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Abstract

An even (resp. odd) lollipop is the coalescence of a cycle of even (resp. odd)
length and a path with pendant vertex as distinguished vertex. It is known that
the odd lollipop is determined by its spectrum and the question is asked by W.
Haemers, X. Liu and Y. Zhang for the even lollipop. We revisit the proof for odd
lollipop, generalize it for even lollipop and therefore answer the question. Our proof
is essentially based on a method of counting closed walks.
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1 Introduction

Let G be a simple graph with n vertices and A its adjacency matrix, QG(X) denotes its
characteristic polynomial and λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) the associated eigenvalues;
λ1(G) is the spectral radius of G. It is known that some informations about the graph
structure can be deduced from these eigenvalues such as the number of edges or the length
of the shortest odd cycle; but the reverse question Which graphs are determined by their
spectrum ? (asked, among others, in [4]) is far from being solved; some partial results
exist [5, 10, 12] which contribute to answer this question.

Let us remind that the coalescence of two graphs G1 with distinguished vertex v1 and
G2 with distinguished vertex v2, is formed by identifying vertices v1 and v2 that is, the
vertices v1 and v2 are replaced by a single vertex v adjacent to the same vertices in G1 as
v1 and the same vertices in G2 as v2. If it is not necessary v1 or v2 may not be specified.

A lollipop L(p, k) is the coalescence of a cycle Cp with p ≥ 3 vertices and a path Pk+1

with k + 1 ≥ 2 vertices with one of its vertex of degree one as distinguished vertex, figure
1 shows an example of a lollipop. The lollipop L(p, 0) is Cp. An even (resp. odd) lollipop
has a cycle of even (resp. odd) length. In this paper we shall show that the lollipop
graph is determined by its spectrum, answering to an open question asked in [8, 3] for
even lollipop. It is known [8] that the odd lollipop is determined by its spectrum, but the
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proof given in [8] cannot be generalized for even lollipops. We revisit here this proof in
order to generalize it to even lollipops.

Figure 1: Lollipop L(6,4)

We describe in section 2 some basic results of spectral graph theory we shall use in
the following of the paper. We also explain the method we use to count closed walks in
a graph and revisit two proofs of results about lollipops. The main section of the paper
(section 3) shows that the even lollipop is determined by its spectrum; the proof is based
on two points: connectivity of a graph cospectral with an even lollipop and existence of
a 4-cycle in a graph cospectral with a L(4, k).

To fix notations, the disjoint union of two graphs G and H is noted G ∪ H .
As defined in [12] a T-shape tree Sa,b,c (a, b, c > 0) is a tree with one and only one

vertex v of degree 3 such that Sa,b,c\{v} = Pa ∪ Pb ∪ Pc. We extend this notation for all
b, c ∈ N by S0,b,c = Pb+c+1.
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Figure 2: S1,2,2

By Sn−1 we denote the star with n vertices and by Tn the tree with n vertices drawn
on figure 3.
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     n−6 vertices

Figure 3: Tn

Finally let d(u, v) be the distance (the length of a shortest path) between two vertices
u and v and δ(v) the degree of a vertex v.
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2 Basic results and revisited proofs

2.1 Counting the closed walks

It is a classical result that the number of closed walks of length k ≥ 2 is
∑

i λ
k
i

We describe here a method to count the number of closed walks of a given length
within a graph.

Let M be a graph, a k-covering closed walk in M is a closed walk of length k in M

running through all the edges at least once. Let G be a graph, M(G) denotes the set of
all distinct subgraphs (not necessarily induced) of G isomorphic to M and |M(G)| is the
number of elements of M(G). According to that point of view, M may be called a motif
(or a pattern). The number of k-covering closed walks in a motif M is denoted by wk(M)
and we define the set Mk(G) = {M, wk(M) > 0} which is finite if G is a finite graph.

As a consequence, the number of closed walks of length k in G is:
∑

i

λk
i =

∑

M∈Mk(G)

wk(M)|M(G)| (1)

In practice, there are at least two methods to determine wk(M): on one hand a
combinatorial way which counts the number of covering closed walks of length k in M ,
on the other hand an algebraic method which uses the following straightforward formula:

wk(M) =
∑

λi∈Sp(M)

λk
i −

∑

M ′∈Mk(M),M ′ 6=M

wk(M
′)|M ′(M)|

where Sp(M) denotes the spectrum of the adjacency matrix of M .
Using equation (1) and table 5 in appendix, we have the following proposition:

Proposition 1. i) If G is a graph without triangles and C5 then:
∑

i

λ6
i = 12|C6(G)| + 2|P2(G)| + 12|P3(G)| + 6|P4(G)| + 12|S1,1,1(G)|

+48|C4(G)| + 12|L(4, 1)(G)|

ii) If G is a graph without Cp, p ∈ {3, 5, 6, 7} and of maximal degree 3 then:
∑

i

λ8
i = 2|P2(G)| + 28|P3(G)| + 32|P4(G)| + 8|P5(G)| + 72|S1,1,1(G)| + 16|S1,1,2(G)|

+264|C4(G)| + 112|L(4, 1)(G)|+ 16|L(4, 2)(G)|+ 16|C8(G)|

iii) If G is a graph without Cp, p ∈ {3, 5, 6, 7, 8, 9}, of maximal degree 3 and such that
δ(u) = δ(v) = 3, u 6= v ⇒ d(u, v) > 1, then:
∑

i

λ10
i = 2|P2(G)| + 60|P3(G)| + 120|P4(G)| + 60|P5(G)| + 10|P6(G)| + 300|S1,1,1(G)|

+140|S1,1,2(G)| + 20|S1,2,2(G)| + 20|S1,1,3(G)| + 1320|C4(G)|
+840|L(4, 1)(G)|+ 180|L(4, 2)(G)|+ 20|L(4, 3)(G)| + 20|C10(G)|
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In this paper we shall have to count all the |M(G)|, M ∈ Mi(G) of a given unicyclic
graph G. For that aim we describe here the steps of the process we follow to count the
Pk(G) which are the only motifs hard to denombrate. Let p be the length of the cycle of
G.

ALGORITHM to count Pk(G):

set H = G

set |Pk(G)| = 0.
while there exists a pendant vertex u in H do

count the number q of paths Pk of H containing u

let |Pk(G)| = |Pk(G)| + q

let H = H\{u}
end while
if p ≥ k then
|Pk(G)| = |Pk(G)| + p

end if
return |Pk(G)|

2.2 Known results

Proposition 2. [2] Let G be a graph with n vertices and m edges and let λi its associated
eigenvalues. We have:

∑

i λ
4
i = 8|C4(G)| + 2m + 4|P3(G)|. Let nk be the number of

vertices of degree k in G, we have:

∑

i

λ4
i = 8c4 +

∑

k

knk + 4
∑

k≥2

k(k − 1)

2
nk

The following result relates the coefficients of the characteristic polynomial of a graph
with structural properties of this graph:

Theorem 1. [1] Let QG(X) = Xn + a1X
n−1 + a2X

n−2 + ... + an be the characteristic
polynomial of a graph G. We call an ”elementary figure” the graph P2 or the graphs
Cq, q > 0. We call a ”basic figure” U every graph all of whose components are elementary
figures. Let p(U) be the number of connected components of U and c(U) the number of
cycles in U . We note Ui the set of basic figures with i vertices. Then

ai =
∑

U∈Ui

(−1)p(U)2c(U) , i = 1, 2, ..., n

It follows this theorem:

Theorem 2. [1] Let QG(X) = Xn + a1X
n−1 + a2X

n−2 + ... + an be the characteristic
polynomial of a graph G. The length of the shortest odd cycle in G is given by the smallest
odd index p such that ap 6= 0 and the value of ap gives the number of p-cycles in G.
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It ensues that a bipartite graph (ie a graph with no odd cycles) cannot be cospectral
with a non-bipartite graph.

The following result is useful at many time in the paper, for instance to find bounds
on eigenvalues:

Theorem 3 (Interlacing theorem). [7] Let G be a graph with n vertices and associated
eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn and let H be an induced subgraph of G with m vertices
and associates eigenvalues µ1 ≥ µ2 ≥ ... ≥ µm. Then for i = 1, ..., m, λn−m+i ≤ µi ≤ λi.

The next theorems give a way to compute the characteristic polynomial of a graph by
deleting a vertex or an edge:

Theorem 4. [1] Let G be a graph obtained by joining by an edge a vertex x of a graph
G1 and a vertex y of a graph G2. Then

QG(X) = QG1(X)QG2(X) − QG1\x(X)QG2\y(X)

Theorem 5. [1] Let G be a graph and x a vertex of G, then:

QG(X) = XQG\x(X) −
∑

y∼x

QG\{x,y}(X) − 2
∑

C, x∈C

QG\C(X)

where y ∼ x means that yx is an edge of G and the second sum is on the set of the cycles
C containing x.

Theorem 6. [1] Let G be a graph and x a pendant vertex of G. Then:

QG(X) = XQG\x(X) − QG\x,y(X)

where y is the neighbor of x.

Property 1. We have the following equalities:
QCp

(X) = XQPp−1(X) − 2QPp−2(X) − 2
QPp

(X) = XQPp−1(X) − QPp−2(X)

Proof. A direct consequence of theorems 4 and 6.

�

The following theorem relates the behavior of the spectral radius of a graph by sub-
dividing an edge. An internal path of a graph G is an elementary path x0x1 · · ·xk (ie
xi 6= xj for all i 6= j but eventually x0 = xk) of G with δ(x0) > 2, δ(xk) > 2, δ(xi) = 2 for
all other i’s.

Theorem 7. [11, 9] Let xy be an edge of a connected graph G not belonging to an internal
path, then the spectral radius strictly increases by subdividing xy.
Let xy be an edge of a connected graph G 6= Tn belonging to an internal path, then the
spectral radius strictly decreases by subdividing xy.

Theorem 8. [6] Let G be a graph with maximal degree δM , then λ1(G) ≥
√

δM

Let B(p, q) be the coalescence of two cycles Cp and Cq (see figure 4 for an example).

Theorem 9. [11] For p ≥ 3, q ≥ 3, λ1(B(p, q)) > 4√
3

>
√

5
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Figure 4: B(8,5)

2.3 Bounds on eigenvalues

Theorem 7 gives the following corollaries:

Corollary 1. λ1(L(p, k)) > λ1(L(p + 1, k))

Corollary 2. λ1(L(p, k)) < λ1(L(p, k + 1))

Given p ≥ 3, q ≥ 3, let H(p, q) be the coalescence of Cp and L(q, 1) with the pendant
vertex as distinguished vertex (see figure 5 for an example).
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Figure 5: H(6,8)

Theorem 10. λ1(H(p, q)) >
√

5.

Proof. Without loss of generality we suppose that p ≥ q. According to theorem 7
we have λ1(H(p, q)) ≥ λ1(H(p, p)) so it is sufficient to prove the theorem for H(p, p). As
limx→+∞ QH(p,q)(x) = +∞ it is sufficient to prove that QH(p,p)(

√
5) < 0

Theorem 4 gives:

QH(p,p)(X) = QCp
(X)QCp

(X) − QPp−1(X)QPp−1(X)

QH(p,p)(X) = [QCp
(X)]2 − [QPp−1(X)]2

and by property 1 we have:

QH(p,p)(X) = [XQPp−1(X) − 2QPp−2(X) − 2]2 − [QPp−1(X)]2

Let (un)n∈N be the sequence defined by un = QPn
(
√

5). We have (property 1): un =√
5un−1 − un−2. Since u1 =

√
2 and u2 = 4 then un = βn+1

1 − βn+1
2 where β1 =

√
5+1
2

and

beta2 =
√

5−1
2

.
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QH(p,p)(
√

5) = [
√

5up−1 − 2up−2 − 2]2 − (up−1)
2

= [(
√

5 + 1)βp−1
1 − 2][(

√
5 − 1)βp−1

2 − 2]

We have [(
√

5 + 1)βp−1
1 − 2] > 0 and [(

√
5 − 1)βp−1

2 − 2] < 0 so QH(p,p)(
√

5) < 0.

