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We study the Cauchy problem for the dissipative Benjamin-Ono equations u t + Hu xx + |D| α u + uu x = 0 with 0 ≤ α ≤ 2. When 0 ≤ α < 1, we show the ill-posedness in H s (R), s ∈ R, in the sense that the flow map u 0 → u (if it exists) fails to be C 2 at the origin. For 1 < α ≤ 2, we prove the global well-posedness in H s (R), s > -α/4. It turns out that this index is optimal.

1 Introduction, main results and notations

Introduction

In this work we consider the Cauchy problem for the following dissipative Benjamin-Ono equations

u t + Hu xx + |D| α u + uu x = 0, t > 0, x ∈ R, u(0, •) = u 0 ∈ H s (R), (dBO) 
with 0 ≤ α ≤ 2, and where H is the Hilbert transform defined by

Hf (x) = 1 π pv 1 x * f (x) = F -1 -i sgn(ξ) f (ξ) (x)
and |D| α is the Fourier multiplier with symbol |ξ| α .

When α = 0, (dBO) is the ordinary Benjamin-Ono equation derived by Benjamin [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF] and later by Ono [START_REF] Ono | Algebraic solitary waves in stratified fluids[END_REF] as a model for one-dimensional waves in deep water. The Cauchy problem for the Benjamin-Ono equation has been extensively studied these last years. It has been proved in [START_REF] Saut | Sur quelques généralisations de l'équation de Korteweg-de Vries[END_REF] that (BO) is globally well-posed in H s (R) for s ≥ 3, and then for s ≥ 3/2 in [START_REF] Ponce | On the global well-posedness of the Benjamin-Ono equation[END_REF] and [START_REF] Iório | On the Cauchy problem for the Benjamin-Ono equation[END_REF]. In [START_REF] Tao | Global well-posedness of the Benjamin-Ono equation in H 1 (R)[END_REF], Tao get the well-posedness of this equation for s ≥ 1 by using a gauge transformation (which is a modified version of the Cole-Hopf transformation). Recently, combining a gauge transformation together with a Bourgain's method, Ionescu and Kenig [START_REF] Ionescu | Global well-posedness of the Benjamin-Ono equation in low-regularity spaces[END_REF] shown that one could go down to L 2 (R), and this seems to be, in some sense, optimal. It is worth noticing that all these results have been obtained by compactness methods. On the other hand, Molinet, Saut and Tzvetkov [START_REF] Molinet | Ill-posedness issues for the Benjamin-Ono and related equations[END_REF] proved that, for all s ∈ R, the flow map u 0 → u is not of class C 2 from H s (R) to H s (R). Furthermore, building suitable families of approximate solutions, Koch and Tzvetkov proved in [START_REF] Koch | Nonlinear wave interactions for the Benjamin-Ono equation[END_REF] that the flow map is actually not even uniformly continuous on bounded sets of H s (R), s > 0. As an important consequence of this, since a Picard iteration scheme would imply smooth dependance upon the initial data, we see that such a scheme cannot be used to get solutions in any space continuously embedded in C([0, T ]; H s (R)).

When α = 2, (dBO) is the so-called Benjamin-Ono-Burgers equation u t + (H -1)u xx + uu x = 0.

(BOB)

Edwin and Robert [START_REF] Edwin | The Benjamin-Ono-Burgers equation: an application in solar physics[END_REF] have derived (BOB) by means of formal asymptotic expansions in order to describe wave motions by intense magnetic flux tube in the solar atmosphere. The dissipative effects in that context are due to heat conduction. (BOB) has been studied in many papers, see [START_REF] Dix | Temporal asymptotic behavior of solutions of the Benjamin-Ono-Burgers equation[END_REF][START_REF] Fokas | Global solutions and their asymptotic behavior for Benjamin-Ono-Burgers type equations[END_REF][START_REF] Zhang | Local Lipschitz continuity of a nonlinear bounded operator induced by a generalized Benjamin-Ono-Burgers equation[END_REF].

Working in Bourgain's spaces containing both dispersive and dissipative effects1 , Otani showed in [START_REF] Otani | Bilinear estimates with applications to the generalized Benjamin-Ono-Burgers equations[END_REF] that (BOB) is globally well-posed in H s (R), s > -1/2. In this paper, we prove that this index is in fact critical since the flow map u 0 → u is not of class C 3 from H s (R) to H s (R), s < -1/2. Intriguingly, this index coincides with the critical Sobolev space for the Burgers equation u t -u xx + uu x = 0, see [START_REF] Dix | Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation[END_REF][START_REF] Bekiranov | The initial-value problem for the generalized Burgers' equation[END_REF]. This result is in a marked contrast with what occurs for the KdV-Burgers equation which is well-posed above H -1 (R), see [START_REF] Molinet | On the low regularity of the Korteweg-de Vries-Burgers equation[END_REF]. Now consider the general case 0 ≤ α ≤ 2. By running the approach of [START_REF] Molinet | On the low regularity of the Korteweg-de Vries-Burgers equation[END_REF] combined with the smoothing relation obtained in [START_REF] Otani | Bilinear estimates with applications to the generalized Benjamin-Ono-Burgers equations[END_REF], we can only get that the problem (dBO) is well-posed in H s (R) for 3/2 < α ≤ 2 and s > 1/2 -α/2. This was done by Otani in [START_REF] Otani | Well-posedness of the generalized Benjamin-Ono-Burgers equations in Sobolev spaces of negative order[END_REF]. Here we improve this result by showing that (dBO) is globally well-posed in H s (R), for 1 < α ≤ 2 and s > -α/4. It is worth comparing (dBO) with the pure dissipative equation

u t + |D| α u + uu x = 0. (1.1)
In the Appendix, we show that (1.1) with 1 < α ≤ 2 is well-posed in H s (R) as soon as s > 3/2 -α. The techniques we use are very common in the context of semilinear parabolic problems and can be easily adapted to (dBO). In particular when α = 2, this provides an alternative (and simpler) proof of our main result. When α < 2, clearly we see that the dispersive part in (dBO) plays a key role in the low regularity of the solution.

We are going to perform a fixed point argument on the integral formulation of (dBO) in the weighted Sobolev space

u X b,s α = i(τ -ξ|ξ|) + |ξ| α b ξ s Fu(τ, ξ) L 2 (R 2 ) . (1.2) 
This will be achieved by deriving a bilinear estimate in these spaces. By Plancherel's theorem and duality, it reduces to estimating a weighted convolution of L 2 functions. In some regions where the dispersive effect is too weak to recover the lost derivative in the nonlinear term at low regularity (s > -α/4), in particular when considering the high-high interactions, we are led to use a dyadic approach. In [START_REF] Tao | Multilinear weighted convolution of L 2 -functions, and applications to nonlinear dispersive equations[END_REF], Tao systematically studied some nonlinear dispersive equations like KdV, Schrödinger or wave equation by using such dyadic decomposition and orthogonality. Following the spirit of Tao's works, we shall prove some estimates on dyadic blocks, which may be of independent interest. Indeed, we believe that they could certainly be used for other equations based on a Benjamin-Ono-type dispersion.

