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Abstract 

The present study aimed at investigating the effects of an artificial head position-based 

tongue-placed electrotactile biofeedback on postural control during quiet standing under 

different somatosensory conditions from the support surface. Eight young healthy adults were 

asked to stand as immobile as possible with their eyes closed on two Firm and Foam support 

surface conditions executed in two conditions of No-biofeedback and Biofeedback. In the 

Foam condition, a 6-cm thick foam support surface was placed under the subjects’ feet to alter 

the quality and/or quantity of somatosensory information at the plantar sole and the ankle. The 

underlying principle of the biofeedback consisted of providing supplementary information 

about the head orientation with respect to gravitational vertical through electrical stimulation 

of the tongue. Centre of foot pressure (CoP) displacements were recorded using a force 

platform. Larger CoP displacements were observed in the Foam than Firm conditions in the 

two conditions of No-biofeedback and Biofeedback. Interestingly, this destabilizing effect 

was less accentuated in the Biofeedback than No-biofeedback condition. In accordance with 

the sensory re-weighting hypothesis for balance control, the present findings evidence that the 

availability of the central nervous system to integrate an artificial head orientation information 

delivered through electrical stimulation of the tongue to limit the postural perturbation 

induced by alteration of somatosensory input from the support surface. 
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Introduction 

Biofeedback systems for balance control consist in supplying individuals with 

additional artificial information about body orientation and motion to substitute or supplement 

the natural visual, somatosensory and vestibular sensory cues. Among the possible alternative 

sensory channels that can be used to convey body-motion information, normally provided by 

the human senses, the somatosensory system of the tongue has recently received a growing 

interest [3,24,29,31,37]. Interestingly, because of its dense mechanoreceptive innervations 

[23] and large somatosensory cortical representation [20], the tongue can convey higher-

resolution information than the skin can [22,26]. In addition, the presence of an electrolytic 

solution, saliva, also insures a highly efficient electrical contact between the electrodes and 

the tongue surface and therefore does not require high voltage and current [2]. Finally, the 

tongue is located in the protected environment of the mouth and is normally out of sight and 

out of the way, which could make a tongue-placed tactile display aesthetically acceptable.  

Following train of thought, an head position-based tongue placed biofeedback system 

has recently been designed to transmit artificially sensed head orientation with respect to 

gravitational vertical, normally provided by the vestibular system (e.g. [9]), through electrical 

stimulation of the tongue [3,24]. In a recent study, the effectiveness of this system in 

improving balance control in subjects with bilateral vestibular dysfunction has been 

demonstrated [24]. In the context of the multisensory control of balance (e.g., [16]), these 

results evidence the ability of the central nervous system (CNS) to efficiently integrate an 

artificial head position-based, tongue-placed electrotactile biofeedback for controlling 

posture, as a sensory substitution for loss of vestibular information. The present experiment 

was designed to investigate whether the CNS is able to integrate this biofeedback for balance 

control, as a sensory supplementation, to compensate for an alteration of somatosensory 

information, known to play a major role in postural control during quiet standing (e.g., 
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[13,17,36]). To achieve this goal, we compared the effects of this artificial head position-

based, tongue-placed electrotactile biofeedback [3,24] on postural control during quiet 

standing under different somatosensory conditions from the support surface. 

 

Materials and Methods 

Subjects 

 Eight young healthy adults (5 males and 3 females; age = 28.9 ± 7.4 years; body 

weight = 72.5 ± 7.2 kg; height 175.5 ± 7.7 cm; mean ± SD) with no history of motor 

problems, neurological disease, or vestibular impairment voluntarily participated in the 

experiment. They gave their informed consent to the experimental procedure as required by 

the Helsinki declaration (1964) and the local Ethics Committee.  

 

Task and procedures 

Eyes closed, subjects stood barefoot on a force platform with their feet performing an 

angle of 30° relative to each other, heels 5 cm apart and their hands loosely hanging at the 

sides. The force platform (Satel, Blagnac, France) allowed measuring the displacements of the 

centre of foot pressure (CoP). Signals from the force platform were sampled at 40 Hz (12 bit 

A/D conversion) and filtered with a second-order Butterworth filter with a 6-Hz low-pass cut-

off frequency.  

Subject’s task was to sway as little as possible on two Firm and Foam support surface 

conditions. The force platform served as the Firm support surface. In the Foam condition, a 6-

cm thick foam support surface, altering the quality and/or quantity of somatosensory 

information at the plantar sole and the ankle, was placed under the subjects’ feet (e.g., 

[10,12,34,36,38]).  
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These two conditions were executed under two experimental sessions of No-

biofeedback and Biofeedback. In the Biofeedback session, subjects performed the postural 

task using an head position-based tongue-placed electrotactile biofeedback (BrainPort 

