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Rift Valley fever virus (RVFV) nonstructural protein NSs acts as the major determinant of virulence by antagonizing
interferon b (IFN-b) gene expression. We demonstrate here that NSs interacts with the host protein SAP30, which
belongs to Sin3A/NCoR/HDACs repressor complexes and interacts with the transcription factor YY1 that regulates IFN-b
gene expression. Using confocal microscopy and chromatin immunoprecipitation, we show that SAP30, YY1, and
Sin3A-associated corepressor factors strongly colocalize with nuclear NSs filaments and that NSs, SAP30 and Sin3A-
associated factors are recruited on the IFN-b promoter through YY1, inhibiting CBP recruitment, histone acetylation,
and transcriptional activation. To ascertain the role of SAP30, we produced, by reverse genetics, a recombinant RVFV in
which the interacting domain in NSs was deleted. The virus was unable to inhibit the IFN response and was avirulent
for mice. We discuss here the strategy developed by the highly pathogenic RVFV to evade the host antiviral response,
affecting nuclear organization and IFN-b promoter chromatin structure.

Citation: Le May N, Mansuroglu Z, Léger P, Josse T, Blot G, et al. (2008) A SAP30 complex inhibits IFN-b expression in Rift Valley Fever Virus infected cells. PLoS Pathog 4(1):
e13. doi:10.1371/journal.ppat.0040013

Introduction

It is now well established that in eukaryotic cells, tran-
scriptional activation of finely regulated inducible genes
requires disruption of chromatin structure in order to allow
the access of RNA polymerase to DNA (for recent reviews see
[1–3]). The nucleosome is the basic unit of chromatin,
consisting of DNA wrapped around an octamer of histones
(two of each H2A, H2B, H3 and H4). This organized structure
is a highly dynamic molecular edifice whose remodeling
occurs in response to internal and external signals through
post-translational modifications of histones, such as acetyla-
tion and methylation, as well as ATP-dependent nucleosome
reorganization carried out by different types of multiprotein
complexes. Promoter recruitment of chromatin remodeling
complexes usually relies on transcription factors that bind to
a specific DNA sequence and establish protein-protein
interactions with chromatin remodeling complexes.

The interferon b (IFN-b) gene is a well characterized
example of these regulatory mechanisms. While the IFN-b
gene is constitutively repressed in non-infected cells, it is
normally turned on as soon as a virus infects cells, establish-
ing an antiviral state [4–6]. Activation of the IFN-b gene is
transient since it undergoes a rapid post-induction turnoff
between 10 and 12 h after infection [7,8]. Transcriptional
regulation of the IFN-b promoter requires specific binding of
transcription factors as well as the orderly recruitment of
chromatin remodeling complexes on the promoter region
[9,10]. In the absence of virus infection, an until now non-
identified corepressor complex maintains deacetylated lysine
residues of histone H3 and H4 positioned on the IFN-b
promoter region [11,12]. Shortly after infection, the enhan-
ceosome consisting of NF-kB, IRFs, ATF2/cJun and the
architectural protein HGMI(Y) is assembled at the Virus
Responsive Element (VRE) region. The enhanceosome in-

structs a program of chromatin modifying activities by
recruiting histone acetyltransferases CBP/p300 and Gcn5/
PCAF that acetylate lysine residues of histones H3 and H4,
especially K8H4 and K14H3, leading to the recruitment of
Pol II holoenzyme and the Swi-Snf nucleosome remodeling
complex [9,13]. More recent work has identified transcription
factor YY1 as an important factor during IFN-b transcrip-
tional regulation, intervening both as a HDAC-dependent
repressor and as an activator essential to allow virus-induced
CBP-recruitment and K8H4/K14H3 acetylation on the pro-
moter region after virus infection [14–16].
Rift Valley Fever Virus (RVFV) is an arthropod-borne virus

circulating in sub-Saharan Africa, Egypt and Arabic Pen-
insula, transmitted mostly by Aedes sp. and Culex mosquitoes.
RVFV infection can lead to fatal hepatitis with hemorrhagic
fever in humans and to high mortality rates in ruminants
[17,18]. The virus belongs to the Bunyaviridae family (genus
Phlebovirus), a family of spherical enveloped viruses that
possess a single stranded segmented RNA genome composed
of a large (L), a medium (M) and a small (S) segment [19,20].
The L and M segments are of negative polarity and code
respectively for the L RNA-dependent polymerase and the
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glycoprotein precursor, whereas the S segment utilizes an
ambisense strategy and codes for the nucleoprotein N and the
nonstructural protein NSs [21]. Although all the steps of the
viral cycle occur in the cytoplasm, NSs (31 kDa, 265 amino-
acids) forms filamentous structures in the nucleus of infected
cells [22–24]. Besides being a general inhibitor of cellular
RNA synthesis by interacting with p44 subunit of TFIIH [25],
this viral protein strongly antagonizes IFN-b production
shortly after infection [26–28].

Here, we demonstrate using the yeast two hybrid system,
biochemical methods and confocal microscopy that RVFV
NSs protein interacts with SAP30 (Sin3A Associated Protein
30) which is a subunit of Sin3A corepressor complexes [29,30]
as well as a partner of YY1 [31]. Confocal microscopy
demonstrates that in RVFV-infected cells, the virus induces
a strong subnuclear redistribution of SAP30, YY1 and Sin3A-
associated corepressor factors that colocalize with the nuclear
NSs filaments. Chromatin immunoprecipitation (ChIP) ex-
periments showed that in RVFV infected cells the IFN-b
promoter is maintained in a transcriptionally silent state,
interacting with NSs and SAP30 through YY1. Moreover, a
RVFV mutant produced by reverse genetics which lacks the
SAP30 interacting domain, was unable to inhibit IFN-ß
production and was avirulent in mice. We discuss here the
importance of RVFV-induced subnuclear redistribution of
chromatin-remodeling corepressor components which are
trapped into a nuclear filamentous structure for targeting
IFN-b gene into a repressed environment and blocking the
antiviral response of host cells.