Next, we show that our well-posedness results turn out to be sharp. Adapting the arguments used in [START_REF] Molinet | Ill-posedness issues for the Benjamin-Ono and related equations[END_REF] to prove the ill-posedness of (BO), we find that the solution map u 0 → u (if it exists) cannot be C 3 at the origin from H s (R) to H s (R) as soon as s < -α/4. See also [START_REF] Bourgain | Periodic Korteweg de Vries equation with measures as initial data[END_REF][START_REF] Molinet | On the low regularity of the Korteweg-de Vries-Burgers equation[END_REF][START_REF] Molinet | Well-posedness results for the generalized Benjamin-Ono equation with small initial data[END_REF][START_REF] Vento | Sharp well-posedness results for the generalized Benjamin-Ono equation with high nonlinearity[END_REF] for situations where this method applies. Note that we need to prove the discontinuity of the third iterative term to obtain the condition s < -α/4, whereas the second iterate is usually sufficient to get an optimal result. On the other hand, we prove using similar arguments, that in the case 0 ≤ α < 1, the solution map fails to be C 2 in any H s (R), s ∈ R. This is mainly due to the fact that the operator |D| α is too weak to counterbalance the lost derivative which appears in the nonlinear term ∂ x u 2 .

Main results

Let us now formally state our results.

Theorem 1.1. Let 1 < α ≤ 2 and u 0 ∈ H s (R) with s > -α/4. Then for any T > 0, there exists a unique solution u of (dBO) in

Z T = C([0, T ]; H s (R)) ∩ X 1/2,s α,T . Moreover, the map u 0 → u is smooth from H s (R) to Z T and u belongs to C((0, T ], H ∞ (R)).
Remark 1.1. The spaces X b,s α,T are restricted versions of X b,s α defined by the norm (1.2). See Section 1.3 for a precise definition.

Remark 1.2. In [START_REF] Otani | Well-posedness of the generalized Benjamin-Ono-Burgers equations in Sobolev spaces of negative order[END_REF], Otani studied a larger family of dispersive-dissipative equations taking the form

u t -|D| 1+a u x + |D| α u + uu x = 0 (1.3)
with a ≥ 0 and α > 0. He showed that (1.3) is globally well-posed in H s (R) provided a + α ≤ 3, α > (3 -a)/2 and s > -(a + α -1)/2. If a = 0, it is clear that we get a better result, at least when α < 2. It will be an interesting challenge to adapt our method of proofs to (1.3) in the case a > 0.

Remark 1.3. Another interesting problem should be to consider the periodic dissipative BO equations

u t + Hu xx + |D| α u + uu x = 0, t > 0, x ∈ T, u(0, •) = u 0 ∈ H s (T), (1.4) 
Recall that in [START_REF] Molinet | Global well-posedness in L 2 for the periodic Benjamin-Ono equation[END_REF], Molinet proved the global well-posedness of the periodic BO equation in L 2 (T). To our knowledge, equation (1.4) in the case α > 0 has never been investigated.

Theorem 1.1 is sharp in the following sense.

Theorem 1.2. Let 1 ≤ α ≤ 2 and s < -α/4. There does not exist T > 0 such that the Cauchy problem (dBO) admits a unique local solution defined on the interval [0, T ] and such that the flow map u 0 → u is of class C 3 in a neighborhood of the origin from H s (R) to H s (R).

In the case 0 ≤ α < 1, we have the following ill-posedness result.

Theorem 1.3. Let 0 ≤ α < 1 and s ∈ R. There does not exist T > 0 such that the Cauchy problem (dBO) admits a unique local solution defined on the interval [0, T ] and such that the flow map u 0 → u is of class C 2 in a neighborhood of the origin from H s (R) to H s (R). The structure of our paper is as follows. We introduce a few notation in the rest of this section. In Section 2, we recall some estimates related to the linear (dBO) equations. Next, we prove the crucial bilinear estimate in Section 3, which leads to the proof of Theorem 1.1 in Section 4. Section 5 is devoted to the ill-posedness results (Theorems 1.2 and 1.3). Finally, we briefly study the dissipative equation (1.1) in the Appendix.

Notations

When writing A B (for A and B nonnegative), we mean that there exists C > 0 independent of A and B such that A ≤ CB. Similarly define A B and A ∼ B. If A ⊂ R N , |A| denotes its Lebesgue measure and χ A its characteristic function. For f ∈ S ′ (R N ), we define its Fourier transform F(f ) (or f ) by

Ff (ξ) = R N e -i x,ξ f (x)dx.
The Lebesgue spaces are endowed with the norm

f L p (R N ) = R N |f (x)| p dx 1/p , 1 ≤ p < ∞
with the usual modification for p = ∞. We also consider the space-time Lebesgue spaces L p x L q t defined by

f L p x L q t = f L q t (R) L p x (R)
.

For b, s ∈ R, we define the Sobolev spaces H s (R) and their space-time versions H b,s (R 2 ) by the norms

f H s = R ξ 2s | f (ξ)| 2 dξ 1/2 , u H b,s = R 2 τ 2b ξ 2s | u(τ, ξ)| 2 dτ dξ 1/2 , with • = (1 + | • | 2 ) 1/2
. Let V (•) be the free linear group associated to the linear Benjamin-Ono equation, i.e.

∀t ∈ R, F x (V (t)ϕ)(ξ) = exp(itξ|ξ|) ϕ(ξ), ϕ ∈ S ′ .
We will mainly work in the X b,s α space defined in (1.2), and in its restricted version X b,s α,T , T ≥ 0, equipped with the norm

u X b,s α,T = inf w∈X b,s α { w X b,s α , w(t) = u(t) on [0, T ]}. Note that since F(V (-t)u)(τ, ξ) = u(τ + ξ|ξ|, ξ), we can re-express the norm of X b,s α as u X b,s α = iτ + |ξ| α b ξ s u(τ + ξ|ξ|, ξ) L 2 (R 2 ) = iτ + |ξ| α b ξ s F(V (-t)u)(τ, ξ) L 2 (R 2 ) ∼ V (-t)u H b,s + u L 2 t H s+αb x .
Finally, we denote by S α the semigroup associated with the free evolution of (dBO),

∀t ≥ 0, F x (S α (t)ϕ)(ξ) = exp[itξ|ξ| -|ξ| α t] ϕ(ξ), ϕ ∈ S ′ ,
and we extend S α to a linear operator defined on the whole real axis by setting

∀t ∈ R, F x (S α (t)ϕ)(ξ) = exp[itξ|ξ| -|ξ| α |t|] ϕ(ξ), ϕ ∈ S ′ . (1.5)

Linear estimates

In this section, we collect together several linear estimates on the operators S α introduced in (1.5) and L α defined by

L α : f → χ R + (t)ψ(t) t 0 S α (t -t ′ )f (t ′ )dt ′ .
Recall that (dBO) is equivalent to its integral formulation

u(t) = S α (t)u 0 - 1 2 t 0 S α (t -t ′ )∂ x (u 2 (t ′ ))dt ′ . (2.1)
It will be convenient to replace the local-in-time integral equation (2.1) with a global-in-time truncated integral equation. Let

ψ be a cutoff function such that ψ ∈ C ∞ 0 (R), supp ψ ⊂ [-2, 2], ψ ≡ 1 on [-1, 1]
, and define ψ T (•) = ψ(•/T ) for all T > 0. We can replace (2.1) on the time interval [0, T ], T < 1 by the equation

u(t) = ψ(t) S α (t)u 0 - χ R + (t) 2 t 0 S α (t -t ′ )∂ x (ψ 2 T (t ′ )u 2 (t ′ ))dt ′ . (2.2)
Proofs of the results stated here can be obtained by a slight modification of the linear estimates derived in [START_REF] Molinet | On the low regularity of the Korteweg-de Vries-Burgers equation[END_REF].

