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Abstract

We lay down the fundations of the theory of groups of finite Morley
rank in which local subgroups are solvable and we proceed to the local
analysis of these groups. We prove a main Uniqueness Theorem, analogous
to the Bender method in finite group theory, and derive its corollaries. We
also consider homogeneous cases and study torsion.
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1 Introduction

1.1 Generalities

In the Classification of the Finite Simple Groups [GLS94], the study of minimal
simple groups has been a fundamental minimal case for the whole process. The
local analysis of these finite simple groups, in which each proper subgroup is
solvable, has been delineated by J. Thompson, originally for the Odd Order
Theorem [FT63, BG94]. This work has later been used to get a classification of
minimal simple groups in presence of elements of order 2, and this classification
has then been slightly generalized to the case of finite groups in which each
normalizer of a nontrivial solvable subgroup is also solvable. Furthermore, the
simplicity assumption was replaced by a mere nonsolvability assumption in this
last stage. This full classification, with only very few extra groups in addition
to the minimal simple ones, has been published in the series [Tho68, Tho70,
Tho71, Tho73].
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†Corresponding author — Institut Fourier, CNRS, Université Grenoble I, 100 rue des
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The present paper is the first of a series containing the transfer of arguments
and results between two classes of groups of finite Morley rank very analogous to
the finite minimal simple groups and, respectively, the nonsolvable finite groups
in which normalizers of solvable subgroups are solvable. A very large body of
ideas from the classification of the finite simple groups, including in particular
J. Thompson’s original ones, has already been used in the context of groups of
finite Morley rank [ABC08]. Here we are going to concentrate on the specific case
of “small” groups of finite Morley rank, where smallness is witnessed by similar
properties. In fact, a large body of very specific work has been accomplished in
the last years about minimal connected simple groups of finite Morley rank, that
is connected simple groups of finite Morley rank in which every proper definable
connected subgroup is solvable. We propose here to transfer this specific work
to the more general class of ∗-locally solvable groups of finite Morley rank, that
is groups of finite Morley rank in which N(A) is solvable for each nontrivial
definable abelian subgroup A.

In finite group theory, and following Alperin, a subgroup is called p-local if
it is the normalizer of a nontrivial p-subgroup for some prime p. Thompson’s
classification was stated for groups in which each p-local subgroup is solvable,
which is equivalent to requiring that normalizers of nontrivial solvable (or just
abelian) subgroups are solvable. As we will see in Section 3.1 below, our ∗-
local solvability assumption can similarly be characterized by the solvability
of p̃-local subgroups, where p̃-subgroups are in our context specific subgroups
sharing certain characteristic properties very similar to those of finite p-groups
(see Fact 2.3 below). In particular, the “∗” in our notation aims at reminding
this notion of p-local or p̃-local solvability.

Since, when working with groups of finite Morley rank, one prefers to deal
with the connected category, we will actually weaken this definition of ∗-local
solvability in the following three possible ways, by assuming the solvability of
the connected components only of normalizers of nontrivial definable abelian
subgroups A, in which case we will speak of ∗-locally◦ solvable groups, and/or
by considering nontrivial definable connected abelian subgroups A only, which
will be called ∗-local◦ solvability. In fact, we will most of the time work here
with the weakest definition of ∗-local◦◦ solvability, i.e., assuming only that N◦(A)
is solvable for each nontrivial definable connected abelian subgroup A of the
ambient group. We refer to Definition 3.1 below.

The only known infinite simple groups of finite Morley rank are algebraic
groups over algebraically closed fields and a long-standing conjecture postulates
that there are no other such groups, which would imply also that any nonsolvable
connected group is nicely built up from simple algebraic groups. In particular,
the only known nonsolvable connected ∗-locally◦ solvable groups of finite Morley
rank are of the form PSL2 over some algebraically closed field K, and of the
form SL2 in the slightly more general ∗-locally◦◦ solvable case. For example, if
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we consider in SL3(K) the definable connected abelian subgroup

A =


 t 0 0

0 t 0
0 0 t−2

 : t ∈ K×
,

then N◦(A) is a central product A · E where E is a definable connected sub-
group isomorphic to SL2(K), so that N◦(A) is not solvable. More precisely,
for connected ∗-locally◦ solvable and ∗-locally◦◦ solvable groups of finite Morley
rank there are in the classical algebraic case no other groups than PSL2 and
SL2, and in particular no groups of Lie rank 2 and more.

All the classes of ∗-locally solvable groups of finite Morley rank defined
here contain of course all solvable groups of finite Morley rank, groups of the
form PSL2 or SL2, but also many hypothetic configurations of semisimple weak
analogs of so-called bad groups of finite Morley rank which appear as potential
counterexamples to the main conjecture on simple groups. All the results of the
present series of papers tend to lead, very roughly, to a kind of trichotomy for
∗-locally◦◦ solvable groups as follows.

• Solvable groups.

• PSL2 or SL2.

• Semisimple weak analogs of bad groups.

We refer for example to [DJ10, Theorem 5] in the subsequent series for a theorem
leading, in presence of infinite elementary abelian 2-subgroups, exactly to one
of the two first cases as above. For nonsolvable groups, the dichotomy between
algebraic groups and “bad” groups appeared early in the seminal [Che79] on
groups of Morley rank 3, or in a more general form in [Jal01a]. There is in fact
a kind of general dichotomy between configurations in which a local analysis in
Thompson’s style can be achieved, and those in which it rapidly stops, and we
will keep track of both aspects throughout.

In the present first paper of our series, we are essentially going to recast
the theory of solvable and of minimal connected simple groups into the more
general context of ∗-locally solvable groups, taking also care of presenting the
various aspects of the theory in a very linear and coherent way. Throughout,
we will insist on the differences between ∗-local◦ solvability, which offers no new
substantial phenomena compared to the minimal connected simple case, and
the weaker ∗-local◦◦ solvability, where many new phenomena can occur. This
is at least explained by the alternative SL2 to PSL2. While the present paper
serves as a large fishpond of results for smooth proofs in subsequent papers, it
also contains no result easily stated in this introduction. In the present paper
we will never assume the presence of involutions, and we refer to [DJ10] and
[DJ07a] in our series for the case of groups with involutions.
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1.2 Historical context

Before passing to more comments on the actual contents of the present paper,
it seems necessary to make more precise historical remarks. First of all, solvable
groups of finite Morley have been highly investigated, notably by Nesin and
Frécon, and their understanding is at the core of the analysis of groups of finite
Morley rank, especially of those studied here.

With the ongoing work on simple groups of finite Morley rank with involu-
tions, it became clear as corollaries of [Jal99] and [Jal01b] that there were no
“small” simple groups of finite Morley rank of mixed type, and that the only
specimen in even type was PSL2(K), with K an algebraically closed field of
characteristic 2.

Then it was time to start the study of “small” simple groups of odd type,
even though there was almost nothing to start with. The fundations, notably
the notion of a minimal connected simple group, were laid down in the preprint
[Jal00] which remained unpublished. It contained the first recognition result
of PSL2 in characteristic different from 2 in this context, though under strong
assumptions at that time. It also contained the embryo of the local analysis of
minimal connected simple groups of finite Morley rank. The original lemma,
which turned out later to be an analog of the Bender method in finite group
theory, was there given in any characteristic. It has unfortunately been dissem-
inated between different characteristics later, and we will give here global forms
and the general Uniqueness Theorem in Section 4.1.

Because of the absence of a unipotence theory in characteristic zero at that
time, and in order to reduce the size of an overambitious project to manageable
size, the second author adopted the so-called “tameness” assumption for the
recognition of PSL2 with the weakest expectable hypothesis in this context.
The nonalgebraic configurations were also studied in this tame context, and the
full analysis algebraic/nonalgebraic appeared in [CJ04].

In the meantime Cherlin suggested to develop a robust unipotence theory in
characteristic 0 for attacking certain problems concerning large groups of odd
type without the tameness assumption. This became the main tool in Burdges’
thesis [Bur04a] and this application corresponds to [Bur04b]. This new abstract
unipotence theory then allowed one to develop the local analysis of minimal
connected simple groups where the above mentioned uniqueness theorem fails
[Bur07]. It was also Cherlin’s idea to use this in presence of involutions to study
other nonalgebraic configurations without tameness [BCJ07, Case II].

With a nice unipotence theory then available in any characteristic, the recog-
nition of PSL2 started again in the context of minimal connected simple groups
of odd type without tameness, in the thesis of the first author [Del07b]. The
recognition of PSL2 has then been obtained as in the tame case under the
weakest expectable assumptions and appeared in [Del07a]. Using this new ex-
perience for the algebraic case, the nonalgebraic configurations were studied in
[Del08], reaching essentially all the conclusions of [CJ04] in the general case.
The paper [DJ07a] will at the same time improve and linearize the sequence
of arguments represented by [BCJ07, Del07a, Del08], and also greatly simplify
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those in [Del08].
The final generalization from minimal connected simple groups to ∗-locally

solvable groups that we accomplish here has been suggested by Borovik by
analogy with finite group theory.

1.3 Contents of the paper

We now wish to comment on the contents of the present paper. Section 2 will
contain background material, with notably an emphasis on the abstract unipo-
tence theory in groups of finite Morley rank in Section 2.1 in continuation of
[Bur06] and [FJ08]. We shall also formalize the notion of a soapy subgroup, the
finest approximation of unipotent subgroups where all the finest computations
will be done in [DJ07a].

Section 3 will lay down the basic fundations concerning ∗-locally solvable
groups of finite Morley rank. In Sections 3.3 and 3.4 we will mainly focus on
the new phenomena which can occur in the ∗-locally◦◦ solvable case in comparison
to the ∗-locally◦ solvable one, and give a very detailed description of them.

Section 4 will concern the local analysis of ∗-locally solvable groups of finite
Morley rank, with in Section 4.1 the main Uniqueness Theorem (usually called
“Jaligot’s Lemma”) corresponding to the Bender method in finite group theory.
This theorem, whose numerous corollaries are at the core of almost all appli-
cations “towards algebraicity” in the theory, is the heart of the present paper.
In technical terms and in the very general form given here, it will be stated as
follows.

Uniqueness Theorem 4.1 Let G be a ∗-locally◦◦ solvable group of finite Morley
rank, p̃ = (p, r) a unipotence parameter with r > 0, and U a Sylow p̃-subgroup
of G. Assume that U1 is a nontrivial definable p̃-subgroup of U containing a
nonempty (possibly trivial) subset X of G such that dp(C◦(X)) ≤ r. Then U
is the unique Sylow p̃-subgroup of G containing U1, and in particular N(U1) ≤
N(U).

When the above theorem cannot be applied, typically in highly nonalgebraic
configurations, the lenghty analysis of a maximal pair of Borel subgroups from
[Bur07] can be applied in the case of minimal connected simple groups. In
Section 4.2 we will see that this parallel technique generalizes without (too
much) pain to ∗-locally◦◦ solvable groups.

Section 5 eventually concludes the present paper with several specific as-
pects concerning homogeneous cases as well as torsion. For instance we apply
the Uniqueness Theorem, in its most straightforward forms, in Section 5.3 when
the ambient group contains nontrivial p-unipotent subgroups, to get structural
results similar to what occurs in PSL2 in characteristic p. When analyzing
certain homogeneous groups, we also take the opportunity to examine further
possible variations of the notion of “bad” groups in the ∗-locally◦◦ solvable con-
text.
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1.4 General background and notations

For the basic background on groups of finite Morley rank we generally refer to
[BN94]. The more recent [ABC08] is also a very complete source. We will try
to refer as much as possible to these when needed, but we assume the reader
familiar with certain background facts such as the descending chain condition
on definable subgroups, the existence of connected components, the uniqueness
of generic types in connected groups [Che79], and the following crucial fact.

Fact 1.1. A connected group acting definably on a finite set fixes it pointwise.

We will also assume the reader familiar with Zilber’s generation lemma and
its corollaries [Zil77] [BN94, §5.4], notably the definability of subgroups gener-
ated by definable connected subgroups and corollaries on commutator subgroups
[BN94, Corollary 5.29]. The other results used here which are less classical, or
in a form not directly available in the literature, will be explicitely mentioned
as “Facts” below.

If X is a subset, or a single element, of a group of finite Morley rank, we
denote by H(X) the definable hull of X, that is the smallest definable subgroup
containing X. In the literature the notation “d(·)” is more commonly used, but
we prefer to keep the latter for certain integer-valued unipotence “d”egrees, and
instead use “H(·)” for “H”ulls which are definable subgroups.

If x and y are elements of a group, we write xy for y−1xy, and if X and Y
are two subsets we denote by XY the set of elements xy, with (x, y) varying in
X × Y . We denote by N(X) the set of elements g such that Xg = X, with a
subscript if one wants to specify in which particular subset elements g are taken.

2 Background

2.1 Unipotence theory

For the following abstract unipotence theory in groups of finite Morley rank
[Bur04a, Bur04b, Bur06], we follow essentially the general exposition of [FJ08],
using in particular the global notation of [Jal08b]. We denote by P the set of
all prime numbers.

A decent torus is a divisible abelian group of finite Morley rank which co-
incides with the definable hull of its (divisible abelian) torsion subgroup. The
latter is known to be in the finite Morley rank context a direct product, with
p varying in P, of finite products of the Prüfer p-group Zp∞ [BP90], and by
divisibility decent tori are connected.

If p is a prime, a p-unipotent group of finite Morley rank is a definable
connected nilpotent p-group of bounded exponent.

A unipotence parameter is a pair

p̃ = (characteristic p, unipotence degree r) ∈ ({∞} ∪ P)× (N ∪ {∞})

satisfying p <∞ if and only if r =∞. A group of finite Morley rank is a p̃-group
if it is nilpotent and of the following form, depending on the value of p̃.

6



• if p̃ = (∞, 0), a decent torus.

• if p̃ = (∞, r), with 0 < r < ∞, a group generated by its definable inde-
composable subgroups A such that A/Φ(A) is torsion-free and of rank r.
Here a group of finite Morley rank is indecomposable if it is abelian and
not the sum of two proper definable subgroups. An indecomposable group
A must be connected [Bur06, Lemma 1.2], and Φ(A) denotes its maximal
proper definable conected subgroup.

• if p̃ = (p,∞), with p prime, a p-unipotent subgroup.

We note that nilpotence of p̃-groups is imposed by the definition, and that
these groups are in any case generated by definable connected subgroups, and
hence always connected by Zilber’s generation lemma [BN94, Corollary 5.28].
A Sylow p̃-subgroup of a group of finite Morley rank is a maximal definable
(connected) p̃-subgroup.

The term “characteristic” for p in a unipotence parameter (p, r) clearly refers
to the characteristic of the ground field for p-unipotent groups in algebraic
groups when p is finite. When p is infinite and 0 < r <∞, it refers to nontrivial
torsion-free groups, which are potentially additive groups of fields of character-
istic 0. When p is infinite and r = 0, i.e., for decent tori, it conveys no special
meaning. The term “unipotence degree” (one can also speak of “weight”) is
explained in Fact 2.7 below by the constraints on actions of such groups on
others.

A group of finite Morley rank is (p, r)-homogeneous if every definable con-
nected nilpotent subgroup is a (p, r)-group. We say that it is homogeneous if it
is (p, r)-homogeneous for some unipotence parameter (p, r). Following [Che05],
a divisible abelian (∞, 0)-homogeneous group of finite Morley rank is usually
called a good torus. We refer to [FJ08, Lemma 2.17] for homogeneity of p̃-groups.

Fact 2.1. [FJ08, Theorem 2.18] Let G be a connected group of finite Morley
rank acting definably on a p̃-group H. Then [G,H] is a definable p̃-homogeneous
subgroup of H.

Proof. The main point is when the unipotence degree r of H satisfies 0 < r <∞
and is proved in [Fré06a, Theorem 4.11]. When the unipotence degree of H is
infinite, this is just [FJ08, Lemma 2.17-c]. Decent tori are centralized by any
connected group acting on them: this is an easy consequence of Fact 1.1 called
rigidity of decent tori (see Fact 2.7 (1) below). Hence [G,H] is trivial when
r = 0.

Corollary 2.2. Let G be any p̃-group. Then Gn and G(n) are definable homo-
geneous p̃-subgroups for any n ≥ 1.

If G is a group of finite Morley rank and π̃ is a set of unipotence parameters,
we define

Uπ̃(G) = 〈Σ | p̃ ∈ π and Σ is a definable p̃-subgroup of G〉.
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The latter subgroup is always definable and connected by Zilber’s generation
lemma. When π̃ is empty it is trivial and when π̃ consists of a single unipotence
parameter p̃ we simply write Up̃(G). If p̃ = (p,∞) for some prime p, we also
write Up(G) for Up̃(G). A Uπ̃-group is a group G such that Uπ̃(G) = G. We
refer to [FJ08, Lemma 2.13] for properties of push-forwards and pull-backs of
such groups.

Fact 2.3. [Bur06, §3] Let G be a nilpotent group of finite Morley rank.

(1) G is the central product of its Sylow p-subgroups and its Sylow (∞, r)-
subgroups.

(2) If G is connected, then G is the central product of its Sylow p̃-subgroups.

Proof. The connected case corresponds to [FJ08, Theorem 2.7]. Without con-
nectedness we refer to the decomposition of G as the central product of a defin-
able divisible (connected) subgroup D and a definable subgroup B of bounded
exponent [Nes91] [BN94, Theorem 6.8], and to the decomposition of a nilpo-
tent group of bounded exponent as the central product of its (definable) Sylow
p-subgroups.

Fact 2.4. A p̃-group of finite Morley rank cannot be a q̃-group when q̃ 6= p̃.

Proof. It suffices to use the commutation provided by Fact 2.3 (2) to reduce the
problem to abelian groups. Then it follows easily from the definitions.

