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PFISTER’S THEOREM FOR ORTHOGONAL INVOLUTIONS OF

DEGREE 12

SKIP GARIBALDI AND ANNE QUÉGUINER-MATHIEU

Abstract. We use the fact that a projective half-spin representation of Spin12

has an open orbit to generalize Pfister’s result on quadratic forms of dimension
12 in I

3 to orthogonal involutions.

In his seminal paper [Pf], Pfister proved strong theorems describing quadratic
forms of even dimension ≤ 12 that have trivial discriminant and Clifford invariant,
i.e., that are in I3. His results have been extended to quadratic forms of dimension
14 in I3 by Rost, see [R] or [Ga]. One knows also extensions of these theorems where
quadratic forms are replaced by central simple algebras with orthogonal involution,
except in degree 12. The purpose of this paper is to complete this picture by giving
the extension in the degree 12 case. The principle underlying the quadratic forms
results and our extension is that a projective half-spin representation of Spinn for
even n has an open orbit precisely for n ≤ 14, cf. [R], [I], and [SK].

Let us first recall what is already known. We consider quadratic forms q of even
dimension (resp. central simple algebras with orthogonal involution (A, σ) of even
degree) with trivial discriminant and Clifford invariant. If q has dimension < 8,
then q is hyperbolic by the Arason-Pfister Hauptsatz [L, X.5.1]. This also holds in
the non split case: if A has degree < 8, then σ is hyperbolic, see e.g. [Ga 08, 1.4]
or [Q, 4.4]. If q has dimension 8, then q is similar to a 3-Pfister form [L, X.5.6];
if A has degree 8, then (A, σ) is isomorphic to a tensor product ⊗3

i=1(Qi, σi) of
quaternion algebras with orthogonal involution [KMRT, 42.11]. If A has degree 10
or 14, then A is necessarily split [Ga 08, 1.5], so there is no interesting generalization
of the theorem on quadratic forms. The remaining case is where q has dimension
12, where Pfister proved that q is isomorphic to φ ⊗ ψ for some 1-Pfister φ and 6-
dimensional form ψ with trivial discriminant, see [Pf, pp. 123, 124] or [Ga, 17.13].
In Theorem 3.1 below, we prove an analogous statement for (A, σ) in case A has
degree 12. We do not use Pfister’s theorem on 12-dimensional quadratic forms in
our proof, so we obtain his result as a corollary (Corollary 3.2).

The paper comes in three sections. First, we study quadratic extensions of alge-
bras with involution, and in particular orthogonal extensions of unitary involutions,
as considered in [BP, App. 2], [ET, §3], and [QT, 2.14]. Second, we show how to
construct an algebra with orthogonal involution that has trivial discriminant and
Clifford invariant from any exponent 2 algebra with unitary involution. Third, we
prove that in degree 12, this construction produces every central simple algebra
with orthogonal involution that has trivial discriminant and Clifford invariant.

In the language of linear algebraic groups, our results are as follows. Our con-
struction takes a group of type 2An−1 (e.g., SUn) and produces a group of type
1Dn (e.g., Spin2n). Our Theorem 3.1 shows that, over a field F , every algebraic
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group of type D6 with a half-spin representation defined over F is obtained by our
construction.

Global conventions. We work over a base field F of characteristic 6= 2. Typically,
we use the notation and basic language of [KMRT] without comment. A few main
points are: We extend the notions of central simple algebra and Brauer-equivalence
over a quadratic field extension K/F in an obvious way to include also the case
where K is the split étale algebra F × F . For a ∈ A×, we write Int(a) for the map
x 7→ axa−1 on A.

Let (A, σ) be a central simple algebra of even degree with orthogonal involution.
The (signed) discriminant of σ is an element of F×/F×2 = H1(F,µ2). If the
discriminant of σ is trivial, then the even Clifford algebra of (A, σ) is a product
C+ ×C− of central simple algebras such that [C+]− [C−] equals [A] in the Brauer
group of F (see for instance [KMRT, (9.12)]). The Clifford invariant is the class of
[C+] or [C−] in the quotient Br(F )/[A].

Following Becher, for any n-dimensional quadratic form q over F , we write Adq
for the split algebra with adjoint involution (Mn(F ), adq).

