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A straightforward route to spiroketals

Nicolas Ardes-Guisot.” Bani Ouled-Lahoucine. Isabelle Canet*
and Marie-Eve Sinibaldir®

SEESIB, UMR 6304, Université Blaise Pascal, 63177 Aubiére Cedex, France

Abstract—A straightforward route to 1,7-dioxa-, 1.4, 7-trioxa- and 1,4,7,10-tetraoxaspiro[5.5Jundecanes, starting from commercially

available 3-chlore-2(chloromethvl)prop-1-ene, is described.

The spiroketal moiety is found as a structural part in the
skeleton of the natural products of varying complexity.
Because of importance of the pharmacological proper-
ties related to these compounds, many strategies have
been devoted to this bicyclic system.! Most methods
lic on an acid-catalyzed cyclization of a linear dihydroxy-
ketone or a pre-assembled hemiacetal, the novelty
arising from the access to these key precursors. This
cyclization approach is particularly suitable when the
target spiroketal possesses a ‘thermodynamic’ configura-
tion.” Fortunately, this is the case with most spiroketals
in nature, although notable exceptions do exist.?

In this Letter, the scope of a stereoselective and versatile
three-step approach towards the construction of spiro-
ketal unit 1 is presented, starting from commercially
available 3chloro-2-(chloromethyl)prop-1-ene 2 (Scheme
1}. Indeed, despite the efficiency of our recently reported
approaches to 1, the first one—based upon the alkylation
of acetone N N-dimethylhydrazone® —only allowed the
synthesis of structures 1b while the second-—using con-
densation on 1,3-dichloroacetone-O-benzyloxime—led
only to the incorporation of two supplementary hetero-
atoms in the cycles, such as structure 1a.” These results
prompted us to consider a new pathway, described
herein, that proved to be very effective not only for the
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construction of Ia.b but also for the never reported so
far compound le.

We first investigated the synthesis of la (Scheme 2).6
Our pathway started by the double substitution of 3-
chloro-2-(chloromethyljprop-1-ene 2 by (8)-solketal 3
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Scheme 2. Reagents and conditions: {a) Nall (3 equiv), THF, then 2,
rl then reflux, 18 b, 93%; (b) Oy, DCM, —78 *C then Me.S, —78 °C 1o
rt, 88%: (¢) Amberlyst® 15, MeOH, reflux, 12 h, 79%.



to give alkene 5a. This step could be very efficiently
achieved, by heating to reflux a mixture of alkene 2
and the anion of 3, generated by the action of sodium
hydride, in THF. Subsequent ozonolysis of 5a provided
ketone 6a in a 88% yield. Finally, a simple exposure of
ketone 6a to Amberlyst®15 in MeOH effected the
desired spiroketalization in a 79% yield.

Using our novel strategy, enantiomerically pure
(2R.685,8R)-1.4.7,10-tetraoxaspiro[5.5Jundecane 1a’ was
obtained in three steps in a 64% overall yield. This syn-
thesis could be favourably compared to those prm’iousg
achieved in our laboratory (four steps and 19%% yield,”
two steps and 55% yield®).

The next challenge was to achieve the preparation of 1b*
via alkylation of dichloro compound 2. The tri-
methylmethane dianion prepared by double deproto-
nation of methylpropene using a mixture of n-BuLi
and TMEDA or tert-BuOK.? is known to permit the
introduction, at once and in a one-step procedure, of
two electrophiles leading to polyfunctionalised mole-
cules. However, one observes mainly a decomposition
of the lithiated species before the reaction. Therefore,
to circumvent this problem, milder Barbier-type reac-
tion conditions have been developed involving lithium
metal and a catalytic amount of an arene to achieve a
chlorine-lithium exchange on 2.'°

We first applied this method to prepare spiroketal 1b.
Our attempts were based on the arene-catalysed lithia-
tion of 2, followed by alkylation with an halogenated
derivative of 1,2-O-isopropylidene-1,2.4-butanetriol 4.
However, even with varying the experimental condi-
tions——temperature, base, chelating agent (naphthalene,
TMEDA), alkylating agent (bromo or iodo deriva-
tive)—our attempts were unsuccessful and led mainly
to self-alkylation of the halogenated compound 4. We
then focused on the halopolycarbon homologation,'!
realised by adding a THF solution of the Grignard
reagent of 4a'* to a cooled well-stirred solution of
dihalide 2 in the presence of a catalytic amount of
lithium tetrachlorocuprate (Scheme 3).