Lemma 2.1. For all s ∈ R and all ϕ ∈ H s (R),

ψ(t)S α (t)ϕ X 1/2,s α ϕ H s . (2.3) Lemma 2.2. Let s ∈ R. For all 0 < δ < 1/2 and all v ∈ X -1/2+δ,s α , χ R + (t)ψ(t) t 0 S α (t -t ′ )v(t ′ )dt ′ X 1/2,s α v X -1/2+δ,s α . (2.4) 
To globalize our solution, we will need the next lemma.

Lemma 2.3. Let s ∈ R and δ > 0. Then for any f ∈ X

-1/2+δ,s α , t -→ t 0 S α (t -t ′ )f (t ′ )dt ′ ∈ C(R + ; H s+αδ ). Moreover, if (f n ) is a sequence satisfying f n → 0 in X -1/2+δ,s α , then t 0 S α (t -t ′ )f n (t ′ )dt ′ L ∞ (R + ;H s+αδ ) -→ 0.
3 Bilinear estimates

Dyadic blocks estimates

We introduce Tao's [k; Z]-multipliers theory [START_REF] Tao | Multilinear weighted convolution of L 2 -functions, and applications to nonlinear dispersive equations[END_REF] and derive the dyadic blocks estimates for the Benjamin-Ono equation.

Let Z be any abelian additive group with an invariant measure dη. For any integer k ≥ 2 we define the hyperplane

Γ k (Z) = {(η 1 , ..., η k ) ∈ Z k : η 1 + ... + η k = 0}
which is endowed with the measure

Γ k (Z) f = Z k-1 f (η 1 , ..., η k-1 , -(η 1 + ... + η k-1 ))dη 1 ...dη k-1 . A [k; Z]-multiplier is defined to be any function m : Γ k (Z) → C. The multiplier norm m [k;Z]
is defined to be the best constant such that the inequality

Γ k (Z) m(η) k j=1 f j (η j ) ≤ m [k;Z] k j=1 f j L 2 (Z) (3.1)
holds for all test functions f 1 , ..., f k on Z. In other words,

m [k;Z] = sup f j ∈S(Z) f j L 2 (Z) ≤1 Γ k (Z) m(η) k j=1 f j (η j ) .
In his paper [START_REF] Tao | Multilinear weighted convolution of L 2 -functions, and applications to nonlinear dispersive equations[END_REF], Tao used the following notations. Capitalized variables N j , L j (j = 1, ..., k) are presumed to be dyadic, i.e. range over numbers of the form 2 ℓ , ℓ ∈ Z. In this paper, we only consider the case k = 3, which corresponds to the quadratic nonlinearity in the equation. It will be convenient to define the quantities N max ≥ N med ≥ N min to be the maximum, median and minimum of N 1 , N 2 , N 3 respectively. Similarly, define L max ≥ L med ≥ L min whenever L 1 , L 2 , L 3 > 0. The quantities N j will measure the magnitude of frequencies of our waves, while L j measures how closely our waves approximate a free solution.

Here we consider [3; R × R]-multipliers and we parameterize R × R by η = (τ, ξ) endowed with the Lebesgue measure dτ dξ. Define

h j (ξ j ) = ξ j |ξ j |, λ j = τ j -h j (ξ j ), j = 1, 2, 3,
and the resonance function

h(ξ) = h 1 (ξ 1 ) + h 2 (ξ 2 ) + h 3 (ξ 3 ).
By a dyadic decomposition of the variables ξ j , λ j , h(ξ), we will be led to estimate

X N 1 ,N 2 ,N 3 ,H,L 1 ,L 2 ,L 3 [3;R×R] (3.2)
where

X N 1 ,N 2 ,N 3 ,H,L 1 ,L 2 ,L 3 = χ |h(ξ)|∼H 3 j=1 χ |ξ j |∼N j χ |λ j |∼L j . (3.3)
From the identities

ξ 1 + ξ 2 + ξ 3 = 0 (3.4)
and

λ 1 + λ 2 + λ 3 + h(ξ) = 0
on the support of the multiplier, we see that (3.3) vanishes unless

N max ∼ N med (3.5)
and

L max ∼ max(H, L med ). (3.6) Lemma 3.1. On the support of X N 1 ,N 2 ,N 3 ,H,L 1 ,L 2 ,L 3 , one has H ∼ N max N min . (3.7) Proof. Recall that h(ξ) = ξ 1 |ξ 1 | + ξ 2 |ξ 2 | + ξ 3 |ξ 3 |.
By symmetry, we can assume |ξ 3 | ∼ N min . This forces by (3.4) ξ 1 ξ 2 < 0. Suppose for example ξ 1 > 0 and ξ 2 < 0 (the other case being similar). Then if

ξ 3 > 0, h(ξ) = ξ 2 1 -ξ 2 2 + ξ 2 3 = ξ 2 1 -(ξ 1 + ξ 3 ) 2 + ξ 2 3 = -2ξ 1 ξ 3 and in this case |h(ξ)| ∼ N max N min . Now if ξ 3 < 0, then h(ξ) = ξ 2 1 -ξ 2 2 -ξ 2 3 = (ξ 2 + ξ 3 ) 2 -ξ 2 2 -ξ 2 3 = 2ξ 2 ξ 3
and it follows again that |h(ξ)| ∼ N max N min .

We are now ready to state the fundamental dyadic blocks estimates for the Benjamin-Ono equation.

Proposition 3.1. Let N 1 , N 2 , N 3 , H, L 1 , L 2 , L 3 > 0 satisfying (3.5), (3.6), (3.7).
1. In the high modulation case L max ∼ L med ≫ H, we have

(3.2) L 1/2 min N 1/2 min .
(3.8)

In the low modulation case

L max ∼ H, (a) ((++) coherence) if N max ∼ N min , then (3.2) L 1/2 min L 1/4 med , (3.9) 
(b) ((+-) coherence) if N 2 ∼ N 3 ≫ N 1 and H ∼ L 1 L 2 , L 3 , we have for any γ > 0 (3.2) L 1/2 min min(N 1/2 min , N 1/2-1/2γ max N -1/2γ min L 1/2γ med ).
(3.10)

Similarly for permutations of the indexes {1, 2, 3}.

(c) In all other cases, the multiplier (3.3) vanishes.

Proof. First we consider the high modulation case L max ∼ L med ≫ H. Suppose for the moment that L 1 ≥ L 2 ≥ L 3 and N 1 ≥ N 2 ≥ N 3 . By using the comparison principle (Lemma 3.1 in [START_REF] Tao | Multilinear weighted convolution of L 2 -functions, and applications to nonlinear dispersive equations[END_REF]), we have

(3.2) χ |ξ 3 |∼N 3 χ |λ 3 |∼L 3 [3;R×R] .
By Lemma 3.14 and Lemma 3.6 in [START_REF] Tao | Multilinear weighted convolution of L 2 -functions, and applications to nonlinear dispersive equations[END_REF],

(3.2)

χ |λ 3 |∼L 3 [3;R] χ |ξ 3 |∼N 3 [3;R] L 1/2 3 N 1/2 3 .
It is clear from symmetry that (3.8) holds for any choice of L j and N j , j = 1, 2, 3. Now we turn to the low modulation case H ∼ L max . Suppose for the moment that N 1 ≥ N 2 ≥ N 3 . The ξ 3 variable is currently localized to the annulus {|ξ 3 | ∼ N 3 }. By a finite partition of unity we can restrict it further to a ball {|ξ 3 -ξ 0 3 | ≪ N 3 } for some |ξ 0 3 | ∼ N 3 . Then by box localisation (Lemma 3.13 in [START_REF] Tao | Multilinear weighted convolution of L 2 -functions, and applications to nonlinear dispersive equations[END_REF]) we may localize ξ 1 , ξ 2 similarly to regions