1. Quadratic extensions of algebras with involution

1.1. Let (A, σ) be a central simple F -algebra with involution, and suppose that A
contains a σ-stable quadratic étale F -algebra K. One can write K as F [δ]/(δ2 − d)
for some d ∈ F×, so this hypothesis is equivalent to saying: there is a non-central
δ ∈ A such that σ(δ) = ±δ and δ2 ∈ F×. The centralizer B of K in A is a central
simple K-algebra Brauer-equivalent to A⊗K, and of degree 1

2 deg(A). We write τ
for the involution on B induced by σ, and we say that (A, σ) is a quadratic extension
of (B, τ). Note in particular that if A and B are division, A is a quadratic internal
extension of B as in Dieudonné [D].

Example 1.2. Let (Q, γ) be a quaternion F -algebra, with involution of the first
kind. For any γ symmetric or skew-symmetric pure quaternion i, (Q, γ) is a qua-
dratic extension of (F (i), γ|F (i)).

Example 1.3. Consider now another algebra with involution of the first kind
(B0, τ0) over F ; the tensor product (A, σ) = (B0, τ0)⊗(Q, γ) is a quadratic extension
of (B, τ) = (B0, τ0) ⊗ (F (i), γ|F (i)).

Example 1.4. In particular, if a quadratic form q decomposes as ψ ⊗ 〈1,−d〉, the

algebra with involution Adq is a quadratic extension of Adψ ⊗F (F (
√
d), )̄.

1.5. We will now restrict our attention to extensions of K/F -unitary involutions,
that is we assume K = F [δ] with δ2 = d and σ(δ) = −δ. If A is not split, σ is not
orthogonal, or σ has even Witt index (e.g., if σ is anisotropic), then by [BST, 3.3],
the existence of such a δ is equivalent to the statement σ is hyperbolic over F or a
quadratic extension of F .

One remarkable fact about the situation in 1.1 is that the involution σ is uniquely
determined by its restriction τ :

Lemma 1.6. Let (A, σ) be a quadratic extension of (B, τ), and assume that τ is
K/F unitary. The only involutions on A that agree with τ on B are σ and Int(δ)◦σ.
In particular, there is a unique orthogonal (resp. symplectic) involution on A that
is τ on B.
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Proof. If τ is K/F unitary, then in particular it acts on F as the identity, and
every involution on A that agrees with τ on B is of the first kind. Let σ′ be such
an involution, and pick a ∈ A× such that σ(a) = ±a and σ′ = Int(a) ◦ σ. Since
σ′ and σ agree on B, the element a centralizes B and by the Double Centralizer
Theorem belongs to K. If σ(a) = a, this means a is in F and σ′ = σ. Otherwise,
a ∈ δF and σ′ = Int(δ) ◦ σ and the type of σ′ is opposite that of σ. �

Remark 1.7. It is obvious, both from the proof above and from Example 1.2 that
this is not true anymore if τ is of the first kind.

1.8. Lemma 1.6 shows that σ is completely determined by its restriction to B. We
now describe an explicit procedure to recover (A, σ) from (B, τ) if we know the
Brauer class of A and the type of σ, thus proving:

Proposition 1.9. Let K be a quadratic étale F -algebra and (B, τ) a central simple
K-algebra with unitary K/F -involution. We assume B has exponent 2, and we
fix a Brauer class β ∈ Br2(F ) whose restriction to K is the class of B. There
exists a unique orthogonal (resp. symplectic) quadratic extension (A, σ) of (B, τ)
with Brauer class β.

Proof. We prove existence, beginning as in [ET, pp. 380, 381]: Since B has expo-
nent 2, it has an involution ν of the first kind of the desired type (orthogonal or
symplectic). One can find an element u ∈ B× such that

(1.10) ν(u) = τ(u) = u and (ντ)2(x) = uxu−1 (x ∈ B).

We define an F -algebra A1 to be the vector space B⊕Bz1 with multiplication rules

z2
1 = u and z1b = (ντ)(b) z1.

It is a central simple F -algebra [A, Chap. 11, Th. 10]. Moreover, the centralizer of
K in A1 is B. So the Brauer class of A1 ⊗F K is the class of B, that is β extended
to K, and there is some choice of λ ∈ F× such that A1⊗ (K,λ) has Brauer-class β.