Results

RVFV Non Structural Protein NSs Interacts with SAP30
We have previously shown that NSs inhibits IFN-b

expression immediately after infection with the virulent
RVFV strain ZH548 (ZH), without inhibiting IFN-b-specific
transcription factors such as IRF3, NF-jB and ATF2 that are
normally activated and translocated to the nucleus in RVFV-
infected cells [26]. In an attempt to decipher the mechanism
developed by RVFV to inhibit IFN-b gene expression, we
assessed the specific effect of RVFV infection on IFN-b gene

expression by infecting the previously described murine
fibroblastic L929 wt330 cell line carrying a stably integrated
wild-type muIFN-b promoter (from position �330 to þ20)
CAT reporter construct upon which chromatin structure has
been fully reconstituted [16]. These cells were either non-
infected or infected with the virulent ZH [32] which has a
fully active NSs protein or with the non-virulent RVFV strain
Clone 13 (C13) that produces an unstable truncated NSs
protein D16–198 rapidly degraded by the proteasome path-
way [28,33]. As expected, no CAT activity was detected either
in uninfected cells or in cells infected with the virulent strain
ZH whereas in agreement with our previously published
results, a high level of activity, increasing with time post
infection, was observed in C13-infected cells (Figure 1A). This
activity was similar to the one observed in Newcastle Disease
Virus (NDV)-infected cells used here as a positive control.
The ZH NSs protein formed a filamentous structure in the
nuclei of murine L929-infected cells (Figure 1B) equivalent to
the one previously described in several other human and
animal cells [22,23,25].
Using the previously described [25] yeast two hybrid system

with NSsZH as a bait to screen a cDNA library from mouse
embryo, we identified SAP30 (Sin3A Associated protein 30,
Swiss Prot accession number 088574) as a partner of NSs
(Figure 1C). A possible NSs-SAP30 interaction appeared quite
relevant with respect to IFN-b gene inhibition since SAP30 is
a subunit of several corepressor complexes associated to N-
CoR and/or Sin3 [29,30] as well as a direct partner of
transcription factor YY1 [31] that directly interacts and
regulates IFN-b gene expression. To assess the specificity of
the interaction of SAP30 with NSs, yeast cells were co-
transformed with pACT2-SAP30 together with pGBKT7 or
pGBKT7-NSsRVFVZH, -NSsTOSV, -NSsGERV- that express the
NSs proteins from RVFV, Toscana and Germiston bunyavi-
ruses, respectively. A specific interaction between SAP30 and
RVFV NSs was confirmed whereas NSsTOSV, NSsGERV did not
interact with SAP30 (Figure 1C). In this assay, the truncated
NSs protein from C13 (NSsC13) also interacted with SAP30
indicating that the interaction between SAP30 and NSs did
not require amino acids 16–198 of NSs which are absent in
NSsC13 (Figure 1D). Indeed, the data reported in Figure 1D
clearly showed that the interacting domain in NSs was located
at the COOH terminal region, between amino acids 210 to
230. It should be noted that although C13 NSs interacts with
SAP30 in yeast because it is stabilized as a fusion protein, it is
non functional in C13 infected cells since it is degraded by
the proteasome [28], allowing to use C13 infections as
negative controls.
The NSs-SAP30 interaction was further confirmed using

GST pull-down assay. After purification on glutathione
Sepharose beads, the NSs protein expressed as a GST fusion
protein was incubated with extracts of cells expressing a full
length HA tagged-SAP30 protein after transfection with
plasmid pCi-HA-SAP30. The HA tagged SAP30 protein was
found to be associated with GST-NSs but not with GST alone
used here as a negative control (Figure 1E, left panel). The
reciprocal experiment was also carried out, using GST-SAP30
protein incubated with extracts from ZH infected cells. As
shown in Figure 1E (right panel), NSs was found to bind to
GST-SAP30 but not to GST alone.
To further analyze the NSs-SAP30 interaction in vivo when

NSs is organized as a filamentous structure, we set up
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Author Summary

Rift Valley fever is a viral mosquito-borne disease affecting
ruminants and humans. The disease occurs in Africa and recently
it spread to the Arabian Peninsula. In humans, infection can progress
to fatal hemorrhagic fever and in ruminants it leads to hepatitis,
abortions, or deaths of young lambs. It has been previously shown
that the RVFV protein NSs is the major factor of virulence and that
pathogenicity is associated with the lack of interferon production. In
this study, we analyzed the interaction of NSs with SAP30, a subunit
of complexes intervening in gene transcription regulation. We show
that SAP30 through its binding to NSs on one hand and to YY1 (the
activator/repressor of interferon transcription) on the other hand,
forms a multiprotein repression complex on the interferon b
promoter. As a consequence, interferon expression is blocked,
allowing virus to invade the whole organism. The relevance of the
NSs–SAP30 interaction was ascertained by constructing a recombi-
nant virus in which the interacting domain is disrupted. This virus is
able to induce interferon expression and when inoculated to the
mouse model it was found nonpathogenic.



immunoprecipitation experiments from nuclear extracts of
ZH-infected cells expressing transiently myc-tagged SAP30.
Immunoprecipitation with anti-myc antibodies not only
pulled down myc-tagged SAP30 but also the viral NSs present
in the complex (Figure 1F).

SAP30 and YY1 Strongly Colocalize with the NSs Filament
A recent study demonstrated that SAP30 interacts directly

with YY1 [31], a transcription factor involved in the
regulation of expression of numerous genes [34] including
IFN-b [14–16,35]. Since nuclei of cells infected by ZH RVFV
exhibit characteristic filaments containing NSs [22,23], it was
of interest to determine whether SAP30 and YY1 colocalized
with NSs filaments. In non-infected and C13-infected cells,
host protein SAP30 appeared homogeneously distributed in
the nucleoplasm, with the exception of nucleoli (Figure 2A,
2C, 2E a-f). In contrast, an important change in the
subnuclear distribution of SAP30 was observed at 18 h after
ZH infection so that SAP30 appeared predominantly coloc-

alizing with the NSs filament (Figure 2A g-i) with almost all of
SAP30 included into the NSs filament.
Like SAP30, YY1 was also present in the nuclei of NI and

C13-infected cells (Figure 2B, 2D, 2F a-f). However, YY1
appeared less homogeneously distributed than SAP30, being
apparently excluded from large zones of the nucleoplasm. As
observed in Figure 2B (g-i) at 18 h after ZH infection, the NSs
filament appeared clearly located in zones of higher YY1
concentration. (Figure 2B g-i). Images shown in Figure 2A and
2B represent cells analyzed at 18 h post infection when the
NSs filament is fully formed. Viral NSs protein is produced
shortly after infection [36] and can be detected in the nucleus
as early as 3–5 h p.i. [25]. Interestingly, colocalization of
SAP30 and YY1 with NSs could be observed as early as 5 and 7
h p.i. (Figure 2C–2F g-i) even before the NSs filament was
completely formed. At these early times after infection, NSs
colocalized perfectly with SAP30 whereas colocalization with
YY1 appeared only partial.