After optimisation of the experimental conditions,

alkene 5b was obtained in a 73% yield. Low temperature
ozonolysis of 5b provided ketone 6b, which was submit-
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Scheme 3. Reagents and conditions: (a) (i) Mg, THF, rt then reflux,
Ihin) 2, THE, =78 =C, (1) LioCuCly, THF, =78 °C 1o r1, 18 h, 7T3%;
(b) 05, DCM, =78 °C then Me,S, —78 °C to rt, 79%; (¢} Amberlyst™
15, MeOH, reflux, 12 h, 83%.

ted to an acidic deprotection-cyclization sequence by
classical treatment with Amberlyst®15 in MeOH, afford-
ing spiroketal 1b in a 8§3% vield.

Starting from 3-chloro-2(chloromethyl)propene 2. (25,
65,85)-1,7-dioxaspiro[5.5undecane Ib’ was obtained
in a 48% overall yield over three steps.

Our final aim was to examine the validity of our strategy
to access the 1,4, 7-trioxaspiro[5.5Jundecane moiety. Few
examples of the synthesis of this kind of skeleton
were described in the literature®®!? but, so far, 1.4, 7-tri-
oxaspiro[5.5undecane-2.8-diyldimethanol Ic has never
been reported.

In this aim, it was first necessary to develop a process to
achicve a selective monoalkylation of 2. In light of
former results, we decided to investigate the synthesis
of intermediate 7, containing an oxygenated arm, pre-
cursor of the 1,4-dioxolane cycle of 1¢ (Scheme 4). After
an extensive study of the monosubstitution conditions
of 2 by the anion of solketal 3, we finally obtained
monoadduct 7 cleanly in a 68% isolated yicld using
KOH in the presence of 18-crown-6, in toluene'¥ at
T0°C.

In our initial attempts of alkylation of 7. the use of an
arene-catalysed lithiation (Barbier-type conditions) was
unsuccessful. Monoalkylation of 7. using the previously
dialkylation conditions— Grignard reagent of 4a in the
presence of Li,CuCly—failed to give the desired product
and led mainly to alkylation of 4a on itself. Olsen
et al..'* depicted the alkylation of 1,2-O-isopropylidenc-
4-chloro-1.2-butancdiol with 2-benzamido-3-bromo-
4-hydroxybut-2-enoic-acid y-lactone via dialkyl cuprate
reagents. In our case, the use of copper iodide to form
the cuprate derivative of 4a, via its lithiated form,
allowed us to obtain alkene 5c albeit in a 30% vyield."
Further work on the development of the reaction to
improve this yield is now under investigations. Mean-
while, the ozonolysis of Sc, followed by a one-pot depro-
tection/cyclization process on the generated ketone 6c,
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Scheme 4. Reagents and conditions: (a) (1) KOH, toluene, 70°C, 1 h,
(i) 2, 48 h, 68 (b) (1) tert-Buli, THF, =78 °C, 1 h 30 min, {it) Cul,
—40*C, 1 h then 7. —65°C to rt, 30046 (¢) Oy, DCM, =78 *C then
MesS, —78 °C to ri, 72%; (d) Amberlyst®15, MeOH, reflux, 12 h, 83%.



afforded 1c'” in a good yield of 60% in two steps
(Scheme 4).

Finally, the novel (2R,65.85)-1.4.7-trioxaspiro[ 3. 5Junde-
cane le was obtained in three steps in a 12% non opti-
mized overall yield.

In conclusion, the methodology described herein has
proven to be very efficient for the construction of
1.7-dioxa-, 1.4.7-trioxa- and 1.4.7,10-tetraoxaspiro[5.5]-
undecane cores. By this way. the synthesis of spiroketals
Ia.b were notably improved and the first synthesis of
spiroketal le has been realized. Its broad applicability,
as well as the potential to further produce elaborated
spiroketals, make this three step methodology a valuable
tool for the synthesis of natural products containing
highly functionalised spiroketal moieties.
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