We will also frequently use a variation for p̃-groups on the usual normalizer
condition in finite nilpotent groups [Bur06, Lemma 2.4] (see [FJ08, Proposition
2.8]).

Definition 2.5. Let G be a group of finite Morley rank.

(1) We say that G admits the unipotence parameter p̃ if Up̃(G) 6= 1.

(2) We denote by d∞(G) the maximal unipotence degree in characteristic ∞,
i.e., the maximal integer r ∈ N such that G admits the unipotence param-
eter (∞, r), and −1 if G admits none such.

(3) If p is a prime, we denote by dp(G) the maximal unipotence degree in
characteristic p, i.e., the symbol ∞ if G admits the unipotence parameter
(p,∞), and −1 otherwise.

(4) A unipotence parameter p̃ = (p, r) is maximal in its characteristic for G
if dp(G) = r (notice here that the characteristic p can be ∞ or prime).
This is equivalent to saying that r is the maximal unipotence parameter in
characteristic p.

(5) Finally, we define the absolute unipotence degree d(G) of G as the maxi-
mum of d∞(G) and maxp∈P{dp(G)}.
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We say that a unipotence parameter (p, r) is absolutely maximal for G if
d(G) = dp(G) = r, i.e., if G contains nontrivial p-unipotent subgroups if p <∞
and otherwise admits (∞, r) and contains no nontrivial definable connected
nilpotent subgroup of bounded exponent and no nontrivial definable (∞, r′)-
subgroup with r′ > r.

We say that a unipotence parameter (p, r) is maximal for G if d(G) = 0
whenever r = 0, or dp(G) = r otherwise. This has essentially the effect of
not considering good tori of PSL2 over a pure field of positive charateristic as
having maximal unipotence degree. We will often mention this special example
separately.

The following lemma makes known facts more transparent in our notation,
or rather makes our notation more transparent via known facts.

Lemma 2.6. Let G be a group of finite Morley rank.

(1) G is finite if and only if d(G) = −1.

(2) G is a good torus if and only if G is connected solvable and d(G) ≤ 0.

Proof. If d(G) ≥ 0, then G has a nontrivial definable connected nilpotent sub-
group, and hence it cannot be finite. Conversely, if G is infinite, then its minimal
infinite definable subgroups are abelian by Reineke’s Theorem [BN94, Theorem
6.4]. As such subgroups are also connected, they contain a nontrivial Sylow
p̃-subgroup for some unipotence parameter p̃ = (p, r) by Fact 2.3 (2), and hence
d(G) ≥ r ≥ 0 > −1.

If G is a good torus, then it is abelian and connected, and any definable
connected subgroup is a good torus, in particular a decent torus, and by Fact
2.4 d(G) ≤ 0. Conversely, if G is a connected solvable group which admits no
unipotence parameter p̃ = (p, r) with r ≥ 1, then G is a good torus by [Bur04b,
Theorem 2.15].

For any group G of finite Morley rank we define, similarly to Up(G), the
unipotent radical in characteristic ∞ as

U∞(G) = U(∞,d∞(G))(G).

One can also define the absolute unipotent radical U(G) as

U(G) = 〈Up(G) | p prime 〉 if it is nontrivial and U∞(G) otherwise.

Finally, a unipotent radical U(p,r)(G) is maximal for G if (p, r) is maximal for
G.

2.2 Carter and soapy subgroups

The preceding abstract unipotence theory in groups of finite Morley rank gives
important approximations of semisimple and unipotent subgroups of algebraic
groups. On the one hand it gives a good approximation of maximal tori in any
group of finite Morley rank via the notion of a Carter subgroup. On the other
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hand it detects, and it is a more difficult task, approximations of unipotent
subgroups in ∗-locally solvable groups via the notion of a soapy subgroup.

All this is available thanks to a good understanding of possible actions of
p̃-subgroups onto each other in groups of finite Morley rank. These constraints
can be summarized as follows. The first item is often called rigidity of decent
tori.

Fact 2.7. Let G be a group of finite Morley rank, π̃1 and π̃2 two sets of unipo-
tence parameters, and r ∈ N ∪ {∞}.

(1) Assume G = TH where T is a definable decent torus of G and H is a
definable connected subgroup normalizing T . Then T ≤ Z(G). In particu-
lar, if T is a definable decent torus in a group of finite Morley rank, then
C◦(T ) = N◦(T ).

(2) Assume G = U1U2 where each Ui = Uπ̃i
(Ui) is a definable nilpotent sub-

group and U1 is normal. Assume that all unipotence degrees involved in
π̃1 are ≤ r and that all unipotence degrees involved in π̃2 are ≥ r. Then
U1U2 is nilpotent.

(3) Assume G = H1H2 where each Hi = Uπ̃i
(Hi) is definable and H1 is

normal and nilpotent. Assume that all unipotence degrees involved in π̃1

are ≤ r and that all unipotence degrees involved in π̃2 are > r. Then
G = H1C

◦(H1).

(4) Assume G = U1U2 where U1 is a normal nilpotent subgroup such that
U1 = Uπ̃1(U1), will all unipotence degrees involved in π̃1 infinite, and
U2 = Uπ̃2(U2), where all unipotence degrees r involved in π̃2 satisfy 0 <
r <∞. Then U2 ≤ C(U1).

Proof. The first item, which was the main key tool in [Che05], is a mere appli-
cation of Fact 1.1 together with the fact that Prüfer p-ranks of decent tori are
finite for any prime p [BP90].

The second item is [FJ08, Proposition 2.10]. See also [FJ05, §3] and [Bur06,
§4] for earlier versions of the same fact.

For the third item, we notice that if p̃ ∈ π̃2 and Σ is any definable connected
p̃-subgroup of H2, then H1 ·Σ is nilpotent by the second point, and both factors
commute by our assumption on the unipotence degrees involved and Fact 2.3
(2). In particular Up̃(H2) ≤ C◦(H1) and as H2 = 〈Up̃(H2) | p̃ ∈ π̃2〉, our claim
follows.

For the last item we refer to [Bur06, Lemma 4.3] for the fact that an (∞, r)-
group, with 0 < r < ∞, which normalizes a p-unipotent group must centralize
it. This is essentially a corollary of [Wag01, Corollary 8]. Then one can argue
as in the third point.

Fact 2.7 has as a general consequence the existence of a very good approxi-
mation of semisimple subgroups of algebraic groups in the context of groups of
finite Morley rank. If π̃ is a set of unipotence parameters, a Carter π̃-subgroup
of a group of finite Morley rank is a definable connected nilpotent subgroup
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Qπ̃ such that Uπ̃(N(Q)) = Q. A Carter subgroup of a group of finite Morley
rank is a definable connected nilpotent subgroup Q such that N◦(Q) = Q. By
[FJ08, Lemma 2.13] this corresponds to a Carter π̃-subgroup for the set π̃ of all
unipotence parameters, or merely the set of unipotence parameters admitted by
the ambient group.

The existence of Carter subgroups in arbitrary groups of finite Morley rank,
which appeared in [FJ05], had originally been looked for by the second author
in the context of minimal connected simple groups in order to generalize [CJ04].
It follows essentially from Fact 2.7, by considering p̃-subgroups from the least
to the most unipotent. We refer to [FJ08, Theorem 3.3].

A definable subset X of a group G of finite Morley rank is generous in
G if the union XG of its G-conjugates is generic in G. In simple algebraic
groups maximal tori are generous. In groups of finite Morley rank we only have
equivalent conditions to this property [Jal06, Corollary 3.8].

After semisimple groups, we now proceed to modelling unipotent subgroups.
We denote by F (G) the Fitting subgroup of any group G, i.e., the subgroup
generated by all normal nilpotent subgroups. It is always definable and nilpotent
in the finite Morley rank case [BN94, Theorem 7.3]. A consequence of Fact 2.7
dual to [FJ08, Theorem 3.3] is the following (see [FJ08, Lemma 2.11], and
[Bur04b, Theorem 2.16] for the original version).

Fact 2.8. Let H be a connected solvable group of finite Morley rank and p̃ =
(p, r) a unipotence parameter with r > 0. Assume dp(H) ≤ r. Then Up̃(H) ≤
F ◦(H).

We note that the assumption r > 0 is necessary in Fact 2.8. In the standard
Borel subgroup B of PSL2 in positive characteristic, d∞(B) = 0, but maximal
tori of B are not in the unipotent radical of B.

Unipotent subgroups are usually not generous in linear algebraic groups, and
thus in general more difficult to detect. Every nontrivial subgroup Up̃(H) as in
Fact 2.8 is generally a good approximation of a unipotent radical, at least much
finer than the Fitting subgroup. We will need even finer approximations when
considering ∗-locally solvable groups of finite Morley rank, notably the property
of being homogeneous and central in the Fitting subgroup. This issues from the
minimal subgroups used originally in [Jal00], after the considerable reworking
in [Del07b] using Burdges’ unipotence theory and Frécon’s homogeneity result
(see [Del07a, §5.1] and [Del08, 5.46, 6.31...]).

Recall that, for every connected solvable group H of finite Morley rank, a
unipotence parameter q̃ = (q, d) is maximal for H if d(H) = 0 whenever d = 0,
or dq(H) = d otherwise. By Lemma 2.6, a nontrivial connected solvable group
H is a good torus if and only if its unique maximal unipotence parameter is
(∞, 0). Otherwise, maximal unipotence parameters are all the (p,∞) such that
Up(H) 6= 1, and (∞, d) with d ≥ 1 and d∞(H) = d if it exists.

Definition 2.9. Let H be a connected solvable group of finite Morley rank.
A subgroup U of H is soapy (resp. characteristically soapy) in H if the two
following conditions hold.
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(1) U is a nontrivial definable connected subgroup of Z(F ◦(H)), q̃-homoge-
neous for some unipotence parameter q̃ maximal for H.

(2) U is normal (resp. definably characteristic) in H.

We will see in Section 4.1.4 that in ∗-locally◦◦ solvable groups these sub-
groups have a strong tendency to escape from intersections of distincts Borel
subgroups, like unipotent subgroups in PSL2 and like a soap between two hands.
Another not less serious reason for this name is that these groups were born near
Marseilles, which is famous for its soap.

We could also specify a set of maximal unipotence parameters for H, and
define these interesting subgroups as products of the present ones. In practice
only one unipotence parameter will suffice for us.

The next lemma says that the existence of soapy subgroups is not essentially
weaker than that of characteristically soapy subgroups.

Lemma 2.10. Let H be a connected solvable group of finite Morley rank and q̃
a unipotence parameter maximal for H. If H contains a q̃-homogeneous soapy
subgroup, then it contains a q̃-homogeneous characteristically soapy subgroup as
well.

Proof. If q̃ = (∞, 0) then H is a good torus, and H itself is the desired group.
In general one can proceed as follows. Let U be a q̃-homogeneous soapy sub-

group ofH. Let Ũ be the subgroup of Z(F ◦(H)) generated by all q̃-homogeneous
soapy subgroups of H. It is nontrivial, definable and connected as the product of
finitely many soapy subgroups by Zilber’s generation lemma, and one sees easily
that it is q̃-homogeneous with [FJ08, Lemma 2.13] (see also [Fré06a, Corollary
3.5]). It is clearly definably characteristic in H. Hence Ũ is characteristically
soapy in H.

We finish this section with a general criterion for finding characteristically
soapy subgroups.

Lemma 2.11. Let H be a connected solvable group of finite Morley rank and q̃
a unipotence parameter maximal for H. If Uq̃(Z(F ◦(H))) is not central in H,
then H contains a q̃-homogeneous characteristically soapy subgroup.

Proof. Set U = [Uq̃(Z(F ◦(H))), H]. By assumption U is nontrivial. It is a de-
finable connected homogeneous q̃-subgroup by Fact 2.1, contained in Z(F ◦(H))
as the latter is normal in H, and obviously definably characteristic in H.

As far as unipotence theory in concerned, there are two general conjugacy
theorems in groups of finite Morley rank, the conjugacy of maximal definable
decent tori [Che05] (see also [FJ08, §6.2] for the non-maximal ones) and the
conjugacy of generous Carter subgroups [Jal06]. For the sake of further refer-
ences we mention the following corollary of the conjugacy of maximal decent tori
which has been known for a long time in presence of 2-divisible torsion [BN94,
Lemma 10.22].
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Corollary 2.12 (Control of fusion). Let G be a group of finite Morley rank, p a
prime, and T a p-torus of G. If X and Y are two G-conjugate subsets of G such
that CT (X), CT (Y ), and C(Y ) all have the same Prüfer p-ranks, then Y = Xg

for some g conjugating C◦T (X) to C◦T (Y ). In particular if T is a maximal p-torus
of G then any two G-conjugate subsets of C(T ) are N(T )-conjugate.

Proof. First notice that there are always maximal p-tori, by finiteness of the
Prüfer p-rank [BP90].

Assume Y = Xg for some g ∈ G. Then C◦T (X)g and C◦T (Y ) are both
contained in the definable subgroup C◦(Y ). By conjugacy of decent tori [Che05]
and the assumption, C◦T (X)g = C◦T (Y )γ for some γ ∈ C◦(Y ). Then gγ−1

conjugates C◦T (X) to C◦T (Y ) and as Y γ = Y = Xg the element gγ−1 conjugates
X to Y .

When X and Y are two subsets of C(T ) and T is maximal we can apply the
preceding and the new element g conjugating X to Y will now normalize T .

2.3 Solvable groups

Fact 2.13. [BP90] Let p be a prime and S a p-subgroup of a solvable group of
finite Morley rank, or more generally a locally finite p-subgroup of any group of
finite Morley rank. Then

(1) S◦ is a central product of a p-torus and a p-unipotent subgroup.

(2) If S is infinite and of bounded exponent, then Z(S) contains infinitely
many elements of order p.

Lemma 2.14. Let H be a connected solvable group of finite Morley rank and p
a prime. If Up(H) = 1, then the Sylow p-subgroup of F (H) is central in H.

Proof. Assume Up(H) = 1, and let S denote the Sylow p-subgroup of F (H).
By Fact 2.3, S is the product of a finite p-subgroup and of a p-torus. As each
of these two subgroups is normal in H, each is central in H, by Facts 1.1 and
2.7 (1) respectively.

Following [FJ08, §4-5] there are nice links between Carter π̃-groups and cov-
ering properties in connected solvable groups of finite Morley rank, the so-called
connected subformation theory. In particular one knows that the collection N
of connected nilpotent groups of finite Morley rank is a connected subforma-
tion. The main link between Carter subgroup theory and subformation theory
in connected solvable groups is then a guarantee that Carter subgroups of a
connected solvable group G of finite Morley rank are N -covering subgroups of
G; we refer to the important result [FJ08, Proposition 5.1]. The properties of
N -covering subgroups and N -projectors which interest us are that these groups
cover all nilpotent connected sections containing them.

We refer to [FJ08, Theorem 5.8] for conjugacy theorems. We note that when
π̃ is a single unipotence parameter, Carter p̃-subgroups coincide with Sylow p̃-
subgroups [FJ08, §3.2], so that Sylow p̃-subgroups are conjugate in connected
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solvable groups of finite Morley rank. There is also structural information con-
cerning Carter π̃-subgroups of connected solvable groups of finite Morley rank
[FJ08, Corollary 5.9]; we will use this only with π̃ = {p̃} here.

2.4 Genericity

Lemma 2.15. Let H be a connected solvable group of finite Morley rank gener-
ically covered by a uniformly definable family of finite subgroups. Then H is
nilpotent and of bounded exponent.

Proof. We first note that any group generically covered by a uniformly definable
family of finite groups is generically of bounded exponent. In fact, by elimination
of infinite quantifiers [BC02, Proposition 2.2], there is a uniform bound on the
cardinals of the finite groups involved.

Now H/F ◦(H) is divisible abelian by [Nes90]. As Prüfer p-ranks are finite for
each prime p, there is a finite subgroup of H/F ◦(H) containing all images mod-
ulo F ◦(H) of the finite groups. This shows by generic covering that H/F ◦(H)
is trivial. Hence H is nilpotent. Now it suffices to use the generic covering again
and Fact 2.3 (2) with [FJ08, Lemma 2.13 (1)].

The following lemma has its roots in [Jal00, Lemme 2.13] (see [CJ04, Fact
2.36]).

Lemma 2.16. Let G be a connected group of finite Morley rank and X a non-
empty definable G-invariant subset of G. If M is a definable subgroup of G such
that X∩M is generic in X, then X∩M contains a definable G-invariant subset
generic in X.

Proof. By assumption X is a union of G-conjugacy classes. By assumption also,
X ∩M is nonempty.

Let Y1 be a definable generic subset of X∩M consisting of elements of X∩M
whose G-conjugacy classes have traces on X ∩M of constant ranks. Let Y2 be
a definable generic subset of Y1 consisting of elements of Y1 whose G-conjugacy
classes in G have constant ranks. Both exist as we have, by definability of the
rank, finite definable partitions in each case. Now Y2 is generic in Y1 which is
generic in X ∩M , so Y2 is generic in X ∩M and in X. Replacing X by Y G2 ,
one can thus assume that G-conjugacy classes in G of elements of X, as well
as their traces on M , are of constant ranks. We also have then that xG ∩M is
nonempty for any x in X.

Now, as X is the union of the G-conjugacy classes of its elements in X ∩M
and since we have reduced to the situation where all relevant ranks are constant,
the assumption that X ∩M is generic in X implies easily by additivity of the
rank that xG ∩M is generic in xG for any x in X.

Let N =
⋂
g∈GM

g. By descending chain condition on definable subgroups,
N = Mg1 ∩ · · · ∩ Mgn for finitely many elements g1, ..., gn of G. As G is
connected, xG, which is in definable bijection with G/C(x), has Morley degree
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1 for any x in X. By taking conjugates one also has xG ∩Mgi generic in xG for
each x in X and each gi. Hence xG ∩N , which can be written as

(xG ∩Mg1) ∩ · · · ∩ (xG ∩Mgn),

is also generic in xG, for any x in X. Now the fact that all ranks involved are
constant implies that X ∩N is generic in X as well.

