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A MODEL FOR CHEMICALLY-INDUCED MECHANICAL LOADING ON

MEMS

F. AMIOT

Abstract. The development of full displacement field measurements as an alternative to the
optical lever technique to measure the mechanical response for MEMS components in their en-
vironment calls for a modeling of chemically-induced mechanical fields (i.e., stress, strain, and
displacements). As these phenomena usually arise from species adsorption, adsorbate modifica-
tion or surface reconstruction, they are surface-related by nature and thus require some dedicated
mechanical modeling. The accompanying mechanical modeling proposed herein is intended to
represent the chemical part of the system free energy and its dependence on the surface amount.
It is solved in the cantilever case thanks to an asymptotic analysis, and an approached closed-
form solution is obtained for the interfacial stress field. Finally, some conclusions regarding
the transducer efficiency of cantilevers are drawn from the energy balance in the accompanying
model, highlighting the role of surface functionalization parameters in micro-mechanical sensors
engineering.

1. Introduction

The increasing interest in micro-electro-mechanical systems (MEMS) has raised the issue of
several specific mechanical phenomena. Decreasing the size of mechanical objects down to the
1-100 micrometer range significantly enhances the surface-driven aspect of the mechanical be-
havior, so that these objects are used in a wide range of sensing applications [1]. In particular,
the use of functionalized microcantilevers as environmental sensors has become very popular
during the last decade. However, the basic understanding of the involved phenomena remains
controversial because of numerous experimental parameters to control, and because of the lack
of reliable spatially resolved mechanical information. For example, the basic understanding of
the mechanisms involved in the mechanical effect induced by DNA hybridization at a cantilever
surface remains an open issue [2, 3, 4, 5, 6], as well as the modeling of coupled phenomena such
as electrocapillarity [7]. To overcome the latter difficulty, several authors [8, 9, 10, 11] have
proposed the use of full displacement field measurements instead of the optical lever technique,
to measure the microcantilever deformation. This has several advantages, depending on the way
the displacement field is used, namely, averaging the displacement field across the cantilever
allows one to increase the signal to noise ratio, if one is interested in a uniformly coated can-
tilever, and the selective readout of cantilevers functionalized in a heterogeneous manner can be
achieved. Moreover, the use of full-field measurements leads to a significantly increased amount
of information, which has to be compared to suitable mechanical models of surface phenom-
ena. In particular, the widely used Stoney’s equation [12] (which is obtained by assuming that
the cantilever is subjected to a uniform mechanical effect) has to be enriched to describe the
experimentally obtained displacement fields.

The goal of the present paper is to propose such a modeling, taking into account the finite size
of the functionalized area to obtain a full displacement field instead of a mean curvature. The
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first section is devoted to derive such a mechanical modeling using thermodynamics arguments.
Focusing on cantilever sensors, the chemical environment effect is represented by a mechanical
layer, referred to as “the membrane” (bonded to the cantilever surface), whose thickness tends
to zero. The solution for the interfacial shear-stress field is obtained by using the asymptotic
expansion method [13, 14, 15] (Section 2). A general closed-form is proposed for the obtained
shear-stress field, which depends on only three physical parameters. Last, a parametric study is
carried out to provide some trends and perspectives to improve the efficiency of environmental
sensors.

2. Mechanical modeling for chemically-actuated cantilevers

The accompanying mechanical modeling intended to represent the chemical part of the system
free energy and its dependence on the surface amount is described in the first section.

2A. Definition of the accompanying mechanical modeling. Let us consider a represen-
tative interface element whose size is:

• small enough to satisfy the definiteness of partial derivatives involved in continuum
mechanics;

• large enough to provide a representative description of the surface mechanical behavior.

These requirements are referred to as scale separation conditions in the following. For polycrys-
talline thin films, a representative element should then include at least 100 grains. Three phases
are classically distinguished inside this interfacial element:

• a liquid phase, whose volume is V at pressure p. Several other state variables, denoted
by the set {nα

L}, represent the amount of species α in the liquid phase, and thus describe
its composition;

• the interphase, whose surface is Si and composition is described by the set {nα
S};

• the solid phase, whose surface is Si, described by its stress field σ.