Figure 1. ZH NSs Protein Inhibits IFN-b Promoter and Interacts with Host Protein SAP30

(A) L929 wt330 cells, carrying an integrated wild type muIFN-b promoter fused to CAT reporter gene, were mock infected or infected by RVFV ZH or C13
or with NDV. Total cell extracts were prepared at 4, 6 and 8 h p.i. and CAT actvity was measured. (B) Non-confocal conventional fluorescence microscopy
was used to analyze the nuclear distribution of NSs filaments in murine L929 cells infected by C13 or ZH. Presence of NSs filament detected using rabbit
polyclonal anti-NSs antibody (green) or total DNA distribution revealed with Hoechst 33258 are shown respectively, in left and middle panels. Merged
images are shown in right panels. Scale bars, 10 lm. (C) For yeast two-hybrid screening, AH109 yeast were co-transformed by pACT2-SAP301–152 that
expressed Gal4 transactivating domain fused to the open reading frames corresponding to the 152 first aa of SAP30 and pGBKT7, pGBKT7-NSsZH,
pGBKT7-NSsC13, pGBKT7-NSsTOS, or pGBKT7-NSsGER in which NSs from RVFV ZH or C13 or NSs proteins from Toscana (TOSV) and Germiston (GERV)
bunyaviruses were fused to the Gal4 DNA-binding domain. The values of b galactosidase activity represent at least four independent experiments with
SD bars. (D) Two-hybrid system using full length wild type NSsZH or the deleted forms. The numbers indicate the amino acid position in the reference
sequence. The sequence lacking amino acids 16–198 correspond to C13. (E) GST-NSs (left panel) or GST-SAP30 (right panel) was incubated with an
extract from 293 cells transfected with the HA tagged-SAP30 expressing plasmid (left panel) or from ZH infected L929 cells (right panel). After extensive
washing, the proteins bound to the beads were analysed by western blots using antibodies against HA (left panel) or NSs (right panel). The Coomassie
blue staining showing that equivalent amounts of GST fusion proteins were loaded on the beads is not shown. (F) HEK 293 cells were transfected with
either pCS2-Myc (lanes 1,2) or pCS2-Myc-SAP30 (lane 3) and either not infected (lane 1) or infected with ZH (lanes 2,3). Cell lysates were precipitated
with anti-myc (9E10) antibody. Crude lysates (input) and the precipitated proteins (IP) were detected with anti-myc and anti-NSs antibodies.
doi:10.1371/journal.ppat.0040013.g001
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A Complex Containing NSs and SAP30 Is Recruited on the

IFN-b Promoter via YY1 after ZH Infection

Since YY1 has been previously shown to directly interact
with the IFN-b promoter, we carried out ChIP experiments in
order to analyze the eventual recruitment of a NSs/SAP30/
YY1 complex on the promoter after ZH-infection. Genomic
DNA from non-infected and ZH- or C13-infected L929 and
L929 wt330 cells was immunoprecipitated with antibodies
directed against YY1, SAP30 and NSs. The amount of
precipitated IFN-b promoter DNA was determined by PCR
using primers specific for either the endogenous IFN-b
promoter present in L929 cells (Figure 3A) or the integrated

wild type promoter present in L929 wt330 cells (Figure 3B).
Analysis of the endogenous promoter shown in Figure 3A
indicated that YY1 binds to the promoter in non-infected as
well as in ZH- and C13-infected cells. Contrary to YY1, SAP30
was associated to the IFN-b promoter only in non-infected
and ZH-infected cells when the promoter is maintained
transcriptionally silent. The interaction of SAP30 with the
IFN-b promoter was disrupted after C13 infection when the
promoter was activated. As expected, no interaction between
NSs and the IFN-b promoter was observed in NI and C13-
infected cells whereas a reproducible interaction of NSs with
the promoter was observed after ZH infection. The same
results were obtained after immunoprecipitation of the

Figure 2. Endogenous SAP30 and YY1 Colocalize with NSs Filaments in the Nuclei of ZH Infected Cells

Colocalization of endogenous SAP30 (A, C, and E) and YY1 proteins (B, D, and F) with NSs filament was analyzed by confocal microscopy in L929 wt330
cells uninfected (NI) or infected with C13 or ZH at m.o.i. 5 collected at 18 h p.i. (A and B), 5h (C and D) or 7 h p.i. (E and F). Each row represents a single
optical section of the same nucleus. A, C, and E) Left panels (a, d, g) correspond to SAP30 distribution revealed with goat polyclonal anti-SAP30
antibodies. Middle panels (b, e, h) show subnuclear NSs distribution detected with anti-NSs rabbit polyclonal antibodies. Merged images of SAP30 and
NSs are shown on right panels (c, f, i). (B, D, and F) Left panels (a, d, g) correspond to YY1 distribution revealed with mouse monoclonal anti-YY1
antibody. Middle panels (b, e, h) show subnuclear NSs distribution detected with anti-NSs rabbit polyclonal antibody. Merged images of YY1 and NSs
are shown on right panels (c, f, i). Scale bar, 10 lm.
doi:10.1371/journal.ppat.0040013.g002
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integrated wt330 IFN-b promoter present in L929 wt330 cells
(Figure 3B) indicating that, as expected from our previous
work, the integrated wild type wt330 promoter behaved as the
endogenous (wild type) promoter. These experiments were
carried out with cells harvested at 6 h p.i. but Figure 3C shows
that NSs was found to interact with the IFN-b promoter as
early as 4 and 5 h after ZH infection. This interaction seems
specific since no amplification of the murine b-actin gene was
obtained from the NSs immunoprecipitate either at 4, 5, 7 or
20 h p.i (Figure 3C, actin gene).