Equations (1.10) only determine u up to a central factor. By [KMRT, 13.41]
replacing u by λu in the construction above produces an algebra A = B⊕Bz with
Brauer class β.

This algebra A is endowed with an involution σ defined by

(1.11) σ(b1 + b2z) := τ(b1) + zτ(b2) (b1, b2 ∈ B).

We show that this involution has the same type as ν. Write Sym (A, σ) and
Sym (B, τ) for the subspaces of symmetric elements. Clearly,

Sym (A, σ) = Sym (B, τ) ⊕ z Sym(B, ν).

So the dimension over F of Sym (A, σ) is

dimF Sym (A, σ) = m2 +m(m+ ε) =
2m(2m+ ε)

2
,

where m is the degree of B, and ε = ±1 the type of ν. This proves that σ also is
of type ε.

By Lemma 1.6, the isomorphism class of (A, σ) depends only on (B, τ), β, and
the type of σ, and not on the particular choices of u and ν. �

Example 1.12. If (B, τ) is hyperbolic (e.g., if K = F × F ), then B contains an
idempotent e satisfying τ(e) = 1 − e; the same equalities also hold in A, so (A, σ)
is hyperbolic [BST, 2.1].
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Example 1.13. Assume that (B, τ) has a descent, that is B = B0 ⊗F K and
τ = τ0 ⊗ ¯ for some central simple algebra B0 over F with involution τ0 of the
first kind. (For example, this holds if B is split.) Pick λ ∈ F× such that β is
the Brauer class of B0 ⊗ (K,λ). The algebra with involution (B, τ) has, up to
isomorphism, exactly two extensions with Brauer class β, one of orthogonal type
and one of symplectic type. They both decompose as

(1.14) (A, σ) = (B0, τ0) ⊗ ((K,λ), γ),

where either γ is the only orthogonal involution on (K,λ) that acts as ¯ on K, and
σ is of the same type as τ0, or γ is the canonical involution on (K,λ), and σ and τ0
are of opposite type. This follows directly from Example 1.3 and Proposition 1.9.

Remark 1.15. We now sketch the relationship between (B, τ) and (A, σ) from the
perspective of algebraic groups. Write G for the group SO(A, σ) if σ is orthogonal,
resp. Sp(A, σ) if σ is symplectic, and suppose that K = F [δ] is a field. Over
a separable closure of F , the eigenspaces V,W of δ are parallel totally isotropic
subspaces. The stabilizers P,Q of V,W in G are maximal parabolic subgroups
defined over K. Their intersection consists of the elements of G that stabilize both
V and W , i.e., that commute with δ. It follows that the intersection L := P ∩Q is
an F -defined subgroup of G. Its F -points are

L(F ) = {b ∈ B | τ(b)b = 1B and NK/F (NrdB(b)) = 1F }.

The group L is reductive with center the norm 1 elements of K× and derived
subgroup SU(B, τ). Obviously, L is a Levi subgroup of P and Q, hence P and Q are
opposite parabolics. Moreover, the nontrivial F -automorphism of K interchanges
the eigenspaces of δ hence also P and Q.

In this section, we have described how to construct (A, σ) from (B, τ); finding
(B, τ) in (A, σ) is a triviality given K. The second, easier direction is also standard
from the viewpoint of algebraic groups: If we assume that σ is hyperbolic over a
quadratic extension K/F , then [PR, p. 383, Lemma 6.17′] gives the existence of
opposite parabolic subgroups P and Q over K like those in the previous paragraph.
(But note that this result requires P and Q to be conjugate, so it does not apply
in case σ is orthogonal and degA ≡ 2 mod 4.)

2. Orthogonal extensions of (B, τ) and their invariants

From now on, we consider algebras with orthogonal involution (A, σ) that are
quadratic extensions of some unitary (B, τ). Suppose further that B has even
degree, so that the degree of A is divisible by 4.