Balance Device, Wicab Inc.) [3,6,24]. The underlying principle of the biofeedback consisted 

of providing supplementary information about the head orientation with respect to 

gravitational vertical through electrical stimulation of the tongue. In short, instantaneous pitch 

and roll angles of the head relative to the gravitational vertical were derived by double 

integration of acceleration data sensed with a micro-electromechanical system (MEMS) 

accelerometer and displayed on a 100-point electrotactile array held against the anterior dorsal 

of the tongue (10 × 10 matrix of 1.5 mm diameter gold-plated electrodes on 2.32 mm centers) 

(Tongue Display Unit, TDU) [2]. Both the MEMS accelerometer and the electrotactile array 

are integrated in a custom-formed dental retainer, which subjects kept in their mouth all over 

the duration of the experiment (i.e. in both the No-biofeedback and Biofeedback experimental 

sessions). In the Biofeedback session, subjects were asked to actively and carefully hold their 

tongue against the matrix of electrodes that allowed them to continuously perceive both 

position and motion of a small “target” stimulus on the tongue display, corresponding to head 

orientation with respect to gravitational vertical. Specifically, as illustrated in Figure 1, when 

the subject’s head sways on the left, right, forwards and backwards, the electrical stimulation 

on the tongue moves to the left, right, forward and backward, respectively. Subjects were then 

asked to continuously adjust head orientation and to maintain the stimulus pattern at the 

centre of the display [3,24]. Several practice runs were performed prior to the test to ensure 

that subjects had mastered the relationship between the different head positions and lingual 

electrical stimulations. 

------------------------------------ 

Please insert Figure 1 about here 
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------------------------------------ 

Three 50s trials for each condition were performed. The order of presentation of the 

two Firm and Foam support surface conditions and the No-biofeedback and Biofeedback 

experimental sessions was counterbalanced. 

 

Data analysis 

 CoP displacements were processed through a space-time domain analysis including 

the calculation of (1) the surface area (mm²) covered by the trajectory of the CoP with a 90% 

confidence interval, and (2) the length of the CoP displacements (mm) along the medio-lateral 

(ML) and antero-posterior (AP) axes, corresponding to the sum of the displacement scalars 

obtained along the ML and AP axes, respectively. 

 

Statistical analysis 

 Two Biofeedback (No-biofeedback vs. Biofeedback) × 2 Support surface (Firm vs. 

Foam) analyses of variances (ANOVAs) with repeated measures of both factors were applied 

to data. Post hoc analyses (Newman-Keuls) were performed whenever necessary. Level of 

significance was set at 0.05.  

 

Results 

Figure 2 illustrates representative displacements of the CoP from a typical subject 

during standing in each of the four experimental conditions: No-biofeedback / Firm (2A) No-

biofeedback / Foam (2B), Biofeedback / Firm (2C) and Biofeedback / Foam (2D).  

------------------------------------ 

Please insert Figure 2 about here 

------------------------------------ 
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 Analysis of the surface area covered by the trajectory of the CoP showed a significant 

interaction of Support surface × Biofeedback condition (F(1,7) = 16.70, P < 0.01). As 

illustrated in Figure 3A, the decomposition of this interaction into its simple main effects 

indicated a larger stabilizing effect of Biofeedback on the Foam (P < 0.001) than Firm 

condition (P < 0.05). The ANOVAs also showed main effects of Support surface (F(1,7) = 

260.43, P < 0.001) and Biofeedback (F(1,7) = 44.74, P < 0.001), yielding increased surface 

area in the Foam relative to the Firm condition and decreased surface area in the Biofeedback 

relative to the No-biofeedback condition, respectively. 

 Analyses of the length of the CoP displacements along both the ML and AP axes 

showed significant interactions of Support surface × Biofeedback condition (F(1,7) = 6.71, P 

< 0.05 and (F(1,7) = 10.43, P < 0.05, for ML and AP axes, respectively). As illustrated in 

Figures 3B and 3C, the decomposition of this interaction into its simple main effects indicated 

a larger stabilizing effect of Biofeedback in the Foam (Ps < 0.001) than Firm condition (Ps < 

0.05). The ANOVAs also showed main effects of Support surface (F(1,7) = 164.82, P < 0.001 

and F(1,7) = 207.76, P < 0.001, for ML and AP axes, respectively) and Biofeedback (F(1,7) = 

36.71, P < 0.001 and F(1,7) = 15.38, P < 0.01, for ML and AP axes, respectively), yielding 

increased length of the CoP displacements in the Foam relative to the Firm condition and 

decreased length of the CoP displacements in the Biofeedback relative to the No-biofeedback 

condition, respectively. 

------------------------------------ 

Please insert Figure 3 about here 

------------------------------------ 

 

Discussion 
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The present study aimed at investigating the effects of an artificial head position-based 

tongue-placed electrotactile biofeedback on postural control during quiet standing under 

different somatosensory conditions from the support surface. To achieve this goal, eight 

young healthy adults were asked to stand as immobile as possible with their eyes closed on 

two Firm and Foam support surface conditions executed during two No-biofeedback and 

Biofeedback experimental sessions. In the Foam condition, a 6-cm thick foam support surface 

was placed under the subjects’ feet to alter the quality and/or quantity of somatosensory 

information at the plantar sole and the ankle. The underlying principle of the biofeedback 

consisted of providing supplementary information about the head orientation with respect to 

gravitational vertical through electrical stimulation of the tongue (Fig. 1). Note that all 

subjects were able to complete the test without reporting any pain or discomfort. Centre of 

foot pressure (CoP) displacements were recorded using a force platform. 