To investigate if the recruitment of the NSs/SAP30 complex
on the IFN-b promoter required the presence of functional
YY1 binding sites, we made use of the mutated L929 cell lines
mut90 and mut122 that contain a stably integrated muIFN-b
promoter (from position �330 to þ20) mutated at either the
�90 (mut90 promoter) or the �122 (mut122 promoter) YY1
binding sites. In both these promoters, only one base was
mutated, present in the respective YY1 core binding motifs
essential to allow YY1 binding at the corresponding site

[15,16]. When these cells were non-infected or infected with
C13 or ZH-RVFV strain and analyzed by ChIP assays (Figure
3D), we found that neither the anti-NSs nor the anti-SAP30
antibodies immunoprecipitated the mut90 IFN-b promoter
whereas both these antibodies immunoprecipitated the
mut122 promoter with a pattern similar to the one observed
for the wild type wt330 promoter. These results strongly
suggested that a functional YY1 binding�90 site was required
for NSs and SAP30 to interact with the IFN-b promoter.

ZH Infection Inhibits YY1 Binding to Its �122 Site, CBP
Recruitment and Histone Acetylation on the IFN-b
Promoter
Simultaneous binding of YY1 to both its�90 and�122 sites

has been previously described as necessary to allow virus-
induced CBP-recruitment, histone acetylation and correct
activation of the promoter [16]. As shown in Figure 3D (anti-
YY1 lane), binding of YY1 to its�122 site (mut90 promoter),
that was induced after C13 infection and is required to allow

Figure 3. A NSs/SAP30/YY1 Complex Is Recruited on the Silent IFN-b Promoter through YY1�90 Site

L929 cells (A) or L929 wt330 (B, C, and E), or L929 wt330, mut90, and mut122 (D) were infected with ZH or C13 at a m.o.i. of 5 and collected at 6 h p.i. or
as indicated (C). Input and DNA immunoprecipitated (IP) with specific antibodies as indicated, were amplified with primers specific for the endogenous
IFN-b promoter (A), for the integrated murine wild type wt330 IFN-b promoter (B-E), for the mutated integrated promoters (D) or for the murine b-actin
gene (C). Schematic representation of murine IFN-b promoters either wild type (wt330) or mutated at the YY1 binding site present at position �90
(mut90) or�122 (mut122) is shown in D. Inputs are shown as controls except in E where they are the same as in D (wt330). Triangles indicate increasing
amounts of DNA used during PCR reactions and corresponding in (B) to 1 ll, 2 ll, or 3 ll of 1:5 dilution of DNA immunoprecipitated with a-YY1 and a-
SAP30 and of 1:50 dilution of DNA immunoprecipitated with a-NSs; (C) 1 ll and 2 ll of 1:50 dilution of DNA immunoprecipitated with a-NSs and 1 ll of
1:1,000 and 1:200 dilution of input DNA; (D) 1 ll of 1:5 and 1:1 dilution of DNA immunoprecipitated with a-YY1 and a-SAP30, 1 ll and 2 ll of 1:50
dilution of DNA immunoprecipitated with a-NSs and 1 ll of 1:1,000 and 1:200 dilution of input DNA.
doi:10.1371/journal.ppat.0040013.g003
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CBP promoter recruitment, was completely inhibited after
ZH infection (see mut90 promoter).

Activation of the IFN-b promoter requires IRF3 and CBP
recruitment as well as K8H4 and K14H3 acetylation [9,13]. As
expected, no binding of IRF3 or CBP was observed on the
IFN-b promoter isolated from constitutively repressed unin-
fected cells (Figure 3E). Binding of IRF3 to the promoter was
observed after C13 as well as after ZH infection, indicating
that IRF3 is not only activated [26] but also recruited in vivo
on the IFN-b promoter after ZH infection (Figure 3E).
Contrary to IRF3, recruitment of CBP normally observed
after C13 infection was inhibited after ZH infection.
Inhibition of CBP recruitment was accompanied by the
subsequent inhibition of K8H4 and K14H3 acetylation on the
promoter region after ZH infection (Figure 3E).

In Figure 3E, it can be noted that K8H4 and K14H3 were
not acetylated after ZH infection and that AcK14H3
especially, was deacetylated. Since SAP30 has been described
as participating in the formation of corepressor complexes
containing HDACs 1, 2 and/or 3, we postulated that
repression of the IFN-b gene expression after ZH infection
could be the result of two events: i) absence of CBP
recruitment and histone acetylation probably related to the
inability to recruit YY1 to its�122 site and ii) stabilization of
already present or de novo recruitment of corepressor
complexes containing HDAC activities on the IFN-b pro-
moter region.

SAP30-Associated Corepressor Complexes Colocalize with
the NSs Filament and Interact with the IFN-b Promoter
after ZH Infection

Transcription factor YY1 is able to interact with HDACs 1,
2 or 3 either directly or indirectly [37], indirect interaction

taking place probably via SAP30 [31]. Besides, SAP30 is part
of multiprotein repressor complexes that may comprise
Sin3A and/or NCoR which themselves interact directly with
either HDACs 1 and 2 (Sin3A) or HDAC 3 (NCor). Using
confocal microscopy, we analyzed the subnuclear distribution
of Sin3A and NCoR in murine L929 cells either non-infected
or after infection by C13 or ZH. As shown in Figure 4A, the
subnuclear distribution of Sin3A observed in non-infected (a,
c) and C13-infected (d, f) cells was affected after ZH-infection
(g, i), Sin3A colocalizing with the NSs filament in a way similar
to what we have previously observed in the case of SAP30. In
contrast, NCoR colocalized only partially with the NSs
filament (Figure 4B a-c and Figure S1) and no colocalization
of co-activator CBP with the NSs filament was observed
(Figure 4C a-c and Figure S1).
As shown in Figure 4D, NCoR appeared associated to the

IFN-b promoter before virus infection when the promoter is
in a constitutively silent state, and at this stage the presence
of Sin3A on the IFN-b promoter was only weakly detected. In
agreement with immunofluorescence results, binding of
Sin3A but not NCoR to the IFN-b promoter was enhanced
after ZH infection. Nevertheless, NCoR remained bound to
the IFN-b promoter in ZH-infected cells while both Sin3A
and NCoR were released from the promoter after C13
infection during promoter transcriptional activation (Figure
4D).
Confocal microscopy was also used to analyze the sub-

nuclear distribution of HDACs 1, 2 and 3, that have been
described to interact with SAP30/Sin3A/NCoR complexes
(Figure 5A and Figure S2). Even though HDAC-1 and 2 were
not excluded from the filament, neither HDAC-1 nor HDAC-
2 completely colocalized with the NSs filament. Whereas
HDAC-1 (Figure 5A a-c, Figure S2A) only partially colocalized

Figure 4. Sin3A and N-CoR, but Not Co-Activator CBP, Interact with IFN-b Promoter in ZH Infected Cells