2.1. We claim that the discriminant of σ is trivial and the class of the discriminant
algebra of (B, τ) and the Clifford invariant of (A, σ) agree in H2(F, µ2)/[A]. It
suffices to check these claims when A is split, as can be seen by extending scalars
to the function field of the Severi-Brauer variety of A. In that case, (A, σ) is given
by (1.14) where B0 is split, and τ0 and γ are orthogonal. The discriminant of σ is
obviously trivial. Further, the even Clifford algebra of (A, σ) is (K, disc τ0) by [L,
V.3.15, V.3.16] or [KMRT, p. 147], and the discriminant algebra of (B, τ) is also
Brauer-equivalent to (K, disc τ0) by [KMRT, 10.33].

Hence, (A, σ) has trivial discriminant and Clifford invariant if and only if the
discriminant algebra of (B, τ) is split or Brauer equivalent to A. We have proved:
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Lemma 2.2. For any even degree algebra (B, τ) with unitary K/F involution, the
unique orthogonal quadratic extension of (B, τ) Brauer equivalent to the discrimi-
nant algebra D(B, τ) has trivial discriminant and Clifford invariant. �

The orthogonal quadratic extensions given by Lemma 2.2 can have index 1, 2,
or 4, and all three are possible. Indeed, the discriminant algebra D(B, τ) has index
dividing 4 [KMRT, 10.30]. Examples where B has exponent 2 (as in 1.9) and
D(B, τ) has index 4 can be found in [KMRT, p. 145, Exercise 13] or can easily be
constructed from Example 1.13, even over some fields of cohomological dimension
≤ 2.

Example 2.3. Suppose that B is split and has even degree n, and the discriminant
algebra D(B, τ) is also split. Then (B, τ) descends as in Example 1.13, with τ0 ad-
joint to a quadratic form ψ0

∼= 〈α1, α2, . . . , αn〉. As the discriminant algebra is split,
the discriminant of ψ0 is a norm from K. So the form ψ := 〈(discψ0)α1, α2, . . . , αn〉
is also a descent of τ , i.e., adψ ⊗¯ is an involution on Mn(F ) ⊗K isomorphic to τ .
Thus, the orthogonal quadratic extensions of (B, τ) can be decomposed as

(2.4) (A, σ) = Adψ ⊗ (Q, γ)

where ψ has trivial discriminant, Q is a quaternion algebra split by K, and γ is the
unique orthogonal involution on Q whose restriction to K is .̄

By 2.1, those (A, σ) have trivial discriminant and Clifford invariant. As the
algebra has index 2, there is an Arason/e3 invariant defined for it via the method
of [Be] or either of the methods in [Ga 08]. We find:

(2.5) e3(A, σ) = [K] · e2(ψ) ∈ H3(F,Z/2Z)/〈[Q]〉,
for ψ as in (2.4) and where [K] denotes the class of K in H1(F,µ2) and e2(ψ) is
the Clifford invariant of ψ. To prove this formula, one need only check it when Q
is split. In that case, adψ ⊗ γ is adjoint to the quadratic form ψ tensored with the
norm form of the quadratic extension K/F , and the formula is clear.

3. Generalization of Pfister’s theorem

From any central simple algebra (B, τ) of even degree with unitary involution,
2.2 produces a central simple algebra of degree 2n with trivial discriminant and
Clifford invariant. We assert that for n = 6, this construction produces all such
algebras of degree 12.

Theorem 3.1. Let (A, σ) be a central simple algebra with orthogonal involution,
where A has degree 12. If σ has trivial discriminant and Clifford invariant, then
(A, σ) is a quadratic extension of some central simple algebra (B, τ) of degree 6 and
exponent 2 with unitary involution and such that the discriminant algebra D(B, τ)
is Brauer-equivalent to A.

It is an obvious corollary of the theorem that the central simple algebra (A, σ)
is split by an extension of degree dividing 4. Roughly speaking, this says that the
torsion index of the half-spin group in dimension 12 is 4, a result of Totaro’s [To,
5.1].

Proof of Th. 3.1. If A is split, then σ is adjoint to a 12-dimensional quadratic form
q in I3, which cannot have odd Witt index by Pfister’s theorem for 10-dimensional
quadratic forms in I3 and the Arason-Pfister Hauptsatz. Therefore, by 1.5 it suffices
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to prove that σ is hyperbolic over F or a quadratic extension of F . We may assume
that F is infinite.