But X ∩ N is G-invariant as both sets involved are. Hence X ∩ N is the
desired definable G-invariant subset of X ∩M generic in X.

3 ∗-Locally solvable groups

3.1 Fondations

Definition 3.1. We say that a group of finite Morley rank is

(1) ∗-locally solvable if N(A) is solvable for each nontrivial definable abelian
subgroup A.

(2) ∗-locally◦ solvable if N(A) is solvable for each nontrivial definable abelian
connected subgroup A.

(3) ∗-locally◦ solvable if N◦(A) is solvable for each nontrivial definable abelian
subgroup A.

(4) ∗-locally◦◦ solvable if N◦(A) is solvable for each nontrivial definable abelian
connected subgroup A.

Lemma 3.2. Let G be a group of finite Morley rank.

(1) If G satisfies one of the Definitions 3.1 (1), (2), (3), or (4), then so does
any definable subgroup of G.

(2) If G is ∗-locally solvable, then it is ∗-locally◦ solvable and ∗-locally◦ solv-
able, and if G has any of the two latter properties, then it is ∗-locally◦◦
solvable.

Proof. Obvious.

Definition 3.3. Let G be a group of finite Morley rank and H a subgroup of
G. We say that a subgroup L of G is

(1) H-local if L ≤ N(H).

(2) H-local◦ if L ≤ N◦(H).

Then we say that a subgroup L is local if it is H-local for some subgroup H,
and local◦ if it is H-local◦ for some subgroup H. We can give a priori stronger
conditions which turn out to be equivalent to Definitions 3.1 (1)–(4) in terms
of local subgroups.
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Lemma 3.4. Let G be a group of finite Morley rank. Then G is

(1) ∗-locally solvable if and only if X-local subgroups are solvable for every
nontrivial solvable subgroup X.

(2) ∗-locally◦ solvable if and only if X-local subgroups are solvable for every
infinite solvable subgroup X.

(3) ∗-locally◦ solvable if and only if X-local◦ subgroups are solvable for every
nontrivial solvable subgroup X.

(4) ∗-locally◦◦ solvable if and only if X-local◦ subgroups are solvable for every
infinite solvable subgroup X.

Proof. Clearly the right conditions are stronger than the left ones.
Assume now a left condition, and suppose X is some nontrivial solvable sub-

group of G, and L is an X-local subgroup, i.e., L ≤ N(X). Then L normalizes
the definable hull H(X) of X, and its connected component H◦(X) as well. Now
a classical corollary of Zilber’s generation lemma on derived subgroups ([BN94,
Corollary 5.29]) implies that the last nontrivial term of the derived series of
H(X), as well as that of H◦(X), is definable. It is abelian by definition, and
as it is characteristic in H(X) (resp. H◦(X)), it is normalized by L. Then one
sees in each case which has to be considered that the latter is solvable by the
left condition.

Nontrivial solvable groups H of finite Morley rank contain some nontrivial
definable characteristic Sylow p̃-subgroups or Sylow p-subgroups, by Fact 2.3
applied in F (H). Hence H-local subgroups normalize nontrivial p̃-groups or
p-groups, so that our definitions are consistent with the notion due to Alperin
of a local subgroup in finite group theory [Tho68], as a subgroup normalizing
some nontrivial p-subgroup. Before stating this a little bit more precisely in the
∗-locally◦◦ solvable case, we look at quotients.

Lemma 3.5. Let G be a group of finite Morley rank and N a definable normal
solvable subgroup.

(1) If G is ∗-locally solvable, then so is G/N .

(2) If G is ∗-locally◦ solvable, then so is G/N .

(3) If G is ∗-locally◦ solvable, then so is G/N .

(4) If G is ∗-locally◦◦ solvable, then so is G/N .

Proof. We denote by G the quotient by N .
(1). Let A be a nontrivial definable abelian subgroup of G. The preimage of

NG(A) normalizes AN , which is solvable and nontrivial, and hence it is solvable
by ∗-local solvability of G. As N is solvable, NG(A) is also solvable.

(2). One can proceed as in (1), taking A infinite modulo N , and looking at
the normalizer of (AN)◦.
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(3). One can proceed as in (1), taking connected components of normalizers
throughout.

(4). It suffices to mix the two preceding cases.

We continue with trivial remarks. In a group of finite Morley rank we call a
Borel subgroup any maximal definable connected solvable subgroup.

Lemma 3.6. Let G be a ∗-locally◦◦ solvable group of finite Morley rank. Then a
subgroup B is a Borel subgroup if and only if B is a maximal X-local◦ subgroup
for some infinite solvable subgroup X. Furthermore X can be chosen to be any,
and has to be some, infinite normal subgroup of B.

Proof. Let B be a Borel subgroup of G. Then B ≤ N◦(X) ≤ N◦(H(X))
for any infinite normal subgroup X of B, and N◦(H(X)) is solvable by ∗-local◦◦
solvability of G. Hence we get equality by maximality of B, and B is a connected
X-local◦ subgroup. If B is contained in a Y -local◦ subgroup L of G for some
infinite solvable subgroup Y , then B ≤ N◦(H(Y )) and as N◦(H(Y )) is solvable
by ∗-local◦◦ solvability one gets B = N◦(H(Y )) again by maximality of B. As
B ≤ L ≤ N◦(H(Y )), B = L.

Let now B be a maximal X-local◦ subgroup of G for some infinite solvable
subgroup X. By ∗-local◦◦ solvability B is contained in a Borel subgroup B1.
Now B1 is Y -local◦ for some infinite solvable subgroup Y , and the maximality
of B implies that B = B1.

Now if a Borel subgroup B normalizes an infinite solvable subgroup X, then
X · B is solvable, as well as its definable hull, and by maximality H◦(X) ≤ B,
and H◦(X) is an infinite normal subgroup of B.

Lemma 3.7. Let G be a ∗-locally◦◦ solvable group of finite Morley rank. Then
the following are equivalent.

(1) N◦(A) < G◦ for each nontrivial definable connected abelian subgroup A.

(2) G◦ is not solvable.

(3) G◦ has two distinct Borel subgroups.

Proof. If G◦ is solvable, then G◦ ≤ N◦(A) where A is the last nontrivial term
of the derived series of G, which is definable and connected by [BN94, Corollary
5.29]. Hence the first condition implies the second one.

If G◦ has a unique Borel subgroup B, then G◦ = N◦(B) is solvable by
∗-local◦◦ solvability, so the second condition implies the third one.

Finally, assume G◦ = N◦(A) for some nontrivial definable connected abelian
subgroup A. By ∗-local◦◦ solvability G◦ is then solvable, and hence cannot have
two distinct Borel subgroups. Hence the last condition implies the first one.

Lemma 3.7 can be refined as follows in the ∗-locally◦ solvable case.

Lemma 3.8. Let G be a ∗-locally◦ solvable group of finite Morley rank. Then
the following are equivalent.

(1) N◦(A) < G◦ for each nontrivial definable abelian subgroup A of G.
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(2) G◦ is not solvable.

(3) G◦ has two distinct Borel subgroups.

Proof. As in Lemma 3.7. If N◦(A) = G◦ for some nontrivial definable abelian
subgroup A of G, then G◦ is now solvable by ∗-local◦ solvability.

In PSL2, connected normalizers of unipotent subgroups correspond to Borel
subgroups. The following is a first approximation of this in ∗-locally◦◦ solvable
groups.

Lemma 3.9. Let G be a ∗-locally◦◦ solvable group of finite Morley rank. Assume
that for q prime or infinite dq(G) ≥ 1, and let U be a Sylow (q, dq(G))-subgroup
of G. Then N◦(U) is a Borel subgroup of G.

Proof. By ∗-local◦◦ solvability of G, N◦(U) ≤ B for some Borel subgroup B.
Now Fact 2.8 implies U ≤ F ◦(B), and in particular B ≤ N◦(U) by maximality
of U . Hence N◦(U) = B is a Borel subgroup of G.

Lemma 3.10. Let G be a ∗-locally◦◦ solvable group of finite Morley rank, p̃ =
(p, r) a unipotence parameter with r > 0, and B a Borel subgroup of G such
that dp(B) = r. Then Up̃(B) is a Sylow p̃-subgroup of G.

Proof. By Fact 2.8, U := Up̃(B) is included in F ◦(B), and in particular is
a p̃-group. It is obviously definably characteristic in B. If U < V for some
Sylow p̃-subgroup V of G, then U < Up̃(NV (U)) by normalizer condition, [FJ08,
Proposition 2.8]. But as N◦(U) is solvable by ∗-local◦◦ solvability of G, and
contains B, it is B by maximality of B. Hence U < Up̃(NV (U)) ≤ Up̃(B) = U ,
a contradiction.

When r = 0 Lemma 3.10 fails. For example, in the standard Borel sub-
group B of PSL2 over a pure algebraically closed field of positive characteristic,
U(∞,0)(B) = B. However the lemma becomes true for r = 0 if one assumes that
the absolute unipotence degree of B satisfies d(B) = 0.

3.2 Semisimple groups

Obviously with ∗-locally solvable groups one becomes quickly interested in nor-
mal solvable subgroups.

Fact 3.11. [BN94, Theorem 7.3] Let G be a group of finite Morley rank.
Then G has a largest normal solvable subgroup, which is definable. It is denoted
by R(G) and called the solvable radical of G.

Definition 3.12. Let G be a group of finite Morley rank. We say that

(1) G is semisimple if R(G) = 1, or equivalently if N(A) < G for each non-
trivial abelian subgroup A of G.

(2) G is semisimple◦ if R◦(G) = 1, or equivalently if N(A) < G for each
nontrivial connected abelian subgroup A of G.
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Of course, if G is any group of finite Morley rank, then G/R(G) is semisimple
and G/R◦(G) is semisimple◦, as solvable-by-solvable groups are solvable. The
following fact has remained implicit in previous arguments, and we just state it
precisely.

Fact 3.13. Let G be a connected group of finite Morley rank with R(G) finite.
Then R(G) = Z(G) and G/R(G) is semisimple.

Proof. The connected group G acts by conjugation on its finite solvable radical
R(G), and thus by Fact 1.1 R(G) ≤ Z(G). As the center is always contained in
the solvable radical one gets R(G) = Z(G). The semisimplicity of G/R(G) is
always true.

Lemma 3.14. Let G be a group of finite Morley rank and H a nonsolvable
definable connected subgroup of G.

(1) If G is ∗-locally◦◦ solvable, then H is semisimple◦, R(H) = Z(H) is finite
and H/R(H) is semisimple.

(2) If G is ∗-locally◦ solvable, then H is semisimple.

Proof. This is obvious by definitions and Fact 3.13.

3.3 New configurations

All the work concerning minimal connected simple groups of finite Morley rank
generalizes identically to the case of ∗-locally◦ solvable groups of finite Morley
rank. The reason is that in the study of minimal connected simple groups every
argument is based on the consideration of connected normalizers of nontrivial
subgroups X. If such a subgroup X is finite, then its connected normalizer
coincides with its connected centralizer by Fact 1.1.

When dealing with the more general class of ∗-locally◦◦ solvable groups, con-
nected centralizers of elements of finite order might be nonsolvable. In the
present papers we try to concentrate exclusively on the more general class of ∗-
locally◦◦ solvable groups, and hence new phenomena can appear. In the present
section we try to give an overview of the new pathological configurations which
might occur in this context. We see these new configurations as some kind
of “speed limits” when generalizing arguments from the minimal connected
simple/∗-locally◦ solvable case to the more general ∗-locally◦◦ solvable case.

Recall from Lemma 3.2 that

{∗-locally◦ solvable groups} ( {∗-locally◦◦ solvable groups},

the inclusion being strict. The main (and only) example in the algebraic cate-
gory of a connected group which is ∗-locally◦◦ solvable but not ∗-locally◦ solvable
is SL2(K), with K an algebraically closed field of characteristic different from
2: its solvable radical consists of a cyclic group of order 2.
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In the context of groups of finite Morley rank there might a priori be other
configurations occuring, contradicting even the property that the solvable radi-
cal is cyclic of order 2. In what follows we just make a list of potential patho-
logical configurations of connected ∗-locally◦◦ solvable groups of finite Morley
rank which are not ∗-locally◦ solvable, and which remain at the end of our
classification.

A full Frobenius group is a group G with a proper subgroup H such that

H is malnormal in G and G = HG.

The existence of such groups of finite Morley rank is the main obstacle to the
Algebraicity Conjecture for simple groups of finite Morley rank. We refer to
[Jal01a, Propositions 3.3 and 3.4] for basic properties of such groups, if they
exist. Recall, in particular, that H is automatically definable and connected
whenever G is connected. We often call such a group, with G connected and H
nilpotent, a bad group — this definition is slightly more general than the one
given in [BN94, Chapter 13], but given the analog full Frobenius structure it
leads to it is much more natural to adopt the present general definition here. In
any case these groups have no involutions, and hence their torsion can involve
only odd primes.

We view the following potential configuration of ∗-locally◦◦ solvable group,
or any of its natural variations, as a kind of “universal conterexample” to the
algebraic case as far as torsion is concerned. Elements belonging to a decent
torus are called toral.

Configuration 3.15. G is a connected ∗-locally◦◦ solvable group of finite Morley
rank with a proper subgroup H such that

(1) G is a full Frobenius group, with malnormal subgroup H (which is auto-
matically definable and connected by [Jal01a, Proposition 3.3]).

(2) R(H) = Z(H) is finite and nontrivial, consisting of p-toral elements of H
for some prime p.

(3) H/Z(H) is a full Frobenius group for some proper definable connected
solvable malnormal subgroup B/Z(H).

(4) B/Z(H) has nontrivial p-unipotent subgroups, for some prime p dividing
|Z(H)|, and also nontrivial q-unipotent subgroups for other primes q.

A group G as in Configuration 3.15 would have p-mixed type, i.e., contain-
ing both nontrivial p-tori and p-unipotent subgroups, and have nontrivial q-
unipotent subgroups for several primes q.

In SL2, a generic element belongs to a maximal torus, and in particular
to the connected component of its centralizer. Here is another potential new
pathological phenomenon in the ∗-locally◦◦ solvable setting.

Configuration 3.16. G is a connected ∗-locally◦◦ solvable group of finite Morley
rank with a proper subgroup B such that
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(1) G is a full Frobenius group, with malnormal subgroup B (which is auto-
matically definable and connected by [Jal01a, Proposition 3.3]).

(2) B is a nilpotent group such that, for x generic in B, x /∈ C◦(x).

A generic element x of a group G as in Configuration 3.16 would satisfy
x /∈ C◦(x). We note that examples of connected nilpotent groups B of fi-
nite Morley rank as in clause (2) of Configuration 3.16 are provided by [BN94,
§3.2.3] or the Baudisch 2-nilpotent group [Bau96]. With such subgroups B a
group G as in Configuration 3.16 would be ∗-locally◦ solvable, but if G had
the prescribed property modulo a nontrivial finite center, then it would not be
∗-locally◦ solvable.

Even with involutions and algebraic subgroups one can imagine the following
configuration which seems to remain open at the end of [DJ07a].

Configuration 3.17. G is a connected ∗-locally◦◦ solvable group of finite Morley
rank with an involution i such that C(i) < G and C(i) ' SL2(K) for some
algebraically closed field K of characteristic different from 2.

In [CJ04] all nonalgebraic configurations are known to have nongenerous
Borel subgroups. Even assuming all Borel subgroups generous does not seem to
be helpful in [DJ07a] toward finding a contradiction in Configuration 3.17. This
is a major new phenomenon possibly occuring in the ∗-locally◦◦ solvable case as
opposed to the minimal connected simple/∗-locally◦ solvable one.

3.4 ∗-Local◦/∗-Local◦◦ solvability

In Section 3.3 we saw certain speed limits when considering immediate gener-
alizations to the wider class of ∗-locally◦◦ solvable groups, which usually rely on
the existence of certain semisimple◦ but not semisimple groups. We nevertheless
intend in this section to start dealing with these aspects in the general class of
∗-locally◦◦ solvable groups of finite Morley rank, bearing in mind the speed limits
of Section 3.3. For this purpose it is useful to study systematically subgroups
of the form C◦(x) in ∗-locally◦◦ solvable groups. When such a subgroup is not
solvable it has a finite solvable radical, which is then the center, and its quotient
modulo the center is semisimple. This boils down to the study of semisimple
∗-locally◦◦ solvable groups.

We begin with some generalities.

Lemma 3.18. Let G be a ∗-locally◦◦ solvable group of finite Morley rank. If H
is a nonsolvable definable connected subgroup of G, then CG(H) is finite.

Proof. Assume C◦G(H) infinite. Then it contains a nontrivial definable con-
nected solvable subgroup B by Lemma 2.6. We then have H ≤ C◦(B) ≤ N◦(B),
which must be solvable by ∗-local◦◦ solvability of G.

In a ∗-locally◦◦ solvable group G of finite Morley rank, we call a subset X
exceptional in G if C◦(X) is nonsolvable. Such sets are finite by Lemma 3.18,
and as C(X) = C(〈X〉) any such subset X can always be identified with the
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finite subgroup it generates. Dually, if H is a nonsolvable definable connected
subgroup in G, then C(H) centralizes the nonsolvable definable connected sub-
group H and is an exceptional subset of G.

We denote by EF and ES the set of finite exceptional subgroups of G and
the set of nonsolvable definable connected subgroups respectively (E stands for
“e”xceptional, F for “f”inite, and S for “s”emisimple). Both sets are nonempty
if and only if G◦ is nonsolvable. Of course both sets are naturally ordered by
inclusion.