{|ξ 1 -ξ 0 1 | ≪ N 3 } and {|ξ 2 -ξ 0 2 | ≪ N 3 } where |ξ 0 j | ∼ N j .
We may assume that |ξ 0 1 + ξ 0 2 + ξ 0 3 | ≪ N 3 since we have ξ 1 + ξ 2 + ξ 3 = 0. We summarize this symmetrically as

(3.2) χ |h(ξ)|∼H 3 j=1 χ |ξ j -ξ 0 j |≪N min χ |λ j |∼L j [3;R×R]
for some ξ 0 j satisfying

|ξ 0 j | ∼ N j for j = 1, 2, 3; |ξ 0 1 + ξ 0 2 + ξ 0 3 | ≪ N min .
Without loss of generality, we assume L 1 ≥ L 2 ≥ L 3 . By Lemma 3.6, Lemma 3.1 and Corollary 3.10 in [START_REF] Tao | Multilinear weighted convolution of L 2 -functions, and applications to nonlinear dispersive equations[END_REF], we get

(3.2) χ |h(ξ)|∼H 3 j=2 χ |ξ j -ξ 0 j |≪N min χ |λ j |∼L j [3;R×R] |{(τ 2 , ξ 2 ) : |ξ 2 -ξ 0 2 | ≪ N min , |τ 2 -h 2 (ξ 2 )| ∼ L 2 , |ξ -ξ 2 -ξ 0 3 | ≪ N min , |τ -τ 2 -h 3 (ξ -ξ 2 )| ∼ L 3 }| 1/2
for some (τ, ξ) ∈ R × R. For fixed ξ 2 , the set of possible τ 2 ranges in an interval of length O(L 3 ) and vanishes unless

h 2 (ξ 2 ) + h 3 (ξ -ξ 2 ) = τ + O(L 2 ).
On the other hand, inequality |ξ -

ξ 2 -ξ 0 3 | ≪ N min implies |ξ + ξ 0 1 | ≪ N min , hence (3.2) L 1/2 3 |Ω ξ | 1/2 for some ξ such that |ξ + ξ 0 1 | ≪ N min (in particular |ξ| ∼ N 1
) and with

Ω ξ = {ξ 2 : |ξ 2 -ξ 0 2 | ≪ N min , h 2 (ξ 2 ) + h 3 (ξ -ξ 2 ) = τ + O(L 2 )}. Let us write Ω ξ = Ω 1 ξ ∪ Ω 2 ξ with Ω 1 ξ = {ξ 2 ∈ Ω ξ : ξ 2 (ξ -ξ 2 ) > 0} Ω 2 ξ = {ξ 2 ∈ Ω ξ : ξ 2 (ξ -ξ 2 ) < 0}.
We need only to consider the three cases

N 1 ∼ N 2 ∼ N 3 , N 2 ∼ N 3 ≫ N 1 and N 1 ∼ N 2 ≫ N 3 (the case N 1 ∼ N 3 ≫ N 2 follows by symmetry). Estimate of |Ω 1 ξ | :
In Ω 1 ξ we can assume ξ 2 > 0 and ξ -ξ 2 > 0 (the other case being similar). Then we have

h 2 (ξ 2 ) + h 3 (ξ -ξ 2 ) = ξ 2 2 + (ξ -ξ 2 ) 2 = 2 ξ 2 - ξ 2 2 + ξ 2 2
and thus [START_REF] Molinet | Global well-posedness in L 2 for the periodic Benjamin-Ono equation[END_REF], we see that we must have

2 ξ 2 - ξ 2 2 + ξ 2 2 = τ + O(L 2 ). (3.11) If N 1 ∼ N 2 ∼ N 3 , we see from (3.11) that ξ 2 variable is contained in the union of two intervals of length O(L 1/2 2 ) at worst. Therefore |Ω 1 ξ | L 1/2 2 in this case. If N 1 ∼ N 2 ≫ N 3 , then ξ 2 - ξ 2 + ξ 0 1 2 ≤ ξ 2 -ξ 0 2 - ξ + ξ 0 1 2 -ξ 0 3 + |ξ 0 1 + ξ 0 2 + ξ 0 3 | ≤ |ξ 2 -ξ 0 2 | + 1 2 |ξ + ξ 0 1 | + |ξ 0 3 | + |ξ 0 1 + ξ 0 2 + ξ 0 3 | N 3 and we get |ξ 2 -ξ 2 | ∼ N 1 . From (3.
N 2 1 = O(L 2 ), which is in contradiction with L 2 L 1 ∼ N max N min .
We deduce that the multiplier vanishes in this region. If N 2 ∼ N 3 ≫ N 1 , then we have obviously |ξ 2 -ξ 2 | ∼ N 2 and, in the same way, the multiplier vanishes.

Estimate of |Ω 2

ξ | : We can assume ξ 2 > 0 and ξ -ξ 2 < 0. It follows that 

h 2 (ξ 2 ) + h 3 (ξ -ξ 2 ) = ξ 2 2 -(ξ -ξ 2 ) 2 = 2ξ ξ 2 - ξ 2 = τ + O(L 2 ). (3.12) If N 1 ∼ N 2 ∼ N 3 ,

Bilinear estimate

In this section we prove the following crucial bilinear estimate.

Theorem 3.1. Let 1 < α ≤ 2 and s > -α/4. For all T > 0, there exist δ, ν > 0 such that for all u, v ∈ X

1/2,s α with compact support (in time) in [-T, +T ], ∂ x (uv) X -1/2+δ,s α T ν u X 1/2,s α v X 1/2,s α . (3.13)
To get the required contraction factor T ν in our estimates, the next lemma is very useful (see [START_REF] Otani | Well-posedness of the generalized Benjamin-Ono-Burgers equations in Sobolev spaces of negative order[END_REF]).

Lemma 3.2. Let f ∈ L 2 (R 2 ) with compact support (in time) in [-T, +T ].
For any θ > 0, there exists ν = ν(θ) > 0 such that

F -1 f (τ, ξ) τ -ξ|ξ| θ L 2 xt T ν f L 2 xt .
Proof of Theorem 3.1. By duality, Plancherel and Lemma 3.2, it suffices to show that

ξ 3 ξ 3 s ξ 1 -s ξ 2 -s |λ 1 | + |ξ 1 | α 1/2 |λ 2 | + |ξ 2 | α 1/2 |λ 3 | + |ξ 3 | α 1/2-δ [3;R×R] 1.
By dyadic decomposition of the variables ξ j , λ j , h(ξ), we may assume |ξ j | ∼ N j , |λ j | ∼ L j and |h(ξ)| ∼ H. By the translation invariance of the [k, Z]multiplier norm, we can always restrict our estimate on L j 1 and N max 1. The comparison principle and orthogonality reduce our estimate to show that

Nmax∼N med ∼N L 1 ,L 2 ,L 3 1 N 3 N 3 s N 1 -s N 2 -s (L 1 + N 1 α ) 1/2 (L 2 + N 2 α ) 1/2 (L 3 + N 3 α ) 1/2-δ × X N 1 ,N 2 ,N 3 ,Lmax,L 1 ,L 2 ,L 3 [3;R×R] (3.14) 
and