Colocalization of endogenous Sin3A (A), N-CoR (B) and CBP proteins (C) with NSs filament was analyzed by confocal microscopy in L929 wt330 cells
uninfected (NI) or infected with ZH or C13 at m.o.i. 5 collected at 18 h p.i. Each row represents a single optical section of the same nucleus. (A) Left
panels (a, d, g) correspond to Sin3A distribution revealed with rabbit anti-Sin3A polyclonal antibody. Middle panels (b, e, h) show subnuclear NSs
distribution detected with mouse anti-NSs polyclonal antibody. Merged images of Sin3A and NSs are shown on right panels (c, f, i). (B and C) Left panel
(a) corresponds to NCoR (B) or CBP (C) distribution revealed with goat anti-NCoR polyclonal antibody or rabbit anti-CBP polyclonal antibody. Middle
panel (b) shows subnuclear NSs distribution detected with rabbit anti-NSs polyclonal antibody. Merged images are shown in right panels (c). Scale bar,
10 lm. (D) Inputs or DNA immunoprecipitated (IP) with anti-Sin3A and anti-NCoR antibodies collected from murine L929 wt330 cells either uninfected
(NI) or 6 h after infection by ZH or C13 was amplified with specific primers.
doi:10.1371/journal.ppat.0040013.g004
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with the NSs filament, no specific colocalization of HDAC-2
with the filament was observed (Figure 5A d-f, Figure S2B).
Contrary to HDACs 1 and 2, almost all HDAC-3 colocalized
with the NSs filament (Figure 5A g-i, Figure S2C).

ChIP experiments were carried out on the wt330 IFN-b
promoter with anti-HDAC 1, 2 and 3 antibodies in non-
infected cells as well as in ZH-infected cells (Figure 5B).
Despite the weakness of the signal obtained, the interaction
of HDAC 3 with the IFN-b promoter that was detected in
non-infected cells was reproducibly found to be enhanced
after ZH infection (Figure 5B).

Disruption of NSs-SAP30 Interaction Is Correlated with the
Loss of the Capacity to Inhibit IFN-b Expression

The region encompassing amino acids 210–230, comprised
between two proline residues (which could possibly form a
loop exposed for interactions) was found to be essential for
SAP30 interaction (Figure 1D). To determine if there is a
correlation between this interaction and the ability of the
virus to inhibit IFN-b expression, we generated a recombi-
nant RVFV encoding the mutated NSsD210–230 protein (rec-
ZHD210–230) using the recently developed reverse genetics
Pol I based-methodology (Billecocq et al, manuscript in
preparation). The recombinant virus was successfully rescued
with titers similar to wild type rec-ZH (approx 5x107 pfu per
ml at day 3 post transfection). Interestingly, the plaque
morphology is different from the wt ZH or rec ZH (Figure 6A)
and the viral genome was stable through several passages.
Using the GST pull down assay, we demonstrated that in
contrast with wt NSs, the mutated protein did not bind to
GST-SAP30 (Figure 6B). To assess the ability of this mutated
NSs to inhibit IFN-b, we infected murine BF or L929wt330
cells and analyzed the IFN-b expression, respectively, by RT-
PCR (Figure 6C) or using the CAT reporter assay (Figure 6D).
After infection with rec-ZHD210–230, expression of IFN-b
was clearly detected in BF cells as well as in L929wt330 cells,
whereas like the natural ZH, rec-ZH inhibited IFN-b

expression. Using confocal immunofluorescence we observed
that contrary to wild type NSs, nuclear NSs D210–230 protein
did not form filaments and colocalized only very partially
with SAP30 (Figure 6E). ChIP assays carried out after
infection with the recombinant virus demonstrated that,
unlike the wild type ZH NSs protein, NSsD210–230 protein
did not interact with the IFN-b promoter (Figure 6F) whereas
the recombinant wild type protein interacted with the
promoter as early as 4 h p.i. as the natural ZH protein. In
order to test pathogenicity of rec-ZHD210–230, 12 adult mice
were inoculated with 104 pfu via intraperitoneal route. All the
animals inoculated with rec-ZHD210–230 survived, indicating
that the mutant had completely lost its virulence, while all
mice inoculated with rec-ZH or ZH died within 4–6 days.
Overall, these results indicate that a.a. 210–230 of NSs are
indeed essential for establishing an interaction with SAP30.
They also indicate that the disruption of the NSs-SAP30
interaction abrogates the interaction of NSs with the IFN-b
promoter, both these events being correlated with the
incapacity of NSs to inhibit IFN-b expression and exert its
pathogenic effect.

Discussion

After RVFV Infection a Multiprotein Complex Containing
Viral NSs Protein and Host Factors YY1/SAP30/NCoR/
Sin3A/HDAC-3 Is Recruited on the IFN-b Promoter
To evade the host antiviral response induced by IFNs, most

viruses have evolved proteins that antagonize this response,
targeting steps that are essential for triggering host innate
immunity (for a recent review see [38]). Virulent ZH RVFV
blocks the IFN-b gene expression of the host cell early after
infection and by doing so, inhibits the host cellular antiviral
response allowing the virus to pursue its infection through
the organism. The previously described general inhibitory
effect of NSs upon pol I and II-dependent transcription,
which starts at 8 h after infection [25] could not be held as

Figure 5. Recruitment of HDAC-3 on the IFN-b Promoter

Colocalization of endogenous HDACs-1, 2, and 3 with NSs filament was analyzed by immunofluorescence technique and confocal microscopy in L929
wt330 cells uninfected (NI) or infected with ZH or C13 at m.o.i. 5 collected at 18 h p.i. Each row represents a single optical section of the same nucleus.
(A) Left panels (a, d, g) correspond to HDAC-1, 2, or 3 subnuclear distribution revealed with mouse anti-HDAC1, 2, or 3 monoclonal antibodies. Middle
panels (b, e, h) show subnuclear NSs distribution detected with rabbit polyclonal anti-NSs antibody. Merged images of HDACs-1, 2, or 3 and NSs are
shown on right panels (c, f, i). Scale bar, 10 lm. (B) Inputs and DNA immunoprecipitated (IP) with anti-HDACs-1, 2, and 3 antibodies collected from
murine L929 wt330 cells either uninfected (NI) or 6 h after infection by ZH was amplified with specific primers.
doi:10.1371/journal.ppat.0040013.g005
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responsible for the inhibition of IFN-b gene expression that
takes place at earlier times between 3–6 h after infection.