�

Theorem 11. For k 6= 0 we have λ1(L(p, k)) > 2 and λ2(L(p, k)) < 2.

Proof.
λ1(L(p, k)) > 2: the spectral radius of a cycle is 2 and a cycle is an induced subgraph

of L(p, k) so by the interlacing theorem we have λ1(L(p, k)) ≥ 2. It remains to show that
λ1(L(p, k)) 6= 2. By theorem 4 we have QL(p,k)(2) = QCp

(2)QPk
(2) − QPp−1(2)QPk−1

(2) =
−QPp−1(2)QPk−1

(2) 6= 0 (because the spectral radius of a path is strictly less than 2).
λ2(L(p, k)) < 2: the path Pp+k−1 is an induced subgraph of L(p, k) so by the interlacing

theorem we have λ2(L(p, k)) ≤ λ1(Pp+k−1) < 2.

�

Theorem 12. We have λ1(L(p, k)) <
√

5.

Proof. By corollary 1 we have λ1(L(p, k)) ≤ λ1(L(3, k)) so it is sufficient to prove
the theorem for p = 3. For k = 0, λ1(L(3, 0)) = 2 <

√
5. We now assume that k > 0.

Using theorem 4 and QC3(X) = (X + 1)2(X − 2) we have:

QL(3,k)(X) = (X + 1)2(X − 2)QPk
(X) − (X − 1)(X + 1)QPk−1

(X)

and
QL(3,k)(

√
5) = (2

√
5 − 2)QPk

(
√

5) − 4QPk−1
(
√

5)

Let us suppose that QL(3,k)(
√

5) > 0.
We have

QL(3,k+1)(
√

5) = (2
√

5 − 2)QPk+1
(
√

5) − 4QPk
(
√

5)

but
QPk+1

(
√

5) =
√

5QPk
(
√

5) − QPk−1
(
√

5)

so

QL(3,k+1)(
√

5) =
2
√

5 − 2

4

(

(2
√

5 − 2)QPk
(
√

5) − 4QPk−1
(
√

5)
)

and by induction on k ≥ 1 we have QL(3,k+1)(
√

5) > 0.

Since the polynomial QL(3,k) has one and only one root in ]2, +∞[ (theorem 11) then

QL(3,k)(2) < 0 and QL(3,k)(
√

5) > 0 implies that λ1(L(3, k)) <
√

5.
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Theorem 13. Let G be a graph cospectral with L(p, k), then max{δ(v), v ∈ V (G)} ≤ 4.

Proof. A direct consequence of theorems 12 and 8.

�

Theorem 14. Let G be a graph cospectral with a lollipop. Then, for p ≥ 3 and q ≥ 3,
Cp ∪ Cq or H(p, q) or B(p, q) cannot be induced subgraphs of G

Proof. If Cp∪Cq is an induced subgraph of G then as λ2(Cp∪Cq) = 2 by interlacing
theorem we get λ2(G) ≥ 2, impossible by theorem 11.
H(p, q) or B(p, q) cannot be induced subgraphs of G because λ1(G) <

√
5 (theorem 12)

and λ1(H(p, q)) >
√

5 (theorem 10), λ1(B(p, q)) >
√

5 (theorem 9).

�

2.4 There are no cospectral non-isomorphic lollipops: revisited
proof

In [8] it is proved that two cospectral lollipops are isomorphic. We revisit here this result
in a shortest proof using closed walks.

Theorem 15. There are no cospectral non-isomorphic lollipops.

Proof. Let L(p, k) and L(p′, k′) with n = p + k = p′ + k′ and p < p′ be two non
isomorphic lollipops. To show that they have different spectra we show that there are less
closed walks of length p in L(p′, k′) than in L(p, k).
Let e (resp. e′) be an edge of the cycle of L(p, k) (resp. L(p′, k′)) incident to the vertex of
degree 3, W (resp W ′) the set of closed walks of length p of L(p, k) (resp. L(p′, k′)), Ŵ
(resp Ŵ ′) the set of closed walks of length p of L(p, k) (resp. L(p′, k′)) not containing e

(resp. e′) and W̃ (resp W̃ ′) the set of closed walks of length p of L(p, k) (resp. L(p′, k′))
containing e (resp. e′).
We have: |W| = |Ŵ| + |W̃| (resp. |W ′| = |Ŵ ′| + |W̃ ′|). It’s obvious that |Ŵ| = |Ŵ ′|
because L(p, k)\{e} = L(p′, k′)\{e′} = Pn. We are going to show that |W̃| < |W̃ ′| by the
following equation:

|W̃| =
∑

M∈Mp, e∈E(M)

wp(M)|M(G)|

where E(M) is the set of the edges of M .
We denote by Me a motif M containing e. The motifs containing e (resp e′) with at

least one p-covering closed walk are exactly :
• the Pi’s for 2 ≤ i ≤ p

2
+ 1 and we have |P e′

i (L(p′, k′))| ≤ |P e
i (L(p, k))|.

• the Sa,b,c’s with a + b + c ≤ p

2
and we have |Se′

a,b,c(L(p′, k′))| ≤ |Se
a,b,c(L(p, k))|.

• the Cp’s and 0 = |Ce′

p (L(p′, k′))| < |Ce
p(L(p, k))| = 1.

So, |W̃| < |W̃ ′| and |W| < |W ′| which concludes the proof.

�
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2.5 The odd lollipop is determined by its spectrum: revisited

proof

We revisit here the proof that the odd lollipop is determined by its spectrum. The aim
of the proof is to determine the degree distribution. We already know that there are no
vertices of degree greater or equal than 5 (theorem 13).

Lemma 1. Let G be a graph cospectral with L(p, k), p odd. Then G has no isolated
vertices.

Proof. We have to show that 0 is not an eigenvalue of L(p, k) that is the constant co-
efficient, an, of the characteristic polynomial of L(p, k) is non-zero. According to theorem
1 we have:

an =
∑

U∈Un

(−1)p(U)2c(U)

But |Un| = 1 :

• if k is odd, then Un is the disjoint union of p+k

2
paths P2, and an = (−1)

p+k

2 6= 0.

• If k is even then Un is the disjoint union of k
2

paths P2 and a cycle Cp, and an =

(−1)
k
2
+12 6= 0.

�

Lemma 2. Let G be a graph cospectral with L(p, k), p odd. Then there are no 4-cycles
in G.

Proof. Let us remark that an odd closed walk necessary runs through an odd
cycle. As G and L(p, k) have the same characteristic polynomial, according to theorem
2, the length of the shortest odd cycle of G is p and there is only one such cycle, so
Mp+2(G) ⊂ {Cp, L(p, 1), Cp+2}. Using equation (1) we have:

∑

λi∈Sp(G)

λ
p+2
i = wp+2(Cp)|Cp(G)| + wp+2(L(p, 1))|L(p, 1)(G)|+ wp+2(Cp+2)|Cp+2(G)|

= wp+2(Cp) + (2p + 4)|L(p, 1)(G)| + (2p + 4)|Cp+2(G)| (2)

and
∑

λi∈Sp(L(p,k))

λ
p+2
i = wp+2(Cp) + (2p + 4) (3)

If |L(p, 1)(G)| = 0 then Cp or Cp with (at least) a chord is a connected component of G.
But the first case is impossible because 2 is not an eigenvalue of G and the second case
is impossible because there are no odd cycles of length less than p in G. So the equality
of (2) and (3) implies that |L(p, 1)(G)| = 1 and |Cp+2(G)| = 0. If we suppose that there
is a 4-cycle in G, since |L(p, 1)(G)| = 1 the subgraph induced by Cp and C4 is Cp ∪C4 or
H(p, 4) but this is impossible by theorem 14.

9
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Now, we can prove the main theorem of this section:

Theorem 16. Let G be a graph cospectral with L(p, k), p odd. Then G is isomorphic to
L(p, k).

Proof. Let ni be the number of vertices of degree i for i ∈ {1, 2, 3, 4}. We have
n = n1 + n2 + n3 + n4 and 2n = n1 + 2n2 + 3n3 + 4n4 (the sum of the degrees is twice the
number of edges), so n1 = n3 + 2n4.
Moreover by proposition 2,

∑

λi∈Sp(G) λ4
i = 8|C4(G)| + 2m + 4(n2 + 3n3 + 6n4) and by

theorem 2, |C4(G)| = 0. As
∑

λi∈Sp(G) λ4
i =

∑

λi∈(L(p,k)) λ4
i we get n2 + 3n3 + 6n4 = n + 1

and then 1 = −n1 + 2n3 + 5n4.
So we have 1 = n3 + 3n4 and then n4 = 0, n3 = 1, n1 = 1, n2 = n − 2.

As the sum of the degrees of a graph is even, the vertex of degree 1 and the vertex of
degree 3 belongs to the same connected component. If G is not connected there is a 2-
regular connected component (ie a cycle) which is impossible (2 is not an eigenvalue of G).
As a result, G is a connected graph with degree distribution equal to (1, 2, 2, 2, ..., 2, 2, 3),
so G is a lollipop and, by theorem 15, G is isomorphic to L(p, k).

�

3 The even lollipop is determined by its spectrum.

Following the same method as the one used for the odd case, to prove that the even
lollipop is determined by its spectrum we show that a graph cospectral with an even
lollipop:

• is connected (and then it contains no isolated vertices).

• has a 4-cycle if and only if it is cospectral with a L(4, k).

For the second point the difficulty is to prove that a graph cospectral with a L(4, k) has
a 4-cycle.

To lighten the section some technical proofs have been detailed in appendix.

3.1 Connectivity

Using results of section 2.2 we easily obtain the following property:

Property 2. ∀a, b, c ∈ N, QCp
(2) = 0, QPk

(2) = k + 1, QSa,b,c
(2) = a + b + c + 2 − abc,

QS1,1,a
(2) = 4

The following theorem gives a better bound than the theorem 12 on spectral radius of
a lollipop L(p, k) when p ≥ 4.

10



Theorem 17. i) Let G be a graph cospectral with L(p, k) with p ≥ 6, then λ1(G) < 2.17.

ii) Let G be a graph cospectral with L(4, k), then λ1(G) <
√

2 + 2
√

2.

Proof. Just follow the proof of theorem 12 mutatis mutandis.

�

Let P (p1, p2, p3) be the graph obtained by identifying the three pendant vertices of
Sp1+1,p2+1,p3+1 (an example is given in figure 6).
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Figure 6: P(4,7,6)

Theorem 18. The graph P (p1, p2, p3) cannot be an induced subgraph of a graph G cospec-
tral with an even lollipop.

Proof. Sketch of the proof :

We first show that for some values of p1, p2 and p3 we have λ1(P (p1, p2, p3)) >
√

2 + 2
√

2
and in these cases P (p1, p2, p3) cannot be an induced subgraph of G.

For the others cases we compute QP (p1,p2,p3)(2).

• if QP (p1,p2,p3)(2) ≥ 0 then P (p1, p2, p3) and a fortiori G (interlacing theorem) pos-
sesses two eigenvalues greater than 2 which contradicts that G is cospectral with a
lollipop (theorem 11) .

• if QP (p1,p2,p3)(2) < 0 then we show that P (p1, p2, p3) cannot be a connected com-
ponent of G so there is a vertex x not in P (p1, p2, p3) adjacent to a vertex y of
P (p1, p2, p3) and we prove that this graph so constructed cannot be an induced
subgraph of G.

A detailed proof is given in appendix A.

�

Theorem 19. Let G be a graph cospectral with an even lollipop. Then G is connected.

