 4.3 with U1 = X = Up̃i
(B1 ∩

B3) implies that B1 = B3, and with U1 = X = Up̃i
(B2 ∩ B3) that B2 = B3.

Hence B1 = B2, a contradiction. �

We finish with a version of Lemma 4.5 concerning the case in which the
unipotence degrees ri’s are maximized over the whole ambient group.

Lemma 4.6 Let G be a locally◦ solvable◦ group of finite Morley rank. Assume
that, for i = 1 and 2, p̃i = (pi, ri) are two unipotence parameters with ri > 0
and Bi are two distinct Borel subgroups of G such that dpi

(G) = dpi
(Bi) = ri.

Then there is no Borel subgroup B3 of G such that dpi
(Bi ∩ B3) = ri.
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Proof. Under the stated assumptions dpi
(Bi) = ri. If there was a contradicting

Borel subgroup B3, then dpi
(Bi ∩ B3) = ri = dpi

(Bi) and dpi
(C◦(Up̃i

(Bi ∩
B3))) ≤ ri, a contradiction to Lemma 4.5. �

Again PSL 2 in positive characteristic offers counterexamples to Lemmas 4.5
and 4.6 when ri = 0, as we may take for B1 and B2 two distinct conjugates of
the standard Borel subgroup B and for B3 any of these two.

4.1.3 Consequences on Fitting subgroups

The first paragraph of the proof of the following lemma appeared as [Bur07,
Corollary 2.2].

Lemma 4.7 Let G be a locally◦ solvable◦ group of finite Morley rank. If B1

and B2 are two distinct Borel subgroups and X denotes F (B1) ∩ F (B2), then
X◦ is torsion free, X = X◦ × S for a finite subgroup S, and for any subgroup
S1 of X C◦(S1) is nonsolvable if and only if S1 ≤ S.

Proof. Assume X◦ not torsion free. Then it contains a nontrivial decent torus
T or a nontrivial p-unipotent subgroup U . In the first case, T ≤ Z(B1) ∩ Z(B2)
by Fact 2.12 (1), B1 = N◦(T ) = B2 by local◦ solvability◦ and Lemma 3.6, a
contradiction. In the second case Corollary 4.4 with p̃ = (p,∞) and X = U
yields B1 = B2, again a contradiction.

We have now X = X◦ × S for some finite subgroup S of X by Fact 2.5.
Let S1 be a subgroup of X . If S1 � S, then S1 contains an element of

the form s · x for some s in S and some nontrivial element x in X◦. As X◦ is
torsion-free, x as infinite order, as well as s · x, and C◦(S1) ≤ C◦(H(s · x)) ≤
N◦(H◦(s · x)), which is solvable by local◦ solvability◦ of G. Hence C◦(S1)
nonsolvable implies S1 ≤ S.

We now want to show that if S1 ≤ S, then C◦(S1) is nonsolvable. It suffices
to do it for S, so we assume toward a contradiction C◦(S) solvable. Let B3 be
a Borel subgroup of G containing C◦(S). Notice that the finite nilpotent group
S is the product of its Sylow p-subgroups. If p1 and p2 are two (not necessarily
distinct) primes dividing the order of S, then we claim that one cannot have
Up1(B1) 6= 1 and Up2(B2) 6= 1. Assume the contrary. As Sylow subgroups for
primes different from p1 in F (B1) commute with Up1(B1) (by Fact 2.5 (1)!),
Up1(B1 ∩ C◦(S)) is nontrivial by Fact 2.24 (2). Similarly, Up2(B2 ∩ C◦(S)) is
nontrivial. Now Lemma 4.6 gives a contradiction, which proves our claim. It
follows that all nontrivial p-unipotent subgroups of B1 or B2, for p dividing
the order of S, are on one side, say they are all in B1. Notice then that all p-
unipotence blocks of B2, for p dividing the order of S, are trivial. In particular
S ≤ Z(B2) by Lemma 2.25. Hence B2 ≤ C◦(S) ≤ B3, B3 = B2, and C◦(S) =
B2. Hence one cannot have C◦(S) = B1, as B1 6= B2. Hence S is not central in
B1. By Lemma 2.25, there is a prime p dividing the order of S and such that
Up(B1) 6= 1. As above, Up(C

◦
B1

(S)) is nontrivial by Fact 2.5 (1) and Fact 2.24
(2), and Corollary 4.4 gives then B1 = B2, a contradiction. �
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A subgroup S as in Lemma 4.7 could for example be the subgroup Z(H) in
the hypothetic Configuration 3.17.

We mention, parenthetically, that it is a version of the following lemma which
has been baptized “Jaligot’s lemma” in [Bur07, §2] (see [CJ04, §3.4] and [Bur07,
Lemma 2.1]).

Lemma 4.8 Let G be a locally◦ solvable◦ group of finite Morley rank. Assume
that, for i = 1 and 2, p̃i = (pi, ri) are two unipotence parameters such that
dpi

(G) = ri, and Bi are two distinct Borel subgroups such that dpi
(Bi) = ri. If

X denotes F (B1) ∩ F (B2), then X is finite and C◦(S1) is nonsolvable for any
subgroup S1 of X.

Proof. Assume X◦ non-trivial. By local◦ solvability◦ of G, N◦(X) is solvable
and hence contained in a Borel subgroup B3 of G. As X◦ is torsion-free by
Lemma 4.7, the assumption that dpi

(Bi) = ri implies ri > 0 for each i. By
Fact 2.15, Up̃i

(Bi) is in F ◦(Bi), and by Fact 2.5, Γi, the last nontrivial iterated
term of the descending central series of Up̃i

(Bi), is central in F ◦(Bi). Hence
Γi ≤ N◦(X) ≤ B3 ∩ Bi. Now by assumption each Γi is nontrivial, and a p̃i-
group by Corollary 2.3. Corollary 4.4 implies that each Γi is contained in a
unique Borel subgroup of G, which gives B3 = B1 and B3 = B2, contradicting
the assumption that B1 6= B2. Hence X is finite.

Our last claim is contained in Lemma 4.7. �

In absence of local◦ solvability one might have F (B1) ∩ F (B2) (finite and)
nontrivial in Lemma 4.8, as for example in Configuration 3.17 again.

4.1.4 Consequences on soapy subgroups

We continue as in Sections 4.1.2 and 4.1.3 with consequences of the Uniqueness
Theorem 4.1, now on soapy subgroups. All these properties make us think of a
soap sliding between two hands, exactly like a unipotent subgroup which cannot
be contained in two distinct Borel subgroups in PSL 2. The following lemmas
will be used in our most critical computations in [DJ07].

Lemma 4.9 Let G be a locally◦ solvable◦ group of finite Morley rank, B1 and
B2 two Borel subgroups each having a soapy subgroup U1 and U2 respectively.
Then

(1) B1 is unique among Borel subgroups of G containing U1 and admitting the
unipotence parameter of U1 as maximal.

(2) If [U1, U2] = 1, then B1 = B2.

Proof.
(1). By local◦ solvability◦ of G, N◦(U1) is solvable. As U1 is normal in B1,

the maximality of B1 implies N◦(U1) = B1. If the unipotence parameter of
U1 is (∞, 0), then B1 is a good torus, as well as any Borel subgroup admitting

38



(∞, 0) as maximal. So any such Borel subgroup is contained in C◦(U1) = B1,
and thus equal to B1. Otherwise, as C◦(U1) ≤ N◦(U1), the first item is a mere
application of Corollary 4.3.

(2). Again N◦(U1) = B1 and similarly N◦(U2) = B2. Hence U1, U2 ≤
B1 ∩ B2 under the assumption that U1 and U2 commute. If U1 is a good torus,
then as for the first item B1 is a good torus as well, as well as its subgroup U2,
and similarly B2 also. We then get B2 ≤ C◦(U1) ≤ N◦(U1) = B1, and equality
of B1 and B2. One concludes symmetrically when U2 is a good torus, so one can
assume that both U1 and U2 are not good tori. As U1, U2 ≤ B1 ∩ B2, Corollary
4.4 gives B1 = B2 or max(d(U1), d(U2)) < ∞. In any case Corollary 4.3 gives
B1 = B2. �

The following lemma allows one to build soapy subgroups in presence of two
Borel subgroups.

Lemma 4.10 Let G be a locally◦ solvable◦ group of finite Morley rank, B1 and
B2 two Borel subgroups, and U1 a soapy subgroup of B1. If U1 ≤ B2, then B2

contains a characteristically soapy subgroup.

Proof. If B1 = B2, then U1 is a soapy subgroup of B2 and we may use Lemma
2.17.

Assume now B1 6= B2, and let q̃1 be the unipotence parameter attached to
U1. Let q̃2 be a unipotence parameter maximal for B2. If q̃2 = (∞, 0), then B2

is a good torus, as well as U1, as well as B1, and then one concludes as usual
by local◦ solvability◦ that B1 = B2. Hence q̃2 is not (∞, 0). If Uq̃2(Z(F ◦(B2)))
is not central in B2, then we may apply Lemma 2.18.

So now assume toward a contradiction Uq̃2(Z(F ◦(B2))) central in B2. In
particular Uq̃2(Z(F ◦(B2))) ≤ C◦(U1) ≤ N◦(U1) = B1 by local◦ solvability◦ of
G. By Corollary 4.4, q̃1 and q̃2 do not represent subgroups of bounded exponent,
as B1 6= B2. The maximality of q̃1 for B1 and of q̃2 for B2 then yields q̃1 = q̃2.
But Corollary 4.3 gives the uniqueness of B2 among Borel subgroups containing
Uq̃2(Z(F ◦(B2))) and admitting q̃2 as maximal. Thus B1 = B2, a contradiction
in the last case under consideration. �

4.1.5 Consequences on Carter subgroups

Theorem 4.1 also gives information on Carter subgroups possessing a subgroup
sufficiently unipotent relatively to the ambient group.

Lemma 4.11 Let G be a locally◦ solvable◦ group of finite Morley rank, Q a
Carter subgroup of G and p̃ = (p, r) a unipotence parameter admitted by Q.
Assume Q contains a nontrivial definable central p̃-subgroup U1 with a nonempty
subset X such that dp(C(X)) ≤ r. Then exactly one of the following three cases
occur.
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(1) Q is a generous Carter subgroup.

(2) For g generic in Q, dp(C
◦(g)) > r.

(3) The generic element of Q is exceptional, and in particular any element of
Q has order at most e(G).

Proof. Notice that the assumption together with Corollary 2.3 and Fact 2.5 (2)
implies that p̃ is maximal in its characteristic for Q.

If Q is generous, then C◦(g) ≤ Q holds for g generic in Q by Fact 2.14 (see
also [Jal06, Lemma 3.10]), so cases (2) and (3) cannot occur.

Assume Q not generous in G. By Fact 3.34, Q contains no nontrivial good
torus, and thus r > 0 as p̃ is maximal in its characteristic for Q. By Theorem
4.1, U1 is contained in a unique Sylow p̃ subgroup of G, say U , and Q ≤ N◦(U).
Notice that N◦(U) is solvable by local◦ solvability◦ of G. By condition (4) in
Fact 2.14 a generic element g of Q is in infinitely many conjugates of Q.

Suppose toward a contradiction dp(C
◦(g)) ≤ r and C◦(g) solvable. Then

p̃ 6= (∞, 0) is a unipotence parameter maximal in its characteristic for the
definable connected solvable subgroup C◦(g). It follows that C◦(g) contains a
unique Sylow p̃-subgroup by Fact 2.15, which is necessarily a p̃-subgroup of U
as it contains U1. If γ is an element of G such that g ∈ Qγ , then U1 and Uγ

1

are both contained in Up̃(C
◦(g)), and by uniqueness applied now to Uγ

1 one
gets U = Uγ . Hence all G-conjugates of Q containing g are actually N◦(U)-
conjugate. But now Q is generous in the definable connected solvable subgroup
N◦(U), and thus a generic element of Q is in a unique N◦(U)-conjugate of Q
by Fact 2.14. This is a contradiction. Hence when Q is not generous one of the
two cases (2) or (3) must occur.

Notice that in case (3) a generic element of Q, being exceptional, has order
at most e(G), and then the exponent of Q is bounded by e(G) by Fact 2.5 (2).

It just remains to show that cases (2) and (3) cannot occur simultaneously.
But in case (2) r cannot be ∞, and in case (3) it must. �

Of course, by Corollary 2.3, Lemma 4.11 applies when dp(G) = dp(Q) = r.
In particular a nongenerous Carter subgroup which is not divisible must be as
in case (3) of Lemma 4.11.

4.2 Uniqueness Theorem and cosets

In [CJ04] arguments pending on cosets and generosity were developed intensively
for determining Weyl groups in groups of finite Morley rank in the specific case
of minimal connected simple groups. This systematic approach was strongly in-
spired by the seminal work of Nesin in the context of bad groups [Nes89]. These
arguments generally split into two parts. Cosets corresponding to an undesir-
able Weyl element are usually shown to be both generous and nongenerous in
the ambient group, and then the coset as well as the unexpected Weyl element
does not exist. Local properties of small groups often allow one to prove that
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some cosets are generous, as this is done intensively in [CJ04], and normally
this is contradictory by itself.

In the light of the fine analysis of generous sets of [Jal06] and in continua-
tion of this work, these coset arguments have certain generalizations, and what
follows is part of it. It is however worth recalling these arguments in the specific
context of locally◦ solvable◦ groups. The interest is both to put in a uniform
format this essential content of [CJ04] (here with the appeal to [Jal06]), and
to see how the specific local analysis of small groups originates further such
arguments. In the process we will also encounter an interesting pathological
configuration.

As far as generosity is concerned, the fine analysis of conjugacy classes in
[Jal06] definitively provided the right understanding concerning generosity.

Fact 4.12 [Jal06] Let (G, Ω) be a permutation group of finite Morley rank in
which the Morley rank is additive (or a ranked permutation group), H a definable
subset of Ω, and assume that for r between 0 and rk (G/N(H)) the definable set
Hr, consisting of those elements of H contained in a set of conjugates of H of
rank exactly r, is nonempty. Then

rk (Hr
G) = rk (G) + rk (Hr) − rk (N(H)) − r.

Proof. This is essentially the content of the fine analysis of conjugacy classes
of [Jal06, §2.2]. Here the geometric proof for this mentioned later by Cherlin
yields this equality exactly as in [Jal06, §2.3]. One uses the additivity of the
Morley rank, or of the rank function if the structure is ranked as in the axioms
of [BN94], for computing the ranks of the set of flags in the naturally associated
geometry. �

We say that a connected locally◦ solvable◦ group H of finite Morley rank is
sick if it contains a generous Carter subgroup, H contains no nontrivial decent
torus, the generous Carter subgroup has a nontrivial π-unipotent subgroup, H
does not conjugate its maximal p-unipotent subgroups for any p ∈ π, and for
any such p N◦

H(U) is a Carter subgroup of bounded exponent of H for some
maximal p-unipotent subgroup U of H .