In this work, we demonstrate the existence of a novel
mechanism induced early after ZH infection. It is based on
the observation that SAP30, a subunit of transcription
repressor complexes, directly interacts with the viral NSs
protein, colocalizes with the NSs filament as early as 5 h p.i.
and leads NSs to interact with the IFN-b promoter through
transcription factor YY1 as soon as 4 h p.i. (Figure 3C).

Using chromatin immunoprecipitation, we demonstrate
here for the first time, to our knowledge, that during the
constitutively silent state of the IFN-b gene, a complex
containing SAP30/NCoR/HDAC3/Sin3A interacts with the
IFN-b promoter. This interaction requires binding of YY1
at position �90, in agreement with previous results that
identified this site as responsible for HDAC-dependent
transcriptional inhibition of the IFN-b promoter [15]. This
complex was released from the promoter after RVFV C13-

induced promoter transcriptional activation but the situation
was completely different in nuclei of ZH-infected cells
containing the NSs filament where the promoter is main-
tained in a silent repressed state (Figure 7). In these cells,
repression of the IFN-b expression occurred concomitantly
with the stabilisation of the multiprotein complex containing
NSs and YY1/SAP30/NCoR/Sin3A/HDAC-3 on the promoter
region. Alongside with this recruitment, binding of YY1 to its
�122 site and subsequent recruitment of CBP on the
promoter region were strongly inhibited.
How is this multiprotein complex assembled? In the

absence of structural data, we can only speculate based on
the capacity of these different proteins to interact with each
other. SAP30 is a subunit of repressor complexes containing
corepressor Sin3A and/or NCoR and is also reported to
directly interact with YY1. The interaction domains of SAP30
have been mapped: its N-terminal region interacts with NCoR
and the C-terminal one with Sin3A [29] or YY1, the latter

Figure 6. A Recombinant RVFV Which Does Not Interact with SAP30 Induces IFN-b and Is Avirulent

(A) Monolayers of Vero cells infected with RVFV rec-ZH or rec-ZHD210–230 were fixed and stained with crystal violet at 5 days p.i. (B) GST or GST-SAP30
was incubated with extracts from cells uninfected or infected with rec-ZH or rec-ZHD210–230. Proteins from the crude extracts (input) or after binding
on GST or GST-NSs beads were analyzed by Western blotting using anti NSs antibodies. * denotes a cellular protein bound on GST-NSs which copurified
with NSs. BF (C) or L929 wt 330 cells (D, E, F) uninfected or infected with C13, wt ZH, rec-ZH, or D210–230 were incubated for 8 h (C), 18 h (E) or for the
indicated time (D and F). Extracts were prepared and analyzed by RT-PCR to detect C) IFN-b, GAPDH, or NSs mRNA as described in [26]. (D) CAT activity,
(E) confocal microscopy, or (F) chip experiment using anti-NSs antibodies like in Figure 3; (G) percentage of animals surviving after i.p. inoculation of 104

pfu.
doi:10.1371/journal.ppat.0040013.g006

PLoS Pathogens | www.plospathogens.org January 2008 | Volume 4 | Issue 1 | e130141

RVFV NSs Interacts with Repressor Complex



ones being mutually exclusive [31]. Sin3A has also been
described to be able to directly interact with NCoR [39]. In
the multiprotein YY1/SAP30/NCoR/Sin3A/HDAC3 complex,
Sin3A is most probably directly interacting with NCoR rather
than with SAP30 whose interaction with YY1 is required for
the complex to be recruited on the promoter. The existence
of two NCoR complexes has been reported, complex NCoR-1
containing SAP30/NCoR/HDAC3 and complex NCoR-2 con-
taining SAP30/NCoR/Sin3A/HDACs 1, 2 and/or 3 [40,41].
Considering that HDAC-3 and Sin3A appeared to be
enhanced on the promoter after ZH infection, while only
traces of HDACs 1 and 2 were detected, this would suggest a
preference for the presence of a NCoR-2 complex on the
promoter.

In ZH infected cells, binding of YY1 to its �122 was
inhibited whereas neither binding of YY1 to its �90 site nor
IRF3 binding to the IFN-b promoter were affected. There-
fore, the inability of YY1 to bind to its �122 site after ZH
infection cannot be assigned to a general lack of accessibility
of the promoter region. Of the two YY1 binding sites, the
�122 site is the weaker one [16] and hence the most likely to
be modulated. Noteworthy is that the YY1 �122 site is
positioned on the NRDII region of the IFN-b promoter which

is organized into a nucleosomal structure whereas the IRF3
site and the YY1 �90 site are positioned on the nucleosome
free VRE region of the promoter. Therefore, enhanced
histone deacetylation induced after ZH infection is expected
to affect binding of YY1 to its �122 YY1 site more strongly
than YY1 binding to its�90 site or IRF3 binding to the VRE.

Could the NSs Filament Lead to the Formation of a New
Silencing Compartment Inside the Nuclei of ZH-Infected
Cells?
The relevance of the SAP30-NSs interaction for IFN-b

inhibition and virus pathogenicity was clearly demonstrated
by creating by reverse genetics a recombinant RVFV rec-
ZHNSsD210–230, the NSs protein of which has lost its
capacity to interact with SAP30. As a consequence, this virus
was unable to form nuclear NSs filaments, did not inhibit
IFN-b expression and was non pathogenic for the animal
model. Even though we cannot exclude that the subnuclear
redistribution of TFIIH components [25] contributes also to
virus pathogenicity, the present data strongly suggest that the
NSs-SAP30 interaction plays a determinant role for NSs
filament formation, subnuclear redistribution and pathoge-
nicity.
The disruption of the nuclear architecture caused by the

filaments probably plays a role in maintaining IFN-ß gene in a
repressed state. However, the repression is observed as early
as 4 h p.i. a time when the filament is not yet formed and the
nuclear organization not yet affected. In addition, our results
clearly showed that NSs targeting the IFN-ß promoter
requires an intact YY1 �90 site, suggesting that transcrip-
tional repression does not merely result from NSs filament
formation. Indeed, as shown in Figure 3D, NSs was unable to
interact with the mut90 IFN-ß promoter mutated on its YY1
�90 binding site while the NSs filament was still formed.