Taking connected centralizers C◦(·) from EF to ES and centralizers C(·) from
ES to EF defines a Galois connection between EF and ES (see [Bir67]). That
is, and following a similar exposition in [ABC08], they satisfy the following
properties.

Lemma 3.19.

(1) The mappings C◦ and C are order-reversing.

(2) If X ∈ EF then X ≤ C(C◦(X)) and if H ∈ ES then H ≤ C◦(C(H)).

As in any Galois connection, this has the following consequence.

Proposition 3.20. Let X ∈ EF and H ∈ ES. Then C◦(X) = C◦(C(C◦(X)))
and C(H) = C(C◦(C(H))).

If we denote for X in EF and H in ES

X = C(C◦(X)) and H = C◦(C(H)),

then the two operations are closure operations on EF and ES respectively.
That is, they satisfy the following.

Corollary 3.21.

(1) For X ∈ EF and H ∈ EF , we have X ≤ X = X and H ≤ H = H.

(2) Monotonicity: For X1 ⊆ X2 in EF and H1 ≤ H2 in ES, we have X1 ≤ X2

and H1 ≤ H2.

The closed elements of EF and ES are those of the form X and H respectively.

One can also refine Lemma 3.18 by giving a uniform bound on cardinals
of elements of EF . We first note the following general combination of [BN94,
Corollary 5.17] and of the elimination of infinite quantifiers [BC02, Proposition
2.2].

Lemma 3.22. Let G be a group of finite Morley rank. Then there exists a
natural number m such that, for any subset X of G, |C(X)| ≤ m or C(X) is
infinite.

Lemma 3.23. Let G be a ∗-locally◦◦ solvable group of finite Morley rank. Then
there exists a natural number m bounding uniformly the cardinals of finite ex-
ceptional subsets of G.
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Proof. Let m be as in Lemma 3.22. If X is a finite exceptional subset of G, then
C◦(X) is nonsolvable and C(C◦(X)) is finite by Lemma 3.18. As C(C◦(X)) is a
finite centralizer, its cardinal is uniformly bounded by m. Now X ⊆ C(C◦(X)),
and thus the cardinal of X is uniformly bounded by m.

If G is a ∗-locally◦◦ solvable group of finite Morley rank, we call exception
index and denote by e(G) the maximal integer m such that G has a nonsolvable
definable connected subgroup centralizing a subset X with m elements. Notice
that X coincides with 〈X〉, so that e(G) is the largest cardinal of an exceptional
subgroup in EF .

Maximal exceptional subgroups of EF correspond to minimal nonsolvable
definable connected subgroups of ES , and vice-versa. A case of particular interest
is the following.

Lemma 3.24. Minimal nontrivial exceptional subgroups are cyclic of prime
order.

Proof. Obvious.

One can clarify the structure of elements of ES as follows.

Lemma 3.25. Let G be a ∗-locally◦◦ solvable group of finite Morley rank and H
a nonsolvable definable connected subgroup. Then H is semisimple◦, R(H) =
Z(H) is finite and H/R(H) is semisimple.

Proof. Lemma 3.14 (1).

Of course, the sets of closed sets in EF and ES are at most reduced to {1}
and {G◦} in the ∗-locally◦ solvable case (in case G◦ is nonsolvable, and empty
otherwise).

The next lemma seems to be the only way to get ∗-locally◦ solvable groups
out of ∗-locally◦◦ solvable ones.

Lemma 3.26. Let G be a ∗-locally◦◦ solvable group of finite Morley rank and H
a nonsolvable definable connected subgroup in G, which is minimal with respect
to this property. Then H/R(H) is ∗-locally◦ solvable.

Proof. Denote by the quotients by R(H), and let A be the preimage in H
of a nontrivial definable abelian subgroup A of H. Of course A is a definable
solvable subgroup of H. Let N be the preimage in H of NH(A)◦. We have
N ≤ NH(A) and N = N

◦
= N◦. As R(H) < A, N◦ ≤ NH(A) < H. Hence N◦

is solvable by minimality of H, as well as N .

Lemma 3.26 seems to be a very rough indication that the new ∗-locally◦◦ solv-
able groups which are not ∗-locally◦ solvable are more or less as in Configuration
3.15.

We also note that nonsolvable definable connected subgroups attached to a
nontrivial finite exceptional subgroup are of finite index in their normalizers.

Lemma 3.27. Let G be a ∗-locally◦◦ solvable group of finite Morley rank. If X
is an exceptional finite subset of G, then N◦(C◦(X)) = C◦(X).
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Proof. N◦(C◦(X)) normalizes C(C◦(X)), which is finite and contains X. So it
centralizes X by Fact 1.1, and we are done.

In Lemma 3.27 we even have a uniform bound on the orders of the groups
N(C◦(X))/C◦(X), because these groups are uniformly definable.

A natural question is to know whether exceptional finite subsets X are con-
tained in their attached nonsolvable definable connected subgroups, i.e., whether
X ⊆ C◦(X). This would follow from the more general, but similarly natural,
question to know whether nonsolvable definable connected subgroups are self-
normalizing. This is the kind of problem which seems optimistically trackable
when C◦(X) is generous in the ambient group since the intensive experience
on Weyl groups from [CJ04], and we refer to [Jal09] for positive answers in the
most interesting situations.

We are now going to look more closely at the interesting case in which
an exceptional finite subgroup X of EF satisfies X ≤ C◦(X). In this case
X ≤ Z(C◦(X)), and X is in particular an abelian finite subgroup. Typical
finite abelian groups belonging to the connected component of their centralizers
are the finite subgroups of decent tori. (And this is in general not true around
groups of bounded exponent, as noticed after Configuration 3.16.)

Lemma 3.28. Let G be a ∗-locally◦◦ solvable group of finite Morley rank and
T a maximal definable decent torus of G. Then the union of elements of EF
contained in T is finite and invariant under any automorphism of G leaving T
invariant.

Proof. For the finiteness we can use Lemma 3.23 to get a uniform bound, at most
the exception index e(G) of G, on the cardinals of the finite groups involved.
Then, as Prüfer p-ranks are finite for any prime p in a decent torus, subgroups
of order at most e(G) must be contained in a finite subgroup of T .

The second point is obvious.

A question, which might be difficult, is to know whether the union in Lemma
3.28 is necessarily a (finite) subgroup of T , and is itself exceptional. If this
were the case, then calling this group E, one would have a nonsolvable group
C◦(E)/R(C◦(E)) where nontrivial toral elements are not exceptional anymore.
This is a desirable property for certain questions such as bounding Prüfer ranks
in our treatment of odd type groups in [DJ07a] via [DJ07b]. This desirable
property can however be obtained as follows.

Lemma 3.29. Let G be a connected nonsolvable ∗-locally◦◦ solvable group of
finite Morley rank, and T a maximal definable decent torus of G. Then G has
a nonsolvable definable connected subgroup H containing T and such that C◦(t)
is solvable for any nontrivial toral element t of H/R(H).

Proof. Let X be a maximal exceptional finite subgroup of T . Then H = C◦(X)
is nonsolvable. As X ≤ T and T is abelian and connected, X ≤ T ≤ H.

Let now t be a nontrivial toral element of H = H/R(H). By pullback
of decent tori, [FJ08, Lemma 2.13 (2)] or rather [Fré06b, Lemma 3.1], and
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[Che05], we may assume t in TR(H), i.e., t = t′r for some t′ ∈ T and some
r ∈ R(H). As in Lemma 3.26, or with Fact 1.1, one sees that the preimage of
the connected centralizer of t modulo R(H) cannot be nonsolvable: otherwise
its connected component would centralize t = t′r, and as r ∈ R(H) = Z(H) it
would centralize t′, so that X〈t′〉 would be an exceptional finite subgroup of T
containing X properly, a contradiction. This finishes our proof.

Before moving ahead we close the present section by describing more pre-
cisely the set of exceptional subsets of a decent torus T as in Lemma 3.29, or
more generally of an arbitrary subset T of a ∗-locally◦◦ solvable group G of finite
Morley rank.

First we naturally consider the notion of closure relative to T . For X an
exceptional subset of T , we say that X is closed in T if X = CT (C◦(X)). Of
course the notion of relative closedness is robust.

Remark 3.30. Any set of the form CT (C◦(X)) is closed in T .

Proof. As X ⊆ CT (C◦(X)) ⊆ X, X = C(C◦(CT (C◦(X)))) by taking the clo-
sure in G, and CT (C◦(CT (C◦(X)))) = CT (C◦(X)) by taking the intersection
with T .

The poset of exceptional subsets of T is best described as follows by the no-
tion of minimal extensions of closed subsets. We say that (X1, X2) is a minimal
extension of closed sets of T if X1 ( X2 are two exceptional subsets of T closed
in T and any closed subset Y of T such that X1 ⊆ Y ⊆ X2 is either X1 or
X2. The relation “(X1, X2) is a minimal extension of closed sets of T” defines
an oriented graph on the set of closed sets of T , which is clearly irreflexive,
antisymmetric, and loop-free, that is without cycles preserving the orientation
(but possibly with cycles not preserving the orientation). We call this graph the
graph of exceptional subsets of T . Its main properties are the following.

Lemma 3.31. Let G be a ∗-locally◦◦ solvable group of finite Morley rank and T
an arbitrary subset of G.

(1) Assume (X1, X2) is a minimal extension in the graph of exceptional subsets
of T and Y is a subset such that X1 ( Y ⊆ X2. Then CT (C◦(Y )) = X2.
Moreover C◦(X2) < C◦(X1).

(2) Assume (X,X1) and (X,X2) are two minimal extensions in the graph of
exceptional subsets of T . Then either X1 = X2 or X1 ∩X2 = X.

Proof. (1). X1 ( Y ⊆ CT (C◦(Y )) ⊆ X2 and as CT (C◦(Y )) is closed in T by
Remark 3.30 it must be X2 by minimality of the extension (X1, X2).

The claim that C◦(X2) < C◦(X1) follows merely from the fact that X1 6= X2

are closed in T .
(2). Let Y = X1 ∩ X2. If X ( Y , then the first point implies that X1 =

CT (C◦(Y )) = X2.

Finally, we note that the graph of exceptional subsets of T as in Lemma 3.31
always has a “minimal” element, namely T ∩ Z(G), and “maximal” elements,

25



corresponding to the maximal traces on T of exceptional sets in EF , which are
of cardinal at most e(G). We also note that the graph has a finite height: the
length of a maximal chain of exceptional closed sets in T is at most e(G).

When T is a nilpotent divisible subgroup of G (for example as in Lemmas
3.28 and 3.29), then exceptional subsets of T are necessarily in a same decent
torus (the maximal decent torus of the definable hull of T ) and by Lemma 3.28
applied in this decent torus the graph of exceptional subsets of T is finite.

3.5 Genericity

Fact 3.32. (see [FJ08, Theorem 7.3]) Let G be a ∗-locally◦◦ solvable group of
finite Morley rank with a nontrivial decent torus T , and Q a Carter subgroup of
G containing T . Then Q is generous in G◦, and T ≤ T̃ ≤ Q for some maximal
definable decent torus T̃ of G.

Proof. The existence of Q is guaranteed by [FJ08, Theorem 3.3], as decent tori
are of minimal unipotence degree.

By [Che05], C◦(T ) is generous in G◦. Now C◦(T ) is solvable by ∗-local◦◦
solvability of G, and the Carter subgroup Q is generous in C◦(T ) by [FJ08,
Theorem 3.11]. It follows that Q is generous in G◦ by the transitivity of gen-
erosity provided in [Jal06, Lemma 3.9].

Doing the same argument as above for a maximal definable decent torus T̃
containing T , one gets a generous Carter subgroup Q̃ of G◦ containing T̃ , and
as generous Carter subgroups are conjugate by [Jal06] one gets that Q contains
a maximal definable decent torus, which necessarily contains T .

We record here an application of Lemma 2.16 in the case of ∗-locally solvable
groups of finite Morley rank. This will be the clé de voûte for a concentration
argument in one of the most prominent theorems on odd type groups in [DJ07a].

Lemma 3.33. (see [Del07a, Corollaire 2.4]) Let G be a group of finite
Morley rank and X a nonempty definable G◦-invariant subset of G◦. Let M be
a definable solvable subgroup of G◦ such that X ∩M is generic in X.

(1) If G is ∗-locally◦ solvable and X 6= {1}, then G◦ is solvable.

(2) If G is ∗-locally◦◦ solvable and X is infinite, then G◦ is solvable.

Proof. (1). Let Y be the definable G◦-invariant subset of X ∩ M generic in
X provided by Lemma 2.16. As X is nonempty, Y is also nonempty, and
G◦ = N◦(〈Y 〉). Now 〈Y 〉 is a subgroup of M , and hence is solvable. If it is
nontrivial, then G◦ must be solvable by Lemma 3.4 (3). Otherwise, {1} is a
generic subset of X, and X must be finite. Hence X is a finite set of finite
conjugacy classes, with one nontrivial by assumption. This nontrivial finite
G◦-conjugacy class must be central in G◦ by Fact 1.1, and as G◦ has then a
nontrivial center it must again be solvable by ∗-local◦ solvability.

(2). One argues in the same way. Now, as X is infinite, Y is also infinite by
genericity. As G◦ = N◦(〈Y 〉) is 〈Y 〉-local◦ with 〈Y 〉 infinite and solvable, as it
is contained in M , Lemma 3.4 (4) now gives the solvability of G◦.
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4 Local analysis

We now proceed to the local analysis of ∗-locally solvable groups of finite Morley
rank, that is the analysis of intersections of their (most interesting) subgroups.

In Section 4.1 we deal with a series of results which correspond to the Bender
method in finite group theory. In general these lemmas say in our context that
sufficiently unipotent subgroups of ∗-locally solvable groups of finite Morley rank
are disjoint, like unipotent subgroups in PSL2 or SL2. They are the main tool for
analyzing ∗-locally solvable groups, notably the only trick involving unipotence
in the recognition of PSL2 in the algebraic part of [DJ07a]. The original form was
first proved, both in positive and null characteristic, in the context of minimal
connected simple groups in the unpublished [Jal00]. Then they appeared in
the tame context in [CJ04, Section 3.4] where they were treated essentially as
the positive characteristic case, i.e., involving no particular graduation in the
unipotence theory. The positive characteristic case was recalled as the outline
of [Bur07] and later the characteristic 0 case, using Burdges’ general unipotence
theory in characteristic 0, appeared in [Del07a, §3.2] for the recognition of PSL2

in characteristic different from 2. We are going to give forms of these lemmas
which are entirely uniform in the unipotence degrees, in particular independent
of the characteristics, and in the most general context of ∗-locally◦◦ solvable
groups.

Section 4.2 will then concern the situation in which a particular consequence
of such uniqueness theorems fails. This is a priori a possibility when the sub-
groups considered are not unipotent enough with respect to the ambient group.
The pathological situation appearing can be analyzed somehow by replacing
the maximality in terms of unipotence degrees by a maximality for inclusion
concerning a pair of Borel subgroups involved. The endless, but very precise,
resulting description is the bulk of [Bur07], and in the context of ∗-locally◦◦
solvable groups we will follow the exposition of this paper verbatim. This full
description is applied one time in a nonalgebraic situation in [DJ07a] and this is
why we need to restate, slightly more generally but in its full detail, the analysis
from [Bur07].

4.1 Uniqueness Theorem

4.1.1 The main theorem

The following Uniqueness Theorem is our analog of the Bender method in groups
of finite Morley rank and is the main tool for analyzing ∗-locally◦◦ solvable groups
of finite Morley rank. There are various forms of this theorem but the present
one seems to be the most relevant, at least for our applications in [DJ07a].
Its consequences on Borel subgroups in Section 4.1.2 below will be the closest
analogs of the Uniqueness Theorem of Bender in finite group theory [Ben70a]
[Ben70b] [Gag76, §5-7] [BG94, Chapter II].

Theorem 4.1. Let G be a ∗-locally◦◦ solvable group of finite Morley rank, p̃ =
(p, r) a unipotence parameter with r > 0, and U a Sylow p̃-subgroup of G.
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Assume that U1 is a nontrivial definable p̃-subgroup of U containing a nonempty
(possibly trivial) subset X of G such that dp(C◦(X)) ≤ r. Then U is the unique
Sylow p̃-subgroup of G containing U1, and in particular N(U1) ≤ N(U).

Before the proof, a few remarks.

(1) If G◦ is solvable and r = dp(G) > 0, then assuming that F ◦(G◦) has
a nontrivial normal definable p̃-subgroup U1 one gets with Theorem 4.1
(applied withX = 1 for example!) thatG◦ has a unique Sylow p̃-subgroup,
which is thus normal and contained in F ◦(G◦). In the event of the absence
of such a subgroup U1 one easily gets the same conclusion with Fact 2.7 (3)
and (4). Hence in some sense Theorem 4.1 can be seen as a generalization
from solvable groups to ∗-locally◦◦ solvable groups of Fact 2.8.

(2) The nontriviality of U1 is needed in Theorem 4.1, as in a hypothetic p̃-
homogeneous semisimple bad group the trivial subgroup would be con-
tained in infinitely many conjugates of the Sylow p̃-subgroup.

(3) Theorem 4.1 fails if p̃ = (∞, 0). For exemple if G is of the form T×(UoT ),
with U p-unipotent for some prime p and T a good torus, whose second
copy acts faithfully on U , then d∞(G) = 0, so that all assumptions of
Theorem 4.1 are satisfied with U1 the central copy of T , but the latter is
contained in infinitely many conjugates of the maximal good torus T ×T .
We will give in Lemma 4.2 below a version of Theorem 4.1 specific for
the unipotence parameter p̃ = (∞, 0), by replacing dp(C◦(X)) by the
absolute unipotence degree d(C◦(X)) but with no more ∗-local solvability
assumption.