Theorem 4.13 Let G be a locally◦ solvable◦ group of finite Morley rank with a
generous Carter subgroup. Let H be a definable connected subgroup of G and x
an element of NG◦(H) not in H. Assume that H is solvable or that H contains
a generous Carter subgroup of the ambient group and is not sick. Then xH is
not generous in G.

This essential content of [CJ04] was proved locally, usually for H a Carter
subgroup or indeed the centralizer◦ of a torus of the ambient group, and we refor-
mat it in its natural form here, replacing the applications of [CJ04, Proposition
3.11] in that paper by Section 4.1 here and arguing directly for the production
of bounded exponent torsion of [CJ04, §3.3].
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Proof. Assume towards a contradiction xH is generous in G.
Notice that for the suitable r as in Fact 4.12 such that XG

r is generic in
G, where X denotes the coset xH , one has rk (Xr) − rk (N(X)) = r ≥ 0,
hence rk (H) ≤ rk (N(X)) ≤ rk (Xr) ≤ rk (xH) = rk (H), and thus r = 0,
rk (H) = rk (N(xH)) = rk ([xH ]0), and a generic element of xH is in only
finitely many conjugates of xH . Also N◦(xH) = H . (The argument of this
paragraph is of course general.)

A generic element w of xH is also generic in G. By Fact 4.12, w is in
only finitely many conjugates of xH , and this implies as in [Jal06, Fundamental
Lemma 3.3] that C◦(w) ≤ N◦(xH) = H . By Fact 2.14 (see also [Jal06, Lemma
3.10]), C◦(w) ≤ Qw, where Qw denotes the unique conjugate of the generous
Carter subgroup Q containing w.

(The next paragraph corresponds to the local applications of [CJ04, §3.3]
in that paper, though things may be stated in somewhat reversed ways there.
The paragraph following it will then concern the application of the uniqueness
theorems of Section 4.1, and this was usually done first in the sequence of argu-
mentations in [CJ04] via [CJ04, Proposition 3.11]. Actually [CJ04, Proposition
3.11] provided trivial intersections at the level of subgroups, and then cosets
consisting generically of bounded exponent elements, and then [CJ04, §3.3] gave
bounded exponent subgroups.)

Let n be the order of x modulo H . By assumption n > 1. As w ∈ xH and
x normalizes H , H(w) ≤ 〈x〉H and in the definable hull H(w), w has order a
nontrivial multiple of n modulo H◦(w). This shows that the generic element
of Qw has the property of having order a nontrivial multiple of n modulo the
connected component of its definable hull. Hence Qw contains by Fact 2.5 a
nontrivial definable connected subgroup of bounded exponent (whose elements
are generically of order the above multiple of n).

The generic element w of Qw centralizes a nontrivial definable connected
abelian subgroup of exponent n by Facts 2.5 (2) and 2.24 (2). By Corollary 4.3,
C◦(w) is contained in a unique Borel subgroup, say Bw, and C◦(w) ≤ Qw ≤ Bw.

Now wH is generous in any definable connected subgroup containing it. This
is a general fact, for which one can proceed as in [Jal06, Lemma 3.9 b.]. Indeed
the property of the generic element of xH of being contained in finitely many
conjugates of xH is obviously preserved when passing to definable subgroup,
and this suffices with Fact 4.12 and the fact that rk (N(xH)) = rk (xH).

When H is solvable, we have as C◦(w) ≤ H also that H ≤ Bw. In particular
wH is generous in the connected solvable group Bw, and this is ridiculous. One
can argue, being inside a connected solvable group. One can also argue noticing
that N◦

Qw
(〈w〉(H ∩ Qw)) normalizes w(H ∩ Qw) by Fact 1.2, hence normalizes

wH as in [Jal06, Fundamental Lemma 3.3], so it is in N◦(wH) = H , and the
normalizer condition in connected nilpotent groups gives w ∈ 〈w〉(H ∩ Qw) =
Qw, a contradiction as Qw is connected and w is not in (H ∩ Qw).

This finishes our rearrangement of [CJ04] when H is solvable, and when H
contains a generous Carter subgroup Q one can proceed as follows.

By the preceding case one may assume H nonsolvable. By a Frattini Argu-
ment following from the conjugacy of generous Carter subgroups, [Jal06, Corol-
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lary 3.13], we may suppose that x normalizes the generous Carter subgroup Q
of H .

Let π be the set of primes involved in the bounded exponent part of the
generous Carter subgroup. Assume that H conjugates its maximal p-unipotent
subgroups for some prime p in π, or that Q contains a nontrivial decent torus.
In the first case one may assume after H-conjugacy, with Fact 2.15 and Lemma
4.6 that Q and Qw are in a common Borel subgroup of G. Similarly, if Q and Qw

contain a nontrivial decent torus, one may assume after H-conjugacy that Q and
Qw are the centralizer◦ of their common maximal decent torus, and hence that
they are by local◦ solvability◦ in a same Borel subgroup of G. If we denote by B
this Borel subgroup in both cases, then we get Q ≤ (H∩B)◦ < 〈w〉(H∩B)◦ ≤ B,
and this is impossible by a Frattini argument as the Carter subgroup Q is
selfnormalizing in B.

This leaves us with the case in which Q has a nontrivial π-unipotent sub-
group, H does not conjugate its maximal p-unipotent subgroups for any p ∈ π,
and H contains no nontrivial decent torus. Hence in this pathological situation
H has all the symptoms of sickness, except maybe the last one. But this will
be seen in Lemma 5.7 below (whose proof will be independent). �

Theorem 4.13 represents coset arguments of [CJ04] for dealing with Weyl
groups. We note that its proof actually provided the following much more
general

Fact 4.14 [Jal08a] Let G be a group of finite Morley rank in which the generic
element of G◦ is in a connected nilpotent subgroup, and let H be a definable
subgroup of G◦. Then H \ H◦ is not generous in G.

The main consequence of Fact 4.14 is the following, a general fact in which
its conclusion is true, which also recasts some corresponding consequences as in
[CJ04] somehow in their original content.

Fact 4.15 [Jal08a] Let G be a group of finite Morley rank, n a natural number,
H a definable connected generous subgroup with the property that, for h generic
in H, h is in a connected nilpotent subgroup of H and hn is also generic in H,
and assume w is an element of G◦ of finite order n normalizing H without being
inside. Then CH(w) < H.

Groups of finite Morley rank with a generous Carter subgroup not divisible
or not abelian can be dealt with the Bender method, the results of Sections 4.1
and 4.3 here, and otherwise Fact 4.15 applies. In a locally◦ solvable◦ context
and in presence of a generous Carter subgroup the situation will be considered in
a separate paper with the results of Section 5.3 below. Here we merely mention
the following basic commutation principle relevant for Weyl groups, and which
builds upon [Del07a, Lemme 3.1].
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Lemma 4.16 Let G = NQ be a group, with N and Q two subgroups and N
normal. Assume σ is an automorphism of G normalizing Q and fixing N point-
wise. Then

(1) N and 〈[σ, Q]〉 commute.

(2) If Q = 〈[σ, Q]〉CQ(σ) and N ≤ N(CQ(σ)), then N ≤ N(Q).

Proof. For any element q in Q and h in N one has

h[σ,q] = hq−1σq = (hq−1

)σq = hq−1q = h

and thus h ∈ C([σ, q]). Hence N ≤ C(〈[σ, Q]〉), the general commutation prin-
ciple of [Del07a, Lemme 3.1]. The second item follows. �

In particular, if in Lemma 4.16 (2) G = NQ has finite Morley rank and Q
is a Carter subgroup, then N◦ ≤ C◦

Q(σ).
We finish this section with one word about centralizers of definable connected

exceptional subgroups. If G, H , and n are as in Fact 4.15, with G locally◦

solvable◦ and H an exceptional definable connected nonsolvable subgroup of G,
then C(H) is finite by Lemma 3.25, and if x is an element of G◦ in this finite
centralizer and of order n, then Fact 4.15 implies that x is in Z(H).

4.3 Maximal pairs of Borel subgroups

When the absolute maximality assumptions concerning unipotence degrees fail
in Lemma 4.8 one might have (or rather cannot exclude) pairs of Borel subgroups
whose Fitting subgroups have an infinite intersection. This situation has been
studied intensively in [Bur07]. In what follows, not only we claim no originality
compared to this paper, but also we will tend to follow it word by word. The
only differences will appear in the notation used for unipotence parameters and
in a special care needed for dealing here with our weakest assumption of local◦

solvability◦. Some additional results from [Del07a] will be mentionned in the
process.

Definition 4.17 Let G be a group of finite Morley rank, B1 and B2 two distinct
Borel subgroups. We say that (B1, B2) is a maximal pair (of Borel subgroups)
if the definable connected subgroup (B1 ∩ B2)

◦ is maximal for inclusion among
all definable connected subgroups of the form (L1 ∩ L2)

◦, with L1 and L2 two
distinct Borel subgroups of G.

Hypothesis 4.18 [Bur07, Hypothesis 3.2] We assume the following config-
uration:

(1) G is a locally◦ solvable◦ group of finite Morley rank.

(2) (B1, B2) is a maximal pair of Borel subgroups of G.
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(3) [F (B1) ∩ F (B2)]
◦ is nontrivial.

Notation 4.19 [Bur07, Notation 3.3] We let

(1) H = (B1 ∩ B2)
◦.

(2) X = F (B1) ∩ F (B2).

(3) r′ = d∞(X).

Recall that X◦ is torsion free by Lemma 4.7. In particular 0 < r′ < ∞. In
particular 0 < d∞(B1) < ∞ and 0 < d∞(B2) < ∞.

Notice that by Lemma 4.8 one cannot have d(B1) = d(B2) = ∞. So at least
one of the two Borel subgroups B1 and B2, say Bi, has no bounded exponent
subgroup. In particular 0 < d(Bi) < ∞. The other Borel subgroup Bi+1 might
satisfy 0 < d(Bi+1) ≤ ∞ (this latter inequality will be shown to be also strict
in the analysis below).

4.3.1 Homogeneity of X

We observe that H ′ ≤ X E H . We will show the asymmetry of the situation,
i.e. d∞(B1) 6= d∞(B2). We may assume in any case that

Hypothesis 4.20 d∞(B2) ≤ d∞(B1).

and we will indeed show that d∞(B2) < d∞(B1). Notice that d(H) =
d∞(H).

Lemma 4.21 [Bur07, Lemma 3.5] d∞(H) < d∞(B1).

Proof. As there is no nontrivial p-unipotent subgroup in H , d(H) < ∞.
Suppose toward a contradiction d∞(H) ≥ d∞(B1). As H ≤ B1, d∞(H) ≤

d∞(B1) in any case, so our assumption becomes d(H) = d(B1). Since d(H) ≤
d∞(B2) ≤ d∞(B1) by Hypothesis 4.21, all these unipotence degrees are equal
to a certain d, and U(∞,d)(H) ≤ U(∞,d)(B1) ∩ U(∞,d)(B2). As G is locally◦

solvable◦, N◦(U(∞,d)(H)) is solvable, and thus contained in a Borel subgroup
B3 of G.

Now we contradict the fact that B1 6= B2.
If U(∞,d)(H) = U(∞,d)(Bi) for some i = 1 or 2, then by local◦ solvability◦

and maximality of Bi, Bi = N◦(U(∞,d)(H)) ≤ B3, and Bi = B3.
If U(∞,d)(H) < U(∞,d)(Bi) for some i = 1 or 2, then, as d∞(Bi) = d ≥ 1,

U(∞,d)(Bi) ≤ F ◦(Bi) and is in particular nilpotent, Fact 2.7 gives

U(∞,d)(H) < U(∞,d)(NU(∞,d)(Bi)(U(∞,d)(H))) ≤ B3.

Since U(∞,d)(H) E H , we must get H < (Bi ∩ B3)
◦. By maximality of H we

get Bi = B3.
As B1 6= B2, U(∞,d)(H) is proper in one of the two subgroups U(∞,d)(Bi),

and not in both. In any case we get B1 = B3 = B2, a contradiction. �
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Lemma 4.22 [Bur07, Lemma 3.6] d(H) = d∞(B2).

Proof. Suppose toward a contradiction d(H) < d∞(B2).
By local◦ solvability◦, N◦(U(∞,r′)(X)) is solvable, and contained in a Borel

subgroup B3 of G. Since U(∞,r′)(X) E H , H is contained in B3. Since d(H) <
d∞(Bi) for i = 1 and 2 by Lemma 4.21 and Hypothesis 4.20, Fact 2.5 gives
U(∞,d∞(Bi))(Bi) ≤ C◦(U(∞,r′)(X)) ≤ B3. Hence H < (Bi ∩ B3)

◦ and Bi = B3

by maximality of H for i = 1 and 2, a contradiction to B1 6= B2. �

Corollary 4.23 d(H) = d∞(H) = d∞(B2) < d∞(B1).

Proposition 4.24 [Bur07, Proposition 3.7] If H is nonabelian, then B1

and B2 are the only Borel subgroup containing H.

Proof. Suppose there is a Borel subgroup B3 distinct from B1 and B3 and
containing H . The maximality of H yields H = (B1∩B3)

◦ = (B2∩B3)
◦. Since

1 6= H ′ ≤ F ◦(B3), the maximal pairs (B1, B3) and (B2, B3) satisfy Hypothesis
4.18. Since d∞(H) < d∞(B1) by Lemma 4.21, d∞(H) = d∞(B3) by Lemma
4.22 applied to the maximal pair (B1, B3). But since d∞(H) = d∞(B2) by
Lemma 4.22, d∞(H) < d∞(B3) by Lemma 4.21 applied to the maximal pair
(B2, B3). This is a contradiction. �

As d∞(B2) < d∞(B1), the Borel subgroups are not conjugate, a point we
exploit in the next lemma.

Lemma 4.25 [Bur07, Lemma 3.8] F ◦(Bi) � H for i = 1 and 2.

Proof. Since d∞(H) < d∞(B1) by Lemma 4.21, F ◦(B1) � H . Suppose toward
a contradiction F ◦(B2) ≤ H . Then H E B2 by Fact 2.22, and H ≤ B1 ∩ Bg

1

for some g ∈ B2 \N(B1). By maximality of H , (B1, B
g
1 ) is a maximal pair, and

Corollary 4.23 applied to this maximal pair gives a contradiction. �

Lemma 4.26 [Bur07, Lemma 3.9] If X1 is an infinite definable subgroup of
X normal in H, then N◦(X1) ≤ B1.

Proof. By local◦ solvability◦ N◦(X1) is solvable, and hence contained in a Borel
subgroup B3 of G. By assumption H ≤ B3. Since d∞(H) < d∞(B1) by Lemma
4.21, Fact 2.5 yields U(∞,d∞(B1))(B1) ≤ C◦(X1) ≤ B3. Thus H < (B1 ∩ B3)

◦

and by maximality of H we get B1 = B3. In particular N◦(X1) ≤ B1. �

Corollary 4.27 [X ∩ Z(F (B2))]
◦ = 1.