Transcription factor YY1 as well as corepressors have the
potential to interact either directly or indirectly with many
promoter regions. This suggests that several regulatory DNA
loci could be directed toward the NSs filament through these
transcription factors and, by doing so, could be induced to a
transcriptionally silent state. In this case, the NSs filaments
would behave as a nuclear repressive compartment inducing
silencing of particular genes. Theoretically, all the genes
whose promoters interact with SAP30 and/or YY1 could be a
target for NSs/SAP30-dependent abnormal transcriptional
regulation, possibly explaining some of the pathogenic effects
due the virus such as abortion, hemorrhagic fever, hepatitis
or encephalitis. Further work will be necessary to address this
issue.

Materials and Methods

Plasmids. The cDNAs coding for NSs of Toscana and Germiston
viruses were synthetised by RT-PCR from RNA extracted from virus
infected Vero cells and cloned into BamHI site of pGBKT7 plasmid
(Clontech) yielding pGBKT7-NSsTOS and -NSsGER. The pGBKT7-
NSsZH plasmid was described already [25]. The plasmid pCi-HA-
SAP30 was constructed by inserting the HA-tagged full length murine
SAP30 cassette from the pACT2 plasmid into the pCi vector at the
BglII site (Promega). The SAP30 ORF sequence was also cloned into
pCS2-Myc (kindly provided by A. Salic, Harvard Medical School)
generating pCS2-mycSAP30 which expresses N terminal-c-myc
tagged SAP30.

Antibodies. Rabbit polyclonal anti-NSs antibody (a generous gift
from J. M. Egly, IGBMC, Strasbourg), raised against a peptide
corresponding to the C-terminal 20 amino acids of the NSs protein

Figure 7. Schematic Representation of IFN-b Promoter during RVFV

Infection

In uninfected cells, a SAP30/Sin3A/NCoR/HDAC-3 corepressor complex,
described here for the first time, to our knowledge, interacts with the
constitutively repressed murine IFN-b promoter through its YY1 binding
site present at position�90. After RVFV ZH infection, in the presence of
NSs filaments, recruitment of corepressor complex SAP30/Sin3A/NCoR/
HDAC-3 is reinforced whereas recruitment of co-activator CBP and of YY1
at its�122 site as well as acetylation of histone residues K8H4 and K14H3
is inhibited. Therefore, IFN-b promoter remains silent in spite of IRF3
nuclear translocation and binding to the promoter.
doi:10.1371/journal.ppat.0040013.g007
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was used for immunofluorescence experiments. Mouse anti-NSs
polyclonal antibodies raised against the entire NSs protein [23] were
used for Western blot, chromatin immunoprecipitations or immuno-
fluorescence (Figure 5). Anti-IRF3 antibody used for chromatin
immunoprecipitation was kindly provided by Michael David. Other
primary antibodies used for immunofluorescence and chromatin
immunoprecipitation experiments were: anti-SAP30 C-18 (sc-8471),
anti-mSin3A AK-11 (sc-767), anti-NCoR C-20 (sc-1609), anti-CBP A-
22 (sc-369), anti-YY1 H-10 (sc-7341) from Santa Cruz Biotechnology
as well as anti-HDAC1 clone 2E10 (05–614), anti-HDAC2 clone 3F3
(05–814), anti-HDAC3 clone 3G8 (05–813), anti-AcK14H3 (06–911)
and anti-K8H4 (06–760) from Upstate. Secondary antibodies used for
immunofluorescence were Alexa 488 Chiken anti-goat (A21467),
Alexa 555 Donkey anti-mouse (A31570) and Alexa 488 Chiken anti-
rabbit (A 21441) from Molecular Probes. Antibodies used for
immunofluorescence against the cellular proteins were checked by
western blot for absence of cross-reaction with the NSs protein. The
reciprocal experiment was also performed.

Two hybrid system. The two-hybrid screen was already described
[25]. Briefly, a mouse cDNA library (CLONTECH) pretransformed in
Y187 strain (MATa, trp1, leu2, URA3::(Gal1UASþTATA)-lacZ/MEL1) was
used for screening by mating with Saccharomyces cerevisiae AH109 strain
(MATa, trp1, his3, ade2, leu2, LYS2::(Gal1UASþTATA)-HIS3, URA3::(-
MEL1UASþTATA)-lacZ/MEL1) transformed by pGBKT7-NSsZH . Yeast
were grown in medium lacking tryptophan, leucine and histidine (SD
medium) containing 5 mM 3-amino-1,2,4-triazole, a suppressor of
unspecific HIS3 expression. pACT-SAP30 plasmid expressing SAP30
from amino-acid 1–152 was rescued from colonies growing in the
selecting medium and the insert was sequenced and analysed with the
BLAST computer program. Interactions were assayed using the ß-
galactosidase reporter or the ability to grow in selective medium.

Viruses and cells. Stocks of RVFV ZH548 and Clone 13 [32,33] were
produced under BSL3 conditions by infecting Vero cells at m.o.i. of
10�3 and by harvesting the medium at 72 h p.i. Murine fibroblastic
L929 cells and L929 wt330, mut90 and mut122 cell lines have been
described previously [12,15]. Murine BF cells were already described
[26].

Rescue of ZH548 RVFV containing mutations in NSs. The system to
generation of infectious recombinant RVFV entirely from plasmids
will be described in details elsewhere (Billecocq et al. manuscript in
preparation). It is similar to those described [42,43] except for the use
of pol I based plasmids [44] containing the L, M or S sequence of the
ZH548 strain.

To introduce specific mutations in NSs we generated rec-ZH
DelNSs in which the NSs coding sequence was replaced by a BbSI
cloning site. We then used this plasmid linearized at the BbSI site to
insert the mutated NSs ORF sequence which was amplified by PCR
from pCi-NSsD210–230 generated by standard mutagenesis using
specific oligonucleotides (available on request). The sequences were
verified in order to ensure no unintentional mutations. The virus was
rescued by transfecting BHK21-T7 cells (kindly provided by Dr Ito,
Gifu, Japan), with the expression plasmids pTM1-L (0.5 lg) and
pTM1-N (0.5 lg) together with 1 lg each of L, M and S Pol I plasmids.
After 3 days, extensive cytopathic effect was normally observed,
maintenance medium was collected and stored at �808C. Working
stocks were prepared by infecting Vero cells at moi of 10�3 as already
described. This work was carried out in BSL3 conditions at the
Pasteur Institute.