After these comments we pass to the proof of Theorem 4.1.

Proof. Assume V is a Sylow p̃-subgroup of G distinct from U and containing
U1, and chosen so as to maximize the rank of Up̃(U ∩ V ). Let T denote U ∩ V .
As U1 ≤ T , the subgroup T is infinite. As T is nilpotent, N := N◦(T ) is
solvable by ∗-local◦◦ solvability of G and Lemma 3.4 (4). Notice that T < U ,
as otherwise U = (U ∩ V ) ≤ V and U = V by maximality of U . Similarly
T < V , as otherwise V = (U ∩ V ) ≤ U and V = U by maximality of V . In
particular by normalizer condition, [FJ08, Proposition 2.8], Up̃(T ) < Up̃(NU (T ))
and Up̃(T ) < Up̃(NV (T )).

We claim that dp(N) = r. If dp(N) > r, then r <∞, p =∞, and N contains
a nontrivial Sylow (∞, r′)-subgroup Σ with r′ > r. Notice that dp(T ) ≤ r by
Corollary 2.2 and Fact 2.3 and our assumption that the subset X of T satisfies
dp(C(X)) ≤ r. Then T ·Σ is nilpotent by Fact 2.7 (3) and (4), and T commutes
with Σ by Fact 2.3. In particular Σ commutes with X and dp(C◦(X)) ≥ r′ >
r, a contradiction to our assumption. Hence dp(N) ≤ r, and as N contains
Up̃(NU (T )) (or Up̃(NV (T ))) which is nontrivial and of unipotence degree r we
get dp(N) = r.

By Fact 2.8 and the assumption that r ≥ 1 we get Up̃(N) ≤ F ◦(N). In
particular Up̃(N) is nilpotent, and contained in a Sylow p̃-subgroup Γ of G.
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Now U1 ≤ Up̃(T ) < Up̃(NU (T )) ≤ Γ, so our maximality assumption on V
implies that Γ = U . In particular Up̃(NV (T )) ≤ Γ = U . But then Up̃(T ) <
Up̃(NV (T )) ≤ Up̃(U ∩ V ) = Up̃(T ), a contradiction which finishes the proof of
our first statement.

The inclusion N(U1) ≤ N(U) follows from the uniqueness.

We conclude with a version of Theorem 4.1 specific for the unipotence pa-
rameter p̃ = (∞, 0), and which indeed does not rely on ∗-local solvability.

Lemma 4.2. Let G be a group of finite Morley rank, T a maximal defin-
able decent torus of G, and x an element of T such that C◦(x) is solvable
and d(C◦(x)) ≤ 0. Then T is the unique maximal definable decent torus of G
containing x, and in particular N(〈x〉) ≤ N(T ).

Proof. By assumption and Lemma 2.6 (2), C◦(x) is a good torus. As x ∈ T and
T is connected abelian, T ≤ C◦(x), and T = C◦(x) by maximality of T . Now
any maximal definable decent torus containing x must be in C◦(x) for the same
reason, hence in T , and hence equal to T by maximality of T . Furthermore,
N(〈x〉) ≤ N(C◦(x)) = N(T ).

4.1.2 Consequences on Borel subgroups

Applied to the case of Borel subgroups Theorem 4.1 has the following corollar-
ies. These can be seen as absolute approximations in the context of ∗-locally◦◦
solvable groups of finite Morley rank of the fact that any unipotent subgroup of
PSL2 belongs to a unique Borel subgroup of the ambient group.

Corollary 4.3. Let G be a ∗-locally◦◦ solvable group of finite Morley rank, p̃ =
(p, r) a unipotence parameter with r > 0, and B a Borel subgroup of G such that
dp(B) = r. Let U1 be a nontrivial definable p̃-subgroup of Up̃(B) containing a
nonempty subset X such that dp(C◦(X)) ≤ r. Then Up̃(B) is the unique Sylow
p̃-subgroup of G containing U1, and in particular N(U1) ≤ N(Up̃(B)) = N(B).
Furthermore, B is the unique Borel subgroup containing U1 and admitting p̃ as
a unipotence parameter maximal in its characteristic.

Proof. The fact that Up̃(B) is a Sylow p̃-subgroup of G is Lemma 3.10. The
uniqueness of Up̃(B) among Sylow p̃-subgroups containing U1, as well as the
inclusion N(U1) ≤ N(Up̃(B)), is then Theorem 4.1.

Let now B1 be a Borel subgroup of G containing U1 and admitting p̃ = (p, r)
as maximal in its characteristic. Notice that Up̃(B1) is a Sylow p̃-subgroup of G
by Lemma 3.10. As it contains U1, Theorem 4.1 now implies Up̃(B1) = Up̃(B).
Now the connected normalizers of these (equal) groups are solvable by ∗-local◦◦
solvability of G, contain B1 and B respectively, hence are equal to B1 and B
respectively by maximality, and are equal. Hence B1 = B, as desired for our
second claim.

PSL2 in positive characteristic offers a counterexample to Corollary 4.3 when
r = 0. It suffices to consider for U1 a maximal torus of the standard Borel
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subgroup B, so that N(T ) � N(B) and T ≤ Bw where w is a nontrivial Weyl
group element associated to T . For the case r = 0 we refer to Lemma 4.2.

Corollary 4.3 takes the following form when (p, r) is maximal in its charac-
teristic over the whole ambient group G.

Corollary 4.4. Let G be a ∗-locally◦◦ solvable group of finite Morley rank, p̃ =
(p, r) a unipotence parameter with r > 0 such that dp(G) = r. Let B be a Borel
subgroup of G such that dp(B) = r. Then Up̃(B) is a Sylow p̃-subgroup of G,
and if U1 is a nontrivial definable p̃-subgroup of B, then Up̃(B) is the unique
Sylow p̃-subgroup of G containing U1, N(U1) ≤ N(Up̃(B)) = N(B), and B is
the unique Borel subgroup of G containing U1.

Proof. Let X = 1. Then dp(C◦(X)) = dp(G) = r, so Corollary 4.3 applies with
X = 1. Notice that p̃ is maximal in its characteristic for any Borel subgroup
admitting it, and that when U1 is a nontrivial definable p̃-group then any Borel
subgroup containing it admits p̃.

Like for Corollary 4.3, PSL2 in positive characteristic offers a counterexample
when r = 0 in Corollary 4.4.

The preceding uniqueness theorems are often used as follows to “fusion”
Borel subgroups sharing too unipotent subgroups.

Lemma 4.5. Let G be a ∗-locally◦◦ solvable group of finite Morley rank. Assume
that, for i = 1 and 2, p̃i = (pi, ri) are two unipotence parameters with ri > 0
and Bi are two distinct Borel subgroups of G such that dpi

(Bi) = ri. Then
there is no Borel subgroup B3 of G such that dpi

(Bi ∩ B3) = dpi
(B3) = ri and

dpi(C
◦(Up̃i(Bi ∩B3))) ≤ ri.

Proof. Assume the contrary. Applying Corollary 4.3 with U1 = X = Up̃1(B1 ∩
B3) implies that B1 = B3, and with U1 = X = Up̃2(B2 ∩ B3) that B2 = B3.
Hence B1 = B2, a contradiction.

We finish with a version of Lemma 4.5 concerning the case in which the
unipotence degrees ri’s are maximized over the whole ambient group.

Lemma 4.6. Let G be a ∗-locally◦◦ solvable group of finite Morley rank. Assume
that, for i = 1 and 2, p̃i = (pi, ri) are two unipotence parameters with ri > 0
and Bi are two distinct Borel subgroups of G such that dpi

(G) = dpi
(Bi) = ri.

Then there is no Borel subgroup B3 of G such that dpi
(Bi ∩B3) = ri.

Proof. Under the stated assumptions dpi(Bi) = ri. If there was a contradicting
Borel subgroup B3, then dpi(Bi ∩ B3) = ri = dpi(Bi) and dpi(C

◦(Up̃i(Bi ∩
B3))) ≤ ri, a contradiction to Lemma 4.5.

Again PSL2 in positive characteristic offers counterexamples to Lemmas 4.5
and 4.6 when ri = 0, as we may take for B1 and B2 two distinct conjugates of
the standard Borel subgroup B and for B3 any of these two.
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4.1.3 Consequences on Fitting subgroups

The first paragraph of the proof of the following lemma appeared as [Bur07,
Corollary 2.2].

Lemma 4.7. Let G be a ∗-locally◦◦ solvable group of finite Morley rank. If B1

and B2 are two distinct Borel subgroups and X denotes F (B1) ∩ F (B2), then
X◦ is torsion free, X = X◦ × S for a finite subgroup S, and for any subgroup
S1 of X, C◦(S1) is nonsolvable if and only if S1 ≤ S.

Proof. Assume X◦ not torsion free. Then it contains a nontrivial decent torus
T or a nontrivial p-unipotent subgroup U . In the first case, T ≤ Z(B1) ∩ Z(B2)
by Fact 2.7 (1), B1 = N◦(T ) = B2 by ∗-local◦◦ solvability and Lemma 3.6, a
contradiction. In the second case Corollary 4.4 with p̃ = (p,∞) and X = U
yields B1 = B2, again a contradiction.

We now have X = X◦ × S for some finite subgroup S of X by Fact 2.3.
Let S1 be a subgroup of X. If S1 � S, then S1 contains an element of

the form s · x for some s in S and some nontrivial element x in X◦. As X◦ is
torsion-free, x as infinite order, as well as s · x, and C◦(S1) ≤ C◦(H(s · x)) ≤
N◦(H◦(s · x)), which is solvable by ∗-local◦◦ solvability of G. Hence C◦(S1)
nonsolvable implies S1 ≤ S.

We now want to show that if S1 ≤ S, then C◦(S1) is nonsolvable. It suffices
to do it for S, so we assume toward a contradiction C◦(S) solvable. Let B3 be
a Borel subgroup of G containing C◦(S). Notice that the finite nilpotent group
S is the product of its Sylow p-subgroups. If p1 and p2 are two (not necessarily
distinct) primes dividing the order of S, then we claim that one cannot have
Up1(B1) 6= 1 and Up2(B2) 6= 1. Assume the contrary. As Sylow subgroups for
primes different from p1 in F (B1) commute with Up1(B1) (by Fact 2.3 (1)!),
Up1(B1 ∩ C◦(S)) is nontrivial by Fact 2.13 (2). Similarly, Up2(B2 ∩ C◦(S)) is
nontrivial. Now Lemma 4.6 gives a contradiction, which proves our claim. It
follows that all nontrivial p-unipotent subgroups of B1 or B2, for p dividing
the order of S, are on one side, say they are all in B1. Notice then that all p-
unipotence blocks of B2, for p dividing the order of S, are trivial. In particular
S ≤ Z(B2) by Lemma 2.14. Hence B2 ≤ C◦(S) ≤ B3, B3 = B2, and C◦(S) =
B2. So one cannot have C◦(S) = B1, as B1 6= B2. Hence S is not central in
B1. By Lemma 2.14, there is a prime p dividing the order of S and such that
Up(B1) 6= 1. As above, Up(C◦B1

(S)) is nontrivial by Fact 2.3 (1) and Fact 2.13
(2), and Corollary 4.4 gives then B1 = B2, a contradiction.

A subgroup S as in Lemma 4.7 could for example be the subgroup Z(H) in
the hypothetic Configuration 3.15.

A version of the following lemma has been baptized “Jaligot’s lemma” in
[Bur07, §2] (see [CJ04, §3.4] and [Bur07, Lemma 2.1]).

Lemma 4.8. Let G be a ∗-locally◦◦ solvable group of finite Morley rank. Assume
that, for i = 1 and 2, p̃i = (pi, ri) are two unipotence parameters such that
dpi(G) = ri, and Bi are two distinct Borel subgroups such that dpi(Bi) = ri. If
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X denotes F (B1) ∩ F (B2), then X is finite and C◦(S1) is nonsolvable for any
subgroup S1 of X.

Proof. Assume X◦ non-trivial. By ∗-local◦◦ solvability of G, N◦(X) is solvable
and hence contained in a Borel subgroup B3 of G. As X◦ is torsion-free by
Lemma 4.7, the assumption that dpi(Bi) = ri implies ri > 0 for each i. By
Fact 2.8, Up̃i(Bi) is included in F ◦(Bi), and by Fact 2.3, Γi, the last nontrivial
iterated term of the descending central series of Up̃i

(Bi), is central in F ◦(Bi).
Hence Γi ≤ N◦(X) ≤ B3 ∩Bi. Now by assumption each Γi is nontrivial, and a
p̃i-group by Corollary 2.2. Corollary 4.4 implies that each Γi is contained in a
unique Borel subgroup of G, which gives B3 = B1 and B3 = B2, contradicting
the assumption that B1 6= B2. Hence X is finite.

Our last claim is contained in Lemma 4.7.

In absence of ∗-local◦ solvability one might have F (B1)∩F (B2) (finite and)
nontrivial in Lemma 4.8, as for example in Configuration 3.15 again.

4.1.4 Consequences on soapy subgroups

We continue as in Sections 4.1.2 and 4.1.3 with consequences of the Uniqueness
Theorem 4.1, now on soapy subgroups. All these properties make us think of a
soap sliding between two hands, exactly like a unipotent subgroup which cannot
be contained in two distinct Borel subgroups in PSL2. The following lemmas
will be used in our most critical computations in [DJ07a].

Lemma 4.9. Let G be a ∗-locally◦◦ solvable group of finite Morley rank, B1 and
B2 two Borel subgroups each having a soapy subgroup U1 and U2 respectively.
Then

(1) B1 is unique among Borel subgroups of G containing U1 and admitting the
unipotence parameter of U1 as maximal.

(2) If [U1, U2] = 1, then B1 = B2.

Proof. (1). By ∗-local◦◦ solvability of G, N◦(U1) is solvable. As U1 is normal in
B1, the maximality of B1 implies N◦(U1) = B1. If the unipotence parameter of
U1 is (∞, 0), then B1 is a good torus, as well as any Borel subgroup admitting
(∞, 0) as maximal. So any such Borel subgroup is contained in C◦(U1) = B1,
and thus equal to B1. Otherwise, as C◦(U1) ≤ N◦(U1), the first item is a mere
application of Corollary 4.3.

(2). Again N◦(U1) = B1 and similarly N◦(U2) = B2. Hence U1, U2 ≤
B1 ∩B2 under the assumption that U1 and U2 commute. If U1 is a good torus,
then as for the first item B1 is a good torus as well, as well as its subgroup U2,
and similarly B2 also. We then get B2 ≤ C◦(U1) ≤ N◦(U1) = B1, and equality
of B1 and B2. One concludes symmetrically when U2 is a good torus, so one can
assume that both U1 and U2 are not good tori. As U1, U2 ≤ B1 ∩B2, Corollary
4.4 gives B1 = B2 or max(d(U1), d(U2)) < ∞. In any case Corollary 4.3 gives
B1 = B2.

32



The following lemma allows one to build soapy subgroups in presence of two
Borel subgroups.

Lemma 4.10. Let G be a ∗-locally◦◦ solvable group of finite Morley rank, B1

and B2 two Borel subgroups, and U1 a soapy subgroup of B1. If U1 ≤ B2, then
B2 contains a characteristically soapy subgroup.

Proof. If B1 = B2, then U1 is a soapy subgroup of B2 and we may use Lemma
2.10.

Assume now B1 6= B2, and let q̃1 be the unipotence parameter attached to
U1. Let q̃2 be a unipotence parameter maximal for B2. If q̃2 = (∞, 0), then B2

is a good torus, as well as U1, as well as B1, and then one concludes as usual by
∗-local◦◦ solvability that B1 = B2. Hence q̃2 is not (∞, 0). If Uq̃2(Z(F ◦(B2))) is
not central in B2, then we may apply Lemma 2.11.

So now assume toward a contradiction Uq̃2(Z(F ◦(B2))) central in B2. In
particular Uq̃2(Z(F ◦(B2))) ≤ C◦(U1) ≤ N◦(U1) = B1 by ∗-local◦◦ solvability of
G. By Corollary 4.4, q̃1 and q̃2 do not represent subgroups of bounded exponent,
as B1 6= B2. The maximality of q̃1 for B1 and of q̃2 for B2 then yields q̃1 = q̃2.
But Corollary 4.3 gives the uniqueness of B2 among Borel subgroups containing
Uq̃2(Z(F ◦(B2))) and admitting q̃2 as maximal. Thus B1 = B2, a contradiction
in the last case under consideration.

4.1.5 Consequences on Carter subgroups

Theorem 4.1 also gives information on Carter subgroups possessing a subgroup
sufficiently unipotent relatively to the ambient group.

Lemma 4.11. Let G be a ∗-locally◦◦ solvable group of finite Morley rank, Q
a Carter subgroup of G and p̃ = (p, r) a unipotence parameter admitted by Q.
Assume Q contains a nontrivial definable central p̃-subgroup U1 with a nonempty
subset X such that dp(C(X)) ≤ r. Then exactly one of the following three cases
occurs.

(1) Q is a generous Carter subgroup.

(2) For g generic in Q, dp(C◦(g)) > r.

(3) The generic element of Q is exceptional, and in particular any element of
Q has order at most e(G).

Proof. Notice that the assumption together with Corollary 2.2 and Fact 2.3 (2)
implies that p̃ is maximal in its characteristic for Q.

If Q is generous, then C◦(g) ≤ Q holds for g generic in Q by [Jal06, Corollary
3.8] (see also [Jal06, Lemma 3.10]), so cases (2) and (3) cannot occur.