This system is assumed to be closed, in equilibrium with an external thermostat. The system
is described by its Gibbs’ free enthalpy G. If the scale separation conditions are met, then the

state variables set
{
T, p,

{
nα

L

V

}
,
{

nα
S

Si

}
, σ

}
describes the local interfacial state. In particular, the

initial state corresponds to the sets
{

nα
L,0

}
and

{
nα

S,0

}
. As one deals with a closed system, the

conservation conditions lead to

dnα
L = −βα (2-1)

dnα
S = βα (2-2)

where βα is the processed quantity for species α by the reaction

αliquid

βαGGGGGGAαinterphase

The system free enthalpy G reads

G = GL + GS + Gm = Gc + Gm (2-3)

where GL is the liquid phase contribution, GS is the interphase one and Gm arises from the solid
substrate. Both of the first two terms are formally merged into Gc, which represents the chemical
part in G. Each free enthalpy contribution is expressed as a function of the state variables:
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• the liquid phase is assumed to be an ideal solution, so that considering a unit volume,
GL reads

GL

(
p, T,

{
nα

L

V

})
=

∑

α

nα
L

V

[
µα

L,0(p, T ) + RT log

(
nα

L

V

)]
(2-4)

where µα
L,0(p, T ) is the reference chemical potential at temperature T and pressure p for

species α, R the molar gas constant.
• For the sake of generality, a general form for an elementary interphase portion is consid-

ered

GS

(
p, T,

{
nα

S

Si

})
= g

(
T,

{
nα

S

Si

})
+

∑

α

[
nα

S

Si

µα
S,0(p, T )

]
(2-5)

where the function g
(
T,

{
nα

S

Si

})
has to be chosen to represent the evolution of the ad-

sorbate’s free enthalpy as a function of the surface concentration. For instance, non-
interacting adsorbate would lead to choose an expression gni for g similar to the one
used in equation (2-4):

gni

(
T,

{
nα

S

Si

})
= RT

∑

α

nα
S

Si

log

(
nα

S

Si

)
(2-6)

Setting Si = S0 + dS, the chemical part of the overall free enthalpy reads

Gc(Si) =
∑

α

[
nα

L,0 − βα

V

[
µα

L,0(p, T ) + RT log

(
nα

L,0 − βα

V

)]

+
nα

S,0 + βα

S0 + dS
µα

S,0(p, T )

]
+ g

(
T,

{
nα

S,0 + βα

S0 + dS

})
(2-7)

The chemical contribution to the free enthalpy depends on the available surface amount.
Considering small area variations

Gc(Si) ≃ Gc(S0) +
1

S0

∑

α



−



(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
(

nα
S

Si

)



 dS

S0

+



(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
nα

S

Si

+
1

2S0

∂2g

∂
(

nα
S

Si

)2




(

dS

S0

)2



 + o

(
dS

S0

)3

(2-8)

Finally, both Gc and Gm depend on the available surface area. To include this shared de-
pendence in the mechanical modeling of cantilevers, it is assumed that there is a virtual layer
bonded to the surface under scrutiny, so that this surface and the virtual layer are constrained
to deform together.

Moreover, it is considered that the virtual layer is subjected to a free strain ǫL. This local free
strain value is identified by minimizing the free enthalpy assuming that no mechanical constrain
is acting on the virtual layer, that is by minimizing the chemical term Gc with respect to the
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Figure 1. Schematic view of the accompanying mechanical model.

surface variation dS. Assuming that expansion (2-8) holds, ǫL satisfies

2 × ǫL ×
∑

α



(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
(

nα
S

Si

) +
1

2S0

∂2g

∂
(

nα
S

Si

)2





−
∑

α



(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
(

nα
S

Si

)



 = 0 (2-9)

If one prescribes, by any external mean, the virtual layer strain to be ǫL + δǫ, its free enthalpy
variation reads

∆Gc =



(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
(

nα
S

Si

) +
1

2S0

∂2g

∂
(

nα
S

Si

)2



 (δǫ)2 (2-10)

By analogy with the strain energy of a membrane, one is able to represent chemical effects by a
bonded virtual membrane, whose thickness is denoted by ev, whose Young’s modulus Ev reads

Ev =
2

evS0



(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
(

nα
S

Si

) +
1

2S0

∂2g

∂
(

nα
S

Si

)2



 (2-11)

and whose free-strain satisfies (2-9). The equations (2-9) and (2-11) thus define, for a given
membrane thickness ev, an energetically equivalent mechanical modeling for the chemical effects.
In addition to this energy equivalence, to account for the 2D nature of the phenomena under
scrutiny, it is assumed that the virtual membrane thickness is small compared with that of the
considered substrate. Consequently, the chemical effects are described by a virtual membrane
whose thickness is small compared with the others, and which is constrained to deform together
with the substrate surface, thus defining an accompanying mechanical modeling.