Theorem 4.28 [Bur07, Theorem 3.10] X◦ is a homogeneous (∞, r′)-sub-
group.
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Proof. Recall that X◦ is torsion-free. Suppose toward a contradiction that
U(∞,r)(X) is nontrivial for some 0 ≤ r < r′. By Fact 2.5 and Lemma 4.26

F ◦(B2) ≤ C◦(U(∞,r′)(X))C◦(U(∞,r)(X)) ≤ B1

and it follows that F ◦(B2) ≤ H . This contradicts Lemma 4.25. Hence X◦ is
homogeneous in the maximal unipotence parameter in its characteristic, that is
(∞, r′). �

4.3.2 Fitting subgroup of B2

We delineate now F ◦(B2), and in particular determine which of its factors are
contained in H .

Lemma 4.29 [Bur07, Lemmas 3.11 and 3.12] F ◦(B2) is divisible (in par-
ticular d(B2) = d∞(B2)) and U(∞,r)(F

◦(B2)) ≤ Z(H) when 0 ≤ r ≤ d(B2) and
r 6= r′.

Proof. If d(B2) = ∞, then Up(B2) is nontrivial for some prime p, and contained
in N◦(X◦) ≤ B1 by Lemma 4.26. This is a contradiction to Lemma 4.7 or
Lemma 4.8. Hence d(B2) = d∞(B2) and F ◦(B2) is divisible.

By Theorem 4.28, Fact 2.5, and Lemma 4.26, U(∞,r)(F
◦(B2)) ≤ C◦(X◦) ≤

N◦(X◦) ≤ B1, and hence each of these groups is contained in H . As each such
group is nilpotent and normalized by the subgroup H of B2, each such group is
in F ◦(H). Now Fact 2.8 and Theorem 4.28 give

[H, U(∞,r)(F
◦(B2))] ≤ U(∞,r)(H

′) ≤ U(∞,r)(X
◦) = 1.

�

Lemma 4.30 [Bur07, Lemma 3.13] U(∞,r′)(F
◦(B2)) is not contained in H

and not abelian.

Proof. By Fact 2.5 F ◦(B2) is generated by its Sylow p̃-subgroups. But by
Lemma 4.25 F ◦(B2) � H , so Lemma 4.29 implies U(∞,r′)(F

◦(B2)) � H .
Since N◦(X◦) ≤ B1 by Lemma 4.26, U(∞,r′)(F

◦(B2)) cannot be abelian. �

Now we can deduce from the two preceding lemmas that the unipotence
degree r′ is uniquely determined by the structure of B2.

Corollary 4.31 [Bur07, Corollary 3.14] U(∞,r)(F
◦(B2)) is not abelian if

and only if r = r′.

Lemma 4.32 [Bur07, Lemma 3.15] U(∞,r)(B2) ≤ F ◦(B2) for every r > r′.
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Proof. Let Q be a definable (∞, r)-subgroup of B2. By Fact 2.12 and our
assumption r > r′, U(∞,r′)(F

◦(B2)) · Q is nilpotent. It follows by Fact 2.5 that
Q centralizes U(∞,r′)(F

◦(B2)), and in particular Q centralizes its subgroup X◦.
Hence Q ≤ N◦(X◦) ≤ B1 by Lemma 4.26, and Q ≤ H . By Lemma 4.29, Q
centralizes all factors of F ◦(B2), except maybe the one of unipotence parameter
(∞, r′). But as U(∞,r′)(F

◦(B2)) ·Q is nilpotent, F ◦(B2) ·Q is nilpotent, and as
it is normal in B2 by Fact 2.22, we deduce that Q ≤ F ◦(B2), as desired. �

4.3.3 Structure of H

Lemma 4.33 [Bur07, Lemma 3.16] U(∞,r′)(H) ≤ F ◦(B2). In particular
U(∞,r′)(H) is nilpotent and the unique Sylow (∞, r′)-subgroup of H.

Proof. Let Q be any definable (∞, r′)-subgroup of H . By Fact 2.12, the
group U(∞,r′)(F

◦(B2)) · Q is nilpotent. For any integer r 6= r′, Q central-
izes U(∞,r)(F

◦(B2)) by Lemma 4.29. Hence F ◦(B2) ·Q is nilpotent by Fact 2.5.
By Fact 2.22, this product is normal in B2, and hence it must be contained in
F ◦(B2).

In particular U(∞,r′)(H) is nilpotent, and the unique Sylow (∞, r′)-subgroup
of H . �

This has a consequence purely in B2, as seen in [Del07a].

Lemma 4.34 [Del07a, Lemme 3.11] If a Carter subgroup of H is also a
Carter subgroup of B2, then U(∞,r′)(B2) is nilpotent, included in F ◦(B2), and
the unique Sylow (∞, r′)-subgroup of B2.

Proof. Let Q be a Carter subgroup of H , which is also a Carter subgroup of
B2. Then U(∞,r′)(F

◦(B2)) · U(∞,r′)(Q) is a Sylow (∞, r′)-subgroup of B2 by
Fact 2.30. By conjugacy of such subgroups in B2, Fact 2.29, it suffices to show
that it is contained in F ◦(B2). But the first factor clearly is, and the second
also by Lemma 4.33. �

We return to the structure of H .

Notation 4.35 Let Y = U(∞,r′)(H) be the unique Sylow (∞, r′)-subgroup of
H. It is normal in H, and in F ◦(H).

We find that Y has properties antisymmetric to those of X .

Lemma 4.36 [Bur07, Lemma 3.17] N◦(Y ) ≤ B2 and X◦ < Y . In addition
U(∞,r′)(NF (B2)(Y )) � H.
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Proof. Let P = U(∞,r′)(F
◦(B2)). Then Y ≤ P by Lemma 4.33. By Lemma 4.30

P � H , so Y < P . By Normalizer Condition, Fact 2.7, Y < U(∞,r′)(N
◦
P (Y )).

Now X◦ < Y by Lemma 4.26, and N◦(Y ) ≤ B2 by maximality of H . �

Theorem 4.37 [Bur07, Theorem 3.18] Every definable connected nilpotent
subgroup of H is abelian.

Proof. By Fact 2.5 it suffices to show that any Sylow p̃-subgroup of H is abelian.
As this is true for decent tori and there is no nontrivial p-unipotent subgroup
in H , it suffices to show this when p̃ = (p, r), with 1 ≤ r < ∞. For r 6= r′,
U(∞,r)(H

′) = 1 by Theorem 4.28, so a Sylow (∞, r)-subgroup of H must be
abelian by Fact 2.8. It remains to show that the unique Sylow (∞, r′)-subgroup
of H , Lemma 4.33, is also abelian. For if Y ′ is not trivial, then N◦

B2
(Y ) ≤

N◦
B2

(Y ′) ≤ B1 by Lemma 4.26, contradicting Lemma 4.36. This completes the
proof. �

Lemma 4.38 [Bur07, Lemma 3.19] If H is not abelian, then N◦(H) = H.

Proof. Lemma 4.36 implies that N◦(H) ≤ N◦(Y ) ≤ B2. When H ′ 6= 1, Lemma
4.26 implies also that N◦(H) ≤ N◦(H ′) ≤ B1. �

4.3.4 Structure of B1

Lemma 4.39 [Bur07, Lemma 3.20] F ◦(B1) is divisible (and in particular
d(B1) = d∞(B1)) and U(∞,0)(F

◦(B1)) ≤ Z◦(H).

Proof. Y is an (∞, r′)-group, with 0 < r′ < ∞, normalizing an hypothetic
p-unipotent subgroup of B1. By Fact 2.12 (4), it centralizes all of them. As
N◦(Y ) is solvable by local◦ solvability◦ of G, one gets if Up(B1) 6= 1 for some
prime p that N◦(Y ) ≤ B1 by Lemma 4.4. But N◦(Y ) ≤ B2 also by Lemma
4.36, which gives a nontrivial p-unipotent subgroup in H , a contradiction to
Lemma 4.4 or Lemma 4.7. Hence F ◦(B1) is divisible and d(B1) = d∞(B1).

As the maximal definable decent torus of F ◦(B1) is central in B1, it cen-
tralizes Y . Hence Lemma 4.36 gives U(∞,0)(F

◦(B1)) ≤ N◦(Y ) ≤ B2, and hence
U(∞,0)(F

◦(B1)) is contained in H . But the latter normalizes the former, and
hence centralizes it by Fact 2.12 (1). �

Lemma 4.40 [Bur07, Lemma 3.21] X◦ = U(∞,r′)(F
◦(B1)), and also B1 =

N◦(X◦).

Proof. By Fact 2.12, U(∞,r′)(F
◦(B1)) · Y is nilpotent. Lemma 4.36 gives the

inclusion N◦

U(∞,r′)(F
◦(B1))·Y (Y ) ≤ H . So U(∞,r′)(F

◦(B1)) ≤ Y by Normalizer

Condition, Fact 2.7. By Lemma 4.33, Y ≤ F (B2), so U(∞,r′)(F
◦(B1)) ≤ X◦.

But the converse to the latter inclusion holds by Theorem 4.28.
Our last claim follows by local◦ solvability◦ of G and maximality of B1. �
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Corollary 4.41 [Bur07, Corollary 3.22] U(∞,r′)(F
◦(B1)) is abelian, and

F ◦(B1) ≤ C◦(X◦).

Proof. By Lemma 4.40 and Theorem 4.37 U(∞,r′)(F
◦(B1)) is abelian, and con-

tained in C◦(X◦). For an integer r 6= r′, U(∞,r)(F
◦(B1)) ≤ C◦(X◦) by Fact

2.5. So our last claim follows. �

Notation 4.42 We let Q denote a Carter subgroup of H.

Lemma 4.43 [Bur07, Lemma 3.23] U(∞,r′)(Q) = U(∞,r′)(Z(H)), and this
group is not trivial.

Proof. By Lemma 4.36, U(∞,r′)(H/H ′) is not trivial. So U(∞,r′)(Q) is not
trivial by Facts 2.22 and 2.28.

By Theorem 4.37, Q and Y are abelian. By Lemma 4.33, U(∞,r′)(Q) ≤ Y . So
U(∞,r′)(Q) centralizes both Q and the subgroup H ′ of Y . So U(∞,r′)(Q) ≤ Z(H)
by Fact 2.28. Conversely, Z◦(H) ≤ Q. �

Theorem 4.44 [Bur07, Theorem 3.24] N◦(U(∞,r′)(Q)) ≤ B2. So N◦(Q) ≤
B2, and Q is a Carter subgroup of B1.

Proof. We first show that N◦(U(∞,r′)(Q)) ≤ B2. By Lemma 4.36, N◦(Y ) ≤
B2. So we may assume that U(∞,r′)(Q) < Y , and hence H is not abelian by
Lemma 4.43. So B1 and B2 are the only Borel subgroups of G containing
H by Proposition 4.24. By Lemma 4.43, H ≤ N◦(U(∞,r′)(Q)). By local◦

solvability◦ of G the latter group is solvable. If it contains H properly, then
it can grow only in one Borel B1 or B2, and must agree with H on the other.
By Lemma 4.40, N◦(X◦) = B1. Since Y = X◦ · U(∞,r′)(Q) by Fact 2.30,
N◦

B1
(U(∞,r′)(Q)) ≤ N◦(Y ) ≤ B2 by Lemma 4.36. So N◦(U(∞,r′)(Q)) ≤ B2.

It follows that N◦(Q) ≤ N◦(U(∞,r′)(Q)) ≤ B2, and N◦
B1

(Q) ≤ N◦
H(Q) = Q,

so that Q is a Carter subgroup of B1. �

We show now that r′ is the only unipotence degree ≥ 1 (and in fact ≥ 0 as
well) appearing in both F (B1) and F (B2).

Lemma 4.45 [Bur07, Lemma 3.25] U(∞,r)(F
◦(B1)) = 1 for any r 6= r′ with

1 ≤ r ≤ d(B2).

Proof. Let T = U(∞,r)(F
◦(B1)). We claim that T ≤ H . First suppose that

d(B2) = r′. Then T · Y is nilpotent by Fact 2.12, and Y centralizes T by
Fact 2.5. So T ≤ N◦(Y ) ≤ B2 by Lemma 4.36, and T ≤ H . Next, suppose
that d(B2) > r′. Then U(∞,d(B2))(B2) ≤ Z(H) by Lemma 4.29. By Fact 2.5,
U := T ·U(∞,d(B2))(B2) is nilpotent. If r 6= d(B2), then T ≤ C◦(U(∞,d(B2))(B2))
by Fact 2.5, and T ≤ H . So we may assume that r = d(B2). If T � B2, then
by Normalizer Condition, Fact 2.7, U(∞,r)(B2) < U(∞,r)(N

◦
U (U(∞,r)(B2))), a
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contradiction to the fact that B2 = N◦(U(∞,r)(B2)) by local◦ solvability◦ of G.
Thus T ≤ H .

Since T ≤ H , and U(∞,r)(H
′) = 1 by Theorem 4.28, T is contained in a

Carter subgroup of H by Fact 2.30. Now T ≤ Q because T E H and Carter
subgroups are conjugate in H . Clearly T ≤ F ◦(H) too. By Fact 2.28 and
Theorem 4.37 H = F ◦(H)Q ≤ C◦(T ), and hence T ≤ Z(H).

Now consider the case where r > r′. Then U(∞,r′)(F
◦(B2)) · T is nilpotent

by Fact 2.12, and both factors commute by Fact 2.5. If T 6= 1, then B1 = N◦(T )
by local◦ solvability◦ of G and U(∞,r′)(F

◦(B2)) ≤ N◦(T ) ≤ B1, a contradiction
to Lemma 4.30. Thus T = 1.

Finally consider the case where r < r′. Since T ≤ Z(H), TY is abelian
by Theorem 4.37. Recall that Y ≤ F (B2) by Lemma 4.33. Let P denote the
group U(∞,r′)(NF (B2)(Y )). Then [x, h] ∈ Y for any x ∈ X◦ and any h ∈ P , and
hence [x, h] = [x, h]t = [x, ht] for any t ∈ T . So [h−1, t] = hh−t ∈ C(X◦). Now
[P, T ] ≤ Y by Lemma 4.26 and Fact 2.8. Since P is nilpotent, and T commutes
with Y , the product TP is nilpotent. By Fact 2.5, P ≤ N◦(T ), which is equal
to B1 by local◦ solvability◦ of G if T 6= 1. This contradiction to Lemma 4.36
shows that T = 1. �

As a result, r′ is also uniquely determined by B1.

Corollary 4.46 [Bur07, Corollary 3.26] r′ is the minimal unipotence degree
1 ≤ r < ∞ such that F (B1) admits the unipotence parameter (∞, r).