 On the one hand, standing on a compliant foam surface deteriorated postural control, 

as indicated by the increased surface area (Fig. 3A) and length of the CoP displacements 

along the ML (Fig. 3B) and AP (Fig. 3C) axes observed in the Foam relative to the Firm 

condition. This result corroborate previous observations (e.g., [10,12,34,36,38]). Together 

with the postural effects previously observed when anaesthetising (e.g. [17]), cooling (e.g., 

[1]) or stimulating (e.g., [4,15,21,25]) the plantar soles, i.e., when manipulating 

somatosensory information from plantar cutaneous receptors, these results add to the large 

body of evidence suggesting the importance of somatosensory inputs from the plantar soles 

and ankles in postural control during quiet standing (e.g., [13,17,36]). 

 On the other hand, the availability of the biofeedback improved postural control, as 

indicated by the decreased surface area (Fig. 3A) and length of the CoP displacements along 

the ML (Fig. 3B) and AP (Fig. 3C) axes observed in the Biofeedback relative to the No-

biofeedback condition. This result confirms the ability of the CNS to integrate an artificial 
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head orientation information delivered through electrical stimulation of the tongue to improve 

postural control [3,24]. Note that the TDU already has proven its efficiency when used as the 

sensory output unit for visual [22], tactile [29,31,37] and proprioceptive [27,30] substitution 

or augmentation applications. 

More originally, the availability of the biofeedback allowed the subjects to limit the 

destabilizing effect induced by the alteration of somatosensory input from the support surface, 

as indicated by the significant interactions Support surface × Biofeedback observed for the 

surface area (Fig. 3A) and the length of the CoP displacements along the ML (Fig. 3B) and 

AP (Fig. 3C) axes. These results could be attributable to the sensory re-weighting hypothesis 

(e.g. [18,19, 28,32,34,36,38]), whereby the CNS dynamically and selectively adjusts the 

relative contributions of sensory inputs (i.e., the sensory weights) to maintain upright stance 

depending on the sensory contexts. For instance, in the condition of ankle muscle fatigue, 

known to alter proprioceptive signals from the ankle [27], the sensory integration process 

involved in the control of bipedal postural control has been shown to (1) decrease the 

contribution of proprioceptive cues from the ankle [32], and (2) increase the contribution of 

vision [14,28], cutaneous inputs from the foot and shank [33] and haptic cues from the finger 

[35], providing reliable and accurate sensory information for controlling posture. In the 

present experiment, the decreased CoP displacements observed in the Foam condition when 

the Biofeedback was in use relative to when it was not, suggests an increased reliance on 

sensory information related to the head orientation with respect to gravitational vertical, i.e. 

closely related to vestibular inputs (e.g., [9]), in condition of altered somatosensory 

information from the support surface. Note that these results are consistent with the increased 

postural responses to vestibular perturbation previously observed when somatosensory 

information from the support surface was altered either in healthy subjects by standing on a 
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compliant (e.g. [10]), on a sway-referenced (e.g. [5]), unstable (e.g. [8]) or moving support 

surface (e.g. [11]), or by somatosensory loss due to neuropathy (e.g. [7,10]).  

Finally, in addition to their fundamental relevance on the field of neuroscience, we 

believe that the present findings could complementarily have implications in clinical 

conditions and rehabilitation practice. With this context, we are presently exploring whether 

head-position information, when presented to the tongue via electrical stimulation, could 

positively affect postural control in individuals with somatosensory loss in the feet from 

diabetic peripheral neuropathy and persons with lower limb amputation. 
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Figure captions 

 

Figure 1. Sensory coding schemes for the Tongue Display Unit (TDU) (right panel) as a 

function of the head orientation with respect to gravitational vertical (left panel). (1) Neutral, 

(2) right-side-bended, (3) left-side-bended, (4) flexed and (5) extended head postures.  

 

Figure 2. Representative displacements of the centre of foot pressure (CoP) from typical 

subjects during standing in each of the four experimental conditions: No-biofeedback / Firm 

(A), No-biofeedback / Foam (B), Biofeedback / Firm (C) and Biofeedback / Foam (D). 

 

Figure 3. Mean and standard deviation of the surface area (A) and the length of the CoP 

displacements along the medio-lateral (B) and antero-posterior (C) axes obtained in the two 

conditions of Firm and Foam and the two conditions of No-biofeedback and Biofeedback. 

The two conditions of No-biofeedback and Biofeedback are presented with different symbols: 

No-biofeedback (white bars) and Biofeedback (black bars). The significant P-values for 

comparisons between the No-biofeedback and Biofeedback conditions also are reported (*: P 

< 0.05; ***: P < 0.001). 
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Figure 1 
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Figure 2 
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Figure 3 
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