Proof. The graph G has as many edges as vertices, so if G is not connected, it
possesses at least two cycles. The subgraph induced by the two cycles of minimal length
is Ca ∪ Cb, B(a, b), H(a, b) or P (p1, p2, p3) but this is impossible (theorems 14 and 18).

�

Corollary 3. A graph cospectral with an even lollipop is unicyclic.

11



3.2 The even lollipop L(p, k), p ≥ 6, is determined by its spec-

trum

Let G be a graph cospectral with an even lollipop L(p, k), p ≥ 6. In order to copy the
proof of theorem 16 concerning the odd lollipop we have to show that |C4(G)| = 0 (G
does not have a 4-cycle), this is the aim of the following proposition.

Proposition 3. A graph cospectral with an even lollipop L(p, k), p ≥ 6 does not have a
4-cycle.

Proof. Let G be a graph cospectral with an even lollipop L(p, k), p ≥ 6 and suppose
that G has a 4-cycle. As G is connected, unicyclic and has at least 6 vertices then one of
the graph drawn in figure 7 is an induced subgraph of G and we check that the spectral
radius of theses graphs is greater than 2.17.
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Figure 7: Unicyclic graphs with six vertices and having a 4-cycle

This contradicts theorem 17 .

�

We can now state:

Theorem 20. The even lollipop L(p, k), p ≥ 6, is determined by its spectrum.

3.3 The even lollipop L(4, k) is determined by its spectrum

Let G be a graph cospectral with L(4, k), the main point is to show that the converse
implication of previous proposition 3 holds, that is G has a 4-cycle. The key theorem of
this part requires to study the cospectrality of some classes of unicyclic graphs with a
lollipop L(4, k), this is done in the sections 3.3.2, 3.3.3, 3.3.4, 3.3.5.

3.3.1 Our toolbox: some results on L(4, k)

In the following we are going to prove that L(4, k) is not cospectral with some unicyclic
graphs. For that purpose we use several tools detailed in this section: counting closed
walks of length 6, 8 or 10, evaluating the characteristic polynomial in 1 or 2, using the
fact that a lollipop has only one eigenvalue greater than 2.

12



Proposition 4. i) For L(4, k), k > 1 we have:

∑

i

λ6
i = 20n + 96

ii) For L(4, k), k > 2 we have:

∑

i

λ8
i = 70n + 596

iii) For L(4, k), k > 3 we have

∑

i

λ10
i = 252n + 3360

Proof. Counting closed walks, we check that
i) For k > 1, |P2(L(4, k))| = n, |P3(L(4, k))| = n+1, |P4(L(4, k))| = n+2, |C4(L(4, k))| =
1, |L(4, 1)(L(4, k))| = 1.
ii) Moreover, for k > 2, |P5(L(4, k))| = n − 1, |S1,1,1(L(4, k))| = 3, |S1,1,2(L(4, k))| = 3,
|L(4, 2)(L(4, k))| = 1.
iii) Moreover, for k > 3, |P6(L(4, k))| = n − 2, |S1,2,2(L(4, k))| = 2, |S1,1,3(L(4, k))| = 1,
|L(4, 2)(L(4, k))| = 1, |L(4, 3)(L(4, k))| = 1
and apply proposition 1.

�

Property 3. We have QPp
(1) = QPp

(1) and QCp
(1) = QCp

(1) where p is p modulo 6 and:

QP0
(1) = 1 QC0

(1) = 0
QP1

(1) = 1 QC1
(1) = −1

QP2
(1) = 0 QC2

(1) = −3
QP3

(1) = −1 QC3
(1) = −4

QP4
(1) = −1 QC4

(1) = −3
QP5

(1) = 0 QC5
(1) = −1

Proof. According to property 1, QPp
(1) = QPp−1(1) − QPp−2(1) = −QPp−3(1) =

QPp−6(1) and QCp
(1) = QPp−1(1) − 2QPp−2(1) − 2. Then we can easily compute QPi

and
QCi

for 0 ≤ i ≤ 5.

�

Property 4. We have:

QPk
(0) =

{

(−1)
k
2 if k is even

0 if k is odd

and if k is odd we have R(0) = (−1)
k−1
2

k+1
2

where R(X) =
QPk

(X)

X
.

13



Proof. Proofs by induction with the relation QPk
(X) = XQPk−1

(X) − QPk−2
(X).

�

Proposition 5. We have:

QL(4,k)(1) =































1 if n ≡ 0[6]
3 if n ≡ 1[6]
2 if n ≡ 2[6]
−1 if n ≡ 3[6]
−3 if n ≡ 4[6]
−2 if n ≡ 5[6]

Proof. Theorem 4 gives QL(4,k)(X) = QC4(X)QPk
(X)−QP3(X)QPk−1

(X) so QL(4,k)(1) =
−3QPk

(1) + QPk−1
(1) and we conclude with property 3.

�

Proposition 6. QL(4,k)(2) = −4n + 16.

Proof. QL(4,k)(X) = QC4(X)QPk
(X) − QP3(X)QPk−1

(X) and with property 2 we
have QL(4,k)(2) = −4k = −4n + 16.

�

Remark : This proposition can be generalized for all lollipops : QL(p,k)(2) = −pk.

Proposition 7. If n = 4 + k is even then 0 is an eigenvalue of L(4, k) with multiplicity

2 and R(0) = (−1)
k
2
+1n where R(X) =

QL(4,k)(X)

X2 .

Proof. Since QL(4,k)(X) = QC4(X)QPk
(X) − P3(X)QPk−1

(X) we have R(X) =

(X2 − 4)QPk
(X) − (X2 − 2)

QPk−1
(X)

X
and property 4 gives the result.

�

3.3.2 Unicyclic graphs with exactly three vertices of maximal degree 3 whose
only one belongs to the cycle

Let T be a tree with exactly two vertices of maximal degree 3. Let G1 be the set of the
coalescences of T with a pendant vertex as distinguished vertex and a cycle Cp, p ≥ 6. In
the following we assume that the vertex of degree 3 belonging to the cycle is denoted by u

and v, w are the other two vertices of degree 3 such that v is between u and w; x, y, z are
the pendant vertices of G such that d(z, v) < d(z, w) and d(x, w) ≤ d(y, w). An example
is given in figure 8.

The aim of this section is to show the following theorem whose proof is summed up in
table 1:

Theorem 21. The lollipop L(4, k) cannot be cospectral with a graph G ∈ G1.

14



��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
����

��
��
��
��
��
��
��
��
��
��
����
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

u v w

z

x

y

Figure 8: A graph G ∈ G1

As L(4, k) cannot be cospectral with a non-bipartite graph we suppose in the following
that a graph G ∈ G1 is bipartite (the length of the cycle is even).

Proposition 8. Let G ∈ G1. If one of the following properties is true:
i) d(u, v) > 2
ii) d(u, v) = 2, d(v, w) > 1 and d(y, w) > 2
iii) d(u, v) = 2, d(v, w) ≥ 4, d(y, w) ≥ 2
then G is not cospectral with a lollipop.

Proof.
Let p be the length of the cycle of G. If one of these properties is true then G possesses

an induced subgraph with twice the eigenvalue 2. By the interlacing theorem it cannot
be cospectral with a lollipop (theorem 11).

This subgraph is Cp ∪ Tr (for an r ∈ N) in the case i), Cp ∪ S1,3,3 in ii) and Cp ∪ S1,2,5

in iii).

�

Proposition 9. Let G ∈ G1. If one of the following properties is true:
i) d(u, v) = 1, d(v, w) = 1,
ii) d(u, v) = 1 and d(v, w) > 1 and ( d(v, z) > 1 or d(x, w) > 1 or d(y, w) > 1),
iii) d(u, v) > 1 and d(v, w) > 1 and ( (d(v, z) > 1 and d(y, w) > 1) or d(x, w) > 1),
iv) d(v, w) = 1 and ( d(v, z) > 1 or d(y, w) > 1 or d(x, w) > 1),
v) p = 6.
then

∑

λi∈Sp(G)

λ6
i > 20n + 96

and G cannot be cospectral with L(4, k).

Proof. For the cases from i) to iv) we have |P2(G)| = n, |P3(G)| = n+3, |S1,1,1(G)| =
3, |P4(G)| > n + 4 and apply proposition 1.
For the case v) we have |P2(G)| = n, |P3(G)| = n + 3, |S1,1,1(G)| = 3, |P4(G)| >

n + 2, |C6(G)| = 1 and apply proposition 1.

�
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Graph Tool Prop.

p = 6
∑

λ6
i 9 v)

p ≥ 8

d(u, v)
= 1

d(v,w) = 1
∑

λ6
i 9 i)

d(v,w)
> 1

d(v, z) > 1 or d(x,w) > 1
or d(y,w) > 1

∑

λ6
i 9 ii)

d(v, z) = 1 and d(x,w) = 1
and d(y,w) = 1

QG(1) 10

d(u, v)
= 2

d(x,w)
= 1

d(y,w) = 1 QG(2) 12

d(y,w)
= 2

d(v, z) > 1
d(v,w) = 1

∑

λ6
i 9 iv)

d(v,w) > 1
∑

λ6
i 9 iii)

d(v, z) = 1
d(v,w) = 1

∑

λ6
i 9 iv)

2 ≤ d(v,w) ≤ 3
∑

λ8
i 11

d(v,w) ≥ 4 λ2 ≥ 2 8 iii)
d(y,w)

> 2
d(v,w) = 1

∑

λ6
i 9, iv)

d(v,w) > 1 λ2 ≥ 2 8 ii)
d(x,w)

> 1
d(v,w) = 1

∑

λ6
i 9 iv)

d(v,w) > 1
∑

λ6
i 9 iii)

d(u, v) > 2 λ2 ≥ 2 8 i)

Table 1: Proof of theorem 21 using a case disjunction over the possibilities for the values
of d.

Proposition 10. Let G ∈ G1 such that d(u, v) = 1 and d(w, x) = d(w, y) = d(v, z) = 1.
Then G cannot be cospectral with L(4, k).

Proof. Let G ∈ G1, with n = p + q vertices where p is the length of the cycle. We
have:

QG(X) = QCp
(X)QS1,1,q−3(X) − XQPp−1(X)QS1,1,q−5(X)

= XQCp
(X)(QPq−1(X) − QPq−3(X)) − X2QPp−1(X)(QPq−3(X) − QPq−5(X))

Using property 3 we compute QG(1), the result depends on p and q which are p and
q modulo 6 and are summed up into the following table:

H
H

H
H

H
H

p

q
0 1 2 3 4 5

0 0 0 0 0 0 0
2 −1 −5 −4 1 5 4
4 −5 −7 −2 5 7 2

Comparing this results with proposition 5 ( n = p + q) we conclude that G cannot be
cospectral with L(4, k).

�

Proposition 11. Let G ∈ G1 such that p ≥ 8, d(u, v) = 2, 2 ≤ d(v, w) ≤ 3, d(y, w) = 2,
d(v, z) = 1, d(x, w) = 1. Then G cannot be cospectral with L(4, k).
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Proof. We have |P2(G)| = n, |P3(G)| = n + 3, |P4(G)| = n + 4, |S1,1,2(G)| = 7,
|P5(G)| = n + 6 if d(v, w) = 2 and |P5(G)| = n + 5 if d(v, w) ≥ 3 and by proposition 1:

∑

λ8
i =

{

70n + 588 + 16|C8(G)| if d(v, w) = 2
70n + 580 + 16|C8(G)| if d(v, w) = 3

• If d(v, w) = 2 then, by proposition 4, G cannot be cospectral with L(4, k).