Corollary 4.47 [Bur07, Corollary 3.27] For 1 ≤ r ≤ d(B2), a Sylow (∞, r)-
subgroup of H is a Sylow (∞, r)-subgroup of B1.

Proof. By Lemmas 4.45 and 4.40, U(∞,r)(F
◦(B1)) ≤ H . Since Q is a Carter

subgroup of B1 by Theorem 4.44, the subgroup

U(∞,r)(F
◦(B1)) · U(∞,r)(Q)

of H is a Sylow (∞, r)-subgroup of H and of B1 by Theorem 2.30. One concludes
then by conjugacy of Sylow (∞, r)-subgroups. �

4.3.5 Nonabelian intersections

Remark 4.48 Tor (X) is toral and in Z(B1) ∩ Z(B2), and C◦(X) = C◦(X◦).

Proof. Let S be the (finite) torsion subgroup of X , as in Lemma 4.7. As
d(B1) < ∞ and d(B2) < ∞, S is a toral subgroup of B1 and B2, and in
Z(B1) ∩ Z(B2) by Lemma 2.25.

By Lemma 4.26, C◦(X) ≤ C◦(X◦) ≤ B1, and as X = X◦ × S with S ≤
Z(B1), C◦(X) = C◦(X◦). �
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Lemma 4.49 [Bur07, Lemma 3.28] The subgroup C◦(X◦) is not nilpotent.
If H is not abelian, then B1 is the unique Borel subgroup of G containing
C◦(X◦).

Proof. By Lemma 4.26, C◦(X◦) ≤ B1. By Lemma 4.33 and Theorem 4.37,
U(∞,r′)(Q) ≤ C◦(X◦). By Fact 2.5 and the fact that d(B1) 6= r′ (Corollary 4.23),
U(∞,d(B1))(B1) ≤ C◦(X◦) too. By Theorem 4.44 and Fact 2.5, U(∞,d(B1))(B1) ·
U(∞,r′)(Q) is not nilpotent. So C◦(X◦) is not nilpotent.

Suppose now H not abelian. Suppose then toward a contradiction that a
Borel subgroup of G distinct from B1 contains C◦(X◦). So there is a maximal
pair (B3, B4) which contains C◦(X◦). We may assume d(B3) ≥ d(B4). Let
K = [C◦(X◦)]′. By Corollary 4.41, F ◦(B1) ≤ C◦(X◦). So C◦(X◦) E B1 by Fact
2.22. Now N◦(K) = B1 by local◦ solvability◦ of G and maximality of B1. Since
K ≤ [F (B3) ∩ F (B4)]

◦, we have by, Corollary 4.41 applied to the pair (B3, B4),
F ◦(B3) ≤ C◦([F (B3) ∩ F (B4)]

◦) ≤ C◦(K). Thus d(B1) ≥ d(B3) > d(B4) by
Lemma 4.23 applied again to the pair (B3, B4). But as F ◦(B1) ≤ B4 also,
d(B4) ≥ d(B1), a contradiction. Hence when H is not abelian B1 is the unique
Borel subgroup of G containing C◦(X◦). �

Corollary 4.50 [Bur07, Corollary 3.29] Suppose H not abelian. Then, for
any infinite definable subgroup X1 ≤ X, B1 is the unique Borel subgroup of G
containing C◦(X1).

Proof. Recall that C◦(X) = C◦(X◦). C◦(X) ≤ C◦(X1), the latter being
solvable by local◦ solvability◦ of G, so the preceding lemma gives the desired
result. �

Corollary 4.51 If H is nonabelian, then C◦(Y ) ≤ C◦(X◦) ≤ B1.

Proof. X◦ ≤ Y . �

Lemma 4.52 (Compare with [Del07a, Lemma 3.10]) If H is nonabelian,
then any Sylow (∞, r′)-subgroup of G containing Y is contained in B2.

Proof. We want to show that Σ ≤ B2 for any Sylow (∞, r′)-subgroup Σ of
G containing Y . One can assume Y < Σ, and then Y < U(∞,r′)(N

◦
Σ(Y ))

by normalizer condition, Fact 2.7. By Lemma 4.36, N◦(Y ) ≤ B2, and thus
U(∞,r′)(N

◦
Σ(Y )) ≤ B2.

If U(∞,r′)(N
◦
Σ(Y )) is abelian, then it centralizes Y . But C◦(Y ) ≤ C◦(X◦) ≤

B1 by Lemma 4.49. Hence U(∞,r′)(N
◦
Σ(Y )) ≤ (B1 ∩ B2)

◦ = H and then
U(∞,r′)(N

◦
Σ(Y )) = Y , a contradiction.

Hence U(∞,r′)(N
◦
Σ(Y )) is nonabelian. Now it follows from the result obtained

in Theorem 4.37 that in a locally◦ solvable◦ group of finite Morley rank, a
nonabelian definable connected nilpotent subgroup is contained in a unique
Borel subgroup. As U(∞,r′)(N

◦
Σ(Y )) is in B2 and in Σ, this gives Σ ≤ B2. �
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Lemma 4.53 [Bur07, Lemma 3.30] Let B be a Borel subgroup of G, distinct
from B1. Suppose that (B, B1) is a maximal pair, that H1 = (B ∩ B1)

◦ is not
abelian, and that d(B1) ≥ d(B). Then B is F ◦(B1)-conjugate to B2.

Proof. We can apply the results of the above analysis to the maximal pair
(B1, B). We observe that H ′

1 ≤ F (B1)∩F (B). By Corollary 4.46 and Theorem
4.28, r′ = d(H ′

1), and both H ′ and H ′
1 are contained in U(∞,r′)(F

◦(B1)). By
Lemma 4.40, U(∞,r′)(F

◦(B1)) is contained in both H and H1. Let Q and Q1

be Carter subgroups of H and H1 respectively. By Theorem 4.44, Q and Q1

are Carter subgroups of B1. By conjugacy of Carter subgroups in connected
solvable groups, Q1 = Qh for some h ∈ B1, and we may assume h ∈ F ◦(B1) by
Facts 2.22 and 2.28. By Facts 2.22 and 2.28, Q and Q1 cover H/H ′ and H1/H ′

1

respectively. By Lemma 4.40,

Hh = U(∞,r′)(F
◦(B1)) · Q

h = U(∞,r′)(F
◦(B1)) · Q1 = H1.

Since H1 is not abelian, Bh
2 = B by Proposition 4.24. �

4.3.6 Conclusions

Proposition 4.54 [Bur07, Proposition 4.1] Let G be a locally◦ solvable◦

group of finite Morley rank, B1 and B2 two distinct Borel subgroups of G, and
H a nontrivial definable connected subgroup of B1 ∩ B2. Then the following
hold:

(1) H ′ is a homogeneous (∞, r′)-group for some 1 ≤ r′ < ∞ (or trivial).

(2) Every definable connected nilpotent subgroup of H is abelian.

(3) U(∞,r′)(F
◦(H)) = U(∞,r′)(H) is the unique Sylow (∞, r′)-subgroup of H.

(4) Uq̃(F
◦(H)) ≤ Z(H) for any q̃ 6= (∞, r′).

(5) 0 ≤ d∞(H) = d(H) ≤ d(C(H ′)) ≤ d(N(H ′)) ≤ ∞, all inequalities, except
maybe the third one, being strict when H is not abelian.

Proof. We may assume H not abelian, as otherwise all statements are trivially
true once one has noticed that d∞(H) = d(H) by Corollary 4.4.

Let (B3, B4) be a maximal pair containing H , with d(B3) ≥ d(B4). The first
two conclusions follow immediately from Theorems 4.28 and 4.37. The third
conclusion follows from Lemma 4.33. For the fourth conclusion, if q̃ = (∞, r)
with r 6= r′, then Uq̃(F

◦(H)) lies in a Carter subgroup Q of H by Fact 2.30,
and H ≤ QH ′ (Facts 2.22 and 2.28) ≤ C◦(Uq̃(F

◦(H))) (by the second point),
which shows the fourth point.

By Corollary 4.23, ∞ > d(B3) > d(B4) ≥ d(H) = d∞(H) > 0 (be care-
ful, this is not the same H , and one uses also the divisibility of F ◦(B3) and of
F ◦(B4)). By Fact 2.5, U(∞,d∞(B3))(B3) ≤ C(H ′), thus d∞(C(H ′)) > d∞(H) =
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d(H). Hence for the last point it suffices to show that d(N(H ′)) < ∞. Oth-
erwise, Up(N(H ′)) is nontrivial for some prime p; now the nontrivial group
U(∞,d∞(B3))(B3), which is also in N(H ′), normalizes Up(N(H ′)), and central-
izes it by Fact 2.12 (4), so that Up(N(H ′)) ≤ N◦(U(∞,d∞(B3))(B3)) = B3 (by
local◦ solvability◦ and Lemma 3.6), a contradiction to the divisibility of F ◦(B3).
Hence d(N(H ′)) < ∞ and this completes the proof of the fifth point. �

Corollary 4.55 [Bur07, Corollary 4.2] Let G be a locally◦ solvable◦ group
of finite Morley rank. Then a definable connected nonabelian nilpotent subgroup
is contained in exactly one Borel subgroup of G.

Corollary 4.56 [Bur07, Corollary 4.2’] Let G be a locally◦ solvable◦ group
of finite Morley rank. If Q is a Carter subgroup of a Borel subgroup B, and if
Q is not abelian, then Q is a Carter subgroup of G.

Proof. N◦(Q) is contained in a Borel subgroup B1 of G by local◦ solvability◦.
As Q ≤ B∩B1, B = B1 by Corollary 4.55, and N◦

G(Q) ≤ N◦
B1

(Q) = N◦
B(Q) = Q

�

Lemma 4.57 [Bur07, Lemma 4.4] Let G be a locally◦ solvable◦ group of
finite Morley rank, B1 and B2 two distinct Borel subgroups of G. Suppose that
H = (B1 ∩ B2)

◦ is not abelian, and that C◦(H ′) ≤ B1. Then B1 and B2 are
the only Borel subgroups containing H.

Proof. Suppose toward a contradiction that G contains a Borel subgroup B
distinct from both B1 and B2 and which contains H . We may choose B such
that H2 = (B∩B2)

◦ is maximal subject to B 6= B1 and H ≤ B, B2. Consider a
maximal pair (B3, B4) containing H2 and such that d∞(B3) ≥ d∞(B4). Corol-
lary 4.50 applied to (B3, B4) implies that B3 is the unique Borel subgroup of G
containing C◦(H ′). So B1 = B3. Thus H = H2. By Proposition 4.24, B1 = B3

and B4 are the unique Borel subgroups containing the connected component
of their intersection. So we may assume B4 6= B2, as otherwise we are done.
Therefore we may also assume that B = B4. So H1 = (B1 ∩ B)◦ = (B3 ∩ B4)

◦

corresponds to the intersection◦ of maximal pairs, and we can apply the previous
results to this intersection. We observe that

r′ := d∞(H ′) = d∞(F (B1) ∩ F (B))

by Theorem 4.28.
Consider first the case U(∞,r′)(F

◦(B2)) ≤ B1. Since H ′ is (∞, r′)-homoge-
neous, Uq̃(F

◦(B2)) ≤ C◦(H ′) ≤ B1 for every q̃ 6= (∞, r′). Hence F ◦(B2) ≤ H ,
and H E B2. By local◦ solvability◦ of G and maximality of B2, N◦(H ′) = B2.
But Corollary 4.41 applied to (B, B1) yields F ◦(B1) ≤ C◦([F (B) ∩ F (B1)]

◦) ≤
C◦(H ′) ≤ N◦(H ′) = B2. Then U(∞,d∞(B1))(B1) ≤ H by Fact 2.15, and
d∞(B1) ≤ d∞(H1). This contradicts Lemma 4.21 applied with (B, B1).
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Consider next the case U(∞,r′)(F
◦(B2)) � B1. Let P = U(∞,r′)(H), the

unique Sylow (∞, r′)-subgroup of H by Proposition 4.54 (3), and M = N◦(P ),
a solvable group by local◦ solvability◦. Since P normalizes U(∞,r′)(F

◦(B2)),
U(∞,r′)(F

◦(B2))·P is nilpotent by Fact 2.12. By Normalizer Condition, Fact 2.7,
P < U(∞,r′)(NU(∞,r′)(F

◦(B2))·P (P )). Since H = (B1∩B2)
◦ and P = U(∞,r′)(H),

it follows that H ≤ (M ∩ B2)
◦ � B1 and that H < (M ∩ B2)

◦. Hence
M ≤ B2 by maximality of H2 (= H). By Lemma 4.30, U(∞,r′)(F

◦(B)) �
H1. Since P normalizes U(∞,r′)(F

◦(B)), U(∞,r′)(F
◦(B)) · P is nilpotent by

Fact 2.12. By Normalizer Condition, Fact 2.7, and using M ≤ B2, P <
U(∞,r′)(N

◦

U(∞,r′)(F
◦(B))·P (P )) ≤ (B ∩ B2)

◦ = H2 = H , a contradiction to P =

U(∞,r′)(H). �

We can now characterize maximal pairs with nonabelian intersections.

Theorem 4.58 [Bur07, Theorem 4.3] Let G be a locally◦ solvable◦ group
of finite Morley rank, B1 and B2 two distinct Borel subgroups of G. Suppose
H = (B1 ∩ B2)

◦ nonabelian. Then the following are equivalent:

(1) B1 and B2 are the only Borel subgroups containing H.

(2) (B1, B2) is a maximal pair.

(3) If B3 6= B1 is a Borel subgroup containing H, then (B1 ∩ B3)
◦ = H.

(4) C◦(H ′) is contained in B1 or B2.

(5) B1 and B2 are not conjugate under the action of C◦(H ′).

(6) d∞(B1) 6= d∞(B2).

Proof. Clearly (1) implies (2), (2) implies (3), and (4) implies (5). By Lemmas
4.21 and 4.22, (2) implies (6). Clearly (6) implies (5). By local◦ solvability◦ of
G, there exists a Borel subgroup Bc of G containing N◦(H ′).

We show now that (3) implies (4). Let Bx denotes B1, unless Bc = B1, in
which case we let Bx denote B2. By (3), H = (Bc ∩ Bx)◦. By Lemma 4.57
applied to the pair (Bc, Bx), Bc ≥ C◦(H ′) must be one of B1 or B2, so (4)
holds.

We show now that (5) implies (1). Assume (1) fails. Then, for i = 1 and
2, C◦(H ′) � Bi by Lemma 4.57. But (Bc, B1) and (Bc, B2) are maximal pairs,
by Lemma 4.57 again. So d(Bc) ≥ d(B1), d(B2), by Lemma 4.49. By Lemma
4.53, B1 is F ◦(Bc)-conjugate to B2. By Corollary 4.41, F ◦(Bc) ≤ C◦(H ′), so
(5) fails. �

We can now describe the maximal pairs having a nonabelian intersection◦,
collecting the results from [Bur07] with the additional results from [Del07a]. We
slightly change the presentation in comparison to [Bur07, Theorem 4.5], as we
prefer to distinguish between a symmetric version and an asymmetric one. We
start with the symmetric version.
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Theorem 4.59 Let G be a locally◦ solvable◦ group of finite Morley rank, and
(B1, B2) a maximal pair of Borel subgroups such that H := (B1 ∩ B2)

◦ is non-
abelian. Let r′ = d∞(H ′).