Nmax∼N med ∼N Lmax∼L med H≪Lmax N 3 N 3 s N 1 -s N 2 -s (L 1 + N 1 α ) 1/2 (L 2 + N 2 α ) 1/2 (L 3 + N 3 α ) 1/2-δ × X N 1 ,N 2 ,N 3 ,H,L 1 ,L 2 ,L 3 [3;R×R] (3.15)
are bounded, for all N 1. We first show that (3.15) 1. For s > -1/2, one has

N 3 N 3 s N 1 -s N 2 -s N min -s N max
and we get from (3.8), (3.15)

Nmax∼N Lmax≫N N min N min -s N L 1/2 min N 1/2 min L 1/2 min (L max + N α ) 1/2-δ (L max + N min α ) 1/2-δ L δ max N min >0 N 1/2 min N min -s N (N N min + N α ) 1/2-δ (N N min + N min α ) 1/2-δ .
When N min 1, we get (3.15)

N min 1 N 1/2 min N N α/2-αδ (N N min ) 1/2-δ N min 1 N δ min N (1-α)/2+δ(α+1)
1 for δ ≪ 1 and α > 1. When N min 1, then (3.15)

N min 1 N 1/2-s min N (N N min ) 1/2-δ-ε N αε (N N min ) 1/2-δ N min 1 N -1/2-s+2δ+ε min N 2δ-ε(α-1) 1 for ε = 2δ/(α -1) > 0, δ ≪ 1 and s > -1/2.
Now we show that (3.14) 1. We first deal with the contribution where (3.9) holds. In this case N min ∼ N max and we get (3.14)

Lmax∼N 2 N 1-s L 1/2 min L 1/4 med L 1/2 min (L med + N α ) 1/2 (L max + N α ) 1/2-2δ L δ max N 1-s N α/4 N 1-4δ N -s-α/4+4δ 1 for s > -α/4 and δ ≪ 1.
Now we consider the contribution where (3.10) applies. By symmetry it suffices to treat the two cases

N 1 ∼ N 2 ≫ N 3 , H ∼ L 3 L 1 , L 2 , N 2 ∼ N 3 ≫ N 1 , H ∼ L 1 L 2 , L 3 .
In the first case, estimate (3.10) applied with γ = 1 yields

(3.2) L 1/2 min min(N 1/2 3 , N -1/2 3 L 1/2 med ) L 1/2 min N 1/4 3 N -1/4 3 L 1/4 med ∼ L 1/2 min L 1/4 med and thus (3.14) N 3 >0 Lmax∼N N 3 N 3 N 3 s N -2s L 1/2 min L 1/4 med L 1/2 min (L med + N α ) 1/2 (L max + N min α ) 1/2-2δ L δ max N 3 >0 N 3 N 3 s N -2s N α/4 (N N 3 ) 1/2-2δ N 3 >0 N 1/2+2δ 3 N 3 s N -2s-α/4-1/2+2δ .
Since -2s -α/4 -1/2 + 2δ < 0, we may write (3.14)

N 3 >0 N 1/2+2δ 3 N 3 -s-α/4-1/2+2δ N 3 1 N 1/2+2δ 3 + N 3 1 N -s-α/4+4δ 3 1 for δ ≪ 1 and s > -α/4. Finally consider the case N 2 ∼ N 3 ≫ N 1 , H ∼ L 1 L 2 , L 3 . Let 0 < γ ≪ 1. If we assume N 1/2 min N 1/2-1/2γ max N -1/2γ min L 1/2γ med , i.e. L med N 1-γ max N 1+γ
min , then we get from (3.10) that (3.14)

N 1 >0 Lmax∼N N 1 N 1 -s N L 1/2 min N 1/2 1 L 1/2 min (L med + N α ) 1/2-δ L 1/2-δ max L δ max N 1 >0 N 1/2 1 N 1 -s N (N 1-γ N 1+γ 1 + N α ) 1/2-δ (N N 1 ) 1/2-δ N 1 >0 N δ 1 N 1 -s N 1/2+δ (N 1-γ N 1+γ 1 + N α ) 1/2-δ . If N 1 1, then (3.14) N 1 1 N δ 1 N (1-α)/2+δ(1+α) 1 for δ ≪ 1 and α > 1. If N 1 1, then (3.14) N 1 1 N -s+δ 1 N 1/2+δ (N 1-γ N 1+γ 1 ) 1/2-δ-ε N αε N 1 1 N -s-1/2+(1+γ)(δ+ε)+δ-γ/2 1 N γ(1/2-δ)+2δ-ε(α-1+γ) 1 for δ, γ ≪ 1, s > -1/2 and ε = [2δ + γ(1/2 -δ)]/(α -1 + γ) > 0. If we assume N 1/2 min N 1/2-1/2γ max N -1/2γ min L 1/2γ med , i.e. L med N 1-γ max N 1+γ min , we get (3.14) N 1 >0 Lmax∼N N 1 N 1 -s N L 1/2 min N 1/2-1/2γ N -1/2γ 1 L 1/2γ med L 1/2 min (L med + N α ) 1/2-δ L 1/2-δ max L δ max N 1 >0 L med N 1-γ N 1+γ 1 N -1/2γ-1/2+δ 1 N 1 -s N 1-1/2γ+δ L 1/2γ med (L med + N α ) 1/2-δ .
When N 1 1, we have (3.14)

N 1 1 N -1/2γ-1/2+δ 1 N 1-1/2γ+δ N -α/2+αδ (N 1-γ N 1+γ 1 ) 1/2γ N 1 1 N δ 1 N (1-α)/2+δ(1+α) 1
for δ ≪ 1 and α > 1. When N 1 1, then (3.14)

N 1 1 N -s-1/2-1/2γ+δ 1 N 1-1/2γ+δ (N 1-γ N 1+γ 1 ) 1/2γ-1/2+δ+ε N -αε N 1 1 N -s-1/2+(1+γ)(δ+ε)+δ-γ/2 1 N γ(1/2-δ)+2δ-ε(α-1+γ) 1
as previously. This completes the proof of Theorem 3.1.

Proof of Theorem 1.1

In this section, we sketch the proof of Theorem 1.1 (see for instance [START_REF] Molinet | On the low regularity of the Korteweg-de Vries-Burgers equation[END_REF] for the details).