2B. Initial problem. The system is modeled as described in Fig. 1. The parameters related
to the beam are denoted with the subscript 1, whereas those related to the thin layer (the
membrane) are denoted with the subscript 2. The behavior of both the phases is assumed to
be linear elastic. The beam obeys an Euler-Bernoulli kinematics, has a Young’s modulus E1,
width b, length L and thickness e1. This beam is then subjected to an axial free strain ǫL1(x).
A thin membrane (whose Young’s modulus is E2, width b, length l < L and thickness e2) is
constrained to deform together with beam 1 along the interface Γ when subjected to a free strain
field ǫL2(x), (− l

2) < x < ( l
2 ) (one sets x = 0 at the center of the membrane area). Denoting
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by σ1 the Cauchy stress tensor in cantilever 1, the interactions between the two beams are then
represented by the scalar field τ(x) (shear-stress)

σ1y = τ(x)x (2-12)

where x denotes the unit vector in the cantilever’s direction and y the outgoing normal to its
upper surface. The equilibrium conditions read

dN1

dx
+ τb = 0 (2-13)

dM1

dx
− τb

e1

2
= 0 (2-14)

for cantilever 1 and

dN2

dx
− τb = 0 (2-15)

for membrane 2, where Ni is the normal force in phase i and Mi the bending moment. It should be
noted that the proposed modeling is expected to somehow fail to represent the mechanical effect
induced by adsorbates subjected to strong in-plane interactions such as electrostatic interactions,
since this would require to take the adsorbate’s bending stiffness into account. The tension and
bending problems are assumed to be decoupled for the cantilever 1, so that the constitutive law
reads

M1 = E1I1
d2w

dx2
(2-16)

where E1I1 is the bending stiffness for cantilever 1 in the middle of the cross-section (homo-
geneous cantilever), w(x) the out-of-plane displacement field of the assembly. At this point,
it should be underlined that using a beam or membrane theory corresponds to specific forms
for the Cauchy stress tensor and displacement (strain) fields inside the phases. According to
St-Venant’s principle, the computed fields will then be correctly predicted “far enough” from the
loading application points, that is, in the described case, “far enough” from the interface. As
a consequence, to describe the displacement at the interface, it is required to take into account
the “local” contribution of the displacement field (i.e., close to the interface) in addition to the
long-range displacement field provided by beam or membrane theories. A closed-form solution to
this local contribution is obtained using Kolossov-Muskhelishvili potentials [16] and expanding
the shear-stress field onto a Legendre polynomial basis

τ(x) =
∞∑

k=0

τkPk

(
2x

l

)
(2-17)

where Pk(x) is Legendre polynomial of order k, and {τk} the projection of τ(x) onto the Legendre
basis. The calculation of the in-plane displacement field v(x) as the sum of the contributions
vk(x) induced by the elementary shear-stress field Pk

(
2x
l

)
is detailed in Appendix A, assuming

the cantilever’s material behavior to be isotropic. For the sake of simplicity, let us consider
uniform free strain fields

ǫLi(x) = ǫLi i ∈ {1, 2} (2-18)
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The plane displacement on the interface for both the cantilever 1 and the membrane 2 read

u1(x) − u1

(
−

l

2

)
= ǫL1 ×

(
x +

l

2

)
+

∫ x

− l
2

N1(ζ)

be1E1
dζ

−
e1

2

∫ x

−
l
2

d2w

dζ2
(ζ)dζ +

∞∑

k=0

τkvk(x) (2-19)

u2(x) − u2

(
−

l

2

)
= ǫL2 ×

(
x +

l

2

)
+

∫ x

− l
2

N2(ζ)

be2E2
dζ

+
e2

2

∫ x

− l
2

d2w

dζ2
(ζ)dζ (2-20)

The kinematic compatibility condition at the interface reads

u1(x) − u1

(
−

l

2

)
= u2(x) − u2

(
−

l

2

)
(2-21)

and has to be satisfied ∀x, (− l
2) < x < ( l

2). Deriving equation (2-21) three times yields

−

(
1

e1E1
+

1

e2E2
+

be1(e1 + e2)

4I1E1

)
dτ(x)

dx
+

∞∑

k=0

τkv
′′′

k (x) = 0 (2-22)

so that from equation (2-22), it is proved that neglecting the local contribution to the interface

plane displacement leads one to prescribe dτ(x)
dx

= 0. Consequently, the equilibrium of the
membrane would be satisfied if and only if the shear stress field vanishes. This result underlines
the fact that it is necessary to describe the mechanical fields close to the interface in a much
more detailed manner than classical phenomenological methods (see for instance [17]).

3. Variational formulation and asymptotic analysis

The aim of this section is to provide a suitable formulation of the problem to be solved to get
the shear-stress field representing the environmental effect on the cantilever.