(1) 0 < d(B1) < ∞ and 0 < d(B2) < ∞.

(2) N◦(H) = H.

(3) [F (B1) ∩ F (B2)]
◦ is (∞, r′)-homogeneous, and r′ > 0.

Furthermore, if Q denotes a Carter subgroup of H and Qr′ denotes U(∞,r′)(Q),
then

(4) Qr′ 6= 1,

and exactly one of the following cases occur:

(4.a) N◦(Qr′) = H.

(4.b) H < N◦
B1

(Qr′); furthermore N◦
B2

(Qr′) = H and B1 is the unique Borel
subgroup containing N◦(Qr′).

(4.c) H < N◦
B2

(Qr′); furthermore N◦
B1

(Qr′) = H and B2 is the unique Borel
subgroup containing N◦(Qr′).

Proof.
(1): 4.7, 4.39, 4.29.
(2): 4.38.
(3): 4.7, 4.28.
(4): 4.43, and proof of [Del07a, Lemme 3.9] for the trichotomy. �

We finish with the description once the asymmetry is fixed.

Theorem 4.60 Assume in addition to Theorem 4.59 that d(B1) ≥ d(B2).
Then

(1) 0 < d(B2) < d(H) = d(B1) < ∞.

(2) Q is a Carter subgroup of B1.

(3) U(∞,r′)(F (B1)) = [F (B1) ∩ F (B2)]
◦.

(4) B1 is the unique Borel subgroup containing C◦(U(∞,r′)(F (B1))).

(5) N◦(Q) ≤ B2.

(6) U(∞,r′)(H) ≤ F ◦(B2), and N◦(U(∞,r′)(H)) ≤ B2.

(7) Uq̃(F (B2)) ≤ Z(H) for any q̃ 6= (∞, r′), and U(∞,r′)(F (B2)) is nonabelian
(in particular Uq̃(F (B2)) is nonabelian iff q̃ = (∞, r′)).
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(8) Any Sylow (∞, r′)-subgroup of G containing U(∞,r′)(H) is contained in
B2.

(9) If Q is a Carter subgroup of B2, then U(∞,r′)(F (B2)) is the unique Sy-
low (∞, r′)-subgroup of B2, and in particular the unique Sylow (∞, r′)-
subgroup of G containing U(∞,r′)(H).

Proof.
(1): 4.59 (1), 4.23.
(2): 4.44.
(3): 4.40.
(4): 4.40, 4.49.
(5): 4.44
(6): 4.33, 4.36.
(7): 4.29, 4.30.
(8): 4.52.
(9): 4.34, 4.52. �

Finally, we record a point about exceptional elements, which applies in par-
ticular in Theorems 4.59 and 4.60.

Theorem 4.61 Let G be a locally◦ solvable◦ group of finite Morley rank and
(B1, B2) a maximal pair of Borel subgroups such that [F (B1) ∩F (B2)]

◦ is non-
trivial. Then the finite subgroup S of F (B1) ∩ F (B2) as in Lemma 4.7 is toral
and central, both in B1 and B2.

Proof. F ◦(B1) and F ◦(B2) are divisible by Lemmas 4.29 and 4.39, and Remark
4.48 applies. �

4.4 An extra homogeneity result

The following extra homogeneity result proved for the purpose of [Del07a] is
essentially a corollary of Corollary 4.55.

Lemma 4.62 (Compare with [Del07a, Lemme 3.8]) Let G be a locally◦

solvable◦ group of finite Morley rank, B and Bg two distinct conjugates of a
same Borel subgroup B. If [F (B)∩F (Bg)]◦ is not homogeneous, then F ◦(B) is
abelian.

Proof. By assumption [F (B)∩F (Bg)]◦ contains two nontrivial Sylow subgroups
U1 and U2 with two distinct unipotence parameters, say p̃ for U1 and q̃ for U2.

By local◦ solvability◦ of G, N◦(U1) is contained in a Borel subgroup B1. If
B1 6= B, then by Fact 2.5 (2) Corollary 4.55 implies that Sylow subgroups of
F ◦(B) of unipotence parameters different from p̃ are abelian. If B1 = B, then
B1 6= Bg and one sees similarly that Sylow subgroups of unipotence parameters
different from p̃ of F ◦(Bg), and thus also of F ◦(B), are also abelian.

57



Considering a Borel subgroup B2 containing N◦(U2), one sees similarly that
Sylow subgroups of F ◦(B) of unipotence parameters different from q̃ are abelian.

Now F ◦(B) is abelian by Fact 2.5 (2). �

4.5 Exceptional connected subgroups

Section 4.3 concerned the analysis of intersections of maximal pairs of Borel
subgroups. In the present section we continue a little bit in this vein when one
of the two subgroups involved is not necessarily solvable, a possibility in the
context of locally◦ solvable◦ groups of finite Morley rank in comparison to the
context of minimal connected simple groups.

Definition 4.63 Let G be a group of finite Morley rank and K a definable
connected subgroup of G. We say that a Borel subgroup B of G has maximal
intersection with K if B � K and (K ∩ B)◦ is maximal for inclusion among
groups of the form (K∩B1)

◦ for some Borel subgroup B1 of G such that B1 � K.

We note in Definition 4.63 that if K is solvable and not a Borel subgroup,
then it has a maximal intersection with any Borel subgroup containing it. If K
is a Borel subgroup of G, and a Borel subgroup B has a maximal intersection
with K, then G◦ is not solvable.

Lemma 4.64 Let G be a group of finite Morley rank, K a definable connected
subgroup of G, and B a Borel subgroup of G having maximal intersection with
K. Then any Borel subgroup B1 of G such that (K ∩B)◦ < (K ∩B1)

◦ is in K.

Proof. This is immediate by definition. �

It follows that if K is a Borel subgroup of a locally◦ solvable◦ group G
and B is a Borel subgroup of G having maximal intersection with K, then if
(K ∩ B)◦ is nonabelian any Borel subgroup B3 of G containing (K ∩ B)◦ such
that (K ∩ B)◦ < (K ∩ B3)

◦ must be K, and hence (K, B) is a maximal pair of
Borel subgroups of G by the equivalence provided in Theorem 4.58 (3).

In the general case of a locally◦ solvable◦ group G a proper definable con-
nected subgroup K can be nonsolvable, and we slightly clarify the situation in
this general case.

Lemma 4.65 Let G be a locally◦ solvable◦ group of finite Morley rank, K a
nontrivial definable connected subgroup of G, B a Borel subgroup of G hav-
ing maximal intersection with K, and let H = (K ∩ B)◦. Then assuming H
nontrivial exactly one of the following cases occurs.

(1) H is an abelian Carter subgroup of K and of B.

(2) H is an abelian Carter subgroup of K and H < N◦
B(H) ≤ B.
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(3) H is an abelian Carter subgroup of B, and H < N◦(H) ≤ K. In this case
any Borel subgroup of K containing H is a Borel subgroup of G.

(4) H is a nonabelian Borel subgroup of K.

(5) H is nonabelian and not a Borel subgroup of K. In this case any Borel
subgroup of K containing H is a Borel subgroup of G.

Proof. Notice that N◦(H) is solvable by local◦ solvability◦ of G.
Assume first H abelian. If H has finite index in its normalizer in K and in

B then we are in case (1).
Assume now H < N◦

B(H). Then the maximality of the intersection forces
N◦

K(H) = H , and H is an abelian Carter subgroup of K. Hence we are in case
(2).

Assume now H < N◦
K(H). Then the maximality of the intersection forces

N◦(H) ≤ K with Lemma 4.64. Now N◦
B(H) ≤ (K ∩ B)◦ = H , and H is an

abelian Carter subgroup of B. Hence we are in case (3) by Lemma 4.64.
This treats all cases corresponding to the case H abelian, so we may now

assume H nonabelian. If H is a Borel subgroup of K, then we are in case (4).
It remains only to consider the case in which H is not abelian and not a

Borel subgroup of K. By Lemma 4.64, any Borel subgroup of K containing H
is a Borel subgroup of G. We are in case (5). �

5 Homogeneous cases and torsion

In this final section we collect various additional results of specialized nature
about locally◦ solvable◦ groups of finite Morley rank, generally pending on the
uniqueness theorems of Section 4.1.

The first type of results concerns the homogeneous cases. Recall from [FJ08]
or Section 2.1 that a group of finite Morley rank is homogeneous if is p̃-homo-
geneous for some unipotence parameter p̃, that is every definable connected
nilpotent subgroup is a p̃-group. (This is weaker than the definition in [Fré06a],
which requires to consider all definable connected subgroups, not only the nilpo-
tent ones.) In a p̃-homogeneous group one sees easily with Lemma 2.11 and Fact
2.15 that any Borel subgroup is a (homogeneous) p̃-group, and in particular
nilpotent. Hence we will more generally consider the case in which all Borel
subgroups are nilpotent, and look at the homogeneous cases at various levels of
generality.

The torsion-free case will be fairly well understood in this context, and with
torsion this connects to a bit of Sylow theory. As far as torsion is concerned,
there is in general no Sylow theory as in Fact 2.24 available in an arbitrary
group of finite Morley rank. The following fact shows however similarities with
Fact 2.24 in the general case.

Fact 5.1 [BC07, Theorem 3 and Corollary 3.1] Let G be a connected
group of finite Morley rank, t a π-element of G for some set π of primes p. If
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Up(C(t)) = 1 for every p in π, then t belongs to a, and in fact to any, maximal
π-torus of G and of C◦(t).

Notice that the second statement is a mere corollary of the first, together
with the fact that toral elements belong to the connected components of their
centralizers and Fact 2.19.

5.1 Nilpotent Borel subgroups

In this section we consider locally◦ solvable◦ groups in which each Borel sub-
group is nilpotent. We start with a lemma concerning abelian Borel subgroups.

Lemma 5.2 Let G be a locally◦ solvable◦ group of finite Morley rank with an
abelian Borel subgroup B. Let Bu denote the maximal definable connected sub-
group of B of bounded exponent. Then B has a subgroup E finite modulo Bu

such that B ∩ Bg ≤ E for any element g of G not in N(B), and one of the
following two cases occurs.

(1) B is a generous abelian Carter subgroup.

(2) B is an abelian Carter subgroup of bounded exponent.

Proof. For any g in G \ N(B), N◦(B∩Bg) contains B and Bg, and if B∩Bg is
infinite then N◦(B ∩Bg) is solvable by local◦ solvability◦ of G and one gets B,
Bg ≤ N◦(B ∩ Bg) and B = Bg by maximality, a contradiction. Hence B ∩ Bg

is finite for every g ∈ G \ N(B).
The uniformly definable family of finite subgroups B∩Bg, for g ∈ B \ N(B),

consists of subgroups of uniformly bounded cardinals by elimination of infinite
quantifiers. As Prüfer p-ranks are finite for any prime p, all these subgroups
must be contained modulo Bu in a finite subgroup of the maximal definable
decent torus of B. Calling E the preimage in B of this group, this proves our
first statement.

If Bu < B, then E is not generic in B and one can conclude that the Carter
subgroup B of G is generous by the equivalence given in Fact 2.14 (3). This
proves our alternative. �

We note that the two cases in Lemma 5.2 are a priori not necessarily mutually
exclusive. In the locally◦ solvable context E is necessarily trivial, and B is then
necessarily generous in any case.

We pass now to nilpotent Borel subgroups, replacing the commutativity
assumption by a nilpotence assumption on all Borel subgroups of the ambient
group. The first lemma is essentially the content of the first part of the proof
of Lemma 5.2 and typical of earlier work on bad groups [BN94, Chapter 13].

Lemma 5.3 Let G be a locally◦ solvable◦ group of finite Morley rank in which
all Borel subgroups are nilpotent. Then any two distinct Borel subgroups have a
finite intersection.
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Proof. Assume the contrary. Let B1 and B2 contradict our claim, with [B1 ∩
B2]

◦ of maximal rank. Call the latter group H , and notice that H < B1 and
H < B2. By normalizer condition in nilpotent groups, [BN94, Lemma 6.3], H <
N◦

B1
(H) and H < N◦

B2
(H). Now N◦(H) is solvable by local◦ solvability◦ of G,

and contained in a Borel subgroup B3. As H < (B1∩B3)
◦ and H < (B2∩B3)

◦,
our maximality assumption forces B1 = B3 = B2, a contradiction. �

We get in any case conclusions similar to those of Lemma 5.2.

Lemma 5.4 Let G be a locally◦ solvable◦ group of finite Morley rank in which
all Borel subgroups are nilpotent. Let B be a Borel subgroup of G. Then B has
a definable subgroup E, finite modulo the bounded exponent part of B, such that
B ∩ Bg ≤ E for any intersection B ∩ Bg with g ∈ G \ N(B). Moreover one of
the following two cases occurs.

(1) B is a generous Carter subgroup.

(2) B is a Carter subgroup of bounded exponent.

Proof. With Lemma 5.3 applied to distinct conjugates of B, the existence of E
follows as in the proof of Lemma 5.2. The alternative proposed follows similarly
as well. �

As for Lemma 5.2, the two cases in Lemma 5.4 are a priori not mutually
exclusive, and if the ambient group G is locally◦ solvable then distinct conjugates
of B are necessarily pairwise disjoint by the same proof as in Lemma 5.3, and
B is always generous.

5.2 The torsion-free homogeneous case

We shall now evacuate, or rather collect in Pandora’s box of bad groups, p̃-
homogeneous locally◦ solvable◦ groups of finite Morley rank, with p̃ not of the
form (∞, 0) or (p,∞) for p a prime. In this case Borel subgroups are nilpotent
and torsion-free by Facts 2.1 and 2.6. More generally, we have the following
result for such groups.

Theorem 5.5 Let G be a torsion-free locally◦ solvable◦ group of finite Mor-
ley rank in which Borel subgroups are all nilpotent. Then Borel subgroups are
conjugate and either

(1) G is nilpotent, or

(2) B < G is a full Frobenius group for some Borel subgroup B of G.

As far a torsion is concerned there is a classical lifting result.
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Fact 5.6 [BN92] Let G be a group of finite Morley rank, H a definable normal
subgroup, and x a p-element modulo H, for some prime p. Then the definable
hull H(x) of x contains a p-element.

Proof. Notice that G is connected by absence of torsion and Fact 5.6.
By Lemmas 5.3 and 5.4, distinct Borel subgroups have trivial intersections,

and each Borel subgroup is generous. As G is connected it cannot have two
disjoint generic subsets. If B1 and B2 are two Borel subgroups, then two conju-
gates of B1 and B2 must have a nontrivial intersection by generosity, and then
are equal. This shows that Borel subgroups are conjugate.