Assume Q not generous in G. By Fact 3.32, Q contains no nontrivial good
torus, and thus r > 0 as p̃ is maximal in its characteristic for Q. By Theorem
4.1, U1 is contained in a unique Sylow p̃ subgroup of G, say U , and Q ≤ N◦(U).
Notice that N◦(U) is solvable by ∗-local◦◦ solvability of G. By condition (d) in

33



[Jal06, Corollary 3.8] a generic element g of Q is in infinitely many conjugates
of Q.

Suppose toward a contradiction dp(C◦(g)) ≤ r and C◦(g) solvable. Then
p̃ 6= (∞, 0) is a unipotence parameter maximal in its characteristic for the
definable connected solvable subgroup C◦(g). It follows that C◦(g) contains a
unique Sylow p̃-subgroup by Fact 2.8, which is necessarily a p̃-subgroup of U
as it contains U1. If γ is an element of G such that g ∈ Qγ , then U1 and Uγ1
are both contained in Up̃(C◦(g)), and by uniqueness applied now to Uγ1 one
gets U = Uγ . Hence all G-conjugates of Q containing g are actually N◦(U)-
conjugate. But now Q is generous in the definable connected solvable subgroup
N◦(U), and thus a generic element of Q is in a unique N◦(U)-conjugate of Q by
[Jal06, Corollary 3.8]. This is a contradiction. Hence when Q is not generous
one of the two cases (2) or (3) must occur.

Notice that in case (3) a generic element of Q, being exceptional, has order
at most e(G), and then the exponent of Q is bounded by e(G) by Fact 2.3 (2).

It just remains to show that cases (2) and (3) cannot occur simultaneously.
But in case (2) r cannot be ∞, and in case (3) it must.

Of course, by Corollary 2.2, Lemma 4.11 applies when dp(G) = dp(Q) = r.
In particular a nongenerous Carter subgroup which is not divisible must be as
in case (3) of Lemma 4.11.

The Uniqueness Theorem may also serve as in [CJ04] to get a quite general
theory of Weyl groups in the specific context of groups considered here, as well
as applications to finite exceptional subgroups. We do not include it here, and
refer to the more general treatment in [Jal09].

4.2 Maximal pairs of Borel subgroups

When the absolute maximality assumptions concerning unipotence degrees fail
in Lemma 4.8 one might have (or rather cannot exclude) pairs of Borel subgroups
whose Fitting subgroups have an infinite intersection. This situation has been
studied intensively in [Bur07]. In what follows, not only claim we no originality
compared to this paper, but also we will tend to follow its analysis word by word.
The only differences will appear in the notation used for unipotence parameters
and in a special care needed for dealing here with our weakest assumption of
∗-local◦◦ solvability. Some additional results from [Del07a] will be mentioned in
the process.

Definition 4.12. [Bur07, Definition 3.1] Let G be a group of finite Morley
rank, B1 and B2 two distinct Borel subgroups. We say that (B1, B2) is a max-
imal pair (of Borel subgroups) if the definable connected subgroup (B1 ∩ B2)◦

is maximal for inclusion among all definable connected subgroups of the form
(L1 ∩ L2)◦, with L1 and L2 two distinct Borel subgroups of G.

Hypothesis 4.13. [Bur07, Hypothesis 3.2]

(1) G is a ∗-locally◦◦ solvable group of finite Morley rank.
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(2) (B1, B2) is a maximal pair of Borel subgroups of G.

(3) [F (B1) ∩ F (B2)]◦ is nontrivial.

Notation 4.14. [Bur07, Notation 3.3] Let H = (B1 ∩ B2)◦, X = F (B1) ∩
F (B2), and r′ = d∞(X).

Recall that X◦ is torsion free by Lemma 4.7. In particular 0 < r′ < ∞. In
particular 0 < d∞(B1) <∞ and 0 < d∞(B2) <∞.

Notice that by Lemma 4.8 one cannot have d(B1) = d(B2) =∞. So at least
one of the two Borel subgroups B1 and B2, say Bi, has no bounded exponent
subgroup. In particular 0 < d(Bi) <∞. The other Borel subgroup Bi+1 might
satisfy 0 < d(Bi+1) ≤ ∞ (the latter inequality will be shown to be also strict in
the analysis below).

The proof of the steps below can be recovered from [Bur07]. This in general
involves practically no changes, except taking connected components throughout
when possible, and in particular considering X◦ instead of X, and using Lemma
3.4 (4) and Lemma 3.6 when considering normalizers of various connected solv-
able subgroups and their correlations with Borel subgroups. As for background
facts used in the process, the reader can also use the following dictionary.

[Bur07, Fact 1.5] and [Bur07, Fact 1.9]: Fact 2.8
[Bur07, Fact 1.13]: [FJ08, Proposition 2.8]
[Bur07, Fact 1.14]: Fact 2.3
[Bur07, Fact 1.15]: [FJ08, Lemma 2.9]
[Bur07, Fact 1.16]: Fact 2.7
[Bur07, Fact 1.22]: [FJ08, Corollary 5.11]
[Bur07, Fact 1.19(4)]: [FJ08, Proposition 5.1], or [Nes90] ([BN94, Theorem

9.21]) and [FJ08, Proposition 5.1]
Besides, Corollary 4.4 implies that two distinct Borel subgroups cannot share

a common nontrivial p-unipotent subgroup, and in particular all subgroups H
considered here satisfy d(H) = d∞(H).

Homogeneity of X. Observe that H ′ ≤ X E H. We show the asymmetry
of the situation, i.e., d∞(B1) 6= d∞(B2). We may assume in any case that
d∞(B2) ≤ d∞(B1), and we indeed show that d∞(B2) < d∞(B1). Notice that
d(H) = d∞(H).
4.15. [Bur07, Lemma 3.5] d∞(H) < d∞(B1).
4.16. [Bur07, Lemma 3.6] d(H) = d∞(B2).
4.17. d(H) = d∞(H) = d∞(B2) < d∞(B1).
4.18. [Bur07, Proposition 3.7] If H is nonabelian, then B1 and B2 are the only
Borel subgroups containing H.
4.19. [Bur07, Lemma 3.8] F ◦(Bi) � H for i = 1 and 2.
4.20. [Bur07, Lemma 3.9] If X1 is an infinite definable subgroup of X normal
in H, then N◦(X1) ≤ B1.
4.21. [X ∩ Z(F (B2))]◦ = 1.
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4.22. [Bur07, Theorem 3.10] X◦ is a homogeneous (∞, r′)-subgroup.

Proof. 4.15: As there is no nontrivial p-unipotent subgroup in H, d(H) < ∞,
and the rest of the proof is similar.

4.17: This is a corollary of 4.16.
4.19: Since d∞(H) < d∞(B1) by 4.15, F ◦(B1) � H. Suppose toward a

contradiction F ◦(B2) ≤ H. Then H E B2 by [Nes90] ([BN94, Theorem 9.21]),
and H ≤ B1 ∩Bg1 for some g ∈ B2 \N(B1). By maximality of H, (B1, B

g
1 ) is a

maximal pair, and 4.17 applied to this maximal pair gives a contradiction.
4.20: By ∗-local◦◦ solvability N◦(X1) is solvable, and the rest of the proof is

similar.
4.21: This is a corollary of 4.20.

Fitting subgroup of B2.

4.23. [Bur07, Lemmas 3.11 and 3.12] F ◦(B2) is divisible (in particular d(B2) =
d∞(B2)) and U(∞,r)(F ◦(B2)) ≤ Z(H) when 0 ≤ r ≤ d(B2) and r 6= r′.
4.24. [Bur07, Lemma 3.13] U(∞,r′)(F ◦(B2)) is not contained in H and not
abelian.
4.25. [Bur07, Corollary 3.14] U(∞,r)(F ◦(B2)) is not abelian if and only if r = r′.
4.26. [Bur07, Lemma 3.15] U(∞,r)(B2) ≤ F ◦(B2) for every r > r′.

Structure of H.

4.27. [Bur07, Lemma 3.16] U(∞,r′)(H) ≤ F ◦(B2). In particular Y := U(∞,r′)(H)
is nilpotent and the unique Sylow (∞, r′)-subgroup of H. It is normal in H,
and in F ◦(H).
4.28. [Del07a, Lemme 3.11] If a Carter subgroup of H is also a Carter subgroup
of B2, then U(∞,r′)(B2) is nilpotent, included in F ◦(B2), and the unique Sylow
(∞, r′)-subgroup of B2.
4.29. [Bur07, Lemma 3.17] N◦(Y ) ≤ B2 and X◦ < Y . In addition we have
U(∞,r′)(NF (B2)(Y )) � H.
4.30. [Bur07, Theorem 3.18] Every definable connected nilpotent subgroup of
H is abelian.
4.31. [Bur07, Lemma 3.19] If H is not abelian, then N◦(H) = H.

Proof. 4.28: Let Q be a Carter subgroup of H, which is also a Carter subgroup
of B2. Then U(∞,r′)(F ◦(B2)) · U(∞,r′)(Q) is a Sylow (∞, r′)-subgroup of B2 by
[FJ08, Corollary 5.11]. By conjugacy of such subgroups in B2, [FJ08, Theorem
5.8], it suffices to show that it is contained in F ◦(B2). But the first factor clearly
is, and the second also by 4.27.

Structure of B1. Let Q denote a Carter subgroup of H.
4.32. [Bur07, Lemma 3.20] F ◦(B1) is divisible (and in particular d(B1) =
d∞(B1)) and U(∞,0)(F ◦(B1)) ≤ Z◦(H).
4.33. [Bur07, Lemma 3.21] X◦ = U(∞,r′)(F ◦(B1)), and also B1 = N◦(X◦).
4.34. [Bur07, Corollary 3.22] U(∞,r′)(F ◦(B1)) is abelian, and F ◦(B1) ≤ C◦(X◦).
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4.35. [Bur07, Lemma 3.23] U(∞,r′)(Q) = U(∞,r′)(Z(H)), and this group is not
trivial.
4.36. [Bur07, Theorem 3.24] N◦(U(∞,r′)(Q)) ≤ B2. So N◦(Q) ≤ B2, and Q is
a Carter subgroup of B1.
4.37. [Bur07, Lemma 3.25] U(∞,r)(F ◦(B1)) = 1 for any r 6= r′ with 1 ≤ r ≤
d(B2).
4.38. [Bur07, Corollary 3.26] r′ is the minimal unipotence degree 1 ≤ r < ∞
such that F (B1) admits the unipotence parameter (∞, r).
4.39. [Bur07, Corollary 3.27] For 1 ≤ r ≤ d(B2), a Sylow (∞, r)-subgroup of H
is a Sylow (∞, r)-subgroup of B1.

Proof. 4.35: By 4.29, U(∞,r′)(H/H ′) is not trivial. So U(∞,r′)(Q) is not trivial
by [Nes90] ([BN94, Theorem 9.21]) and [FJ08, Proposition 5.1]. The rest of the
proof is similar, using [FJ08, Proposition 5.1] again here.

4.36: One gets similarly H ≤ N◦(U(∞,r′)(Q)). By ∗-local◦◦ solvability of G
the latter group is solvable. If it contains H properly, then it can grow only in
one Borel subgroup B1 or B2, and must agree with H on the other.

Nonabelian intersections.

Remark 4.40. Tor (X) is toral and contained in Z(B1)∩Z(B2), and C◦(X) =
C◦(X◦).

Proof. Let S be the (finite) torsion subgroup of X, as in Lemma 4.7. As d(B1) <
∞ and d(B2) < ∞, S is a toral subgroup of B1 and B2, and included in
Z(B1) ∩ Z(B2) by Lemma 2.14. By 4.20, C◦(X) ≤ C◦(X◦) ≤ B1, and as
X = X◦ × S with S ≤ Z(B1), C◦(X) = C◦(X◦).

4.41. [Bur07, Lemma 3.28] The subgroup C◦(X◦) is not nilpotent. If H is not
abelian, then B1 is the unique Borel subgroup of G containing C◦(X◦).
4.42. [Bur07, Corollary 3.29] Suppose H not abelian. Then, for any infinite
definable subgroup X1 ≤ X, B1 is the unique Borel subgroup of G containing
C◦(X1).
4.43. If H is nonabelian, then C◦(Y ) ≤ C◦(X◦) ≤ B1.
4.44. (Compare with [Del07a, Lemma 3.10]) If H is nonabelian, then any Sylow
(∞, r′)-subgroup of G containing Y is contained in B2.
4.45. [Bur07, Lemma 3.30] Let B be a Borel subgroup of G, distinct from B1.
Suppose that (B,B1) is a maximal pair, that H1 = (B ∩ B1)◦ is not abelian,
and that d(B1) ≥ d(B). Then B is F ◦(B1)-conjugate to B2.

Proof. 4.42: Recall that C◦(X) = C◦(X◦). C◦(X) ≤ C◦(X1), the latter being
solvable by ∗-local◦◦ solvability of G, so 4.41 gives the desired result.

4.43: X◦ ≤ Y .
4.44: We want to show that Σ ≤ B2 for any Sylow (∞, r′)-subgroup Σ of

G containing Y . One can assume Y < Σ, and then Y < U(∞,r′)(N◦Σ(Y )) by
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normalizer condition, [FJ08, Proposition 2.8]. By 4.29, N◦(Y ) ≤ B2, and thus
U(∞,r′)(N◦Σ(Y )) ≤ B2.

If U(∞,r′)(N◦Σ(Y )) is abelian, then it centralizes Y . But C◦(Y ) ≤ C◦(X◦) ≤
B1 by 4.41. Hence U(∞,r′)(N◦Σ(Y )) ≤ (B1∩B2)◦ = H and then U(∞,r′)(N◦Σ(Y )) =
Y , a contradiction.

Hence U(∞,r′)(N◦Σ(Y )) is nonabelian. Now it follows from 4.30 that in a ∗-
locally◦◦ solvable group of finite Morley rank, a nonabelian definable connected
nilpotent subgroup is contained in a unique Borel subgroup. As U(∞,r′)(N◦Σ(Y ))
is in B2 and in Σ, this gives Σ ≤ B2.

Conclusions.

4.46. [Bur07, Proposition 4.1] Let G be a ∗-locally◦◦ solvable group of finite
Morley rank, B1 and B2 two distinct Borel subgroups of G, and H a nontrivial
definable connected subgroup of B1 ∩B2. Then the following hold:

(1) H ′ is a homogeneous (∞, r′)-group for some 1 ≤ r′ <∞ (or trivial).

(2) Every definable connected nilpotent subgroup of H is abelian.

(3) U(∞,r′)(F ◦(H)) = U(∞,r′)(H) is the unique Sylow (∞, r′)-subgroup of H.

(4) Uq̃(F ◦(H)) ≤ Z(H) for any q̃ 6= (∞, r′).

(5) 0 ≤ d∞(H) = d(H) ≤ d(C(H ′)) ≤ d(N(H ′)) ≤ ∞, all inequalities, except
maybe the third one, being strict when H is not abelian.

Proof. We may assume H not abelian, as otherwise all statements are trivially
true once one has noticed that d∞(H) = d(H) by Corollary 4.4.

The proofs of the four first points are similar, considering a maximal pair
(B3, B4) containing H with d(B3) ≥ d(B4), and for the fifth point one argues
as follows.

By 4.17, ∞ > d(B3) > d(B4) ≥ d(H) = d∞(H) > 0 (be careful, this is not
the same H, and one uses also the divisibility of F ◦(B3) and of F ◦(B4)). By Fact
2.3, U(∞,d∞(B3))(B3) ≤ C(H ′), thus d∞(C(H ′)) > d∞(H) = d(H). Hence for
the last point it suffices to show that d(N(H ′)) <∞. Otherwise, Up(N(H ′)) is
nontrivial for some prime p; now the nontrivial group U(∞,d∞(B3))(B3), which is
also in N(H ′), normalizes Up(N(H ′)), and centralizes it by Fact 2.7 (4), so that
Up(N(H ′)) ≤ N◦(U(∞,d∞(B3))(B3)) = B3 (by ∗-local◦◦ solvability and Lemma
3.6), a contradiction to the divisibility of F ◦(B3). Hence d(N(H ′)) < ∞ and
this completes the proof of the fifth point.

4.47. [Bur07, Corollary 4.2] Let G be a ∗-locally◦◦ solvable group of finite Morley
rank. Then a definable connected nonabelian nilpotent subgroup is contained
in exactly one Borel subgroup of G.
4.48. [Bur07, Corollary 4.2’] Let G be a ∗-locally◦◦ solvable group of finite Morley
rank. If Q is a Carter subgroup of a Borel subgroup B, and if Q is not abelian,
then Q is a Carter subgroup of G.
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4.49. [Bur07, Lemma 4.4] Let G be a ∗-locally◦◦ solvable group of finite Morley
rank, B1 and B2 two distinct Borel subgroups of G. Suppose that H = (B1 ∩
B2)◦ is not abelian, and that C◦(H ′) ≤ B1. Then B1 and B2 are the only Borel
subgroups containing H.

Proof. 4.48: N◦(Q) is contained in a Borel subgroupB1 ofG by ∗-local◦◦ solvabil-
ity. As Q ≤ B ∩B1, B = B1 by 4.47, and N◦G(Q) ≤ N◦B1

(Q) = N◦B(Q) = Q

Maximal pairs with nonabelian intersections can then be characterized.
4.50. [Bur07, Theorem 4.3] Let G be a ∗-locally◦◦ solvable group of finite Morley
rank, B1 and B2 two distinct Borel subgroups of G. Suppose H = (B1 ∩ B2)◦

nonabelian. Then the following are equivalent:

(1) B1 and B2 are the only Borel subgroups containing H.

(2) (B1, B2) is a maximal pair.

(3) If B3 6= B1 is a Borel subgroup containing H, then (B1 ∩B3)◦ = H.

(4) C◦(H ′) is contained in B1 or B2.

(5) B1 and B2 are not conjugate under the action of C◦(H ′).

(6) d∞(B1) 6= d∞(B2).