3A. Complementary energy calculation for the initial problem. The shear-stress field
is found as the minimizer of the complementary energy of the overall structure. By assuming
that there is no mechanical action on the membrane except the interaction with the beam, the
set V of statically admissible shear-stress fields reads

V =

{
φ ∈ L2

([
−

l

2
,
l

2

])
,

∫ l
2

− l
2

φ(ζ)dζ = 0

}
(3-1)

Denoting by ξ the ratio between the thicknesses of the membrane and the beam

ξ =
e2

e1
(3-2)

one defines the family of initial problems Pξ as finding the shear-stress field τs(x) minimizing
the complementary energy Iξ

Pξ :

{
τs(x) ∈ V
Iξ(τs) ≤ Iξ(φ) ∀φ ∈ V

(3-3)

with
Iξ(φ) = ∆Θ1(φ) + ∆Θ2,ξ(φ) (3-4)
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where ∆Θ1(φ) and ∆Θ2,ξ(φ) are the complementary energies for the cantilever and membrane,
respectively, given by

∆Θ1(φ) =
1

2

∫

Ω1

σ1,xx(φ)ε1,xx(φ)dV

−

∫

Γ
φ(ζ)

(
u2(ζ, z) − u2

(
−

l

2
, z

))
dS + Edτ (φ) (3-5)

∆Θ2,ξ(φ) =
1

2

∫

Ω2,ξ

σ2,xx(φ)ε2,xx(φ)dV

−

∫

Γ
φ(ζ)

(
u1(ζ, z) − u1

(
−

l

2
, z

))
dS (3-6)

where εi,xx is the linearized xx strain component in phase i and Edτ (φ) the strain energy in the
localized deformation mode. It should be underlined that Iξ(φ) (through the ∆Θ2,ξ term) is
defined over a domain that depends on ξ. Iξ(φ) is rewritten as

Iξ(φ) = aξ(φ, φ) − L(φ) (3-7)

where the quadratic (resp. linear) forms aξ and L read

aξ(φ, φ) =

(
ξ−1 1

2E2be1
+

1

2E1be1
+

2

E1be1

)∫ l
2

− l
2

N2
1 (φ)dx

+

(
ξ−1 1

e1E2
+

1

e1E1
+

be2
1(1 + ξ)

E1I1

)∫ l
2

− l
2

φ

∫ x

− l
2

N1(φ)dζdx

+3Edτ (φ) (3-8)

L(φ) = b(ǫL2 − ǫL1)

∫ l
2

− l
2

φ

(
x +

l

2

)
dx (3-9)

The coercivity condition on the quadratic form aξ is lost when ξ → 0. Consequently,

• from a practical point of view, the initial problem cannot be accurately solved by standard
(i.e., 3D) finite element formulations;

• from a theoretical point of view, formulation (3-3) falls out of the framework of the
Lax-Milgram theorem, meaning that existence and uniqueness of its solution cannot be
directly ensured.

Formulation (3-3) thus needs to be modified to get a reliable solution for the shear-stress field.

3B. Scaled problem. To transform Pξ into a new problem defined on a fixed domain [14, 15]
(i.e., independent of ξ), one maps the domain

Ω2,ξ = {xΓ + ξyy, y ∈ [0, e1],xΓ ∈ Γ} (3-10)

onto

Ω2 = {xΓ + ỹy, ỹ ∈ [0, e1],xΓ ∈ Γ} (3-11)

The displacement fields in both phases, as well as the interfacial shear-stress field remain un-
scaled. It is then straightforward to check that if τs is a solution for (3-3), then τs,ξ is a solution

for problem P̂

P̂ :

{
τs,ξ(x) ∈ V

Îξ(τs,ξ) ≤ Îξ(φ) ∀φ ∈ V
(3-12)
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where Îξ reads

Îξ(φ) = âξ(φ, φ) − L(φ) (3-13)

with the new quadratic form

âξ(φ, φ) =

(
ξ

1

E2be1
+

1

E1be1
+

4e2
1

E1I1

)
1

2
aN (φ, φ)

+

(
ξ−1

e1E2
+

1

e1E1
+

(1 + ξ)be2
1

E1I1

)
1

2
ad(φ, φ) +

3b

2
×

1

2
aτ (φ, φ) (3-14)

where

aN (τ, φ) =

∫ l
2

− l
2

N1(τ)N1(φ)dx (3-15)