If G is not nilpotent, then B < G for some Borel subgroup B of G. By
Fact 5.6, N(B) = B, and B is malnormal in G by disjointness of distinct Borel
subgroups. As BG is generic, any element g of G has an infinite centralizer
(this is also an easy consequence of the main result of [BBC07] in arbitrary
connected groups), and in particular normalizes a Borel subgroup by Lemma
2.11 (1) and the disjointness of Borel subgroups. Hence G = BG, and B < G is
a full Frobenius group. �

We note that a connected (∞, r)-homogeneous group of finite Morley rank,
with 0 < r < ∞, is torsion-free by Facts 2.6 and 5.1, and in particular Theorem
5.5 applies to such homogeneous connected locally◦ solvable◦ groups.

Otherwise in the torsion free case all results of Section 4 still apply, where all
definable subgroups are connected. In this case Carter subgroups are conjugate
by the same proof as in [Fre07].

5.3 The bounded exponent case

In presence of bounded exponent torsion the uniqueness theorems of Section 4.1
can be applied in their most straightforward forms for dealing with generosity,
as seen in Section 4.2 already.

Lemma 5.7 Let G be a locally◦ solvable◦ group of finite Morley rank such that
Up(G) is nontrivial for some prime p. Then one of the following three cases
occur.

(1) Maximal p-unipotent subgroups are conjugate in G◦ and N◦(U) is a gen-
erous Borel subgroup of unbounded exponent for any maximal p-unipotent
subgroup U (and in fact one may assume also N◦(U) = UC◦(U)).

(2) There is a maximal p-unipotent subgroup U normalized but not centralized
by a nontrivial q-torus T for some (and in fact infinitely many) prime(s)
q 6= p. Moreover T is contained in a generous Carter subgroup of G.

(3) N◦(U) is a Carter subgroup of bounded exponent for some maximal p-
unipotent subgroup U .
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Proof. First recall that N◦(U) is a Borel subgroup of G for any maximal p-
unipotent subgroup U of G by Lemma 3.9.

Assume case (3) does not occur. This means that for any maximal p-
unipotent subgroup U , N◦(U) is not nilpotent of bounded exponent. By Fact
2.15, this simply means that any such group N◦(U) has unbounded exponent.

If UC◦(U) < N◦(U) for some maximal p-unipotent subgroup U , then Wag-
ner’s theorem [Wag01, Corollary 8] gives a nontrivial q-torus in N◦(U), for some
prime q 6= p, acting nontrivially on U (see for example [FJ05, Fact 2.5] and Zil-
ber’s field theorem [BN94, §9.1]). The fact that there are infinitely many primes
q occuring in the definable subgroup of the multiplicative group of the field of
characteristic p is due to [Wag03]. Then Fact 3.34 shows that we are in case
(2).

This leaves us with the case in which N◦(U) = UC◦(U) is a Borel subgroup
of unbounded exponent for any maximal p-unipotent subgroup U .

If N◦(U)∩N◦(Ug) has a nontrivial connected component X for some g ∈ G,
then N◦(X) is solvable by local◦ solvability◦ of G. As N◦(U) = UC◦(U), X
centralizes a nontrivial p-unipotent subgroup of U by Fact 2.24 (2), and similarly
a nontrivial p-unipotent subgroup of N◦(Ug). Now, as N◦(X) is contained
in a Borel subgroup, Lemma 4.6 implies N◦(U) = N◦(Ug). Hence distinct
conjugates of N◦(U) have finite intersections.

As N◦(U) has unbounded exponent, these finite intersections cannot cover
N◦(U) generically by Lemma 2.35. In particular they land in a (definable) non-
generic subset of N◦(U), and one concludes easily that N◦(U) is generous in
G◦ (see for instance [CJ04, Lemma 3.3], bearing in mind that N◦(U) is of finite
index in its normalizer, as a Borel subgroup).

We have thus N◦(U) = UC◦(U) a generous Borel subgroup of unbounded
exponent for any maximal p-unipotent subgroup U .

Now let U1 and U2 be two maximal p-unipotent subgroups of G. By gen-
erosity of N◦(U1) and [Jal06, Proposition 2.1], a generic element g of G◦ is in
a conjugate of N◦(U1), and in finitely many such. Similarly, g is in a conjugate
of N◦(U2), say N◦(U2) after conjugacy, and in finitely many such. Now Z◦(U2)
centralizes g as N◦(U2) = U2C

◦(U2). So it permutes naturally by conjuga-
tion the finitely many conjugates of N◦(U1) containing g, and one can argue
as in [Jal06, Fundamental Lemma 3.3]. By Fact 1.2, it fixes each of them, and
in particular it normalizes a conjugate of U1, say U1 up to conjugacy. Hence
Z◦(U2) ≤ N◦(U1), Z◦(U2) ≤ Up(N

◦(U1)) = U1, and U1 = U2 by Theorem 4.1.
This shows that U1 and U2 are conjugate and completes our proof. �

First we note that this completes the proof of Theorem 4.13.
The fact that N◦(U) = UC◦(U) is stated between parentheses in case (1)

of Lemma 5.7 is to depreciate this aspect not true in the algebraic case. A
conclusion closer to the algebraic case would be case (2) combined with case (1)
without this aspect. But even in the well described context of [CJ04] there are
potentially Borel subgroups as in case (2) but not as in case (1) without this
aspect (in sets of Borel subgroups usually denoted by B in [CJ04]).
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If the ambient group G is locally◦ solvable in Lemma 5.7, then one sees
by the same argument, and using the results of Section 4.1 adapted to the
locally◦ solvable case, that Borel subgroups as in cases (1) and (3) have trivial
intersections indeed, and are all generous. In particular a maximal p-unipotent
subgroup U as in case (3) must satisfy N◦(U) generous, and must be conjugate
to one as in case (1) if it exists. But in this case one also has N◦(U) of unbounded
exponent, and thus cases (1) and (3) are mutually exclusive. It follows also that
cases (2) and (3) are mutually exclusive, and as cases (1) and (2) are obviously
mutually exclusive all cases are pairwise mutually exclusive, and with a generous
Carter subgroup in any case. One can summarize this as follows.

Lemma 5.8 Let G be a locally◦ solvable group of finite Morley rank such that
Up(G) is nontrivial for some prime p. Then exactly one of the following two
cases occur.

(1) Maximal p-unipotent subgroups are conjugate in G◦ and Borel subgroups
of the form N◦(U), for U a maximal p-unipotent subgroup, are pairwise
disjoint, generous, of the form UC◦(U), and either of unbounded exponent
or nilpotent of bounded exponent.

(2) There is a maximal p-unipotent subgroup U normalized but not centralized
by a nontrivial q-torus T for some (and in fact infinitely many) prime(s)
q 6= p. Moreover T is contained in a generous Carter subgroup of G.

As in Section 5.2 one may wish to consider the (p,∞)-homogeneous case
for some prime p, or more generally the case in which all Borel subgroups are
nilpotent but now of bounded exponent. In this case any Borel subgroup is
a Carter subgroup of bounded exponent, and cases (1) and (2) of Lemma 5.7
cannot occur (recall that in case (1) N◦(U) has unbounded exponent). One
can also see in this case that any two distinct Borel subgroups have a finite
intersection, by using Corollary 4.3.

We continue with the mere presence of a nontrivial p-unipotent subgroup for
some prime p.

Lemma 5.9 Let G be a locally◦ solvable◦ group of finite Morley rank, p and q
two primes (possibly the same). Assume a nontrivial p-unipotent subgroup U of
G commutes with a nontrivial q-torus T of G. Then there is a Borel subgroup
B of G containing T , U , a Carter subgroup of G (and B) containing T and
generous in G, and a maximal p-unipotent subgroup of G.

Proof. Let Q be a Carter subgroup of G containing T , which exists and is
generous in G by Fact 3.34. We have Q and U in N◦(T ), and N◦(T ) ≤ B for
some Borel subgroup by local◦ solvability◦ of G. Now B is the unique Borel
subgroup of G containing U by the Uniqueness Theorem, here Corollary 4.3 or
Corollary 4.4, and our claim follows. �
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Definition 5.10 If M is a proper definable subgroup of a group G of finite
Morley rank and p a prime, we say that

(1) M is p-weakly embedded in G if M has infinite p-subgroups and M ∩Mg

has no infinite p-subgroups for any g in G \ M .

(2) M is p-strongly embedded in G if M has nontrivial p-subgroups and M ∩
Mg has no nontrivial p-subgroups for any g in G \ M .

Again the following remarks were obviously made around [CJ04], but they
were not explicitely stated there to keep that paper not too long.

Lemma 5.11 Let G be a locally◦ solvable◦ group of finite Morley rank, p a
prime, U1 and U2 two distinct maximal p-unipotent subgroups of G (which are
then necessarily nontrivial). Then p-subgroups of N(U1)∩N(U2) are exceptional
and have order at most e(G).

Proof. By assumption, N◦(U1) and N◦(U2) are two distinct Borel subgroups
of G.

Assume toward a contradiction N(U1) ∩ N(U2) contains a p-subgroup X
with C◦(X) solvable. We have then C◦(X) ≤ B for some Borel subgroup B.
Notice that C◦

U1
(X) and C◦

U2
(X) are both nontrivial by Fact 2.24 (2). Now

Lemma 4.6 implies N◦(U1) = N◦(U2), a contradiction. �

Corollary 5.12 Let G be a locally◦ solvable◦ group of finite Morley rank with
G◦ nonsolvable. Assume that for some prime p maximal p-unipotent subgroups
of G are nontrivial. Then N(U) is p-weakly embedded in G for any such maximal
p-unipotent subgroup U of G, and p-strongly embedded whenever G is locally◦

solvable.

Proof. Assume N(U) ∩ N(Ug) has an infinite p-subgroup S for some g in G.
We have S◦ ≤ N◦(U) ∩ N◦(Ug), and as S is infinite S◦ is infinite as well. By
Fact 2.24 (1), S◦ is a central product of a p-unipotent subgroup V and a p-torus
T , and one of the two factors is nontrivial by assumption. Now Lemma 4.6 or
Lemma 5.11 gives in any case N◦(U) = N◦(Ug). Thus g ∈ N(U).

When G is locally◦ solvable one proceeds similarly, but now the only excep-
tional p-element is the identity. �

We also observe that when a nontrivial p-unipotent subgroup commutes
with a nontrivial p-torus, then a maximal p-torus commutes with a maximal
p-unipotent subgroup by Lemma 5.9. One can then build a p-weakly embedded
subgroup as for the elimination of 2-mixed type simple groups [ABC08]. If U is a
definable p-unipotent subgroup of G, we denote by U⊥ the definable connected
subgroup Tp(C(U)), the subgroup of C(U) generated by the definable hulls
of its p-tori. By local◦ solvability◦, this group is solvable (for U nontrivial).
One sees easily that if [U1, U2] = 1, then U⊥

1 = U⊥
2 . Then one observes that
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the graph on the set of nontrivial p-unipotent subgroups, where adjacency is
commutation, is not connected, as otherwise U⊥ is independent of the choice
of U , hence normal in G, and as it is nontrivial connected and solvable, G◦ is
solvable by local◦ solvability◦, a contradiction to the assumption. Let C be a
connected component of the graph. The group G acts naturally on this graph.
Let M be the normalizer in G of a connected component of C. If U ∈ C, then
M ≤ N(U⊥). In particular M◦ is solvable, and M has a unique maximal p-
unipotent subgroup U . M = N(U) = N(U⊥). Notice that B = M◦ is a Borel
subgroup of G. But in any case one shows that M is p-weakly embedded in G.

With p = 2 these notions will suffice to eliminate connected non-solvable
mixed type locally◦ solvable◦ groups in [DJ07], by methods and/or results from
the simple case. For p 6= 2 Configuration 3.17 stands around. Prüfer ranks will
be controlled with the notion of strongly embedded subgroup.

If one is not interested in conjugacy in Lemma 5.7 but merely in genericity,
then one can notice that a connected locally◦ solvable◦ group with Up(G) non-
trivial with no generous Borel subgroup must satisfy that N◦(U) is a Carter
subgroup of bounded exponent for each maximal p-unipotent subgroup U ; oth-
erwise N◦(U) has unbounded exponent and one gets as in the proof of Lemma
5.7 either a nontrivial decent torus or N◦(U) generous, a contradiction to the
assumption.

In particular, if the generic element of a connected locally◦ solvable◦ group G
of finite Morley rank is not in a connected nilpotent subgroup, then G contains
no decent tori (Fact 3.34), contains nontrivial p-unipotent subgroups (Facts 5.1
and 5.6), and N◦(U) is a Carter subgroup of bounded exponent for each such
maximal p-unipotent subgroup U , generically composed of exceptional elements
by Lemma 4.11.

5.4 The toral homogeneous case

We shall now consider the case in which there is no bounded exponent subgroup,
and more specifically the toral homogeneous case. Before studying this specific
case precisely, we note that Carter subgroups are conjugate in any locally◦

solvable◦ group G of finite Morley rank such that d(G) < ∞, by the same proof
as in [Fre07].

Theorem 5.13 Let G be a locally◦ solvable◦ group of finite Morley rank in
which Borel subgroups are divisible abelian. Assume furthermore that nontrivial
toral elements are not exceptional and that G contains no involution. Then,
either

(1) G◦ is abelian, or

(2) T < G◦ is a full Frobenius group for some (any) Borel subgroup T .

We will use the following fact.

Fact 5.14 (Ali’s Lemma) Let G be a group, T1 and T2 two disjoint subgroups,
x1 ∈ T1 ∩ (N(T2) \ T2) and x2 ∈ T2 ∩ (N(T1) \ T1) satisfying x1T2 = x1

T2 ,
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x2T1 = x2
T1 , and (x2

1)T2 = (x2
1)

T2 . Then x1 and x2
1 are conjugate in G. In

particular, if x1 has prime order p 6= 2 and is central in T1, N(T1) controls
fusion in T1, and N(T1)/T1 is finite, then some nontrivial prime divisor of
N(T1)/T1 divides p − 1.

Proof. This is one of the essential contents of [Nes89], already re-employed
through the scope of [CJ04, Lemma 7.23]. By the fusion assumptions one can
conjugate x1 to x1x2 in x1T2, x1x2 to x2

1x2 in x2T1, and x2
1x2 to x2

1 in x2
1T2,

which yields the G-conjugacy of x1 and x2
1.

For the second point we have now a nontrivial induced automorphism of 〈x1〉
in N(T1)/T1, and the cyclic group 〈x1〉 of prime order p has an automorphism
group of order p − 1. �

We now proceed to the proof of Theorem 5.13.

Proof. In order to prove Theorem 5.13 we consider now G a connected locally◦

solvable◦ group, and fix a Borel subgroup T , which is divisible abelian by as-
sumption. If G is solvable, then G = T and we are in case (1). So we may
assume G not solvable.