CAT assay. L929 wt330 cells seeded in six-well plates (200 000 cells/
well) one day prior infection and grown in medium without G418
were infected with ZH548 and Clone 13 RVFV strains at a m.o.i of 5.
The cells were harvested at different times after infection, and CAT
activity was determined.

GST pull down assay. Plasmid pGex-4T-1 (Amersham Pharmacia)
was used to express NSs or SAP30 fused in frame with the GST
protein in E. coli. The GST-fusion protein purified on glutathione-
sepharose beads (Amersham Pharmacia) was preincubated with BSA
in Tris buffer (50 mM Tris HCl pH 7.5, 100 mM NaCl, 1 mM, 1 mM
DTT, 0.05% Tween 20 and 1mM PMSF) and incubated with extracts
of cells transfected with plasmid pCi-HA tagged-SAP30 in which
murine SAP30 is expressed as a N-terminal HA-tagged protein or
infected with ZH. After several washing with the same buffer
containing 400 mM NaCl, the proteins bound to the beads were
solubilized in Laemmli buffer and analysed by western blots using
murine antibodies against GST, HA, or NSs.

Coimmunoprecipitation experiments. HEK 293 cells (approx.
8x106) were transiently transfected by electroporation with 30 lg of
the eukaryotic expression vector pCS2-Myc or pCS2-Myc-SAP30
which expresses SAP30 with c-myc at its N-terminus. After incubation
for 24 h, cells were infected with ZH (m.o.i.¼5). They were harvested

at 24 h p.i and lysed in lysis buffer (1 % NP-40, 100 mM NaCl, 50 mM
Tris HCl (pH 7.5), 1 mM EDTA, and protease inhibitor cocktail. Cell
lysates were incubated overnight with protein G-Sepharose beads and
anti-myc (9E10) antibody. Then, beads were washed with lysis buffer
adjusted to 450 mM NaCl. Bound cellular proteins were separated by
SDS-PAGE and subjected to western blotting using anti-myc-HRP
(9E10), anti-NSs (rabbit polyclonal) antibodies.

Chromatin immunoprecipitation.Murine L929 cells or L929 wt330,
mut90 and mut122 cell lines were infected by ZH or C13 RVFV
strains and were fixed with 1% formaldehyde added to the medium
for 10 min, scraped, and collected by centrifugation. Cells were
resuspended in 300 ll ml of lysis buffer (5 mM piperazine-N,N9-bis(2-
ethanosulfonic acid) (PIPES pH 8.0), 85 mM KCl, 0.5% NP-40) with a
cocktail of protease inhibitors (Roche). Cells were pelleted by
centrifugation and resuspended in 300 ll of 1% SDS, 10 mM EDTA,
and 50 mM Tris-HCl (pH 8.0) containing protease inhibitors. After
incubation on ice for 10 min, they were sonicated 6 times for 30
seconds using Bioruptor (Diagenode). Lysates were then cleared by
centrifugation, and the concentration of DNA was determined. Equal
amounts of DNA were diluted ten times in dilution-buffer (0.01%
SDS, 1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl [pH 8.1], 167
mM NaCl). The chromatin solution was precleared for 45 min at 48C
on Protein A-Agarose/Salmon Sperm DNA beads from Upstate (16–
157). After brief centrifugation and removing of the beads, DNA was
incubated overnight at 48C in a rotating wheel with 5 ll of the
corresponding antibodies in 1000 ll final volume of dilution buffer.
Immune complexes were collected on Protein A-Agarose/Salmon
Sperm DNA beads from Upstate (16–157). Beads were washed
sequentially in TSE (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20
mM Tris-HCl [pH 8.1]) with 150 mM NaCl, TSE with 500 mM NaCl,
buffer A (0.25 M LiCl, 1% NP-40, 1% deoxycholate, 1 mM EDTA, 10
mM Tris-HCl [pH 8.1]), and one time with Tris-EDTA and then eluted
with 200 ll 1% SDS and 0.1 M NaHCO3. Cross-links were reversed by
heating at 658C for 4 h after adding NaCl to 200 mM final
concentration. After treatment with Proteinase K (50lg/ml for 1 h
at 378C), DNA was purified using Geneclean Turbo kit (Q-Biogene).
PCR analysis of inputs or immunoprecipitated DNAs was performed
as previously described [16]. Oligonucleotides F-40 and CAT, specific
for the integrated muIFN-b promoters, were used as primers to
amplify the integrated wt330, mut90 and mut122 promoters present
in the corresponding cell lines and oligonucleotides 5.233 and 3.27
were used to amplify the endogenous wild-type murine IFN-b
promoter present in L929 cells.

Immunofluorescence and confocal microscopy analysis. For im-
munofluorescence, ZH or C13-infected and uninfected L929 wt330
cells grown in twelve-well plates on coverslips were permeabilized
with 0.5% Triton X-100 in 10 mM Pipes pH 6.8, 100 mM NaCl, 3 mM
MgCl2 and 300 mM sucrose for 5 min at room temperature, fixed with
2% para-formaldehyde and incubated for 1h at 378C with corre-
sponding antibodies diluted in PBS/0.01% Tween/5 % BSA. Cells
were then washed with PBS and incubated for 45 min at room
temperature with corresponding secondary antibodies. Cells were
observed with a Zeiss LSM 510 Axiovert 200 M microscope with
confocal head. Images were collected in the z direction at 0.37 lm
intervals. The images were analyzed by the LSM5 Image browser or
Image J programs. Double-labeled pixels were displayed in yellow on
the merge images.

Animal experiments. Lots of 12 four-week old mice (OF1, Charles
River laboratories, France) were inoculated with 104 pfu of RVFV via
intraperitoneal route. Animals were observed twice daily for morbid-
ity and mortality.

Supporting Information

Figure S1. Localization of Endogenous N-CoR (A), and CBP (B)
Proteins with NSs Filament Analyzed by Confocal Microscopy in L929
wt330 Cells

Found at doi:10.1371/journal.ppat.0040013.sg001 (1.9 MB TIF).

Figure S2. Localization of HDAC1 (A), HDAC2 (B), and HDAC3 (C)
Proteins with NSs Filament Analyzed by Confocal Microscopy in L929
wt330 Cells

Found at doi:10.1371/journal.ppat.0040013.sg002 (3.1 MB TIF).

Accession Numbers

The SwissProt accession number for the Sin3A associated protein 30
is 088574.
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The EMBL-Bank accession number for the RVFV ZH548 NSs
protein is DQ 380151.
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