1

2
ad(τ, φ) =

1

2

{∫ l
2

− l
2

τ

∫ x

− l
2

N1(φ)dζdx +

∫ l
2

− l
2

φ

∫ x

− l
2

N1(τ)dζdx

}

(3-16)

1

2
aτ (τ, φ) =

1

2

{∫ l
2

− l
2

φ(x)v(τ)(x)dx +

∫ l
2

− l
2

τ(x)v(φ)(x)dx

}

(3-17)

According to equation (2-11) it is assumed that the product ξE2 tends to a finite value K2 when
ξ tends to 0

E2 = K2ξ
−1 (3-18)

so that this new quadratic form âξ satisfies the Lax-Milgram conditions, and solving problem P̂

consists in finding the solution τs,ξ(x) ∈ V for the linear system
(

ξ2 1

K2be1
+

1

E1be1
+

4e2
1

E1I1

)
aN (τs,ξ, φ) +

(
1

e1K2
+

1

e1E1
+

(1 + ξ)be2
1

E1I1

)
ad(τs,ξ, φ)

+
3b

2
aτ (τs,ξ, φ) − L(φ) = 0 ∀φ ∈ V (3-19)

The solution τs,ξ is then sought as a formal asymptotic expansion [13]

τs,ξ = 0τ + ξ × 1τ + ξ2 × 2τ + . . . (3-20)

Putting equation (3-20) into the stationarity conditions (3-19) leads to a separate linear system
for each ξ order. The leading term 0τ ∈ V is found to satisfy

a0(
0τ, φ) − L(φ) = 0 ∀φ ∈ V (3-21)

with

a0(τ, φ) =

(
1

E1be1
+

4e2
1

E1I1

)
aN (τ, φ)

+

(
1

e1K2
+

1

e1E1
+

be2
1

E1I1

)
ad(τ, φ) +

3b

2
aτ (τ, φ) (3-22)

A finite dimension space V is chosen, described by the orthogonal basis of Legendre polynomials
Pn, n ∈ {1, . . . N}, so that,

0τ(x) =

N∑

k=1

0τkPk

(
2x

l

)
(3-23)
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Figure 2. Convergence of the computed shear-stress field with the space dimen-
sion N .

System (3-21) then yields a square linear system, which is solved to provide the shear-stress field
0τ(x) along the interface Γ as its expansion (3-23).

4. Data reduction and parametric study

Even though the description of the shear stress field by its expansion with Legendre polyno-
mials is natural from the mathematical point of view (see appendix A), this is of little practical
interest. After demonstrating the convergence of the computed shear-stress field with the space
dimension N , a closed-form solution for the interfacial stress field is provided, and from the
above results some practical conclusions concerning the transducer efficiency are derived.

4A. Convergence and data reduction. By using the variational formulation obtained above,
the (normalized) shear-stress field is calculated as a function of three physical parameters,
namely,

• the geometrical parameter s = l
e1

;

• the modulus ratio r = E1

K2
;

• the Poisson’s ratio ν

Figure 2 shows the shear-stress field computed under plane strain conditions when N = {10, 18, 616}
and the following parameters s = 0.1, r = 1 and ν = 0.3 are chosen. The reference solution
is obtained with about 400-500 terms. All the even terms (i.e., Legendre polynomials of even
orders) vanish, since the solution is an odd function of the position. The shear-stress field is
linear with the position at the center of the interval and drastically increases (in norm) close
to the edges, but remains bounded. This reference shear-stress field, expressed as a series of
Legendre’s polynomials, is denoted τref in the following.
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To make these results useful, the shear stress field is modelled by using a closed-form solution
τ

(
2x
l

)
:

1

E1(ǫL2 − ǫL1)
τ

(
2x

l

)
= Tt tan

(
C

πx

l

)
+ Tl

2x

l
(4-1)

where the constants C, Tt and Tl have to be identified from the computed shear-stress fields
τref(2x

l
). The reference shear-stress field has thus been computed in the following parameters

range : 0.1 ≤ ν ≤ 0.5, 10−3 ≤ r ≤ 103 and 0 ≤ s ≤ 1. The local displacement contributions vk

have been obtained assuming the membrane’s length to be small compared to the cantilever’s
thickness (see Appendix A). As the “local” contribution is significant over a depth which scales
as l under the interphase, the upper bound for the s range is chosen to comply with the validity
domain for the in-plane displacement field calculation, that is s ≤ 1. The range for ν and r

is supposed to cover most practical cases. An approached closed-form solution τ
(

2x
l

)
for the

shear-stress field is obtained by minimizing

χ2 =

∫
(τ(2x

l
) − τref (2x

l
))2dx∫

τref (2x
l
)2dx

(4-2)

over the set {C, Tt, Tl}. The identified values are recasted as

C = (−1.47 × 10−2ν2 − 3.71 × 10−3ν + 0.9957)