As in Lemma 5.2, any two Borel subgroups T1 and T2 must have a finite
intersection E, and being a finite subgroup of a divisible abelian group E must
be toral if it is nontrivial. If E 6= 1, then T1, T2 ≤ C◦(E), and one gets either
T1 = T2 when C◦(E) is solvable, or a nontrivial exceptional toral subgroup
otherwise, which is excluded by assumption. Hence distinct Borel subgroups
are pairwise disjoint. As usual, each is generous, and they are all conjugate.

As any element of G also has an infinite centralizer, any such element must
centralize an infinite abelian subgroup by Lemma 2.11 (1), and in particular
normalizes the unique conjugate of T containing it.

This shows that G = N(T )G. If N(T ) = T , then T is malnormal in G by
disjointness of pairwise distinct Borel subgroups, and G = T G, and thus T < G
is a full Frobenius group as desired.

Hence the analysis boils down to showing that T is selfnormalizing. Assume
on the contrary T < N(T ), and let x be an element of order p modulo T for
some prime p, which may be assumed to be itself a p-element of G by Fact 5.6,
and in fact inside a p-torus.

By conjugacy, one concludes that T contains a maximal p-torus Tp which
is nontrivial. Now x is in a conjugate T g

p of Tp and xp ∈ Tp. As T g ∩ T = 1,
as otherwise T = T g and x ∈ T g = T , xp ∈ T ∩ T g = 1. For any element y
in xT , the definable hull H(y) of y contains also a p-element y1 by Fact 5.6,
which similarly belongs to a maximal torus T1 distinct from T . Now C◦

T (y) ≤
C◦

T (y1) ≤ T ∩ T1, and thus any element y in xT has a finite centralizer in T .
Hence yT is generic in xT for any y in xT , and as the Morley degree is one
one gets xT = xT . Now x normalizes T and centralizes a nontrivial element
z in the elementary abelian p-subgroup of T . We have z normalizing Tx, the
torus containing x, without being inside, and similarly zTx = zTx (this is typical
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of [Nes89]. See also [CJ04, Lemma 7.19]). We are now in situation to apply
Fact 5.14. Noticing that N(T ) controls fusion in the torsion subgroup of T by
Corollary 2.20, this gives a contradiction by choosing for p the smallest prime
divisor N(T )/T . �

We note similarities between groups as in Theorem 5.13 (2) with those of
[JOH04]. These are far from being stable by [JMN08], but there are some hints
for the existence of (at least partially) stable such groups, as envisionned in
[Jal08b, §1].

We also note that a reduction to Fact 5.14 yields involutions or triviality
of Weyl groups in general in groups of finite Morley rank without non-trivial
p-unipotent subgroups [BC07]. In particular for the last paragraph of the proof
of Theorem 5.13 we could have refered to this.

With this triviality of Weyl groups in connected groups without involutions
and without p-unipotent subgroups, one can give a general decomposition as in
Theorem 5.13 without non-exceptionality assumption, with the Galois connec-
tion of Section 3.4.

Theorem 5.15 Let G be a locally◦ solvable◦ group of finite Morley rank in
which Borel subgroups are divisible abelian, and without involutions. Then G◦

has an abelian generous selfnormalizing Carter subgroup T such that G◦ = T G◦

.

Proof. This is similar to the proof of Theorem 5.13, using Lemma 5.2 for
the generosity of (divisible abelian) Borel subgroups T . Notice also that such
(conjugate) Borel subgroups T are selfnormalizing by the above mentioned result
of [BC07], or a more direct reduction to Fact 5.14 here, and cover G◦ by the
same argument as in the proof of Theorem 5.13 again. �

In general one cannot say much more in Theorem 5.15, except describing the
full group G◦ by the graph of finite exceptional closed subsets of the divisible
abelian Borel subgroup T introduced at the end of Section 3.4 and delineated
in Lemma 3.33. In fact, exceptional subsets of T are in the divisible torsion
subgroup of T , and in a finite subset of it by Lemma 3.30. One sees easily that
closed exceptional subsets of T correspond exactly to intersections of T with
distinct conjugates of T . If (X0, · · · , Xk) is a maximal chain of exceptional closed
subsets of T in the graph of exceptional closed subsets of T (i.e. with (Xi, Xi+1)
a minimal extension for each i), then X0 = Z(G◦), C◦(Xi) = CG◦(Xi) for each
i (by a Frattini Argument following the conjugacy of generous Carter subgroups
and triviality of the Weyl group N(T )/T in G◦) and the center of this group is
Xi, and each group

C◦(Xi)/Xi

also satisfies the assumptions of Theorem 5.15, with exception indices decreasing
as i increases. The last factor C◦(Xk)/Xk is as in Theorem 5.13 by Lemma 3.31.
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Hence any group as in Theorem 5.15 is entirely described as above by the
finite graph of exceptional closed subsets of T . In particular the picture in The-
orem 5.15 looks like Configuration 3.17, where all Borel subgroups involved are
decent tori but potentially with more complexity involved in the finite graph of
exceptional subsets of T . As for Theorem 5.13, constructions of such abstract
groups can be obtained as in [JOH04] with any finite graph for T (compatible
with the conditions of Lemma 3.33), similarly with a bad control on the com-
plexity of their model theory by the general construction but perhaps with some
stability if more care is taken.

The case of groups as in Theorems 5.13 and 5.15 but with involutions will
be considered in [DJ07], and eventually disappear by the analysis of this paper
and the contents of [Nes89].

5.5 Prüfer ranks and strong embedding

In this final section we recast the dichotomy represented by Sections 6 and 7 of
[CJ04] in its actual content. If S is an abelian p-group for some prime p and n
a natural number, then we denote by Ωn(S) the subgroup of S generated by all
elements of order pn.

Theorem 5.16 Let G be a connected nonsolvable locally◦ solvable◦ group of
finite Morley rank of Prüfer p-rank at least 2 for some prime p, and fix a max-
imal p-torus S of G. Assume that every proper definable connected subgroup
containing S is solvable, that elements of S of order p are not exceptional, and
let

B = 〈C◦(s) | s ∈ Ω1(S) \ {1}〉.

Then either

(1) B < G, in which case B is a Borel subgroup of G, and moreover N(B) is p-
strongly embedded in G assuming additionally that Up(C(s)) = 1 for every
element s of order p of S and that S is a Sylow p-subgroup of NN(B)(S),
or

(2) B = G, in which case S has Prüfer p-rank 2.

Let M = N(B). As B contains a Carter subgroup Q of G containing S,
Facts 2.21 and 3.34 and a Frattini Argument give M = N(B) ⊆ BN(Q), and
as Q is almost selfnormalizing B = M◦. (With the same notation, this holds of
course for an arbitrary p-torus S in an arbitrary group G of finite Morley rank.)

Assume first

(1) B < G

By assumption B ≤ B1 for some Borel subgroup B1 of G. As S ≤ B ≤ B1,
Corollary 2.34 implies that B = B1, and thus B is a Borel subgroup of G.

We adopt now the extra assumptions that Up(C(s)) = 1 for every element s
of order p of S and that S is a Sylow p-subgroup of NN(B)(S). We claim that
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M = N(B) is p-strongly embedded in G in this case by using a “black hole”
principle (a term going back to Harada) similar to the one used in [BCJ07,
§2.2], and already contained in [CJ04, Lemma 7.3]. We note that our additional
assumptions imply that S is a Sylow p-subgroup of B (Facts 2.23 and 2.24), and
of M as well, as M = BNN(B)(S) by a Frattini Argument. In particular M/B
has trivial Sylow p-subgroups by Fact 5.6.

Assume that M∩Mg contains an element s of order p for some g in G. Notice
that s is actually in B ∩ Bg, and p-toral. By connectedness and conjugacy of
Sylow p-subgroups in connected solvable groups, the definition of B implies that
C◦(s′) ≤ B for any element s′ of order p of B. Similarly, C◦(s′) ≤ Bg whenever
s′ has order p and is in Bg. By conjugacy in B we may assume s in S, and
if Q denotes a Carter subgroup of G containing S then Ω1(S) ≤ S ≤ Q ≤
C◦(s) ≤ B ∩ Bg. By Lemma 2.33 or Corollary 2.34 applied in B and in Bg we
get Bg = 〈C◦(s) | s ∈ Ω1(S) \ {1}〉 = B. Thus g normalizes B, and is in M .

Hence M = N(B) is p-strongly embedded in G under the two extra assump-
tions, and this proves clause (1) of Theorem 5.16.

Now we pass to the second case

(2) B = G

We will eventually show that clause (2) of Theorem 5.16 holds by reworking the
begining of Section 6 of [CJ04]. We first put aside p-unipotent subgroups.

Lemma 5.17 Any Borel subgroup containing a toral element of order p has
trivial p-unipotent subgroups.

Proof. Assuming the contrary, we may assume after conjugacy of decent tori
that a Borel subgroup L with Up(L) nontrivial contains an element s of S
of order p. Then Up(C(s)) is nontrivial by Fact 2.24, contained in a unique
Borel subgroup B1 of G. (Actually B1 = L.) By Corollary 4.4, B1 is the
unique Borel subgroup containing any given nontrivial p-unipotent subgroup of
Up(C(s)). Now any element s′ of order p of S normalizes Up(C(s)), and thus
Up(C(s, s′)) 6= 1 by Fact 2.24, and as B1 is the unique Borel subgroup containing
the latter group we get C◦(s′) ≤ B1. This shows that B ≤ B1, a contradiction
as B = G is nonsolvable under the current assumption. �

In other words, nontrivial p-toral elements commute with no nontrivial p-
unipotent subgroups. This can be stated more carefully as follows.

Corollary 5.18 Any connected solvable subgroup 〈s〉-invariant for some p-toral
element s of order p has trivial p-unipotent subgroups.

Proof. Otherwise s would normalize a nontrivial p-unipotent subgroup, and by
Fact 2.24 it would centralize a nontrivial p-unipotent subgroup. �

Our assumption (2) on B yields similarly a property antisymmetric to the
black hole principle implied by assumption (1). Let E denote the elementary
abelian p-group Ω1(S).
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Lemma 5.19 Let E1 be a subgroup of E of order at least p2. Then for any
proper definable connected subgroup L there exists an element s of order p of E1

such that C◦(s) � L. In particular G = 〈C◦(s) | s ∈ E1 \ {1}〉.

Proof. Assume on the contrary C◦(s) ≤ L for any element s of order p of E1.
We claim that C◦(t) ≤ L for any element t of order p of E. In fact, as

E1 ≤ S ≤ C◦(t), C◦(t) is by Lemma 2.33 generated by its subgroups of the
form C◦(t, s), with s of order p in E1. As these groups are all contained in L
by assumption, our claim follows.

Hence we have B ≤ L < G. But under our current assumption B = G, and
this is a contradiction.

Our last claim follows, as proper definable connected subgroups of G con-
taining S are solvable by assumption. �

Corollary 5.20 There exists an element s of order p of E such that C◦(S) <
C◦(s).

Proof. C◦(S) is S-local◦, and thus solvable by local◦ solvability◦ of G and
Lemma 3.4. As C◦(S) ≤ C◦(s) for any element s of order p of S, it suffices to
apply Lemma 5.19. �

Lemma 5.21 There exists an element s of order p of E such that

d(Op′(C◦(s))) ≥ 1.

Proof. Assume the contrary, and let s be an arbitrary element of order p
of E. By our assumption that d(Op′ (C◦(s))) ≤ 0, Op′ (C◦(s)) is trivial or a
good torus by Lemma 2.11, and central in C◦(s) by Fact 2.12 (1). Notice that
Up(C

◦(s)) = 1 by Lemma 5.17. As C◦(s)/Op′ (C◦(s)) is abelian by Fact 2.31,
C◦(s) is nilpotent. Now S is central in C◦(s) by Fact 2.5 (2). In particular
C◦(S) = C◦(s), and this holds for any element s of order p of E. We get a
contradiction to Corollary 5.20. �

It follows in particular from Lemma 5.21 that there exist definable connected
subgroups L containing C◦(s) for some element s of order p of E and such that
Op′(L) is not a good torus. Choose then a unipotence parameter q̃ = (q, r)
different from (∞, 0) such that r is maximal in the set of all dq(Op′ (L)), where
L varies in the set of all definable connected solvable subgroups with the above
property.

Notice that there might exist several such maximal unipotence parameters
q̃, maybe one for q = ∞ and several ones for q prime, except for q = p by
Corollary 5.18.

It will also be shortly and clearly visible below that the notion of maximality
for q̃ is the same when L varies in two smaller subsets of definable connected
solvable subgroups containing C◦(s) for some s of order p of E: the set of Borel
subgroups with this property on the one hand, and exactly the finite set of
subgroups of the form C◦(s) on the other.
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Lemma 5.22 Let L be any definable connected solvable subgroup containing
C◦(s) for some element s of order p of E. Then Uq̃(Op′(L)) is a normal definable
connected nilpotent subgroup of L.

Proof. As Op′(L) is normal in L, it suffices to show that its definably char-
acteristic subgroup Uq̃(Op′(L)) is nilpotent. But the latter is in F (Op′(L)) by
Fact 2.15 and the maximality of r. �

Corollary 5.23 Let L be any definable connected solvable subgroup containing
C◦(s) for some element s of order p of E. Then any definable q̃-subgroup of L
without elements of order p is in Uq̃(F (Op′ (L))).

Proof. Let U be such a subgroup. As Up(L) = 1 by Lemma 5.17, L/Op′(L)
is (divisible) abelian by Fact 2.31, and thus U ≤ Op′(L), and U ≤ Uq̃(Op′ (L)).
Now it suffices to apply the normality and the nilpotence of the latter. �

We now prove a version of the Uniqueness Theorem 4.1 with a combined
action, more precisely where the assumption on unipotence degrees of central-
izers is replaced by an assumption of invariance by a sufficiently “large” p-toral
subgroup. For this purpose we first note the following.

Lemma 5.24 Let E1 be a subgroup of order at least p2 of E, and H a definable
connected solvable E1-invariant subgroup. Then dq(Op′ (H)) ≤ r.

Proof. Assume toward a contradiction r′ > r, where r′ denotes dq(Op′(H)). In
this case r is necessarily finite, and q = ∞. By Fact 2.15, U(∞,r′)(Op′ (H)) ≤
F ◦(Op′(H)), and this nontrivial definable (∞, r′)-subgroup is E1-invariant. Fact
2.32 gives an element s of order p in E1 such that

CU(∞,r′)(Op′(H))(s) 6= 1.

But the latter is an (∞, r′)-group by Fact 2.9. Now considering the definable
connected solvable subgroup C◦(s) gives a contradiction to the maximality of
r, as C◦(s)/Op′(C◦(s)) is (divisible) abelian as usual and the centralizer above
is connected without elements of order p, and thus contained in Op′(C◦(s)). �

As mentioned already around the definition of maximal parameters q̃, the
same argument shows that r is also exactly the maximum of the dq(Op′ (L))
different from 0, with L varying in the set of Borel subgroups containing C◦(s)
for some element s of order p of E (instead of all definable connected solvable
subgroups L with the same property), and similarly with L varying in the set
of subgroups C◦(s) for some element s of order p of E.