• If d(v, w) = 3 then, by proposition 4, G is cospectral with L(4, k) only if p = 8. We
then check that such a graph G (drawn on figure 9) is not cospectral with L(4, 13)
by comparing spectral radii (see tables 11 and 12 in appendix).
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Figure 9:

�

Proposition 12. Let G ∈ G1 such that d(u, v) = 2, d(x, w) = d(y, w) = 1. Then
QG(2) = −4p and G cannot be cospectral with a lollipop L(4, k)

Proof. Set b = d(v, w) and a = d(z, v), using theorems 4 and 6 we have

QG(X) = QCp
(X)QT (X) − QPp−1(X)QS1,1,a+b−1

(X)

(where T is a tree) and using property 2 we get QG(2) = 0− p× 4 = −4n + 4(n− p). As
n − p > 4, proposition 6 implies that G cannot be cospectral with a lollipop L(4, k).

�

3.3.3 Unicyclic graphs with exactly three vertices of maximum degree 3
whose exactly two belongs to the cycle.

Let T be a tree with exactly one vertex w of maximum degree 3 and L(p, k), p ≥ 6,
a lollipop (the vertex of degree 3 is denoted by v and the pendant vertex by z). Let
G2 be the set of coalescences of a lollipop with a vertex u of degree 2 of the cycle as
distinguished vertex and T with a pendant vertex as distinguished vertex. The pendant
vertices different from z are denoted by x and y such that d(x, w) ≤ d(y, w). Such a graph
is drawn in figure 10.

The aim of this section is to show the following theorem whose proof is summed up in
table 2.
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Figure 10: A graph G ∈ G2

Graph Tool
Propo-
sition

p = 6
∑

λ6
i 13 v)

p ≥ 8

d(u, v) = 1

d(v, z) > 1 or d(x,w) > 1 or d(y,w) > 1
∑

λ6
i 13 ii)

d(w, u) = 1
∑

λ6
i 13 iii)

d(v, z) = 1 and
d(x,w) = 1 and

d(y,w) = 1 and d(w, u) > 1

QG(2)
and

QG(1)
15

d(u, v) > 1

d(x,w) > 1 or (d(y,w) > 1 and d(z, v) > 1)
∑

λ6
i 13 i)

d(x,w) = 1
and

d(y,w) = 1

or

d(x,w) = 1
and

d(z, v) = 1

d(u,w)=1
d(v, z) > 1 or
d(y,w) > 1

∑

λ6
i 13 iv)

d(v, z) = 1 and
d(y,w) = 1

QG(2) 16

d(u,w)¿1
d(v, z) = 1 and

d(y,w) = 1

∑

λ6
i 14

d(v, z) = 1 and
d(y,w) > 1

17

d(v, z) > 1 and
d(y,w) = 1

18

Table 2: Proof of theorem 22 using a case disjunction over the possibilities for the values
of d. An empty cell in the column tool means that the proof uses more than three tools.
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Theorem 22. A L(4, k) cannot be cospectral with a graph G ∈ G2.

As in the previous section we can assume the length of the cycle of G is even.

Proposition 13. Let G ∈ G2. If one of the following properties is true
i) d(x, w) > 1 or (d(y, w) > 1 and d(z, v) > 1),
ii) d(u, v) = 1 and (d(z, v) > 1 or d(y, w) > 1),
iii) d(u, v) = 1 and d(u, w) = 1,
iv) d(u, w) = 1 and (d(z, v) > 1 or d(y, w) > 1),
v)p=6,
then

∑

i

λ6
i > 20n + 96

and G cannot be cospectral with a lollipop L(4, k).

Proof. For all cases we have |P2(G)| = n, |P3(G)| = n+3, |S1,1,1(G)| = 3. Moreover,
for the cases i) to iv) |P4(G)| > n+4 and for the case v) |P4(G)| > n+2 and |C6(G)| = 1
and we apply proposition 1.

�

Proposition 14. Let G ∈ G2 such that p ≥ 8, d(u, v) > 1, d(u, w) > 1, d(z, v) =
1, d(w, x) = d(w, y) = 1, then

∑

i λ
6
i < 20n + 96 and G cannot be cospectral with a

lollipop L(4, k).

Proof. The subgraphs M of G with w6(G) > 0 are P2, P3, P4, S1,1,1 and |P2(G)| = n,
|P3(G)| = n + 3, |S1,1,1(G)| = 3, |P4(G)| = n + 3 and we apply proposition 1.

�

Proposition 15. Let G ∈ G2 such that d(u, v) = 1, d(z, v) = 1, d(w, y) = 1, d(w, u) > 1,
then G is not cospectral with L(4, k).

Proof. Since d(w, x) ≤ d(w, y) = 1 we have d(w, x) = 1. Let α = d(u, w) (so
n = p + α + 3), by theorem 4 we get:

QG(X) = QL(p,1)(X)QS1,1,α−1(X) − QPp
(X)QS1,1,α−2(X)

=
(

XQCp
(X) − QPp−1(X)

)

QS1,1,α−1(X) − QPp
(X)QS1,1,α−2(X)

and (with property 2) QG(2) = −8p−4. So QG(2) = QL(4,k)(2) if and only if −8p−4 =
−4n + 16 that is α = p + 2.

As a consequence

QG(X) =
(

XQCp
(X) − QPp−1(X)

)

QS1,1,p+1(X) − QPp
(X)QS1,1,p

(X)

=
(

XQCp
(X) − QPp−1(X)

)

X
(

QPp+3(X) − QPp+1(X)
)

−QPp
(X)X

(

QPp+2(X) − QPp
(X)

)

By property 3 we have (let’s note that n = 2p + 5):
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• If p = 0 (so n = 5) then QG(1) = 1.

• If p = 2 (so n = 3) then QG(1) = −4.

• If p = 4 (so n = 1) then QG(1) = 0.

where p and n are p and n modulo 6. And by proposition 5, G is not cospectral with
L(4, k).

�

Proposition 16. Let G ∈ G2 such that d(u, v) > 1, d(w, x) = d(w, y) = d(v, z) =
d(u, w) = 1, then G cannot be cospectral with L(4, k).

Proof. Set a = d(u, v) and b = p − a. We have:

QG(X) = QL(p,1)(X)QP3(X) − X2QS1,a−1,b−1
(X)

=
(

XQCp
(X) − QPp−1(X)

)

QP3(X) − X2QS1,a−1,b−1
(X)

and QG(2) = −4p−4(2a+2b−ab). As n = p+4 we have QG(2)+4n−16 = −4(2p−ab)
so QG(2) + 4n − 16 = 0 if and only if ab = 2p.

• If a = 2 then 2b = 4 + 2b, impossible.

• If a = 3 then b = 6 and p = 9, p odd is impossible.

• If a = 4 then b = 4 and p = 8 we check that this graph is not cospectral with L(4, 8).

• If a > 4 then as p ≤ 2b we have 2p − ab < 0.

As a result G is not cospectral with L(4, k).

�

Proposition 17. Let G ∈ G2 such that p ≥ 8, d(u, v) > 1, d(w, u) > 1, d(w, y) > 1,
d(w, x) = d(v, z) = 1. Then G is not cospectral with a lollipop L(4, k).

Proof. Let a = d(u, v), b = p − a, α = d(u, w), β = d(w, y) ≥ 2. We have a ≤ b and
p ≤ 2b and n = p + α + β + 2.

QG(X) = QL(p,1)(X)QS1,α−1,β
(X) − QS1,a−1,b−1

(X)QS1,α−2,β
(X)

=
(

XQCp
(X) − QPp−1(X)

)

QS1,α−1,β
(X) − QS1,a−1,b−1

(X)QS1,α−2,β
(X)

Using property 2 we obtain

QG(2) = −p(α + 2β − αβ + 2) − (2a + 2b − ab)(α + 3β − αβ + 1)

The following inequality will be useful: ab = (a−1)(b−1)+p−1 ≥ b−1+p−1 ≥ 3
2
p−2.

The main argument of this proof is that QG(2) 6= −4n + 16 so G cannot be cospectral
with a lollipop L(4, k) (proposition 6).
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• Case β = 2. QG(2) − (−4n + 16) = (3α − 16)p + (7 − α)ab + 4α.

– If α = 2 then QG(2) − (−4n + 16) = −10p + 5ab + 8 6= 0 (otherwise 5 divides
8)

– If α = 3 then QG(2)−(−4n+16) = −7p+4ab+12. If a ≥ 4 then −7p+4ab+12 >

0 (because p ≤ 2b). If a = 3 then −7p+4ab+12 = 5b−9 6= 0 (because b ∈ N).
If a = 2 then −7p + 4ab + 12 = b − 2 6= 0 (because a + b = p ≥ 8).

– If 4 ≤ α ≤ 7 then

QG(2) − (−4n + 16) ≥ (3α − 16)p + (7 − α)(
3

2
p − 2) + 4α

≥ (
3

2
α − 11

2
)p − 14 + 6α

≥ p

2
+ 10 > 0

– If α > 7 then the disjoint union Cp ∪ S1,2,5 is an induced subgraph of G with
twice the eigenvalue 2 and by the interlacing theorem and theorem 11, G is
not cospectral with a lollipop.

• Case β ≥ 3 :

– α = 2. We have |P2(G)| = n, |P3(G)| = n + 3, |P4(G)| = n + 4, |S1,1,2(G)| = 7,
|P5(G)| = n + 6 if a > 2 and |P5(G)| = n + 7 if a = 2. By proposition 1 we
have

∑

λ8
i = 70n+588+16c8 if a > 2 and in that case G in not cospectral with

L(4, k) (proposition 4). If a = 2 then QG(2) = −4p − 4(β + 3) = −4n + 4 6=
−4n + 16.

– α = 3. QG(2)+4n−16 = −p(−β+5)−(2p−ab)×4+4(p+β+5)−16 = p(β−
9)+4ab+4β +4. But β ≥ 3 and ab ≥ 3

2
p−2, so QG(2)+4n−16 ≥ 4β−4 > 0.

– α = 4.

∗ If β ≥ 5 the disjoint union Cp ∪ S1,2,5 is an induced subgraph of G with
twice the eigenvalue 2 and by the interlacing theorem and theorem 11, G

is not cospectral with a lollipop.

∗ If β = 4 then QG(2) = ab > 0 and QL(4,k)(2) < 0

∗ If β = 3 then QG(2) = 2(ab − 2p), n = p + 9 and QG(2) − (−4n + 16) =
2ab + 20 > 0

– α > 4. The disjoint union Cp ∪ S1,3,3 is an induced subgraph of G with twice
the eigenvalue 2 and by the interlacing theorem and theorem 11, G is not
cospectral with a lollipop.

�

Property 5. Let r ∈ R, r > 2, we have QPn
(r) = α1β

n
1 + α2β

n
2 with β1 = r+

√
r2−4
2

> 1,

β2 = r−
√

r2−4
2

< 1, α1 = r−β2

β1−β2
> 1, α2 = 1 − α1 < 0.
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Proof. Let (un)n∈N be the sequence un = QPn
(r). We have un = run−1 − un−2, so

un = α1β
n
1 +α2β

n
2 where β1, β2 are roots of X2−rX+1 and we note that 1 = u0 = α1+α2,

r = u1 = α1β1 + α2β2.

�

Lemma 3. Let G ∈ G2 with d(u, v) = 2, d(w, x) = d(w, y) = 1, d(v, z) > 1, d(u, w) >

d(v, z), then G is not cospectral with a L(4, k).