+10−4 × (29.4ν2 + 3.87ν + 4.92)t0.3217−6.23×10−2ν (4-3)

Tt = (1.72 × 10−1ν2 − 4.73 × 10−3ν + 5.5 × 10−2)

+10−3 × (−45.3ν2 + 4.09ν − 7.01)t0.313−5.47×10−2ν−6.38×10−2ν2

(4-4)

Tl = (−8.93 × 10−1ν2 − 3.36 × 10−2ν − 3.61 × 10−1)

+10−2 × (11.9ν2 + 0.182ν + 1.41)t(4.52−1.71ν)×10−1

(4-5)

with
t = s(75 + 2r) (4-6)

The maximum relative deviation |χ| between the reference solution τref and the proposed closed
form solution τ is found to be less than 7% over the entire parameters range, thereby proving the
close agreement between the reference and closed-form solutions. For practical stress estimations,
it is worth noting that all stresses, including the interfacial shear-stress, scale as the longitudinal
stress for the 1D inclusion problem |ǫL2−ǫL1|E1 . From closed-form solution (4-1), the curvature
field is obtained by using equations (2-14) and (2-16)

1

E1(ǫL2 − ǫL1)

d2w

dx2
= −

e1b

2E1I1

{
Ttl

Cπ
ln

∣∣∣∣∣
cos

(
Cπx

l

)

cos
(

Cπ
2

)

∣∣∣∣∣ + Tl

(
l

4
−

x2

l

)}

(4-7)

which is integrated using polylogarithm functions to provide the out-of plane displacement field.
Considering a single functionalized area, this integration obviously yields the fact that the longer
the distance between the membrane and the cantilever’s edge, the greater the end-point displace-
ment. It is worth noting that, similarly to the well-known shear-lag problem [19, 20, 21], the
above described stress-field doesn’t vanish near the membrane edges, since the whole interface
is subjected to shear-stress. On the other hand, this stress field exhibits a rather different form
than the one obtained with the shear-lag problem : the former diverges as tan(x) while the latter
behaves as exp(x). This is thought to be the consequence of rather different interface conditions:

• the kinematic compatibility is ensured through a thin adhesion layer (typically a glue
layer between two plies of a composite material) for the shear-lag problems ;
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• no adhesion layer is considered here, but the kinematic compatibility at the interface
is ensured considering the local elastic displacement field to enrich the beam kinematic
description.

Figure 3. Overall transducer efficiency η as a function of the parameters r and
s (log scales) when ν = 0.3.

4B. Transducer efficiency. Moving back to the thermodynamic grounds of the modeling,
and focusing on the sensing applications, the total energy in the accompanying model Etot is
decomposed as the following :

Etot = E1,flex + E1,tens + E1,surf + E2 (4-8)

where

• E1,flex is the strain energy located in the bending mode of the cantilever, so that it
represents the useful part of the energy when the detection scheme relies on the cantilever
bending ;

• E1,tens is the strain energy located in the tension mode of the cantilever ;
• E1,surf is the strain energy transferred to the “local” (surface) deformation mode of the

cantilever ;
• E2 is the strain energy of the membrane, and thus represents, according to the equivalence

principle which lead to the Equations (2-9), (2-10) and (2-11), the chemical energy stored
in the system.

The sensing problem can then be expressed as converting the stored chemical energy E2 into
some bending strain energy E1,flex. The transducer efficiency η is thus defined as

η =
E1,flex

Etot

(4-9)

η is then the ratio of the energy used to produce the signal in most sensing applications [1]
to the available energy. The ratio η is virtually independent of ν, and its change with the
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parameters r and s is shown in Figure 3 when ν = 0.3. Let us first consider that any typical
length for the functionalized area is attainable for any considered cantilever’s material using
suitable functionalization techniques. This statement implies that any point in the (r, s) plane
described in Figure 3 is achievable. The change of η with the parameter r is intuitive, namely,
for a given K2, decreasing r = E1

K2
is a way of improving the sensor efficiency, as was utilized

with the development of polymeric cantilevers [22]. It should be underlined that if this trend
is verified, the transducer efficiency does not vary significantly with r when r ≤ 1, thus setting
a limit to the transducer efficiency improvement one could achieve by reducing the cantilever’s
material stiffness. This optimal efficiency is then about 0.4, obtained when r → 0 and s → 1.
The drastic efficiency loss when r ≫ 1 is the result of the large amount of chemically “stored”
(or blocked) energy in this range. The latter is monitored through the ratio ̺, defined as