We can now describe the maximal pairs having a nonabelian intersection◦,
collecting the results from [Bur07] with the additional results from [Del07a]. We
slightly change the presentation in comparison to [Bur07, Theorem 4.5], as we
prefer to distinguish between a symmetric version and an asymmetric one.

Theorem 4.51. Let G be a ∗-locally◦◦ solvable group of finite Morley rank,
and (B1, B2) a maximal pair of Borel subgroups such that H := (B1 ∩ B2)◦ is
nonabelian. Let r′ = d∞(H ′).

(1) 0 < d(B1) <∞ and 0 < d(B2) <∞.

(2) N◦(H) = H.

(3) [F (B1) ∩ F (B2)]◦ is (∞, r′)-homogeneous, and r′ > 0.

Furthermore, if Q denotes a Carter subgroup of H and Qr′ denotes U(∞,r′)(Q),
then, (4) Qr′ 6= 1, and exactly one of the following cases occurs:

(4.a) N◦(Qr′) = H.

(4.b) H < N◦B1
(Qr′); furthermore N◦B2

(Qr′) = H and B1 is the unique Borel
subgroup containing N◦(Qr′).

(4.c) H < N◦B2
(Qr′); furthermore N◦B1

(Qr′) = H and B2 is the unique Borel
subgroup containing N◦(Qr′).

Proof. (1): 4.7, 4.32, 4.23. (2): 4.31. (3): 4.7, 4.22. (4): 4.35, and proof of
[Del07a, Lemme 3.9] for the trichotomy.
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Theorem 4.52. Assume in addition to Theorem 4.51 that d(B1) ≥ d(B2).
Then

(1) 0 < d(B2) < d(H) = d(B1) <∞.

(2) Q is a Carter subgroup of B1.

(3) U(∞,r′)(F (B1)) = [F (B1) ∩ F (B2)]◦.

(4) B1 is the unique Borel subgroup containing C◦(U(∞,r′)(F (B1))).

(5) N◦(Q) ≤ B2.

(6) U(∞,r′)(H) ≤ F ◦(B2), and N◦(U(∞,r′)(H)) ≤ B2.

(7) Uq̃(F (B2)) ≤ Z(H) for any q̃ 6= (∞, r′), and U(∞,r′)(F (B2)) is nonabelian
(in particular Uq̃(F (B2)) is nonabelian iff q̃ = (∞, r′)).

(8) Any Sylow (∞, r′)-subgroup of G containing U(∞,r′)(H) is contained in
B2.

(9) If Q is a Carter subgroup of B2, then U(∞,r′)(F (B2)) is the unique Sy-
low (∞, r′)-subgroup of B2, and in particular the unique Sylow (∞, r′)-
subgroup of G containing U(∞,r′)(H).

Proof. (1): 4.51 (1), 4.17. (2): 4.36. (3): 4.33. (4): 4.33, 4.41. (5): 4.36. (6):
4.27, 4.29. (7): 4.23, 4.24. (8): 4.44. (9): 4.28, 4.44.

Finally, we record a point about exceptional elements, which applies in par-
ticular in Theorems 4.51 and 4.52.

Theorem 4.53. Let G be a ∗-locally◦◦ solvable group of finite Morley rank and
(B1, B2) a maximal pair of Borel subgroups such that [F (B1)∩F (B2)]◦ is non-
trivial. Then the finite subgroup S of F (B1) ∩ F (B2) as in Lemma 4.7 is toral
and central, both in B1 and B2.

Proof. F ◦(B1) and F ◦(B2) are divisible by 4.23 and 4.32, and Remark 4.40
applies.

We finish with an extra homogeneity result.

Lemma 4.54. (see [Del07a, Lemme 3.8]) Let G be a ∗-locally◦◦ solvable
group of finite Morley rank, B and Bg two distinct conjugates of a same Borel
subgroup B. If [F (B) ∩ F (Bg)]◦ is not homogeneous, then F ◦(B) is abelian.

Proof. By assumption [F (B)∩F (Bg)]◦ contains two nontrivial Sylow subgroups
U1 and U2 with two distinct unipotence parameters, say p̃ for U1 and q̃ for U2.

By ∗-local◦◦ solvability of G, N◦(U1) is contained in a Borel subgroup B1. If
B1 6= B, then, by Fact 2.3 (2), 4.47 implies that Sylow subgroups of F ◦(B) of
unipotence parameters different from p̃ are abelian. If B1 = B, then B1 6= Bg

and one sees similarly that Sylow subgroups of unipotence parameters different
from p̃ of F ◦(Bg), and thus also of F ◦(B), are also abelian.
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Considering a Borel subgroup B2 containing N◦(U2), one sees similarly that
Sylow subgroups of F ◦(B) of unipotence parameters different from q̃ are abelian.

Now F ◦(B) is abelian by Fact 2.3 (2).

4.3 Nonsolvable definable connected subgroups

Section 4.2 concerned the analysis of intersections of maximal pairs of Borel
subgroups. In the present section we continue a little bit in this vein when one
of the two subgroups involved is not necessarily solvable, a possibility in the
context of ∗-locally◦◦ solvable groups of finite Morley rank in comparison to the
context of minimal connected simple groups.

Definition 4.55. Let G be a group of finite Morley rank and K a definable
connected subgroup of G. We say that a Borel subgroup B of G has maximal
intersection with K if B � K and (K ∩ B)◦ is maximal for inclusion among
groups of the form (K∩B1)◦ for some Borel subgroup B1 of G such that B1 � K.

We note in Definition 4.55 that if K is solvable and not a Borel subgroup,
then it has a maximal intersection with any Borel subgroup containing it. If K
is a Borel subgroup of G, and a Borel subgroup B has a maximal intersection
with K, then G◦ is not solvable.

Lemma 4.56. Let G be a group of finite Morley rank, K a definable connected
subgroup of G, and B a Borel subgroup of G having maximal intersection with
K. Then any Borel subgroup B1 of G such that (K ∩B)◦ < (K ∩B1)◦ is in K.

Proof. This is immediate by definition.

It follows that if K is a Borel subgroup of a ∗-locally◦◦ solvable group G
and B is a Borel subgroup of G having maximal intersection with K, then if
(K ∩ B)◦ is nonabelian any Borel subgroup B3 of G containing (K ∩ B)◦ such
that (K ∩B)◦ < (K ∩B3)◦ must be K, and hence (K,B) is a maximal pair of
Borel subgroups of G by the equivalence provided in Theorem 4.50 (3).

In the general case of a ∗-locally◦◦ solvable group G a proper definable con-
nected subgroup K can be nonsolvable, and we slightly clarify the situation in
this general case.

Lemma 4.57. Let G be a ∗-locally◦◦ solvable group of finite Morley rank, K
a nontrivial definable connected subgroup of G, B a Borel subgroup of G hav-
ing maximal intersection with K, and let H = (K ∩ B)◦. Then assuming H
nontrivial exactly one of the following cases occurs.

(1) H is an abelian Carter subgroup of K and of B.

(2) H is an abelian Carter subgroup of K and H < N◦B(H) ≤ B.

(3) H is an abelian Carter subgroup of B, and H < N◦(H) ≤ K. In this case
any Borel subgroup of K containing H is a Borel subgroup of G.

(4) H is a nonabelian Borel subgroup of K.
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(5) H is nonabelian and not a Borel subgroup of K. In this case any Borel
subgroup of K containing H is a Borel subgroup of G.

Proof. Notice that N◦(H) is solvable by ∗-local◦◦ solvability of G.
Assume first H abelian. If H has finite index in its normalizer in K and in

B then we are in case (1).
Assume now H < N◦B(H). Then the maximality of the intersection forces

N◦K(H) = H, and H is an abelian Carter subgroup of K. Hence we are in case
(2).

Assume now H < N◦K(H). Then the maximality of the intersection forces
N◦(H) ≤ K with Lemma 4.56. Now N◦B(H) ≤ (K ∩ B)◦ = H, and H is an
abelian Carter subgroup of B. Hence we are in case (3) by Lemma 4.56.

This treats all cases corresponding to the case H abelian, so we may now
assume H nonabelian. If H is a Borel subgroup of K, then we are in case (4).

It remains only to consider the case in which H is not abelian and not a
Borel subgroup of K. By Lemma 4.56, any Borel subgroup of K containing H
is a Borel subgroup of G. We are in case (5).

5 Homogeneous cases and torsion

In this final section we collect various additional results of specialized nature
about ∗-locally◦◦ solvable groups of finite Morley rank, generally depending on
the Uniqueness Theorems of Section 4.1.

The first type of results concerns the homogeneous cases. Recall from [FJ08]
or Section 2.1 that a group of finite Morley rank is homogeneous if it is p̃-
homogeneous for some unipotence parameter p̃, that is every definable con-
nected nilpotent subgroup is a p̃-group. (This is weaker than the definition in
[Fré06a], which requires to consider all definable connected subgroups, not only
the nilpotent ones.) In a p̃-homogeneous group one sees easily with Lemma
2.6 and Fact 2.8 that any Borel subgroup is a (homogeneous) p̃-group, and in
particular nilpotent. Hence we will more generally consider the case in which
all Borel subgroups are nilpotent, and look at the homogeneous cases at various
levels of generality.

The torsion-free case will be fairly well understood in this context, and with
torsion this connects to a bit of Sylow theory. As far as torsion is concerned,
there is in general no Sylow theory as in Fact 2.13 available in an arbitrary
group of finite Morley rank. However the following fact shows similarities with
Fact 2.13 in the general case.

Fact 5.1. [BC07] Let G be a connected group of finite Morley rank, t a π-
element of G for some set π of primes. If Up(C(t)) = 1 for every p in π, then
t belongs to a, and in fact to any, maximal π-torus of G and of C◦(t).

42



5.1 Nilpotent Borel subgroups

In this section we consider ∗-locally◦◦ solvable groups in which each Borel sub-
group is nilpotent. We start with a lemma concerning abelian Borel subgroups.

Lemma 5.2. Let G be a ∗-locally◦◦ solvable group of finite Morley rank with
an abelian Borel subgroup B. Let Bu denote the maximal definable connected
subgroup of B of bounded exponent. Then B has a subgroup E finite modulo
Bu such that B ∩Bg ≤ E for any element g of G not in N(B), and one of the
following two cases occurs.

(1) B is a generous abelian Carter subgroup.

(2) B is an abelian Carter subgroup of bounded exponent.

Proof. For any g in G \N(B), N◦(B∩Bg) contains B and Bg, and if B∩Bg is
infinite then N◦(B ∩Bg) is solvable by ∗-local◦◦ solvability of G and one gets B,
Bg ≤ N◦(B ∩ Bg) and B = Bg by maximality, a contradiction. Hence B ∩ Bg
is finite for every g ∈ G \N(B).

The uniformly definable family of finite subgroups B∩Bg, for g ∈ G \N(B),
consists of subgroups of uniformly bounded cardinals by elimination of infinite
quantifiers. As Prüfer p-ranks are finite for any prime p, all these subgroups
must be contained modulo Bu in a finite subgroup of the maximal definable
decent torus of B. Calling E the preimage in B of this group, this proves our
first statement.

If Bu < B, then E is not generic in B and one can conclude that the Carter
subgroup B of G is generous by the equivalence given in [Jal06, Corollary 3.8
(c)]. This proves our alternative.

We note that the two cases in Lemma 5.2 are a priori not necessarily mutually
exclusive. In the ∗-locally◦ solvable context E is necessarily trivial, and B is
then necessarily generous in any case.

We now pass to nilpotent Borel subgroups, replacing the commutativity as-
sumption by a nilpotence assumption on all Borel subgroups of the ambient
group. We easily see with Lemmas 3.4 and 3.6 that a ∗-locally◦◦ solvable group
of finite Morley rank has only nilpotent Borel subgroups if and only if N◦(A) is
nilpotent for every nontrivial definable connected nilpotent subgroup A. For a
more compact terminology, we will naturally call such groups ∗-locally◦◦ nilpo-
tent. The first lemma is essentially the content of the first part of the proof of
Lemma 5.2 and typical of earlier work on bad groups [BN94, Chapter 13].

Lemma 5.3. Let G be a ∗-locally◦◦ nilpotent group of finite Morley rank. Then
any two distinct Borel subgroups have a finite intersection.

Proof. Assume the contrary. Let B1 and B2 contradict our claim, with [B1∩B2]◦

of maximal rank. Call the latter group H, and notice that H < B1 and H < B2.
By normalizer condition in nilpotent groups, [BN94, Lemma 6.3], H < N◦B1

(H)
and H < N◦B2

(H). Now N◦(H) is nilpotent by ∗-local◦◦ nilpotency of G, and

43



contained in a Borel subgroup B3. As H < (B1 ∩ B3)◦ and H < (B2 ∩ B3)◦,
our maximality assumption forces B1 = B3 = B2, a contradiction.

We get in any case conclusions similar to those of Lemma 5.2.

Lemma 5.4. Let G be a ∗-locally◦◦ nilpotent group of finite Morley rank and let
B be a Borel subgroup of G. Then B has a definable subgroup E, finite modulo
the bounded exponent part of B, such that B ∩ Bg ≤ E for any intersection
B ∩Bg with g ∈ G \N(B). Moreover one of the following two cases occurs.

(1) B is a generous Carter subgroup.

(2) B is a Carter subgroup of bounded exponent.

Proof. With Lemma 5.3 applied to distinct conjugates of B, the existence of E
follows as in the proof of Lemma 5.2. The alternative follows as well.

Like for Lemma 5.2, the two cases in Lemma 5.4 are a priori not mutually
exclusive, and if the ambient group G is ∗-locally◦ solvable then distinct conju-
gates of B are necessarily pairwise disjoint by the same proof as in Lemma 5.3,
and B is always generous.

5.2 The torsion-free homogeneous case

We shall now evacuate, or rather collect in Pandora’s box of bad groups, p̃-
homogeneous ∗-locally◦◦ solvable groups of finite Morley rank, with p̃ not of the
form (∞, 0) or (p,∞) for p a prime. In this case Borel subgroups are nilpotent
and torsion-free by [FJ08, Lemma 2.17] and Fact 2.4. More generally, we have
the following result for such groups.

Theorem 5.5. Let G be a torsion-free ∗-locally◦◦ nilpotent group of finite Morley
rank. Then Borel subgroups are conjugate and either

(1) G is nilpotent, or

(2) G is a full Frobenius group, with malnormal subgroup a Borel subgroup B.

As far as torsion is concerned there is a classical lifting result.

Fact 5.6. [BN92] Let G be a group of finite Morley rank, H a definable normal
subgroup, and x a p-element modulo H, for some prime p. Then the definable
hull H(x) of x contains a p-element.

Proof. Notice that G is connected by absence of torsion and Fact 5.6.
By Lemmas 5.3 and 5.4, distinct Borel subgroups have trivial intersections,

and each Borel subgroup is generous. As G is connected it cannot have two
disjoint generic subsets. If B1 and B2 are two Borel subgroups, then two conju-
gates of B1 and B2 must have a nontrivial intersection by generosity, and then
are equal. This shows that Borel subgroups are conjugate.

If G is not nilpotent, then B < G for some Borel subgroup B of G. By
Fact 5.6, N(B) = B, and B is malnormal in G by disjointness of distinct Borel
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subgroups. As BG is generic, any element g of G has an infinite centralizer (this
is also an easy consequence of the main result of [BBC07] in arbitrary connected
groups), and in particular normalizes a Borel subgroup by Lemma 2.6 (1) and
the disjointness of Borel subgroups. Hence G = BG, and G is a full Frobenius
group with malnormal subgroup B.

We note that a connected (∞, r)-homogeneous group of finite Morley rank,
with 0 < r <∞, is torsion-free by Facts 2.4 and 5.1, and in particular Theorem
5.5 applies to such homogeneous connected ∗-locally◦◦ solvable groups.

Otherwise in the torsion-free case all results of Section 4 still apply, where all
definable subgroups are connected. In this case Carter subgroups are conjugate
by the same proof as in [Fré08].

5.3 The bounded exponent case

In presence of bounded exponent torsion the uniqueness theorems of Section
4.1 can be applied in their most straightforward forms in order to deal with
generosity.

Lemma 5.7. Let G be a ∗-locally◦◦ solvable group of finite Morley rank such
that Up(G) is nontrivial for some prime p. Then one of the following three
cases occurs.

(1) Maximal p-unipotent subgroups are conjugate in G◦ and N◦(U) is a gen-
erous Borel subgroup of unbounded exponent for any maximal p-unipotent
subgroup U (and in fact one may assume also N◦(U) = UC◦(U)).

(2) There is a maximal p-unipotent subgroup U normalized but not centralized
by a nontrivial q-torus T for some (and in fact infinitely many) prime(s)
q 6= p. Moreover T is contained in a generous Carter subgroup of G.

(3) N◦(U) is a Carter subgroup of bounded exponent for some maximal p-
unipotent subgroup U .

Proof. First recall that N◦(U) is a Borel subgroup of G for any maximal p-
unipotent subgroup U of G by Lemma 3.9.

Assume case (3) does not occur. This means that for any maximal p-
unipotent subgroup U , N◦(U) is not nilpotent of bounded exponent. By Fact
2.8, this simply means that any such group N◦(U) has unbounded exponent.

If UC◦(U) < N◦(U) for some maximal p-unipotent subgroup U , then Wag-
ner’s theorem [Wag01, Corollary 8] gives a nontrivial q-torus in N◦(U), for some
prime q 6= p, acting nontrivially on U (see for example [FJ05, Fact 2.5] and Zil-
ber’s field theorem [BN94, §9.1]). The fact that there are infinitely many primes
q occuring in the definable subgroup of the multiplicative group of the field of
characteristic p is due to [Wag03]. Then Fact 3.32 shows that we are in case
(2).