Proof. Let α = d(u, w), l = d(v, z), we have n = p + α + l + 2. Applying theorem 5
to the vertex at distance 1 of u and v, we have:

QG(X) = XQS1,1,n−4(X) − QPl
(X)QS1,1,α+p−3(X) − QPl+p−2

(X)QS1,1,α−1(X) − 2QPl
QS1,1,α−1

and applying theorem 5 to the vertex of degree 2 of the cycle of L(4, k) we have:

QL(4,k)(X) = XQS1,1,n−4(X) − 2QPn−2(X) − 2QPn−4(X)

Noting that QS1,1,c
= X(QPc+2(X) − QPc

(X)) and QPn−2(X) + QPn−4(X) = XQPn−3(X)
we have:

QG(X) − QL(4,k)(X) = −XQPl
(X)QPα+p−1(X) + XQPl

(X)QPα+p−3(X)

−XQPl+p−2
(X)QPα+1(X) + XQPl+p−2

(X)QPα−1(X)

−2QPl
(X)QPα+1(X) + 2QPl

(X)QPα−1(X) + 2XQPn−3(X)

According to the previous property, we have for r > 2:

QG(r) − QL(4,k)(r) = −rα2
1β

n−3
1 − rα2

2β
n−3
2 − rα1α2β

α+p−1−l
1 − rα1α2β

α+p−1−l
2

+rα2
1β

n−5
1 + rα2

2β
n−5
2 + rα1α2β

α+p−3−l
1 + rα1α2β

α+p−3−l
2

−rα2
1β

n−3
1 − rα2

2β
n−3
2 − rα1α2β

l+p−2
1 βα+1

2 − rα1α2β
l+p−2
2 βα+1

1

+rα2
1β

n−5 + rα2
2β

n−5 + rα1α2β
l+p−2
1 βα−1

2 + rα1α2β
l+p−2
2 βα−1

1

+2rα1β
n−3
1 + 2rα2β

n−3
2

Let x = α + p − l − 1 and y = |l + p − α − 1|, we have x > y.

QG(r) − QL(4,k)(r) = 2r
(

(α1 − α2
1)β

2
1 + α2

1

)

βn−5
1 + 2r

(

(α2 − α2
2)β

2
2 + α2

2

)

βn−5
2

−rα1α2(β
x
1 − βx−2

1 − β
y
1 + β

y−2
1 ) − rα1α2(β

x
2 − βx−2

2 − β
y
2 + β

y−2
2 )

but we have the four following equalities:

α1α2 = α1 − α2
1 = −1

r2−4

(α1 − α2
1)β

2
1 + α2

1 = 0

(α2 − α2
2)β

2
2 + α2

2 = 0

β2 = β−1
1
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so

QG(r) − QL(4,k)(r) = r
r2−4

(

βx
1 − βx−2

1 − β
y
1 + β

y−2
1 + β−x

1 − β−x+2
1 − β

−y
1 + β

−y+2
1

)

As

limr→+∞
βx
1−βx−2

1 −β
y
1+β

y−2
1 +β−x

1 −β−x+2
1 −β

−y
1 +β

−y+2
1

r
= +∞ (note that x > 2)

we have
lim

r→+∞
QG(r) − QL(4,k)(r) = +∞

and G is not cospectral with L(4, k).

�

Proposition 18. Let G ∈ G2 with p ≥ 8, d(u, v) > 1, d(w, x) = d(w, y) = 1, d(v, z) > 1,
d(u, w) > 1, then G is not cospectral with a L(4, k).

Proof.
We distinguish the following cases :

• case 1 : d(u, v) > 2 and d(u, w) > 2 and d(z, v) > 2

• case 2 : d(u, v) > 2 and d(u, w) > 2 and d(z, v) = 2

• case 3 : d(u, v) > 2 and d(u, w) = 2 and d(z, v) > 2

• case 4 : d(u, v) > 2 and d(u, w) = 2 and d(z, v) = 2

• case 5 : d(u, v) = 2

• For cases 1 and 4 we have |P2(G)| = n, |P3(G)| = n + 3, |P4(G)| = n + 4, |S1,1,1(G)| =
3, |S1,1,2(G)| = 7, |P5(G)| = n + 6 , |L(4, 1)(G)| = 0, |L(4, 2)(G)| = 0 so (proposition 1)
∑

λ8
i = 70n + 588 + 16c8 and G is not cospectral with L(4, k) (proposition 4).

• For cases 2, 3 and 5, let us compute QG(2). Let a = d(u, v), b = p − a, α = d(u, w),
l = d(v, z).

QG(X) = QL(p,l)(X)QS1,1,α−1(X) − QSa−1,b−1,l
(X)QS1,1,α−2(X)

=
(

PCp
(X)QPl

(X) − QPp−1(X)QPl−1
(X)

)

QS1,1,α−1(X)

−QSa−1,b−1,l
(X)QS1,1,α−2(X)

Using property 2 we have QG(2) + 4n − 16 = −8lp + 4abl + 4α + 4l − 8 and G is
cospectral with L(4, k) only if QG(2) + 4n − 16 = 0 that is α = l(2p − ab − 1) + 2.

• For case 3 we have α = 2 so 2p − ab + 1 = 0 and a is odd. If a = 3 then
b = 5 and p = 8. We have |P2(G)| = n, |P3(G)| = n + 3, |P4(G)| = n + 4,
|P5(G)| = n + 7, |S1,1,1(G)| = 3, |S1,1,2(G)| = 7, |C8(G)| = 1. So

∑

λ8
i = 70n + 612

and in this case G is not cospectral with L(4, k) (proposition 4). If a ≥ 5 then
2p − ab − 1 ≤ 4b − 5b − 1 < 0 and this finishes the case 3.
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• For case 2, |P2(G)| = n, |P3(G)| = n+3, |P4(G)| = n+4, |S1,1,1(G)| = 3, |S1,1,2(G)| =
7, |P5(G)| = n + 5 , |L(4, 1)(G)| = 0, |L(4, 2)(G)| = 0 so (proposition 1)

∑

λ8
i =

70n + 580 + 16c8 and G is cospectral with L(4, k) only if p = 8. We have l = 2 and
α = l(2p−ab−1)+2 so the graphs that can be cospectral with L(4, k) are the ones
with a = 3, b = 5 so α = 2, impossible, or a = 4, b = 4 so α = 0, impossible.

• For case 5, G is cospectral with L(4, k) only if α = 3l + 2, but this is impossible
according to lemma 3.

�

3.3.4 Unicyclic graphs with exactly three vertices of maximum degree 3, all
of them belonging to the cycle.

Let G3 be the set of the graphs G obtained in the following way:

• Do the coalescence of a lollipop L(p, k), p ≥ 6, k ≥ 1 with a vertex of degree 2 of
the cycle as distinguished vertex and a path with a pendant vertex as distinguished
vertex.

• Do the coalescence of the previous graph with a vertex of the cycle of degree 2 as
distinguished vertex and a path with a pendant vertex as distinguished vertex.

We denote by u1, u2, u3 the three vertices of degree 3 and by x1, x2, x3 the pendant
vertices such that d(xi, ui) = minj d(xi, uj). Un example is given in figure 11

The aim of this section is to show the following theorem whose proof is summed up in
table 3 :

Theorem 23. A lollipop L(4, k) cannot be cospectral with a graph G ∈ G3.

As in the previous sections we assume that the cycle of G is even.
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Graph Tool
Propo-
sition

p = 6
∑

λ6
i 19 iv)

∃i, j, i 6= j : d(xi, ui) > 1 and d(xj , uj) > 1
∑

λ6
i 19 i)

∃r, s, t, r 6= s, s 6= t, r 6= t, : d(ur, us) = 1 and d(us, ut) = 1
∑

λ6
i 19 ii)

p ≥ 8
and

∃i, j, k

two by two
distinct
∃r, s, t

two by two
distinct:

d(xi, ui) = 1
d(xj , uj) = 1
d(xk, uk) ≥ 1
d(ur, us) > 1
d(us, ut) > 1

d(xk, uk) = 1
d(ur, ut) > 1

∑

λ6
i 20

d(ur, ut) = 1
d(ur, us) = 2 or d(us, ut) = 2

∑

λ8
i 21

d(ur, us) > 2 and d(us, ut) > 2
∑

λ8
i 21

d(xk, uk) > 1

d(ur, ut) = 1
∑

λ6
i 19 iii)

d(ur, ut) > 1

d(xk, uk) = 2
∑

λ8
i 22

d(xk, uk) > 2

∀l1, l2, d(ul1, ul2) > 2
∑

λ8
i 23 iii)

∃r, s, t

d(ur, us) = 2 and
d(ur, ut) > 2 and

d(us, ut) > 2

∑

λ8
i 23 ii)

d(ui, uj) = 2
and

d(uj, uk) = 2

p = 8
∑

λ8
i 23 i)

p ≥ 10
∑

λ10
i 24

d(ui, uk) = 2
and

d(uj, uk) = 2

QG(2)
and
R(0)

25

Table 3: Proof of theorem 23 using a case disjunction over the possibilities for the values of d. R denotes the polynomial
R(X) = QG(X)

X2
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Figure 11: A graph G ∈ G3

Proposition 19. Let G ∈ G3. If one of the following properties is true:
i) ∃i, j, i 6= j : d(xi, ui) > 1, d(xj, uj) > 1,
ii) ∃r, s, t, r 6= s, r 6= t, s 6= t : d(ur, us) = d(us, ut) = 1,
iii) ∃i, r, t : d(xi, ui) > 1, d(ur, ut) = 1,
iv) p = 6,
then

∑

i

λ6
i > 20n + 96

and G cannot be cospectral with a lollipop L(4, k).

Proof. For cases i) to iii) we have |P2(G)| = n, |P3(G)| = n + 3, |S1,1,1(G)| =
3, |P4(G)| > n + 4 and we apply proposition 1.
For case iv) we have |P2(G)| = n, |P3(G)| = n + 3, |S1,1,1(G)| = 3, |P4(G)| > n +
2, |C6(G)| = 1 and we apply proposition 1.

�

Proposition 20. Let G ∈ G3 such that p > 6, ∀i, r, s, d(ui, xi) = 1, d(ur, us) > 1. Then
∑

i

λ6
i = 20n + 90

and G cannot be cospectral with a lollipop L(4, k).

Proof. We have |P2(G)| = n, |P3(G)| = n + 3, |P4(G)| = n + 3, |S1,1,1(G)| = 3 and
no p-cycle for p ≤ 6. We conclude with proposition 1.

�

The following three propositions compute
∑

λ8
i for some G ∈ G3, their proofs are

based on counting motifs in M8(G) which is done in a summary table 4.

Proposition 21. Let G ∈ G3 such that p ≥ 8, ∀i, d(ui, xi) = 1, and ∃r, s, t two by two
distinct : d(ur, ut) = 1, d(ur, us) > 1, d(us, ut) > 1. Then:

∑

i

λ8
i =

{

70n + 588 + 16c8 if d(ur, us) = 2 or d(us, ut) = 2
70n + 580 + 16c8 otherwise

and G cannot be cospectral with a L(4, k).
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Proof. Using table 4, we apply proposition 1 to compute
∑

i λ
8
i . The only case for

which
∑

λ8
i = 70n+596 is when ∀i, d(ui, xi) = 1, ∃r, s, t two by two distinct : d(ur, ut) =

1, d(ur, us) > 2, d(us, ut) > 2 and c8 = 1. This case is drawn in figure 12 and we check
that it is not cospectral with L(4, 7) by comparing spectral radii (see tables 11 and 12 in
appendix).
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Figure 12:

�

Proposition 22. Let G ∈ G3 such that p ≥ 8, ∃i, j, k : d(ui, xi) = d(uj, xj) =
1, d(uk, xk) = 2. We distinguish the three following cases

• case 1 : ∃r, s, t, r 6= s, r 6= t, s 6= t: d(ur, us) = d(us, ut) = 2.

• case 2 : ∃r, s, t, r 6= s, r 6= t, s 6= t: d(ur, us) = 2 and d(ur, ut) > 2 and d(us, ut) > 2.

• case 3: ∀s, t, d(us, ut) > 2.

Then:
∑

i

λ8
i =







70n + 588 + 16c8 for the case 1
70n + 580 + 16c8 for the case 2
70n + 572 for the case 3

and G cannot be cospectral with a lollipop L(4, k).

Proof. Using table 4, we apply proposition 1 to compute
∑

i λ
8
i . Under the hypothe-

ses of the proposition, the only cases for which
∑

λ8
i = 70n+596 is when c8 = 1 in case 2.