As (A, σ) has trivial discriminant and Clifford invariant, one of the half-spin
representations V of Spin (A, σ) is defined over F . Over an algebraic closure Falg,
the group Spin (A, σ) has an open orbit O in P(V )(Falg), see [I, p. 1012] or [Ga].
But F is infinite, so there is some v ∈ V over F such that [v] belongs to O.

We consider the image in SO(A, σ) of the stabilizer of [v] in Spin (A, σ). Its
identity component H is isomorphic over Falg to SL6 by [I]. Indeed, over Falg, we
may identify SO(A, σ) with the special orthogonal group SO12 of the symmetric
bilinear form

(x, y) 7→ xt
(

0 16

16 0

)

y

where 16 denotes the 6-by-6 identity matrix. As [v] belongs to the orbit O, up to
conjugacy H is the copy of SL6 in SO12 given by the inclusion

a 7→
(

a 0
0 a−t

)

.

From this, we see that the natural 12-dimensional representation of SO12 decom-
poses as a direct sum of inequivalent 6-dimensional representations of SL6. The
centralizer C of H in SO(A, σ) is a rank 1 torus; it consists over Falg of the matri-
ces

(

α16 0

0 α−116

)

for α ∈ F×
alg.

So there is a field K/F such that [K : F ] = 1 or 2 that splits C. The centralizer
of C(F ) in A⊗K is (as can be seen over Falg) a product of central simple algebras
B+×B−, where B+ and B− have degree 6 and σ interchanges the two factors. Put
δ := (1,−1) in B+×B−. Obviously δ2 = 1 and σ(δ) = −δ, because these equations
hold over Falg. It follows that (A, σ) is hyperbolic over K.

This already proves that (A, σ) is a quadratic extension of some (B, τ) with
unitary K/F involution. Moreover, by 2.1 the discriminant algebra D(B, τ) has
Brauer class [A] or 0. Hence we are done except if D(B, τ) is split and A is non
split. If so, the algebra B is split by [KMRT, 10.30], and (A, σ) is of the special
form described in Example 2.3. We view Q as generated by pure quaternions δ and
j that anti-commute and such that δ2 = d and j2 = λ for some λ ∈ F× such that
Q = (K,λ). Let ψ = 〈α1, α2, . . . , α6〉 be the quadratic form of discriminant 1 as in
equation (2.4). It naturally gives a γ-hermitian form on Q. Scaling the first basis
vector (of length α1) by j gives an isomorphic γ-hermitian form and changes the
α1 in the diagonalization to γ(j)α1j = j2α1 = λα1; this form is obtained from the
quadratic form ψ′ = 〈λα1, α2, . . . , α6〉. That is,

(A, σ) ∼= Adψ ⊗ (Q, γ) ∼= Adψ′ ⊗ (Q, γ).

That is, (A, σ) can also be constructed from (B, τ ′) = Adψ′ ⊗ (K, )̄, for which the
discriminant algebra is Brauer-equivalent to (K, discψ′) = (K,λ) = Q. �

Corollary 3.2 (Pfister’s Theorem). If q is a 12-dimensional form with trivial
discriminant and Clifford invariant, then q is isomorphic to φ ⊗ ψ for some 1-
Pfister form φ and 6-dimensional quadratic form ψ with trivial discriminant.

Proof. By Th. 3.1, (M12(F ), adq) is a quadratic extension of (M6(K), τ) for some
quadratic étale F -algebra K and unitary involution τ with split discriminant alge-
bra. By Example 2.3 and specifically (2.4), q is similar to the tensor product of the
norm form of K/F (call it φ) with a 6-dimensional quadratic form ψ of discriminant
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1. Replacing ψ with a multiple does not change the discriminant, and it completes
the proof. �

Remark 3.3. Theorem 3.1 says something about groups G of type E7 whose Tits
index (as defined in [Ti 66]) is

q q q q q q

q

d

or has more vertices circled. For such a G, the obvious subdiagram of type D6

corresponds to a semisimple subgroup H of type D6, and the isogeny class of H
determines G by Tits’s Witt-type theorem [Ti 66, Remark 2.7.2(d)]. It follows from
[Ti 71, §5] that H is isogenous to SO(A, σ), where (A, σ) is as in Theorem 3.1.

We remark that such groups G are the only remaining open case of the Kneser-
Tits Problem over fields of cohomological dimension ≤ 2, see [Gi, 8.6].
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