Actually, local existence of a solution is a consequence of the following modified version of Theorem 3.1. Proposition 4.1. Given s + c > -α/4, there exist ν, δ > 0 such that for any s ≥ s + c and any u, v ∈ X

1/2,s α with compact support in [-T, +T ], ∂ x (uv) X -1/2+δ,s α T ν ( u X 1/2,s + c α v X 1/2,s α + u X 1/2,s α v X 1/2,s + c α
). (4.1) Estimate (4.1) is obtained thanks to (3.13) and the triangle inequality

∀s ≥ s + c , ξ s ≤ ξ s + c ξ 1 s-s + c + ξ s + c ξ -ξ 1 s-s + c .
Let u 0 ∈ H s (R) with s > -α/4. Define F (u) as

F (u) = ψ(t) S α (t)u 0 - χ R + (t) 2 t 0 S α (t -t ′ )∂ x (ψ 2 T (t ′ )u 2 (t ′ ))dt ′ .
We shall prove that for T ≪ 1, F is contraction in a ball of the Banach space

Z = {u ∈ X 1/2,s α : u Z = u X 1/2,s + c α + γ u X 1/2,s α < +∞},
where γ is defined for all nontrivial ϕ by

γ = ϕ H s + c ϕ H s .
Combining (2.3), (2.4) as well as (4.1), it is easy to derive that

F (u) Z ≤ C( u 0 H s + c + γ u 0 H s ) + CT ν u 2 Z and F (u) -F (v) Z ≤ CT ν u -v Z u + v Z
for some C, ν > 0. Thus, taking T = T ( u 0 H s + c ) small enough, we deduce that F is contractive on the ball of radius 4C u 0 H s + c in Z. This proves the existence of a solution u to u = F (u) in X 1/2,s α,T . Following similar arguments of [START_REF] Molinet | On the low regularity of the Korteweg-de Vries-Burgers equation[END_REF], it is not too difficult to see that if

u 1 , u 2 ∈ X 1/2,s α,T
are solutions of (2.2) and 0 < δ < T /2, then there exists ν > 0 such that

u 1 -u 2 X 1/2,s α,δ T ν u 1 X 1/2,s α,T + u 2 X 1/2,s α,T u 1 -u 2 X 1/2,s α,δ
, which leads to u 1 ≡ u 2 on [0, δ], and then on [0, T ] by iteration. This proves the uniqueness of the solution.

It is straightforward to check that

S α (•)u 0 ∈ C(R + ; H s (R))∩C(R * + ; H ∞ (R)
). Then it follows from Theorem 3.1, Lemma 2.3 and the local existence of the solution that

u ∈ C([0, T ]; H s (R)) ∩ C((0, T ]; H s+αδ (R))
for some T = T ( u 0 H s + c ). By induction, we have u ∈ C((0, T ]; H ∞ (R)). Taking the L 2 -scalar product of (dBO) with u, we obtain that t → u(t) H s + c is nonincreasing on (0, T ]. Since the existence time of the solution depends only on the norm u 0 H s + c , this implies that the solution can be extended globally in time.

Ill-posedness results

This section is devoted to the proof of Theorems 1.2 and 1.3. We adopt the notation p(ξ) = ξ|ξ|.

Assume that u is a solution of (dBO) such that the solution map

u 0 → u is of class C k (k = 2 or k = 3) at the origin from H s (R) to H s (R). The relation F (u, ϕ) := u(t, ϕ) -S α (t)ϕ + 1 2 t 0 S α (t -t ′ )∂ x (u 2 (t ′ , ϕ))dt ′ ≡ 0 combined with implicit function theorem gives u 1 (t, x) := ∂u ∂ϕ (t, x, 0)[h] = S α (t)h u 2 (t, x) := ∂ 2 u ∂ϕ 2 (t, x, 0)[h, h] = t 0 S α (t -t ′ )∂ x (u 1 (t ′ )) 2 dt ′ u 3 (t, x) := ∂ 3 u ∂ϕ 3 (t, x, 0)[h, h, h] = t 0 S α (t -t ′ )∂ x (u 1 (t ′ )u 2 (t ′ ))dt ′ etc
Since the solution map is C k , we must have

u k (t) H s h k H s , ∀h ∈ H s (R).
(5.1)

In the sequel, we will show that (5.1) fails in the case 0 ≤ α < 1 and k = 2, and in the case 1 ≤ α ≤ 2, k = 3 and s > -α/4.

The case 0 ≤ α < 1

It suffices to show the following lemma.

Lemma 5.1. Let 0 ≤ α < 1 and s ∈ R. There exists a sequence of functions {h N } ⊂ H s (R) such that for all T > 0,

h N H s 1,
and

lim N →∞ sup [0,T ] t 0 S α (t -t ′ )∂ x (S α (t ′ )h N ) 2 dt ′ H s = +∞.
Proof. We define h N by its Fourier transform

1 h N (ξ) = γ -1/2 χ I 1 (ξ) + γ -1/2 N -s χ I 2 (ξ)
with

I 1 = [γ/2, γ], I 2 = [N, N + γ] and N ≫ 1, γ ≪ N to be chosen later.
Then it is clear that h N H s ∼ 1. Computing the Fourier transform of u 2 (t) leads to

F x (u 2 (t))(ξ) = cξ t 0 e i(t-t ′ )p(ξ) e -(t-t ′ )|ξ| α (e it ′ p(ξ) e -t ′ |ξ| α h N ) * 2 (ξ)dt ′ = cξe itp(ξ) e -t|ξ| α R h N (ξ 1 ) h N (ξ -ξ 1 )
× t 0 e it ′ (p(ξ1 )+p(ξ-ξ 1 )-p(ξ)) e -t ′ (|ξ

1 | α +|ξ-ξ 1 | α -|ξ| α ) dt ′ dξ 1 = cξe itp(ξ) e -t|ξ| α R h N (ξ 1 ) h N (ξ -ξ 1 )
× e it(p(ξ 1 )+p(ξ-ξ 1 )-p(ξ)) e -t(|ξ

1 | α +|ξ-ξ 1 | α -|ξ| α ) -1 i(p(ξ 1 ) + p(ξ -ξ 1 ) -p(ξ)) -(|ξ 1 | α + |ξ -ξ 1 | α -|ξ| α ) dξ 1 . Set χ(ξ, ξ 1 ) = i(p(ξ 1 ) + p(ξ -ξ 1 ) -p(ξ)) -(|ξ 1 | α + |ξ -ξ 1 | α -|ξ| α ).
By support considerations, we have u 2 (t)

H s ≥ v 2 (t) H s with F x (v 2 (t))(ξ) = cN -s γ -1 ξe itp(ξ) e -t|ξ| α K ξ e tχ(ξ,ξ 1 ) -1 χ(ξ, ξ 1 ) dξ 1 (5.2)
and

K ξ = {ξ 1 : ξ 1 ∈ I 1 , ξ -ξ 1 ∈ I 2 } ∪ {ξ 1 : ξ 1 ∈ I 2 , ξ -ξ 1 ∈ I 1 }.
We easily see that if ξ 1 ∈ K ξ , then ξ ∈ [N + γ/2, N + 2γ] and

p(ξ 1 ) + p(ξ -ξ 1 ) -p(ξ) = 2ξ 1 (ξ 1 -ξ) ∼ γN, |ξ 1 | α + |ξ -ξ 1 | α -|ξ| α N α .
We deduce that for γ = N α-1 ≪ N , we have |χ(ξ, ξ 1 )| ∼ N α . Now define

t N = (N + 2γ) -α-ε ∼ N -α-ε
so that e -t N |ξ| α 1. By a Taylor expansion of the exponential function,

e t N χ(ξ,ξ 1 ) -1 χ(ξ, ξ 1 ) = t N + R(t N , ξ, ξ 1 ) (5.3) with |R(t N , ξ, ξ 1 )| k≥2 t k N |χ(ξ, ξ 1 )| k-1 k! N -α-2ε .
Therefore the main contribution of (5.3) in (5.2) is given by t N , and since

|K ξ | ∼ γ, it follows that |F x (v 2 (t N ))(ξ)| N -s+1 γ -1 e -(N +2γ) -ε γN -α-ε χ [N +γ/2,N +2γ] (ξ) N -s+1-α-ε χ [N +γ/2,N +2γ] (ξ).
We get the lower bound for the H s -norm of u 2 (t N )

u 2 (t N ) H s N -s+1-α-ε N +2γ N +γ/2 (1+|ξ| 2 ) s dξ 1/2 ∼ N 1-α-ε γ 1/2 ∼ N (1-α)/2-ε , which leads to lim N →∞ sup [0,T ] u 2 (t) H s = +∞
for ε ≪ 1 and α < 1, as we claim.