These cases are drawn in figure 13 and we check that they are not cospectral with L(4, 8)
by comparing spectral radii (see tables 11 and 12 in appendix).

�

Proposition 23. Let G ∈ G3 such that p ≥ 8, ∃i, j, k : d(ui, xi) = d(uj, xj) =
1, d(uk, xk) > 2. We distinguish the three following cases

• case 1 : ∃r, s, t, r 6= s, r 6= t, s 6= t: d(ur, us) = d(us, ut) = 2.

• case 2 : ∃r, s, t, r 6= s, r 6= t, s 6= t: d(ur, us) = 2 and d(ur, ut) > 2 and d(us, ut) > 2.
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Figure 13:

• case 3: ∀s, t, d(us, ut) > 2.

Then:
∑

i

λ8
i =







70n + 596 + 16c8 for the case 1
70n + 588 + 16c8 for the case 2
70n + 580 for the case 3

and G cannot be cospectral with a lollipop in the cases 2 and 3 and in the case 1 if c8 = 1.

The two following propositions solve the case 1 of proposition 23 when c8 = 0.

Proposition 24. Let G ∈ G3 such that p ≥ 10, ∃i, j, k : d(ui, xi) = d(uj, xj) = 1,
d(uk, xk) > 2, d(ui, uj) = d(uj, uk) = 2.
Then:

∑

i

λ10
i =

{

252n + 3340 + 20c10 if d(uk, xk) = 3
252n + 3350 + 20c10 if d(uk, xk) > 3

where c10 = |C10(G)|. And G cannot be cospectral with L(4, k).

Proof. We have |P2(G)| = n, |P3(G)| = n + 3, |P4(G)| = n + 4, |P5(G)| = n + 7,
|P6(G)| = n + 6 if d(uk, xk) = 3, |P6(G)| = n + 7 if d(uk, xk) >3, |S1,1,1(G)| = 3,
|S1,1,2(G)| = 7, |S1,2,2(G)| = 5, |S1,1,3(G)| = 11, and no others subgraphs M such that
wk(M) > 0. We then apply proposition 1. The only case for which

∑

λ10
i = 252n + 3360

is for the graph of figure 14, and we check that it is not cospectral with L(4, 11) by
comparing spectral radii (see tables 11 and 12 in appendix).
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M w8(M) |M(Ga)| |M(Gb)| |M(Gc)|
P2 2 n n n

P3 28 n + 3 n + 3 n + 3
P4 32 n + 4 n + 4 n + 4

P5 8
n + 4 case 1
n + 3 case 2

n + 6 case 1
n + 5 case 2
n + 4 case 3

n + 7 case 1
n + 6 case 2
n + 5 case 3

S1,1,1 72 3 3 3
S1,1,2 16 8 7 7
C4 264 0 0 0

L(4, 1) 112 0 0 0
L(4, 2) 16 0 0 0

C8 16 c8

c8 case 1
c8 case 2
0 case 3

c8 case 1
c8 case 2
0 case 3

∑

i λ
8
i =

70n + 588 + 16c8

for the case 1

70n + 580 + 16c8

for the case 2

70n + 588 + 16c8

for the case 1

70n + 580 + 16c8

for the case 2

70n + 572
for the case 3

70n + 596 + 16c8

for the case 1

70n + 588 + 16c8

for the case 2

70n + 580
for the case 3

Table 4: Count of the motifs of some graphs G ∈ G3. We denote by Ga (resp. Gb, Gc) a
graph described in proposition 21 (resp. 22, 23).
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Proposition 25. Let G ∈ G3 such that p ≥ 10, ∃i, j, k : d(ui, xi) = d(uj, xj) = 1,
d(uk, xk) > 2, d(ui, uk) = d(uj, uk) = 2. Then G cannot be cospectral with L(4, k).

Proof. Let G be a graph cospectral with L(4, k) and let q = d(uk, xk) (we have
n = p + q + 2). Applying theorem 5 to the vertex uk, we have:

QG(X) = XQTp+1(X)QPq
(X)− 2QS1,1,p−3(X)QPq

(X)−QTp+1(X)QPq−1(X)− 2X2QPq
(X)

Property 2 gives QG(2) = −16(q + 1) and according to proposition 6 G is cospectral with
a lollipop L(4, k) only if −16(q + 1) = −4n + 16 ie p = 3q + 6 and q is necessarily even.

Using QS1,1,c
(X) = X(QPc+2(X) − QPc

(X)) we have that if c is odd then 0 is an

eigenvalue of S1,1,c with multiplicity 2 and if R(X) =
QS1,1,c

(X)

X
then R(0) = (−1)

c+1
2 (c+2).

The relation QTn
(X) = XQS1,1,n−4(X) − XQS1,1,n−2(X) implies that 0 is an eigenvalue of

Tn with multiplicity 2.
Let R(X) = QG(X)

X2 . Property 4 gives

R(0) =

{

−2p if q ≡ 0[4]
−2p + 4 if q ≡ 0[4]

If q ≡ 0[4] then according to proposition 7, G is cospectral with a lollipop L(4, k) only if
−2p = −n ie p = q + 2 which contradicts p = 3q + 6.
If q ≡ 2[4] then according to proposition 7, G is cospectral with a lollipop L(4, k) only if
−2p + 4 = −n ie p = q + 6 which contradicts p = 3q + 6.

�

3.3.5 Unicyclic graphs without vertices of degree 3 and only one vertex of
maximum degree 4

The graph γp,k1,k2 is the coalescence of a lollipop L(p, k1) with the vertex of degree 3 as
distinguished vertex and a path Pk2+1 with a pendant vertex as distinguished vertex (cf
figure 15 for an example).

Proposition 26. For a graph γp,k1,k2 with p > 4 we have:

∑

i

λ6
i =







20n + 96 + 12c6 if k1 = k2 = 1
20n + 108 + 12c6 if k1 > 1, k2 = 1
20n + 120 + 12c6 if k1 > 1, k2 > 1

where c6 = |C6(G)|.

Proof. We have |P2(G)| = n, |P3(G)| = n + 3, |S1,1,1(G)| = 4 and

• |P4(G)| = n + 2 if k1 = k2 = 1

• |P4(G)| = n + 4 if k1 > k2 = 1
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Figure 15: γ6,2,3

• |P4(G)| = n + 6 if k1 ≥ k2 > 1

and we apply proposition 1.

�

Proposition 27. A lollipop L(4, k) cannot be cospectral with a graph γp,1,1.

Proof. The graphs L(4, k) and γp,1,1 have n = k + 4 = p + 2 vertices. Let us show
that QL(4,k)(2) 6= Pγp,1,1(2). Using twice the theorem 6:

Pγp,1,1(X) = XQL(p,1)(X) − XQPp−1(X)

= X(XQCp
(X) − QPp−1(X)) − XQPp−1(X)

And by proposition 2, Pγp,1,1(2) = −4p = −4n + 8 which contradicts QL(4,k)(2) =
−4n + 16 (proposition 6).

�

Theorem 24. A lollipop L(4, k) cannot be cospectral with γp,k1,k2, p > 4.

Proof. It is a straightforward consequence of propositions 26 and 27.

�

3.3.6 Key theorem

Theorem 25. Let G be a graph cospectral with a lollipop L(4, k) then G possesses a
4-cycle.
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Proof.
Let G be a graph cospectral with L(4, k) then G is connected, unicyclic and bipartite

(so the length of the cycle is even). Let nj be the number of vertices of degree j, j ∈
{1, 2, 3, 4}, of G (remind by theorem 13 that the maximum degree of G is less than or
equal to 4). We have (by proposition 2),

∑

i

λ4
i = 8c + 2n + 4(n2 + 3n3 + 6n4)

were c = 1 if G has a 4-cycle and c = 0 otherwise. Moreover for L(4, k) we have
∑

i

λ4
i = 8 + 2n + 4(n + 1)

so
4n + 12 = 4(n2 + 3n3 + 6n4) + 8c

We know that n = n1 +n2 +n3 +n4 and 2m = 2n = n1 +2n2 +3n3 +4n4 (the sum of the
degrees is twice the number of edges) so n = n2 + 2n3 + 3n4 and n1 = n3 + 2n4. We get:

4n + 12 = 4(n + n3 + 3n4) + 8c

and then 2c = 3 − n3 − 3n4.
If c = 0 then there are two cases:

• n4 = 1, n3 = 0, so n1 = 2 and G = γp,k1,k2 with n = p + k1 + k2

By theorem 24, G cannot be cospectral with γp,k1,k2; this case is impossible.

• n4 = 0, n3 = 3, so n1 = 3 and G ∈ G1 ∪G2 ∪G3. But by theorems 21, 22 and 23 this
is impossible.

As a result c 6= 0 and G has a 4-cycle.

�

Following the proof of theorem 16 for odd lollipop, we can now state:

Theorem 26. The lolipop L(4, k) is determined by its spectrum.

4 Conclusion

In this paper we give a way to count closed walks, which is relevant to show that two
graphs cannot be cospectral.

That provides a new approach to show that the odd lollipops are determined by
their spectrum and following this same idea we have proved that even lollipops are also
determined by their spectrum. However this is far to be as simple as the odd case and
we had to develop several tools to show the non-cospectrality of two given graphs. The
most difficult case, as it was noted in [8, 3], is for the lollipops L(4, k) where connectivity
and presence of a 4-cycle are quite long to establish.
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A Appendix

A.1 Counting covering closed walks

M w6(M) w8(M) w10(M)
P2 2 2 2
P3 12 28 60
P4 6 32 120
P5 0 8 60
P6 0 0 10
C4 48 264 1320
C6 12
C8 0 16
C10 0 0 20
S1,1,1 12 72 300
S1,1,2 0 16 140
S1,1,3 0 0 20
S1,2,2 0 0 20

L(4, 1) 12 112 840
L(4, 2) 0 16 180
L(4, 3) 0 0 20

Table 5: Number of covering closed walks on a given graph.

A.2 Proof of theorem 18

First, we notice the following relations which will be useful to prove lemmas 5 and 8 and
whose proof is straightfoward by induction on p.

∀p > 0, QPp
(α) > βQPp−1(α) (4)

where α =
√

2 + 2
√

2 and β =
√

2
2

α. Obviously equation 4 is true if we replace β by
β ′ ≤ β.

Lemma 4. λ1(P (p1, p2, p3)) > 2.

Proof. On one hand λ1(P (0, 1, 1)) > 2 and λ1(P (1, 1, 1)) > 2. On the other hand,
if there exists pi ≥ 2 (we assume p3 ≥ 2) then the lollipop L(p1 + p2 + 2, 1) is an induced
subgraph of P (p1, p2, p3). Since λ1(L(p1 + p2 + 2, 1)) > 2 (theorem 11) the interlacing
theorem gives the result.

�

33



Applying theorem 5 to a vertex of degree 3 of P (p1, p2, p3) we can get the following
expression of the characteristic polynomial of P (p1, p2, p3), pi > 0 which will be useful for
the next results.

QP (p1,p2,p3)(X) = XQSp1,p2,p3
(X) − QSp1−1,p2,p3

(X) − QSp1,p2−1,p3
(X)

−QSp1,p2,p3−1(X) − 2QPp1
(X) − 2QPp2

(X) − 2QPp3
(X)

(5)

where

QSa,b,c
(X) = XQPa

(X)QPb
(X)QPc

(X) − QPa−1(X)QPb
(X)QPc

(X)

−QPa
(X)QPb−1

(X)QPc
(X) − QPa

(X)QPb
(X)QPc−1(X)

(6)

Lemma 5. If p1 ≤ 3, p2 ≤ 3 then ∀p ∈ N : λ1(P (p1, p2, p)) >
√

2 + 2
√

2.

Proof. According to theorem 7 it is sufficient to prove the result for p1 = 3, p2 = 3.