This leaves us with the case in which N◦(U) = UC◦(U) is a Borel subgroup
of unbounded exponent for any maximal p-unipotent subgroup U .
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If N◦(U)∩N◦(Ug) has a nontrivial connected component X for some g ∈ G,
then N◦(X) is solvable by ∗-local◦◦ solvability of G. As N◦(U) = UC◦(U), X
centralizes a nontrivial p-unipotent subgroup of U by Fact 2.13 (2), and similarly
a nontrivial p-unipotent subgroup of N◦(Ug). Now, as N◦(X) is contained
in a Borel subgroup, Lemma 4.6 implies N◦(U) = N◦(Ug). Hence distinct
conjugates of N◦(U) have finite intersections.

As N◦(U) has unbounded exponent, these finite intersections cannot cover
N◦(U) generically by Lemma 2.15. In particular they land in a (definable) non-
generic subset of N◦(U), and one concludes easily that N◦(U) is generous in
G◦ (see for instance [CJ04, Lemma 3.3], bearing in mind that N◦(U) is of finite
index in its normalizer, as a Borel subgroup).

We thus have N◦(U) = UC◦(U) a generous Borel subgroup of unbounded
exponent for any maximal p-unipotent subgroup U .

Now let U1 and U2 be two maximal p-unipotent subgroups of G. By gen-
erosity of N◦(U1) and [Jal06, Proposition 2.1], a generic element g of G◦ is in
a conjugate of N◦(U1), and in finitely many such. Similarly, g is in a conjugate
of N◦(U2), say N◦(U2) after conjugacy, and in finitely many such. Now Z◦(U2)
centralizes g as N◦(U2) = U2C

◦(U2). So it permutes naturally by conjuga-
tion the finitely many conjugates of N◦(U1) containing g, and one can argue
as in [Jal06, Fundamental Lemma 3.3]. By Fact 1.1, it fixes each of them, and
in particular it normalizes a conjugate of U1, say U1 up to conjugacy. Hence
Z◦(U2) ≤ N◦(U1), Z◦(U2) ≤ Up(N◦(U1)) = U1, and U1 = U2 by Theorem 4.1.
This shows that U1 and U2 are conjugate and completes our proof.

In case (1) of Lemma 5.7, we have stated the equality N◦(U) = UC◦(U)
between parentheses in order to depreciate this aspect not true in the algebraic
case. A conclusion closer to the algebraic case would be case (2) combined with
case (1) without this aspect. But even in the well described context of [CJ04]
there are potentially Borel subgroups as in case (2) but not as in case (1) without
this aspect (in sets of Borel subgroups usually denoted by B in [CJ04]).

If the ambient group G is ∗-locally◦ solvable in Lemma 5.7, then one sees
by the same argument, and using the results of Section 4.1 adapted to the ∗-
locally◦ solvable case, that Borel subgroups as in cases (1) and (3) have trivial
intersections indeed, and are all generous. In particular a maximal p-unipotent
subgroup U as in case (3) must satisfy N◦(U) generous, and must be conjugate
to one as in case (1) if it exists. But in this case one also hasN◦(U) of unbounded
exponent, and thus cases (1) and (3) are mutually exclusive. It follows also that
cases (2) and (3) are mutually exclusive, and as cases (1) and (2) are obviously
mutually exclusive all cases are pairwise mutually exclusive, and with a generous
Carter subgroup in any case. One can summarize this as follows.

Lemma 5.8. Let G be a ∗-locally◦ solvable group of finite Morley rank such
that Up(G) is nontrivial for some prime p. Then exactly one of the following
two cases occurs.

(1) Maximal p-unipotent subgroups are conjugate in G◦ and Borel subgroups
of the form N◦(U), for U a maximal p-unipotent subgroup, are pairwise
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disjoint, generous, of the form UC◦(U), and either of unbounded exponent
or nilpotent of bounded exponent.

(2) There is a maximal p-unipotent subgroup U normalized but not centralized
by a nontrivial q-torus T for some (and in fact infinitely many) prime(s)
q 6= p. Moreover T is contained in a generous Carter subgroup of G.

As in Section 5.2 one may wish to consider the (p,∞)-homogeneous case
for some prime p, or more generally the case in which all Borel subgroups are
nilpotent but now of bounded exponent. In this case any Borel subgroup is
a Carter subgroup of bounded exponent, and cases (1) and (2) of Lemma 5.7
cannot occur (recall that in case (1) N◦(U) has unbounded exponent). One
can also see in this case that any two distinct Borel subgroups have a finite
intersection, using Corollary 4.3.

We continue with the mere presence of a nontrivial p-unipotent subgroup for
some prime p.

Lemma 5.9. Let G be a ∗-locally◦◦ solvable group of finite Morley rank, p and
q two primes (possibly the same). Assume that some nontrivial p-unipotent
subgroup U of G commutes with a nontrivial q-torus T of G. Then there is a
Borel subgroup B of G containing: U , a maximal p-unipotent subgroup of G, T ,
and a Carter subgroup of G (and also of B) which contains T and is generous
in G.

Proof. Let Q be a Carter subgroup of G containing T , which exists and is
generous in G by Fact 3.32. We have Q and U in N◦(T ), and N◦(T ) ≤ B for
some Borel subgroup by ∗-local◦◦ solvability of G. Now B is the unique Borel
subgroup of G containing U by the Uniqueness Theorem, here Corollary 4.3 or
Corollary 4.4, and our claim follows.

Definition 5.10. If M is a proper definable subgroup of a group G of finite
Morley rank and p a prime, we say that

(1) M is p-weakly embedded in G if M has infinite p-subgroups and M ∩Mg

has no infinite p-subgroups for any g in G \M .

(2) M is p-strongly embedded in G if M has nontrivial p-subgroups and M ∩
Mg has no nontrivial p-subgroups for any g in G \M .

Again the following remarks were obviously made around [CJ04], but were
not explicitely stated there in order to keep that paper not too long.

Lemma 5.11. Let G be a ∗-locally◦◦ solvable group of finite Morley rank, p a
prime, U1 and U2 two distinct (nontrivial) maximal p-unipotent subgroups of
G. Then p-subgroups of N(U1)∩N(U2) are exceptional and have order at most
e(G).

Proof. By assumption, N◦(U1) and N◦(U2) are two distinct Borel subgroups of
G.
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Assume toward a contradiction that N(U1) ∩N(U2) contains a p-subgroup
X with C◦(X) solvable. We then have C◦(X) ≤ B for some Borel subgroup
B. Notice that C◦U1

(X) and C◦U2
(X) are both nontrivial by Fact 2.13 (2). Now

Lemma 4.6 implies N◦(U1) = N◦(U2), a contradiction.

Corollary 5.12. Let G be a ∗-locally◦◦ solvable group of finite Morley rank with
G◦ nonsolvable. Assume that for some prime p maximal p-unipotent subgroups
of G are nontrivial. Then N(U) is p-weakly embedded in G for any maximal
p-unipotent subgroup U of G, and p-strongly embedded whenever G is ∗-locally◦

solvable.

Proof. Assume N(U) ∩ N(Ug) has an infinite p-subgroup S for some g in G.
We have S◦ ≤ N◦(U) ∩ N◦(Ug), and as S is infinite S◦ is infinite as well. By
Fact 2.13 (1), S◦ is a central product of a p-unipotent subgroup V and a p-torus
T , and one of the two factors is nontrivial by assumption. Now Lemma 4.6 or
Lemma 5.11 gives in any case N◦(U) = N◦(Ug). Thus g ∈ N(U).

When G is ∗-locally◦ solvable one proceeds similarly, but now the only ex-
ceptional p-element is the identity.

We also observe that when a nontrivial p-unipotent subgroup commutes
with a nontrivial p-torus, then a maximal p-torus commutes with a maximal
p-unipotent subgroup by Lemma 5.9. One can then build a p-weakly embedded
subgroup as for the elimination of 2-mixed type simple groups [ABC08]. If U is a
definable p-unipotent subgroup of G, we denote by U⊥ the definable connected
subgroup Tp(C(U)), the subgroup of C(U) generated by the definable hulls
of its p-tori. By ∗-local◦◦ solvability, this group is solvable (for U nontrivial).
One easily sees that if [U1, U2] = 1, then U⊥1 = U⊥2 . Then one observes that
the graph on the set of nontrivial p-unipotent subgroups, where adjacency is
commutation, is not connected, as otherwise U⊥ is independent of the choice
of U , hence normal in G, and as it is nontrivial connected and solvable, G◦ is
solvable by ∗-local◦◦ solvability, a contradiction to the assumption. The group
G acts naturally on this graph. Let M be the normalizer in G of a connected
component C. If U ∈ C, then M ≤ N(U⊥). In particular M◦ is solvable, and M
has a unique maximal p-unipotent subgroup U . Hence M = N(U) = N(U⊥).
Notice that B = M◦ is a Borel subgroup of G. But in any case one shows that
M is p-weakly embedded in G.

With p = 2 these notions suffice to eliminate connected non-solvable mixed
type ∗-locally◦◦ solvable groups in [DJ10], by methods and/or results from the
simple case. For p 6= 2 Configuration 3.15 stands around. Prüfer ranks are
controlled via the notion of a strongly embedded subgroup in [DJ07b].

If one is not interested in conjugacy in Lemma 5.7 but merely in generic-
ity, then one can notice that a connected ∗-locally◦◦ solvable group with Up(G)
nontrivial but no generous Borel subgroup must satisfy that N◦(U) is a Carter
subgroup of bounded exponent for each maximal p-unipotent subgroup U ; oth-
erwise N◦(U) has unbounded exponent and one gets as in the proof of Lemma
5.7 either a nontrivial decent torus or N◦(U) generous, a contradiction to the
assumption.
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In particular, if the generic element of a connected ∗-locally◦◦ solvable group
G of finite Morley rank is not in a connected nilpotent subgroup, then G contains
no decent tori (Fact 3.32), contains nontrivial p-unipotent subgroups (Facts 5.1
and 5.6), and N◦(U) is a Carter subgroup of bounded exponent for each such
maximal p-unipotent subgroup U , generically composed of exceptional elements
by Lemma 4.11.

5.4 The toral homogeneous case

We shall now consider the case in which there is no bounded exponent subgroup,
and more specifically the toral homogeneous case. Before studying this specific
case precisely, we note that Carter subgroups are conjugate in any ∗-locally◦◦
solvable group G of finite Morley rank such that d(G) <∞, by the same proof
as in [Fré08].

As in Section 5.1, it is natural to call a ∗-locally◦◦ solvable group in which
Borel subgroups are all abelian a ∗-locally◦◦ abelian group. Requiring in addition
that Borel subgroups are divisible is equivalent to requiring that d(G) <∞.

Theorem 5.13. Let G be a ∗-locally◦◦ abelian group of finite Morley rank sat-
isfying d(G) < ∞. Assume furthermore that nontrivial toral elements are not
exceptional and that G contains no involution. Then, either

(1) G◦ is abelian, or

(2) G◦ is a full Frobenius group, with malnormal subgroup some (any) Borel
subgroup T .

We will use the following fact.

Fact 5.14 (Ali’s Lemma). Let G be a group, T1 and T2 two disjoint subgroups,
x1 ∈ T1 ∩ (N(T2) \ T2) and x2 ∈ T2 ∩ (N(T1) \ T1) satisfying x1T2 = x1

T2 ,
x2T1 = x2

T1 , and (x2
1)T2 = (x2

1)T2 . Then x1 and x2
1 are conjugate in G. In

particular, if x1 has prime order p 6= 2 and is central in T1, N(T1) controls
fusion in T1, and N(T1)/T1 is finite, then some nontrivial prime divisor of
N(T1)/T1 divides p− 1.

Proof. This is one of the essential contents of [Nes89], already re-employed
through the scope of [CJ04, Lemma 7.23]. By the fusion assumptions one can
conjugate x1 to x1x2 in x1T2, x1x2 to x2

1x2 in x2T1, and x2
1x2 to x2

1 in x2
1T2,

which yields the G-conjugacy of x1 and x2
1.

For the second point we now have a nontrivial induced automorphism of 〈x1〉
in N(T1)/T1, and the cyclic group 〈x1〉 of prime order p has an automorphism
group of order p− 1.

We now proceed to the proof of Theorem 5.13.

Proof. In order to prove Theorem 5.13 we now consider G a connected ∗-locally◦◦
abelian group, and fix a Borel subgroup T , which is divisible abelian by assump-
tion. If G is solvable, then G = T and we are in case (1). So we may assume G
not solvable.
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As in Lemma 5.2, any two Borel subgroups T1 and T2 must have a finite
intersection E, and being a finite subgroup of a divisible abelian group E must
be toral if it is nontrivial. If E 6= 1, then T1, T2 ≤ C◦(E), and one gets either
T1 = T2 when C◦(E) is solvable, or a nontrivial exceptional toral subgroup
otherwise, which is excluded by assumption. Hence distinct Borel subgroups
are pairwise disjoint. As usual, each is generous, and they are all conjugate.

As any element of G also has an infinite centralizer, any such element must
centralize an infinite abelian subgroup by Lemma 2.6 (1), and in particular
normalizes the unique conjugate of T containing it.

This shows that G = N(T )G. If N(T ) = T , then T is malnormal in G by
disjointness of pairwise distinct Borel subgroups, and G = TG, and thus G is a
full Frobenius group with malnormal subgroup T , as desired.

Hence the analysis boils down to showing that T is selfnormalizing. Assume
on the contrary T < N(T ), and let x be an element of order p modulo T for
some prime p > 2 (as G contains no involutions), which may be assumed to be
itself a p-element of G by Fact 5.6, and in fact inside a p-torus.

By conjugacy, one concludes that T contains a maximal p-torus Tp which
is nontrivial. Now x is in a conjugate T gp of Tp and xp ∈ Tp. As T g ∩ T = 1,
as otherwise T = T g and x ∈ T g = T , xp ∈ T ∩ T g = 1. For any element y
in xT , the definable hull H(y) of y contains also a p-element y1 by Fact 5.6,
which similarly belongs to a maximal torus T1 distinct from T . Now C◦T (y) ≤
C◦T (y1) ≤ T ∩ T1, and thus any element y in xT has a finite centralizer in T .
Hence yT is generic in xT for any y in xT , and as the Morley degree is one
one gets xT = xT . Now x normalizes T and centralizes a nontrivial element
z in the elementary abelian p-subgroup of T . We have z normalizing Tx, the
torus containing x, without being inside, and similarly zTx = zTx (this is typical
of [Nes89]. See also [CJ04, Lemma 7.19]). We are now in situation to apply
Fact 5.14. Noticing that N(T ) controls fusion in the torsion subgroup of T by
Corollary 2.12, this gives a contradiction by choosing for p the smallest prime
divisor of N(T )/T .

We note similarities between groups as in Theorem 5.13 (2) with those of
[JOH04]. These are far from being stable by [JMN08], but there are some
hints for the existence of (at least partially) stable such groups, as envisioned
in [Jal08a, §1].

We also note that a reduction to Fact 5.14 yields involutions or the triviality
of the Weyl group in any group of finite Morley rank without non-trivial p-
unipotent subgroups [BC07]. In particular for the last paragraph of the proof
of Theorem 5.13 we could have refered to this.

Using the triviality of Weyl groups in connected groups without involutions
and without p-unipotent subgroups, one can give a general decomposition as in
Theorem 5.13 without non-exceptionality assumption, with the Galois connec-
tion of Section 3.4.

Theorem 5.15. Let G be a ∗-locally◦◦ abelian group of finite Morley rank sat-
isfying d(G) < ∞, and without involutions. Then G◦ has an abelian generous
selfnormalizing Carter subgroup T such that G◦ = TG

◦
.
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Proof. This is similar to the proof of Theorem 5.13, using Lemma 5.2 for the
generosity of (divisible abelian) Borel subgroups T . Notice also that such (con-
jugate) Borel subgroups T are selfnormalizing by the above mentioned result of
[BC07], or a more direct reduction to Fact 5.14 here, and cover G◦ by the same
argument as in the proof of Theorem 5.13 again.

In general one cannot say much more in Theorem 5.15, except describing the
full group G◦ by the graph of finite exceptional closed subsets of the divisible
abelian Borel subgroup T introduced at the end of Section 3.4 and delineated
in Lemma 3.31. In fact, exceptional subsets of T are in the divisible torsion
subgroup of T , and in a finite subset of it by Lemma 3.28. One easily sees that
closed exceptional subsets of T correspond exactly to intersections of T with
distinct conjugates of T . If (X0, · · · , Xk) is a maximal chain of exceptional closed
subsets of T in the graph of exceptional closed subsets of T (i.e., with (Xi, Xi+1)
a minimal extension for each i), then X0 = Z(G◦), C◦(Xi) = CG◦(Xi) for each
i (by a Frattini Argument following the conjugacy of generous Carter subgroups
and by triviality of the Weyl group N(T )/T in G◦) and the center of this group
is Xi, and each group C◦(Xi)/Xi also satisfies the assumptions of Theorem 5.15,
with decreasing exception indices as i increases. The last factor C◦(Xk)/Xk is
as in Theorem 5.13 by Lemma 3.29.

Hence any group as in Theorem 5.15 is entirely described as above by the
finite graph of exceptional closed subsets of T . In particular the picture in The-
orem 5.15 looks like Configuration 3.15, where all Borel subgroups involved are
decent tori but potentially with more complexity involved in the finite graph of
exceptional subsets of T . As for Theorem 5.13, constructions of such abstract
groups can be obtained as in [JOH04] with any finite graph for T (compatible
with the conditions of Lemma 3.31), similarly with a bad control on the com-
plexity of their model theory by the general construction but perhaps with some
stability if more care is taken.

The case of groups as in Theorems 5.13 and 5.15 but with involutions will
be considered in [DJ07a], and eventually disappear by the analysis of this paper
and the contents of [Nes89].
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