The case 1 ≤ α ≤ 2

Let 1 ≤ α ≤ 2 and s < -α/4. As previously, it suffices to find a suitable sequence {h N } such that h N H s 1 and lim

N →∞ sup [0,T ] u 3 (t) H s = +∞.
For this purpose, we define the real-valued function h N by

h N (ξ) = N -s γ -1/2 (χ I N (ξ) + χ I N (-ξ)) (5.4) 
with I N = [N, N + 2γ], N ≫ 1 and γ ≪ N to be chosen later. We have

F x (u 3 (t))(ξ) = cξ t 0 e i(t-t ′ )p(ξ) e -(t-t ′ )|ξ| α F x (S α (t ′ )h N ) * F x (u 2 (t ′ ))(ξ)dt ′ and F x (S α (t ′ )h N ) * F x (u 2 (t ′ ))(ξ) = c R 2 h N (ξ 1 ) h N (ξ 2 -ξ 1 ) h N (ξ -ξ 2 )ξ 2 × e it ′ (p(ξ-ξ 2 )+p(ξ 2 )) e -t ′ (|ξ-ξ 2 | α +|ξ 2 | α ) e tχ(ξ 2 ,ξ 1 ) -1 χ(ξ 2 , ξ 1 ) dξ 1 dξ 2 .
Hence, we can write u 3 = v 3 -w 3 with

F x (v 3 (t))(ξ) = cξe itp(ξ) e -t|ξ| α R 2 h N (ξ 1 ) h N (ξ 2 -ξ 1 ) h N (ξ -ξ 2 ) ξ 2 χ(ξ 2 , ξ 1 ) × t 0 e it ′ (p(ξ 1 )+p(ξ 2 -ξ 1 )+p(ξ-ξ 2 )-p(ξ)) e -t(|ξ 1 | α +|ξ 2 -ξ 1 | α +|ξ-ξ 2 | α -|ξ| α ) dt ′ dξ 1 dξ 2 = cξe itp(ξ) e -t|ξ| α R 2 h N (ξ 1 ) h N (ξ 2 -ξ 1 ) h N (ξ -ξ 2 ) ξ 2 χ(ξ 2 , ξ 1 ) e tλ(ξ,ξ 1 ,ξ 2 ) -1 λ(ξ, ξ 1 , ξ 2 ) dξ 1 dξ 2 and F x (w 3 (t))(ξ) = cξe itp(ξ) e -t|ξ| α R 2 h N (ξ 1 ) h N (ξ 2 -ξ 1 ) h N (ξ -ξ 2 ) ξ 2 χ(ξ 2 , ξ 1 ) × t 0 e t ′ χ(ξ,ξ 2 ) dt ′ dξ 1 dξ 2 = cξe itp(ξ) e -t|ξ| α R 2 h N (ξ 1 ) h N (ξ 2 -ξ 1 ) h N (ξ -ξ 2 ) ξ 2 χ(ξ 2 , ξ 1 ) e tχ(ξ,ξ 2 ) -1 χ(ξ, ξ 2 ) dξ 1 dξ 2
where we set

λ(ξ, ξ 1 , ξ 2 ) = i(p(ξ 1 )+p(ξ 2 -ξ 1 )+p(ξ-ξ 2 )-p(ξ))-(|ξ 1 | α +|ξ 2 -ξ 1 | α +|ξ-ξ 2 | α -|ξ| α ).
Let t N = (N + 4γ) -α-ε for some 0 < ε ≪ 1. We get

|F x (v 3 (t N ))(ξ)|χ [N +3γ,N +4γ] (ξ) N -3s+1 γ -3/2 K ξ ξ 2 χ(ξ 2 , ξ 1 ) e t N λ(ξ,ξ 1 ,ξ 2 ) -1 λ(ξ, ξ 1 , ξ 2 ) dξ 1 , dξ 2 where K ξ = K 1 ξ ∪ K 2 ξ ∪ K 3 ξ and K 1 ξ = {(ξ 1 , ξ 2 ) : ξ 1 ∈ I N , ξ 2 -ξ 1 ∈ I N , ξ -ξ 2 ∈ -I N }, K 2 ξ = {(ξ 1 , ξ 2 ) : ξ 1 ∈ I N , ξ 2 -ξ 1 ∈ -I N , ξ -ξ 2 ∈ I N }, K 3 ξ = {(ξ 1 , ξ 2 ) : ξ 1 ∈ -I N , ξ 2 -ξ 1 ∈ I N , ξ -ξ 2 ∈ I N }. If ξ ∈ [N + 3γ, N + 4γ] and (ξ 1 , ξ 2 ) ∈ K ξ , we easily see that ξ 2 χ(ξ 2 , ξ 1 ) ∼ N -1 and p(ξ 1 ) + p(ξ 2 -ξ 1 ) + p(ξ -ξ 2 ) -p(ξ) ∼ γ 2 , |ξ 1 | α + |ξ 2 -ξ 1 | α + |ξ -ξ 2 | α -|ξ| α ∼ N α .
Thus we are led to choose γ

= N α/2 ≪ N for N ≫ 1 so that |λ(ξ, ξ 1 , ξ 2 )| ∼ N α . Then it follows that e t N λ(ξ,ξ 1 ,ξ 2 ) -1 λ(ξ, ξ 1 , ξ 2 ) = |t N | + O(N -α-2ε ).
Consequently,

|F x (v 3 (t N ))(ξ)|χ [N +3γ,N +4γ] (ξ) N -3s+1 γ -3/2 N -1 γ 2 N -α-ε χ [N +3γ,N +4γ] (ξ) ∼ N -3s-α-ε γ 1/2 χ [N +3γ,N +4γ] (ξ) ∼ N -3s-3α/4-ε χ [N +3γ,N +4γ] (ξ), since |K ξ | ∼ γ 2 .
Concerning w 3 , we verify that for (ξ 1 , ξ 2 ) ∈ K ξ , we have |χ(ξ, ξ 2 )| γN and then

|F x (w 3 (t N ))(ξ)|χ [N +3γ,N +4γ] (ξ) N -3s+1 γ -3/2 γ 2 N -1 (γN ) -1 χ [N +3γ,N +4γ] (ξ) ∼ N -3s-1 γ -1/2 χ [N +3γ,N +4γ] (ξ) ∼ N -3s-1-α/4 χ [N +3γ,N +4γ] (ξ)
Since -3s -1 -α/4 < -3s -3α/4 -ε for α < 2, we deduce that the main contribution in the H s -norm of u 3 is given by v 3 H s , that is,

u 3 (t N ) H s N -3s-3α/4-ε γ 1/2 N s ∼ N -2s-α/2-ε ,
and we find the condition -2s -α/2 > 0, i.e. s < -α/4.