Let α =
√

2 + 2
√

2. We shall show that QP (3,3,p)(α) < 0. Using equations (5) and (6)
and QPp−2(X) = XQPp−1(X) − QPp

(X), QP2(X) = X2 − 1, QP3(X) = X3 − 2X and
QP4(X) = X4 − 3X2 + 1, we get:

QP (3,3,p)(X) = QPp
(X)

(

X8 − 9X6 + 24X4 − 20X2
)

+QPp−1(X)
(

− X7 + 8X5 − 16X3 + 8X
)

− 4(X3 − 2X)

so

QP (3,3,p)(α) = (16 − 16
√

2)QPp
(α) + α(16 − 8

√
2)QPp−1(α) − 8

√
2α

=
(

−16 + 16
√

2
)

(

−QPp
(α) +

α√
2
QPp−1(α)

)

− 8
√

2α < 0 (by eq.(4) )

As a result λ1(P (3, 3, p)) > α.

�

Lemma 6. If p1 ≤ 2, p2 ≤ 4 then ∀p ∈ N : λ1(P (p1, p2, p)) > 2.2 >
√

2 + 2
√

2

Proof. Mutatis mutandis the proof is the same as the one of lemma 5.

�

Lemma 7. For p2, p3 > 0, p1 ∈ {0, 1} we have λ1(P (p1, p2, p3)) >
√

2 + 2
√

2.
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Proof. Let α =
√

2 + 2
√

2. According to theorem 7 it is sufficient to prove the
result for P (1, p, p) where p = max(p2, p3). Applying theorem 5 to a vertex at distance
one of the two vertices of degree 3 we have:

QP (1,p,p)(X) = XQC2p+2(X) − 2QP2p+1(X) − 4QPp
(X)

= X
(

XQP2p+1(X) − 2QP2p
(X) − 2

)

− 2QP2p+1(X) − 4QPp
(X)

= (X2 − 2)QP2p+1(X) − 2XQP2p
(X) − 4QPp

(X) − 2X

But (theorem 5 applied to a vertex at distance p of a pendant vertex in the graphs
P2p+1 and P2p ):

QP2p+1(X) = X
(

Q2
Pp

(X)
)

− 2QPp
(X)QPp−1(X)

and
QP2p

(X) = XQPp
(X)QPp−1(X) − Q2

Pp−1
(X) − QPp

(X)QPp−2(X)

So

QP (1,p,p)(X) =
(

X2 − 2
)(

XQ2
Pp

(X) − 2XQPp
(X)QPp−1(X)

)

−2X
(

XQPp
(X)QPp−1(X) − Q2

Pp−1
(X) − QPp

(X)QPp−2(X)
)

−4QPp
(X) − 2X

= QPp
(X)

(

(X3 − 4X)QPp
(X) + (4 − 2X2)QPp−1(X) − 4

)

+2XQ2
Pp−1

(X) − 2X

Using QPp
(α) > βQPp−1(α) (equation (4)), we get

QP (1,p,p)(α) < QPp
(α)

(

(α3 − 4α)QPp
(α) + (4 − 2α2 +

2α

β
)QPp−1(α) − 4

)

− 2α

we then notice that
4−2α2+ 2α

β

−α3+4α
= β and by equation (4) we have QP (1,p,p)(α) < 0.

�

Lemma 8. Given P (2, p2, p3) with p3 ≥ 3, denote by u and v the two vertices of degree
3. Let y be a vertex at distance 2 from u and at distance greater than or equal to 2 from
v, we define P̃ (2, p2, p3) as the graph obtained by adding to P (2, p2, p3) a pendant vertex

x to y. We have λ1(P̃ (2, p2, p3)) >
√

2 + 2
√

2.

Proof. Let α =
√

2 + 2
√

2. By theorem 7 it is sufficient to prove the result for
p2 = p3 = p = max{p2, p3}. The aim of the proof is to show that QP̃ (2,p,p)(α) < 0. The
following equations will be useful:

QS2,a,b
(α) = (α2 − 1)QPa+b+1

(α) − αQPa
(α)QPb

(α)

QP2p+1(α) = αQ2
Pp

(α) − 2QPp
(α)QPp−1(α)
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QP2p
(α) = Q2

Pp
(α) − Q2

Pp−1
(α)

QP2p−1(α) = αQP2p
(α) − QP2p+1(α) = −αQ2

Pp−1
(α) + 2QPp

(α)QPp−1(α)

and we deduce

QS2,p,p
(α) = (α3 − 2α)Q2

Pp
(α) − 2(α2 − 1)QPp

(α)QPp−1(α)

QS2,p,p−1(α) = (α2 − 1)Q2
Pp

(α) − (α2 − 1)Q2
Pp−1

(α) − αQPp
(α)QPp−1(α)

QS2,p+1,p−1(α) = (α3 − α)Q2
Pp

(α) + (−3α2 + 2)QPp
(α)QPp−1(α) + αQ2

Pp−1
(α)

Theorem 5 gives
QP̃ (2,p,p)(α) = αQP (2,p,p)(α) − QH(α)

where H = P̃ (2, p, p)\{x, y} Equation 5 gives

QP (2,p,p)(α) = αQS2,p,p
(α) − QS1,p,p

(α) − 2QS2,p,p−1(α) − 4QPp
(α) − 2QP2(α)

but QS1,p,p
(α) = 1

α
(QS2,p,p

(α) + QS0,p,p
(α)) so

αQP (2,p,p)(α) = (α2 − 1)QS2,p,p
(α) − 2αQS2,p,p−1(α) − QP2p+1(α)

−4αQPp
(α) − 2αQP2(α)

= (α5 − 5α3 + 3α)Q2
Pp

(α) + (2α3 − 2α)Q2
Pp−1

(α)

+(−2α4 + 6α2)QPp
(α)QPp−1(α) − 4αQPp

(α) − 2αQP2(α)

Theorem 5 gives

QH(α) = α2QS2,p,p−2(α) − αQS1,p,p−2(α) − αQS2,p−1,p−2(α) − QS2,p,p−2(α) − 2αQPp−2(α)

but QS2,p,p−2(α) = αQS2,p,p−1(α)−QS2,p,p
(α), αQS1,p,p−2(α) = QS2,p,p−2(α)+QS0,p,p−2(α) and

QS2,p−1,p−2(α) = (α2 − 1)QS2,p,p−1(α) − αQS2,p−1,p+1(α) so

QH(α) = −αQS2,p,p−1(α) − (α2 − 2)QS2,p,p
(α) + α2QS2,p−1,p+1(α)

−QP2p−1(α) − 2αQPp−2(α)

= (2α3 − 3α)Q2
Pp

(α) + (2α3)Q2
Pp−1

(α)

+(−α4 − 3α2 + 2)QPp
(α)QPp−1(α) − 2αQPp−2(α)

So we have:

QP̃ (2,p,p)(α) = (α5 − 7α3 + 6α)Q2
Pp

(α) − 2αQ2
Pp−1

(α)

+(−α4 + 9α2 − 2)QPp
(α)QPp−1(α)

+2αQPp−2(α) − 4αQPp
(α) − 2αQP2(α)
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Equation (4) gives 2αQPp−2(α) − 4αQPp
(α) < 0.

Lets us show that xQ2
Pp

(α) + yQ2
Pp−1

(α) + zQPp
(α)QPp−1(α) < 0 with x = α5 − 7α3 + 6α,

y = −2α, z = −α4 + 9α2 − 2. Note that y

z+βx
= −β, where β is defined in equation (4).

xQ2
Pp

(α) + yQ2
Pp−1

(α) + zQPp
(α)QPp

(α) =

QPp
(α)

(

xQPp
(α) − βxQPp−1(α)

)

+ QPp−1(α)
(

(z + βx)QPp
(α) + yQPp−1(α)

)

=

QPp
(α)x

(

QPp
(α) − βQPp−1(α)

)

+ QPp−1(α)(z + βx)
(

QPp
(α) − βQPp−1(α)

)

< 0

because
(z+βx)(QPp(α)−βQPp−1

(α))
−x(QPp(α)−βQPp−1

(α))
= z+βx

−x
< β and we use equation (4).

�

Lemma 9. Given P (2, p2, p3) with p3 ≥ 3, denote by u and v the two vertices of degree
3. Let y be a vertex at distance 1 from u and at distance greater than or equal to 1 from
v, we denote by P̂ (2, p2, p3) the graph obtained by adding to P (2, p2, p3) a pendant vertex

x to y. We have λ1(P̂ (2, p2, p3)) >
√

2 + 2
√

2.

Proof. A direct consequence of theorem 7 and lemma 8.

�

Theorem 18. For p1, p2, p3 > 0, P (p1, p2, p3) cannot be an induced subgraph of a graph
cospectral with an even lollipop.

Proof. Without loss of generality we assume p1 ≤ p2 ≤ p3. In order to lead a proof
by contradiction, let P (p1, p2, p3) be an induced subgraph of G cospectral with an even
lollipop. As G is bipartite, P (p1, p2, p3) doesn’t have odd cycles and the pi’s are all odd
or all even. Using equations (5) and property 2 we obtain:

QP (p1,p2,p3)(2) = p1p2p3 − p1p2 − p1p3 − p2p3 − 3p1 − 3p2 − 3p3 − 5

i) First assume that p1, p2, p2 are odd.

By lemma 7 we have p1 ≥ 3 and by lemma 5 we have p2 ≥ 5.

• If p1 = 3 and p2 = 5 then QP (p1,p2,p3)(2) = 4p3 − 44 ≥ 0 if p3 ≥ 11

• If p1 = 3 and p2 ≥ 7 then QP (p1,p2,p3)(2) ≥ 2p3 − 14 ≥ 0 (because p3 ≥ p2 ≥ 7)

• If 5 ≤ p1 ≤ p2 ≤ p3 then QP (p1,p2,p3)(2) ≥ p3 − 5 ≥ 0.

QP (p1,p2,p3)(2) ≥ 0 implies that P (p1, p2, p3) has two eigenvalues greater than or equal
to 2 (we already know by lemma 4 that P (p1, p2, p3) has at least one eigenvalue strictly
greater than 2) and since a lollipop has only one eigenvalue greater than 2 (theorem
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11), the interlacing theorem provides a contradiction except when p1 = 3, p2 = 5 and
p3 ∈ {5, 7, 9}.

Assume now that p1 = 3, p2 = 5 and p3 ∈ {5, 7, 9}. According to table 7, λ1(P (3, 5, p3)) >

2.17 and so P (3, 5, p3) cannot be an induced subgraph of a graph cospectral with L(p, k)
for p ≥ 6 (theorem 17). Moreover P (3, 5, p3) cannot be a connected component of a graph
cospectral with L(4, k) because λ1(P (3, 5, p3)) < 2.195 while λ1(L(4, k)) ≥ λ1(L(4, 5)) >

2.195 when k ≥ 5. So there is a new vertex x adjacent to one vertex y of P (3, 5, p3)
(and only one because otherwise there exists r, s ∈ N such that P (1, r, s) is an induced
subgraph of G which is impossible by lemma 7). Let H be the subgraph induced by
P (3, 5, p3) and x, denote by u and v the two vertices of degree 3 in P (3, 5, p3).

1. If y = u or y = v then the graph T drawn on figure 16 is an induced subgraph

of H and λ1(T ) ≥ 2.20 >
√

2 + 2
√

2 > λ1(L(p, k)) and H cannot be an induced
subgraph of G.
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Figure 16: Tree T whose spectral radius is greater than 2.20

2. If min{d(y, u), d(y, v)} ≥ 5 the disjoint union of a cycle and S1,3,3 is an induced
subgraph of H with twice the eigenvalue 2, so H cannot be an induced subgraph of
G (by the interlacing theorem and theorem 11).