We now prove the specific version of the Uniqueness Theorem 4.1.
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Theorem 5.25 Let E1 be a subgroup of order at least p2 of E. Then any
E1-invariant nontrivial definable q̃-subgroup without elements of order p is con-
tained in a unique maximal such.

Proof. Let U1 be the q̃-subgroup under consideration. Fix U a maximal E1-
invariant definable q̃-subgroup without elements of order p containing U1.

Assume V is another such subgroup, distinct from U , and chosen so as to
maximize the rank of U2 = Uq̃(U ∩ V ). As 1 < U1 ≤ U2, the subgroup U2 is
nontrivial. As U2 is nilpotent, N := N◦(U2) is solvable by local◦ solvability◦ of
G. Note that U2 < U , as otherwise U = U2 ≤ V and U = V by maximality
of U . Similarly U2 < V , as otherwise V = U2 ≤ U and V = U by maximality
of V . In particular by normalizer condition, Fact 2.7, U2 < Uq̃(NU (U2)) and
U2 < Uq̃(NV (U2)).

We claim that dq(Op′(N)) = r. Actually dq(Op′(N)) ≤ r by Lemma 5.24,
and as Op′(N) contains U2 which is nontrivial and of unipotence degree r in
characteristic q we get dq(Op′(N)) = r.

By Fact 2.15 and the fact that r ≥ 1 we get Uq̃(Op′(N)) ≤ F ◦(Op′(N)).
In particular Uq̃(Op′(N)) is nilpotent, and contained in a maximal definable
E1-invariant q̃-subgroup without elements of order p, say Γ. Notice that N ,
being E1-invariant, satisfies Up(N) = 1, and N/Op′(N) is abelian as usual.
Now U1 ≤ U2 < Uq̃(NU (U2)) ≤ Γ, so our maximality assumption implies that
Γ = U . In particular Uq̃(NV (U2)) ≤ Γ = U . But then U2 < Uq̃(NV (U2)) ≤
Uq̃(U ∩ V ) = U2, a contradiction. �

Corollary 5.26 Let E1 be a subgroup of order at least p2 of E.

(1) If U1 is a nontrivial E1-invariant definable q̃-subgroup without elements of
order p, then U1 is contained in a unique maximal E1-invariant definable
connected solvable subgroup B. Furthermore Uq̃(Op′ (B)) is the unique
maximal E1-invariant definable q̃-subgroup without elements of order p
containing U1, and, for any element s of order p of E1 with a nontrivial
centralizer in U1, C◦(s) ≤ B and B is a Borel subgroup of G.

(2) Uq̃(Op′(C◦(E1))) is trivial.

Proof. (1). Assume B1 and B2 are two maximal E1-invariant definable con-
nected solvable subgroups containing U1. We have Up(B1) = Up(B2) = 1.
Hence B1 and B2 are both abelian modulo their Op′ subgroups.

Let U = Uq̃(Op′ (B1 ∩ B2)). This group contains U1 and is in particular
nontrivial, and is E1-invariant, as well as Uq̃(Op′(B1)) and Uq̃(Op′ (B2)). Now all
these three subgroups are contained in a (unique) common maximal E1-invariant
definable q̃-subgroup without elements of order p by the Uniqueness Theorem
5.25, say Ũ . Notice that B1 = N◦(Uq̃(Op′ (B1))) and B2 = N◦(Uq̃(Op′(B2))) by
maximality of B1 and B2. Now applying the normalizer condition, Fact 2.7, in
the subgroup Ũ without elements of order p yields easily Uq̃(Op′(B1)) = Ũ =
Uq̃(Op′ (B2)). Now taking their common normalizers◦ yields B1 = B2.
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Our next claim follows from the same argument.
For the last claim, we note that there exists an element s in E1 of order

p such that CU1(s) is nontrivial. By Fact 2.9 the latter is a q̃-group, and of
course it is E1-invariant. So the preceding uniqueness applies to CU1(s), and as
CU1(s) ≤ U1 ≤ B we get that B is the unique maximal E1-invariant definable
connected solvable subgroup containing CU1 (s). But CU1(s) ≤ C◦(s) ≤ Bs for
some Borel subgroup Bs and E1 ≤ Bs, so Bs satisfies the same conditions as
B, so Bs ≤ B and B = Bs is a Borel subgroup of G.

(2). Suppose toward a contradiction U := Uq̃(Op′ (C◦(E1))) nontrivial. It is
of course E1-invariant. Recall that Q is a fixed Carter subgroup of G containing
the maximal p-torus S. As Q ≤ C◦(E1), Q normalizes the subgroup U . Now
for any element s of order p or E1 we have UQ ≤ C◦(s).

As E1 ≤ Q, any Borel subgroup containing UQ is E1-invariant, and by
the first point there is a unique Borel subgroup containing UQ. Now C◦(s) is
necessarily contained in this unique Borel subgroup containing UQ, and this
holds for any element s of order p of E1. We get a contradiction to Lemma 5.19.
�

We note that the proof of the second point in Corollary 5.26 actually shows
that any definable connected subgroup containing E1 and U1 for some nontrivial
E1-invariant definable q̃-subgroup U1 without elements of order p is contained
in a unique Borel subgroup of G. Furthermore with the notation of Corollary
5.26 (1) we have in any case N(U1) ∩ N(E1) ≤ N(Uq̃(Op′ (B))) = N(B).

There are two possible ways to prove that the Prüfer p-rank is 2. One
may use the Uniqueness Theorem 5.25 provided by the local◦ solvability◦ of
the ambient group, or use the general signalizer functor theory, which gives
similar consequences in more general contexts. We explain now how to use the
signalizer functor theory to get the bound on the Prüfer p-rank, but we will
rather continue the analysis with the Uniqueness Theorem 5.25 which is closer
in spirit to [CJ04, Lemma 6.1], and our original proof anyway. It also gives
much more information in the specific context under consideration, including
when the Prüfer p-rank is 2, while the general signalizer functor theory just
provides the bound.

For s a nontrivial element of E we let

θ(s) = Uq̃(Op′(C(s))).

If t is another nontrivial element of E, then it normalizes the connected nilpotent
q̃-group without elements of order p θ(s), and by Facts 2.9 and 2.31 Cθ(s)(t) ≤
Uq̃(Op′ (C(t))) = θ(t). Hence one has the two following properties:

(1) θ(s)g = θ(sg) for any s in E \ {1} and any g in G.

(2) θ(s) ∩ CG(t) ≤ θ(t) for any s and t in E \ {1}.
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In the parlance of finite group theory one says that θ is an E-signalizer functor
on G. In groups of finite Morley rank one says that θ is a connected nilpotent E-
signalizer functor, as any θ(s) is connected (by definition) and nilpotent, which
follows from Corollary 5.23. When E1 is a subgroup of E one defines

θ(E1) = 〈θ(s) | s ∈ E1 \ {1}〉

In groups of finite Morley rank there is no Solvable Signalizer Functor The-
orem available as in the finite case [Asc93, Chapter 15] (see [Gol72a, Gol72b,
Gla76, Ben75] for the story in the finite case). However Borovik imported from
finite group theory a Nilpotent Signalizer Functor Theorem for groups of finite
Morley rank [Bor90, Bor95] [BN94, Theorem B.30], stated as follows in [Bur04b,
Theorem A.2] (and which suffices by the unipotence theory of [Bur04b] for which
it has been designed originally).

Fact 5.27 (Nilpotent Signalizer Functor Theorem) Let G be a group of
finite Morley rank, p a prime, and E ≤ G a finite elementary abelian p-group
of order at least p3. Let θ be a connected nilpotent E-signalizer functor. Then
θ(E) is nilpotent. Furthermore θ(E) = Op′ (θ(E)) and θ(s) = Cθ(E)(s) for any
s in E \ {1}.

(From the finite group theory terminology one says that θ is complete when
it satisfies the two properties of the last statement.)

In our situation one has thus, assuming toward a contradiction the Prüfer
p-rank is at least 3, that θ(E) is nilpotent. Notice that the definable connected
subgroup θ(E) is nontrivial, as θ(s) is nontrivial at least for some s by Facts 2.9
and 2.32. In particular N◦(θ(E)) is solvable by local◦ solvability◦ of G.

From this point on one can use arguments formally identical to those of
[Bor95, §6.2-6.3] used there for dealing with “proper 2-generated cores”.

If E1 and E2 are two subgroups of E of order at least p2, then for any s in
E1\{1} one has θ(s) ≤ 〈Cθ(s)(t) | t ∈ E2\{1}〉 ≤ θ(E2) and thus θ(E1) = θ(E2).

In particular θ(E) = θ(E1) for any subgroup E1 of E of order at least p2.
Now if g in G normalizes such a subgroup E1, then θ(E)g = θ(E1)

g =
θ(Eg

1 ) = θ(E1) = θ(E) and thus g ∈ N(θ(E)).
Take now as in Lemma 5.19 an element s of order p in E such that C◦(s) �

N◦(θ(E)).
Then, still assuming E of order at least p3, there exists a subgroup E2 of E

of order at least p2 and disjoint from 〈s〉. By Lemma 2.33,

C◦(s) = 〈CC◦(s)(t) | t ∈ E2 \ {1}〉.

But now if t is in E2 as in the above equality, then E1 := 〈s, t〉 has order p2 as E2

is disjoint from 〈s〉, hence CC◦(s)(t) ≤ C(s, t) ≤ N(〈s, t〉) = N(E1) ≤ N(θ(E)),
and this shows that C◦(s) ≤ N◦(θ(E)). This is a contradiction, and as our only
extra assumption was that the Prüfer p-rank was at least 3, it must be 2.

Anyway, we can get the bound similarly, by using more directly the Unique-
ness Theorem 5.25 here instead of the axiomatized signalizer functor machinery.
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Actually the proof below is the core of the proof of the Nilpotent Signalizer Func-
tor Theorem, and the Uniqueness Theorem here gives a shortcut to the passage
to a quotient for the induction in the general case.

Theorem 5.28 S has Prüfer p-rank 2.

Proof. Assume towards a contradiction E has order at least p3.
We then claim that there exists a unique maximal nontrivial E-invariant

definable q̃-subgroup without elements of order p. Let U1 and U2 be two such
subgroups. Then by Facts 2.9 and 2.32 CU1(E1) and CU2(E2) are nontrivial q̃-
subgroups for some subgroups E1 and E2 of E, each of index p in E. Assuming
|E| ≥ p3 gives then an element s of order p in E1 ∩E2. Now CU1 (s) and CU2 (s)
are both nontrivial, and these are both q̃-subgroups by Fact 2.9. Clearly they are
both E-invariant, as E centralizes s, and in Uq̃(Op′(C◦(s))) as usual, which is
also E-invariant. Now the Uniqueness Theorem 5.25 gives U1 = U2, as desired.

Hence there is a unique maximal E-invariant definable q̃-subgroup without
elements of order p, say “θ(E)” in the notation of the signalizer functor theory.
For the same reasons as mentioned above, Facts 2.9 and 2.32, it is nontrivial.

Now by Facts 2.9 and 2.32 again, Cθ(E)(E1) is a nontrivial definable q̃-
subgroup of θ(E) for some subgroup E1 of E of index p. As Up(C

◦(E1)) = 1,
C◦(E1)/Op′(C◦(E1)) is abelian as usual, and the definable connected subgroup
Cθ(E)(E1) is in Op′(C◦(E1)), and in Uq̃(Op′ (C◦(E1))).

But as |E| ≥ p3, |E1| ≥ p2, and we get a contradiction to Corollary 5.26 (2).
�

This proves clause (2) of Theorem 5.16 and completes the proof of Theorem
5.16. �

We can also record informally some information gained along the proof of
case (2) of Theorem 5.16, which can be compared to [CJ04, 6.1-6.6]. We let
G and S be as in case (2) of Theorem 5.16, and Q be a Carter subgroup of G
containing S. Then Q is contained in at least two distinct Borel subgroups of
G by Lemma 5.19, and in particular Q is divisible abelian by Corollary 4.4 and
Proposition 4.54. Now there are unipotence parameters q̃ 6= (∞, 0) as in the
proof of case (2) of Theorem 5.16 (maybe one for q = ∞, several for q prime,
but none for q = p by Lemma 5.17). All the results of the above analysis apply,
now with |Ω1(S)| = p2 necessarily.

By Corollary 5.26,
Uq̃(Op′(C◦(Ω1(S)))) = 1.

As Ω1(S) has order p2, it contains in particular

p2 − 1

p − 1
= p + 1

pairwise noncolinear elements. It follows that there are at most p+1 nontrivial
subgroups of the form Uq̃(Op′(C◦(s))) for some nontrivial element s of order p of
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S, and at most p+1 Borel subgroups B containing Q (actually Ω1(S)-invariant
suffices as noticed after Corollary 5.26) and such that Uq̃(Op′ (B)) 6= 1. By
Corollary 5.26, any such Borel subgroup would contain C◦(s) for any element s
of order p of S having a nontrivial centralizer in Uq̃(Op′ (B)), and Ω1(S) has a
trivial centralizer in Uq̃(Op′(B)).

The following corollary of Theorem 5.16 will be of crucial use in [DJ07] to
get a bound on Prüfer ranks.

Corollary 5.29 Let G be a connected nonsolvable locally◦ solvable◦ group of
finite Morley rank and of Prüfer p-rank at least 2 for some prime p, and fix
a maximal p-torus S of G. Let X be a maximal exceptional (finite) subgroup
of S (as in Lemma 3.31), H = C◦(X)/X, K a minimal definable connected
nonsolvable subgroup of H containing S, and let

B = 〈C◦

K
(s) | s ∈ Ω1(S) \ {1}〉.

Then either

(1) B < K, in which case B is a Borel subgroup of K, and moreover NK(B)
is p-strongly embedded in K assuming additionally that Up(CK(s)) = 1
for every element s of order p of S and that S is a Sylow p-subgroup of
NNK(B)(S), or

(2) B = K, in which case S, as well as S, has Prüfer p-rank 2.

Proof. It suffices to apply Theorem 5.16 in K. We note that S and S have the
same Prüfer p-rank, as X is finite by Lemma 3.20. �

Cases (1) and (2) of Theorem 5.16 and Corollary 5.29 correspond respectively
to Sections 7 and 6 of [CJ04] in presence of divisible torsion. The remaining
analysis of both of these sections, as well as the treatment without the extra
assumption for p-strong embedding in case (1), will be considered in our separate
paper on Weyl groups, mentioned already in Section 4.2.

For p = 2 case (1) will entirely disappear in [DJ07] by an argument similar
to the one used in [BCJ07, Case I].
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