When α = 2, the contributions of v 3 and w 3 are equivalent, and we must proceed with a bit more care, by considering directly the difference u 3 = v 3 -w 3 . More precisely, for γ = εN ≪ N , we have

|λ(ξ, ξ 1 , ξ 2 )| ∼ |χ(ξ, ξ 2 )| ∼ N 2 . Noticing that λ(ξ, ξ 1 , ξ 2 ) -χ(ξ, ξ 2 ) = χ(ξ 2 , ξ 1 ),
we deduce

e t N λ(ξ,ξ 1 ,ξ 2 ) -1 λ(ξ, ξ 1 , ξ 2 ) - e t N χ(ξ,ξ 2 ) -1 χ(ξ, ξ 2 ) = t 2 N |χ(ξ 2 , ξ 1 )| + O(t 3 N N 2 |χ(ξ 2 , ξ 1 )|)
Setting again t N = N -2-ε , and since |ξ 2 | ∼ N , it follows that

|F x (u 3 (t N ))(ξ)|χ [N +3γ,N +4γ] N -3s+1 γ -3/2 γ 2 N N -4-2ε χ [N +3γ,N +4γ] (ξ)
and thus u 3 (t N ) H s N -2s-2-2ε γ ∼ N -2s-1-2ε , which tends to infinity as soon as -2s -1 > 0, i.e. s < -1/2.

A Appendix

We prove here that the pure dissipative equation u t + |D| α u + uu x = 0 (A.1) for 1 < α ≤ 2 is well-posed in H s (R), s > s α where

s α = 3 2 -α,
and that the solution map fails to be smooth when s < s α . The method of proof is classical and is based on the smoothing properties of the generalized heat kernel G α (t, x) = 1 2π R e ixξ e -t|ξ| α dξ, t > 0.

and in the same way,

F (u) -F (v) X T T ν ( u X T + v X T ) u -v X T .
This proves that for T ≪ 1, F is contractive in a ball of X T . Now we solve (A. D -s G α (t) L 2/α u 0 H s , and it follows from (A.4) that t β D -s G α (t) L 2/α t β (t -(2-α)/2α + t -(2-α)/2α+s/α ) T -s/α . Now we deal with the nonlinear term. Using the Sobolev embedding L ( 1 2 -s) -1 (R) ֒→ H s (R) valid for any -1/2 < s < 0, we obtain Proof. The proof is similar to that of Theorems 1.2 and 1.3. Define h N as in (5.4) and consider the high-high interactions in the convolution product (e -t|ξ| α h N ) * (e -t|ξ| α h N ). We get that for ξ ∈ [2N, 2N + 4γ], γ = N 1-ε and t N ∼ N -α-ε ,

t 0 G α (t -t ′ ) * ∂ x u 2 (t ′ ) H s dt ′ t 0 ∂ x G α (t -t ′ ) L ( 5 2 -s-α) -1 u 2 (t ′ ) L 1/(α-
|F x (u 2 (t N ))(ξ)| N -2s-α+1-ε χ [2N,2N +4γ] (ξ)
where u 2 is defined by

u 2 (t) = t 0 G α (t -t ′ ) * ∂ x (G α (t ′ ) * h N ) 2 dt ′ .
We conclude that u 2 (t N ) H s N -s-α+1-ε γ 1/2 N -s+3/2-α-3ε/2 → +∞ as soon as s < 3/2 -α.

Remark 1 . 4 .

 14 At the end-point α = 1, our proof of Theorem 1.3 fails. However, Theorem 1.2 provides the ill-posedness in H s (R), for s < -1/4. So, it is still not clear of what happens to (dBO) when α = 1 and s ≥ -1/4.

1 )

 1 in the case 3/2 < α ≤ 2 and s α < s < 0. DefineY T = C([0, T ]; H s (R)) ∩ C β ([0, T ]; L 2/(α-1) (R)) equipped with the norm u Y T = sup t∈[0,T ] u(t) H s + sup t∈[0,T ] t β u(t) L 2/(α-1) .By Young inequality, we getG α (t) * u 0 L 2/(α-1) = D -s G α (t) * D s u 0 L 2/(α-1)

T ν u 2 Y T with ν = 1 -

 21 t ′ ) -(α+1)/2α t ′-2β dt ′ u 2 Y T (α + 1)/2α -β > 0. Finally, one has F (u) Y T T ν u 0 H s + T ν u 2 Y Tand the claim follows.Remark A.1. Let U α (t) = F -1 ξ (e itξ|ξ| e -t|ξ| α ) be the fundamental solution of the linear (dBO) equation. Using that |F x U α (t)| = |F x G α (t)| as well as the well-known estimate f L p f L p ′ , p ≥ 2, 1/p + 1/p ′ = 1, we easily check that Theorem A.1 holds for (dBO) equation.Finally, we show that Theorem A.1 is sharp.Theorem A.2. Let 1 < α ≤ 2 and s < s α . The the solution map u 0 → u associated with (A.1) (if it exists) is not of class C 2 from H s (R) to C([0, T ]; H s (R)).

  ∼ N 2 ≫ N 3 , we have |ξ 2 -ξ 2 | ∼ N 1 as previously and thus N 2 1 = O(L 2 ), the multiplier vanishes. If N 2 ∼ N 3 ≫ N 1 , then |ξ 2 -ξ 2 | ∼ N 2 and for any γ > 0, we have |ξ 2 -ξ

	N 2 1 and thus |Ω 2 ξ | L	1/2 2	in this region.
	If N 1 2 | ∼ N 1-γ 2 |ξ 2 -ξ 2 | γ . Therefore we see from (3.12) that ξ 2 variable is contained in the union of two intervals of length O(N 1-1/γ 2 N -1/γ 1 L 1/γ 2 ) at worst, and from |ξ 2 -ξ 0 2 | ≪ N min we see that |Ω 2 ξ | N 1/2

we see from (3.12) that ξ 2 variable is contained in the union of two intervals of length O(N -1 1 L 2 ) at worst. But we have L 2 L 1 ∼ min , and (3.10) follows.

  1) dt ′ -t ′ ) -s/α-1+1/2α t ′-2β t ′2β u(t ′ ) 2 L 2/(α-1) dt ′

	t
	0 (t T ν u 2 Y

T

with ν = -s/α + 1/2α -2β > 0. By similar calculations, we get

t β t 0 G α (t -t ′ ) * ∂ x u 2 (t ′ ) L 2/(α-1) dt ′ t β t 0 ∂ x G α (t -t ′ ) L 2/(3-α) u 2 (t ′ ) L 1/(α-1) dt ′

Such spaces were first introduce by Molinet and Ribaud in[START_REF] Molinet | On the low regularity of the Korteweg-de Vries-Burgers equation[END_REF] for the KdV-Burgers equation.

As noticed in[START_REF] Molinet | Ill-posedness issues for the Benjamin-Ono and related equations[END_REF], hN is not a real-valued function but the analysis works as well for ℜe hN instead of hN .
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Theorem A.1. Let 1 < α ≤ 2, s > s α and u 0 ∈ H s (R). Then there exist T > 0 and a unique solution u ∈ C([0, T ]; H s (R)) of (A.1) such that

where β = -s/α + (2 -α)/2α. The flow map u 0 → u from H s (R) into the class defined by (A.2)-(A.3) is locally Lipschitz. Moreover, if u 0 H s is small enough, the solution can be extended to any time interval.

Proof. Observe that for any p ∈ [1, ∞] and ρ ≥ 0, we have

We use the Picard iteration theorem to show that the map F defined as

has a fixed point in suitable Banach space. We first consider the case 1 < α ≤ 3/2, and we choose s α < s < 1/2. Set X T = C([0, T ]; H s (R)) endowed with the norm u X T = sup [0,T ] u(t) H s . By Young inequality and (A.4), we have

Using the fractional Leibniz rule, we get

Since 0 < s < 1/2, we can take advantage of the Sobolev embedding

with ν = 1 + s/α -3/2α > 0. Gathering (A.5) and (A.6) we infer