3. The cases where 1 ≤ min{d(y, u), d(y, v)} ≤ 4 are summed up in table 9. For
all these cases H cannot be an induced subgraph of G because either H has two

eigenvalues greater than 2 or H has a spectral radius greater than
√

2 + 2
√

2.

As a result P (p1, p2, p3) with pi’s odd cannot be an induced subgraph of G.

ii) We now assume that p1, p2, p3 are even.

By lemma 7 we have p1 ≥ 2.

• If p1 = 2 and p2 ≤ 4 then by lemma 6 P (p1, p2, p3) cannot be an induced subgraph
of G.

• If p1 = 2 and p2 = 6 then QP (p1,p2,p3)(2) = p3 − 41 ≥ 0 if p3 ≥ 42

• If p1 = 2 and p2 = 8 then QP (p1,p2,p3)(2) = 3p3 − 51 ≥ 0 if p3 ≥ 18

• If p1 = 2 and p2 = 10 then QP (p1,p2,p3)(2) = 5p3 − 61 ≥ 0 if p3 ≥ 14
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• If p1 = 2 and p2 ≥ 12 then QP (p1,p2,p3)(2) ≥ 2p3 − 11 ≥ 0 (because p3 ≥ 12)

• If p1 = 4 and p2 = 4 then QP (p1,p2,p3)(2) = 5p3 − 45 ≥ 0 if p3 ≥ 10

• If p1 = 4 and p2 ≥ 6 then QP (p1,p2,p3)(2) ≥ 4p3 − 17 ≥ 0 (because p3 ≥ 6)

• If 6 ≤ p1 ≤ p2 ≤ p3 then QP (p1,p2,p3)(2) ≥ 9p3 − 5 ≥ 0.

As in the proof of the odd case, if QP (p1,p2,p3)(2) ≥ 0 then P (p1, p2, p3) has two eigen-
values greater than or equal to 2 and cannot be an induced subgraph of G. We are now
going to study the remaining cases for p1 = 2 and p1 = 4.
First case p1 = 2 :
The only unsolved cases we are going to consider here are for p2 ∈ {6, 8, 10} with the
corresponding constraints on p3. According to table 6, the spectral radius of these re-
maining cases is greater than 2.17 and so the corresponding graphs cannot be an induced
subgraph of a graph cospectral with L(p, k), p ≥ 6. As it was detailed in the proof
of the odd case, none of these graphs is a connected component of a graph cospectral
with L(4, k) and so there is a new vertex x adjacent to one and only one vertex y of
P (2, p2, p3). Let H be the subgraph induced by P (2, p2, p3) and x. With the same nota-
tions and arguments as for the odd case, H cannot be an induced subgraph of G when
min{d(y, u), d(y, v)} ≥ 5 or y = u or y = v. Moreover if min{d(y, u), d(y, v)} ≤ 2 then by

lemmas 9 and 8, λ1(H) >
√

2 + 2
√

2 so H cannot be an induced subgraph of a lollipop.
We are now going to examine the two last tricky cases: min{d(y, u), d(y, v)} = 3 and
min{d(y, u), d(y, v)} = 4.

• If min{d(y, u), d(y, v)} = 3, we can assume that d(y, v) = 3. Let {b, c} = {p2, p3}
such that y is a vertex belonging to a path of length c+1 of P (2, b, c) between u and
v. Then applying theorem 6 to x we get QH(X) = XQP (2,b,c)(X) − QP (2,b,c)\{y}(X)
and applying theorem 5 to v we have:

QP (2,b,c)\{y}(X) = XQP2(X)QS2,b,c−3
(X) − QP2(X)QS1,b,c−3

(X)

−QP2(X)QS2,b−1,c−3
(X) − QP1(X)QS2,b,c−3

(X)

−2QP2(X)QPc−3(X)

Using equation (5) and property 2 which gives the value in 2 of the characteristic
polynomials of paths and T -shape trees we obtain:

QH(2) = bc − 5b + 4c − 56

– If b ≤ c

∗ If b = 6 (so c ≥ 6) then QH(2) = 10c − 86 so if c ≥ 10, H has two
eigenvalues greater than 2 and cannot be and induced subgraph of G.

Otherwise for c = 8 we check that λ1(H) ∼ 2.2050 >
√

2 + 2
√

2 and so H

cannot be an induced subgraph of G for c ≤ 8.
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∗ If c ≥ b ≥ 8 then QH(2) ≥ 7c − 56 ≥ 0 and H has two eigenvalues greater
than 2 and cannot be an induced subgraph of G.

– If b ≥ c

∗ If c = 6 then QH(2) = b − 32 so if b ≥ 32 then H has two eigenvalues
greater than 2 and cannot be an induced subgraph of G. Otherwise we

check that for b = 30 we have λ1(H) ∼ 2.2071 >
√

2 + 2
√

2 and so H

cannot be an induced subgraph of G for b ≤ 30.

∗ If 8 ≤ c ≤ b then QH(2) ≥ 4c − 32 ≥ 0 and H has two eigenvalues greater
than 2 and cannot be an induced subgraph of G.

• If min{d(y, u), d(y, v)} = 4, note that c ≥ 8 (otherwise y is at distance less than 4
from u or v). In the same way as previously we compute QH(2): QH(2) = b+9c−86.

– If b ≤ c

∗ If b = 6 then QH(2) = 9c − 80. So if c ≥ 10 then H has two eigenvalues
greater than 2 and cannot be an induced subgraph of G. Otherwise we

check that for c = 8 we have λ1(H) ∼ 2.2014 >
√

2 + 2
√

2.

∗ If b = 8 then QH(2) = 9c − 78. So if c ≥ 10 then H has two eigenvalues
greater than 2 and cannot be an induced subgraph of G. The case c = b = 8
is considered further in the proof.

∗ If 10 ≤ b ≤ c then QH(2) > 0 and H has two eigenvalues greater than 2
and cannot be an induced subgraph of G.

– If b ≥ c

∗ If c = 8 then QH(2) = b − 14. So if b ≥ 14 then H has two eigenvalues
greater than 2 and cannot be an induced subgraph of G. Otherwise we
check for c = 8 and 8 ≤ b ≤ 12 that λ1(H) < 2.196 so H cannot be a
connected component of G because for k ≥ 6 λ1(L(4, k)) ≥ λ1(L(4, 6)) >

2.196. And so there is a new vertex x′ adjacent to a vertex y′ of H . Let
H ′ be the graph induced by H and x′.

· If y′ = y then x′ is not adjacent to another vertex of P (2, a, b) otherwise
there exists r, s ∈ N such that P (1, r, s) is an induced subgraph of G

which is impossible by lemma 7 and x′ is not adjacent to x otherwise
G contains a triangle (impossible because G is bipartite). Hence x′ is
a pendant in H ′. The graph H ′ then contains Cq ∪ S4 (for q ≥ 3) as
an induced subgraph and so has two eigenvalues greater than 2 which
is impossible.

· Assume that y′ = x. If x′ is adjacent to another vertex z of H dis-
tinct from y′ and y, then by the previous cases we necessarily have
min{d(z, u), d(z, v)} = 4. Either the graph S1,3,3 ∪ S2,2,2 or C4 ∪ Cq is
an induced subgraph of H ′ and has two eigenvalues greater than 2 and
cannot be an induced subgraph of G.
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· If y′ 6= y and y′ 6= x then by the previous cases we necessarily have
min{d(y′, u), d(y′, v)} = 4.
If x′ is adjacent to another vertex z in H distinct from y′ and y then
by the previous cases we necessarily have min{d(z, u), d(z, v)} = 4 and
either S2,2,2∪S1,2,5 or Cr ∪Cs is an an induced subgraph of H ′ and has
two eigenvalues greater than 2 and cannot be an induced subgraph of
G.
If x′ is not adjacent to another vertex of H then the graph Tn ∪ Cq

or the graph S1,3,3 ∪ S1,3,3 is an induced subgraph of H ′ and has two
eigenvalues greater than 2 and cannot be an induced subgraph of G.

∗ If 10 ≤ b ≤ c then QH(2) > 0 and H has two eigenvalues greater than 2
and cannot be an induced subgraph of G.

Second case: p1 = 4.
We have p2 = 4 and p3 ∈ {4, 6, 8}.
According to table 8, λ1(P (4, 4, p3)) > 2.17 and so P (4, 4, p3) cannot be an induced
subgraph of a graph cospectral with L(p, k) for p ≥ 6 (theorem 17). Moreover

λ1(P (4, 4, 4)) >
√

2 + 2
√

2 and P (4, 4, 4) cannot be an induced subgraph of a graph
cospectral with L(4, k). When p3 ∈ {6, 8}, P (4, 4, p3) cannot be a connected com-
ponent of a graph cospectral with L(4, k) because λ1(P (4, 4, p3)) < 2.1854 while
λ1(L(4, k)) ≥ λ1(L(4, 3)) > 2.1888 when k ≥ 3. So there is a new vertex x adjacent
to one vertex y of P (4, 4, p3) (and only one because otherwise there exists r, s ∈ N

such that P (1, r, s) is an induced subgraph of G which is impossible by lemma 7).
Let H be the subgraph induced by P (4, 4, p3) and x, these graphs H are summed up
in table 10 which shows that that H cannot be an induced subgraph of G because
either H has two eigenvalues greater than 2 or H has a spectral radius greater than
√

2 + 2
√

2.

�

A.3 Tables of some graphs eigenvalues
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p

p

2

3

2 vertices

vertices

vertices

H
H

H
H

H
H

p3

p2 6 8 10

6
2.1987
1.9122

2.1921
1.9426

2.1891
1.19604

8
2.1921
1.9426

2.1853
1.9666

2.1822
1.19805

10
2.1891
1.9604

2.1822
1.9805

2.1790
1.9922

12
2.1878
1.9716

2.1808
1.9891

2.1776
1.9994

14
2.1872
1.9790

2.1802
1.9947

2.1770
2.0041

16
2.1870
1.9842

2.1800
1.9986

2.1767
2.0072

40
2.1868
1.9999

Table 6: The two largest eigenvalues of P (2, p2, p3) with a 4 decimal place accuracy.
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p

p

2

3

3 vertices

vertices

vertices

H
H

H
H

H
H

p3

p2 5 7

5
2.1940
1.9319

2.1847
1.9696

7
2.1847
1.9696

2.1753
2.0000

9
2.1804
1.9890

2.1709
2.0153

11
2.1785
2.0000

2.1689
2.0237

Table 7: The two largest eigenvalues of P (3, p2, p3) with a 4 decimal place accuracy.
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p

p

2

3

4 vertices

vertices

vertices

H
H

H
H

H
H

p3

p2 4 6

4
2.1987
1.9122

2.1853
1.9666

6
2.1853
1.9666

2.1723
2.0102

8
2.1790
1.9922

2.1660
2.0300

10
2.1762
2.0058

2.1631
2.0401

Table 8: The two largest eigenvalues of P (4, p2, p3) with a 4 decimal place accuracy.
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Table 9: The two largest eigenvalues of some graphs H with a 4 decimal place accuracy.
Note that the spectral radius increases when the number of vertices between two vertices
of degree 3 decreases (theorem 7).
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Graph Eigenvalues
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Table 10: The two largest eigenvalues of some graphs H with a 4 decimal place accuracy.
Note that the spectral radius increases when the number of vertices between two vertices
of degre 3 decreases (theorem 7).
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��������������k vertices

k 1 2 3 4 5 6 7
λ1(L(4, k)) 2.1358 2.1753 2.1889 2.1940 2.1960 2.1968 2.1971

k 8 9 10 11 12 13 14
λ1(L(4, k)) 2.1973 2.1973 2.1974 2.1974 2.1974 2.1974 2.1974

Table 11: Spectral radius of L(4, k) with a 4 decimal place accuracy.
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Graph Spectral radius
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Graph Spectral radius
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Table 12: Spectral radius of some unicyclic graphs with a 4 decimal place accuracy.
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