̺ =
E2

Etot

(4-10)

Figure 4 shows the ratio ̺ of the stored chemical energy (i.e., the final strain energy in the

Figure 4. Ratio ̺ of the blocked chemical energy over the total system energy
as a function of the parameters r and s (log scales) for ν = 0.3.

membrane E2) over the total system energy as a function of the parameters r and s when ν = 0.3.
For instance, this ratio is found to be around 0.85 for r = 103 and s = 1, meaning that only
15% of the available chemical energy is used to produce a mechanical effect, and only part of
this “mechanical” energy is used to bend the cantilever, the rest being mainly spent in the
local deformation mode. This argument should be used carefully, especially if one is interested
in non-invasive sensing applications. If the monitored chemical system is supposed to interact
with some low concentration reagents, there is a balance between the transducer efficiency and
the amount of energy taken from the chemical system to bend the cantilever to ensure the
measurement’s non-invasiveness, that is to ensure the energy used to bend the cantilever is
small enough compared to the stored chemical energy.
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The change of η with the size parameter s, described in Figure 3 is less intuitive. It should
be noted that the cantilever’s length (or the ratio of the membrane’s length over the cantilever’s
one) is not involved at this stage. The possibility of converting more chemical energy into a
mechanical one by extending the functionalized area is thus not considered here. For a given
value of the membrane’s size l, decreasing the cantilever’s thickness e1 is increasing the transducer
efficiency. This results from the fact the surface deformation mode extends over a depth l under
the surface (see Appendix A). The described coupling efficiency change is only related to the
fact that the thinner the cantilever (i.e. the higher the s parameter), the more efficiently the
strain energy located in the ”local” (i.e. surface) deformation mode (which is not monitored so
far) is converted into strain energy located into the cantilever bending mode (which is usually
monitored using optical or piezoresistive read-out). This scaling effect is thus distinct from
the lowering of the bending stiffness obtained by decreasing the cantilever’s thickness. This
raises comments regarding both the engineering and the basic understanding of the involved
phenomena:

• In the previous discussion it was assumed that it is possible to move independently
along both the axis of figures 3 and 4. From a practical point of view, this is false
since chemical patterning techniques are substrate-dependent. Moreover, there is no
experimental evidence that the K2 value is not substrate dependent. Consequently, all
the regions in Figures 3 and 4 are not attainable, and tailoring a cantilever based sensor is
then balancing transducer efficiency and sensor invasiveness in the available parameters
domain.

• The widely used alkanethiols adsorption on gold is known to follow a two-step adsorption
process, namely a random adsorption process followed by a reorganization step [23]. The
typical length describing the thiol-modified surface is then supposed to grow during the
adsorption process. The transducer efficiency η dependance on the membrane’s size
may then play a key role in the inception of the observed mechanical effects, and the
observed gap between the kinetics of the optical and the mechanical effects induced by
this adsorption process [24].

Finally, both of these comments raise the need for the simultaneous experimental description
of the functionalization pattern and the observed mechanical effect.

5. Conclusion

A thermodynamics-based modeling of chemically-induced mechanical loadings was described.
The effect of the environment is described by an accompanying mechanical modeling represent-
ing the chemical part of the system free energy and its dependence on the surface amount. A
dedicated variational formulation was proposed to solve this model for the surface stress, which
is finally described by an approached closed-form expression depending on three parameters.
The curvature field is also expressed as a closed-form solution, allowing for future comparisons
with experimentally obtained fields. Finally, a parametric study was carried out, highlight-
ing the need, for both the engineering and basic understanding point of view, to control the
functionalization pattern.
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Appendix A. In-plane displacement field calculation

The aim of this appendix is to compute the in-plane displacement field of the surface induced
by a heterogeneous shear-stress field applied to the surface of a homogeneous half-space. To
comply with the cantilever case (i.e., a one-dimensional model), the calculation is restricted
to the (x,y) plane, by considering the elastic half-plane y < 0. For the sake of simplicity, its
behavior is described by its Young’s modulus E and its Poisson’s ratio ν. This half-plane is
loaded along the line y = 0,−1 < x < 1 by an elementary shear-stress field

σxy(x, 0)

{
= Pk(x) if − 1 ≤ x ≤ 1
= 0 if |x| > 1

where Pk is Legendre polynomial of order k. Moving to the complex plane and setting z = x+iy,
the derivatives Φ and Y of the Kolossov-Muskhelishvili potentials [16] ϕ and Ψ read

Φk(z) =
1

2π

∫ 1

−1

Pk(r)

r − z
dr (A-1)

Yk(z) = −
1

π

{∫ 1

−1

Pk(r)

r − z
dr +

z

2

∫ 1

−1

Pk(r)

(r − z)2
dr

}
(A-2)

Using the properties of Legendre functions of first Pk(z) and second kinds Qk(z) (see for in-
stance [18]), and extending the definition of Qk(z) to the y = 0,−1 < x < 1 segment by
continuity from the y < 0 side, one gets

Φk(z) = −
1

π
Qk(z) (A-3)

Yk(z) = −
1

π

{
−2Qk(z) +

z

2

(
−

1

1 − z
−

(−1)k

1 + z

−2

k−2l−1≥0∑

l=0

(2k − 4l − 1)Qk−2l−1(z)

)}
(A-4)

From [16], the complex displacement field reads

2µU = κϕ − zϕ′ − Ψ (A-5)

with

µ =
E

2(1 + ν)
(A-6)

and κ is defined by

κ

{
= 3 − 4ν for plane strain
= 3−ν

1+ν
for plane stress

The plane component of the strain fields is obtained using

2µv
′

k(z) = Re

[
2µ

dU

dz

]

= Re
[
(κ − 1)Φk(z) − zΦ

′

k(z) − Yk(z)
]

(A-7)

The strain field is found to extend to a depth of the order of l, so that this local solution
should be used for systems where l is less than the substrate thickness (l ≤ e1). The in-plane
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displacement field of the interface vk is then obtained by setting z ∈ [−1, 1] and assuming
vk(−1) = 0

2πµv1 = −(1 + κ)

{
Q2 − Q0

3
−

P0

2

}
(A-8)

2πµv2 = −(1 + κ)

{
Q3 − Q1

5
+

P0

6

}
(A-9)

2πµv3 = −(1 + κ)

{
Q4 − Q2

7

}
+ P1 + (13 + κ)

P0

12
(A-10)

2πµv4 = −(1 + κ)

{
Q5 − Q3

9
+

P0

20

}
(A-11)

2πµv2p+1 = −(1 + κ)

{
Q2p+2 − Q2p

4p + 3

}
−

Q2 − Q0

3

+

p∑

k=1

θk,pP2(p−k)+1 + θ̃pP0 if p > 1 (A-12)

2πµv2p = −(1 + κ)

{
Q2p+1 − Q2p−1

4p + 1

}
+

p∑

k=1

λk,pP2(p−k)

if p > 2 (A-13)

where

θ1,p =
d1,p

4p − 3
(A-14)

θp,p = −
dp−1,p

5
+

1

p + 1
+ bp,p −

p−1∑

l=0

4(p − l) + 1

2(p − l)(2(p − l) + 1)
(A-15)

θk,p =
dk,p

4(p − k) + 1
−

dk−1,p

4(p − k) + 5
if 1 < k < p (A-16)

θ̃p =
1 + κ

(2p + 1)(2p + 2)
+

1

2
+

1

p + 1
+ bp,p

−

p−1∑

l=0

4(p − l) + 1

2(p − l)(2(p − l) + 1)
(A-17)

λ1,p =
c1,p

4p − 5
(A-18)

λp,p = −
1 + κ

2p(2p + 1)
−

cp−1,p

3
(A-19)

λk,p =
ck,p

4(p − k) − 1
−

ck−1,p

4(p − k) + 3
if 1 < k < p (A-20)
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with the constants

ar,p =
r−1∑

k=0

{
(4(p − k) − 3) (4(p − r) − 1)

(2(r − k) − 1) (2p − r − k − 1)

−
(4(p − k) − 1) (4(p − r) − 1)

(2k + 1)(2p − k)

}
(A-21)

br,p =

r−1∑

k=0

{
(4(p − k) − 1) (4(p − r) + 1)

(2(r − k) − 1) (2p − r − k)

−
(4(p − k) + 1) (4(p − r) + 1)

(2k + 1)(2p + 1 − k)

}
(A-22)

cr,p =
4(p − r) + 1

2p − r
+ ar,p −

4(p − r) − 1

2(p − r)

−

r∑

k=1

(4(p − k) + 3) (4(p − r) − 1)

2 (2(p − k) + 1) (p − k + 1)
(A-23)

dr,p =
4(p − r) + 1

2p + 1 − r
+ br,p −

4(p − r) + 1

2(p − r) + 1

−

r−1∑

k=0

(4(p − k) + 1) (4(p − r) + 1)

2 (2(p − k) + 1) (p − k)
(A-24)
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