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Abstract 

The present paper explores the issue of corpus prosodic parsing in terms of prosodic words. This 

question is of importance in both speech processing and corpus annotation studies. We propose a 

method grounded on both statistical and symbolic (phonological) representations of tonal 

phenomena and we have recourse to probabilistic grammars, whithin which we implement a 

minimal prosodic hierarchical structure. Both the stages of probabilistic grammar building and its 

testing in prediction are explored and quantively and qualitatively evaluated. 

1. Introduction  

Current linguistic research is largely founded on annotated speech corpora: among other things, 

such a demarche is adopted to collect evidence of how language systems function in the speech 

production and speech perception. Linguistic annotation of a speech corpus is in itself the process of 

enriching the row data with additional analytic notations. The latter cover various domains of 

language analysis (phonetics, phonology, prosody, semantics, syntax, pragmatics, etc.) in the line 

with a multi-disciplinary approach to language phenomena. Consequently, much work is looking 

for automatic and semi-automatic methods to annotate the row data on different levels. 

Numerous formal representations have recently been proposed for different linguistic levels. 

Moreover, several components of grammar operate with their own hierarchical representations: this is 

namely the case of syntax and prosody. The issue of prosodic structure and prosodic phrasing is 

central to our present research. Prosodic phrasing has received a formal treatment within the 

framework of prosodic phonology [1]. Within prosodic phonology framework, it is assumed that each 

level of prosodic hierarchy stands for an interface between phonological module and another module 

of the grammar. At the same time prosodic structure controls for the acoustic organisation of the 

spoken material and consequently functions as a pivot structure in dealing with multiple interfaces.  

To annotate prosodic phrasing phenomena means to establish the distribution of prosodic 

boundaries of different strengths. Consequently, there is a quest for heuristics, which allow for 

discriminating between different levels of prosodic constituency. In this respect, the issue of (semi-

automatic) annotation of prosodic phrasing phenomena is intimately related to the problematic of 

speech segmentation and speech possessing. In fact, prosodic breaks divide the speech flow into 

smaller units, thus facilitating the processing. The psycholinguists are particularly interested in how 

the listeners segment the speech flow into the word-sized chunks in order to recognize the 

individual words and ultimately understand the meaning of the utterance. It was established that this 

process is largely founded on fine-grained phonetic information related to different levels of 

linguistic organisation, e.g. allophonic variation, phonotactic patterns [2], matrical constraints [3-4], 

durational and tonal patterns [5-6]. The cues to the speech segmentation are thus redundant. At the 

same time, the scientific community agrees that such cues do not determine the precise locations of 

word boundaries, but rather indicate the possible boundary locations.  

In our study grounded on a corpus of Russian spontaneous speech, we explore the issue of corpus 

parsing in terms of prosodic words and we propose a method grounded on both statistical and 

symbolic (phonological) representations of tonal phenomena. Note that the role of tonal phenomena 

in word segmentation has not been largely studied for Russian. The rest of this paper is organised as 

follows: section 2 discusses the prosodic model underlying our empirical study and subsequent 

mathematical modelling. The goal of section 3 is to specify a corpus our study is based on and its 

preliminary annotation as well as the mathematical apparatus we have recourse to in our study. 



Section 5 presents the results for both grammar building stage and its evaluation in prediction. 

Finally we discuss the impact of the approach adopted and required future work. 

2. Prosodic representation 

In modern conceptions, prosody is interpreted as an organisational system [7] that could be exhaustively 

specified via the analysis of tonal and rhythmical layers as well as that of prosodic phrasing. 

Different annotation schemes have been proposed for the tonal component of prosody [8-9]. Our 

study is based on MOMEL-INTSINT prosodic annotation protocol [10, 11] which was recently coupled 

with the IF (for Intonation Functions) functional annotation system [12]. We assume a prosodic 

representation which distinguishes three intermediate levels between the acoustic signal and the level 

of prosodic functions, these levels being an underlying phonological representation, a surface 

phonological representation and a phonetic representation. The overall architecture developed for the 

tonal component of prosody is subject to the interpretability constraint, which stipulates that 

representations proposed at each level should be interpretable at both adjacent levels. The 

interpretability constraint follows from the considerations of the role of phonological representations: 

we assume that a phonological representation must provide the information necessary both for the 

pronunciation of the utterance and for its syntactic and semantic interpretation. 

For the purposes of present research, we further discuss the details of phonetic and surface 

phonological representations. 

At the level of phonetic representation, two components are factored out from the f0 curve [13], a 

macroprosodic component and a microprosodic component. The first corresponds to a continuous 

smooth intonation curve, tightly associated with the prosodic meaning, while the second answers 

for the deviations from the smooth curve caused by the nature of the current segment. The 

macroprosodic component is further modelled via the application of the MOMEL algorithm [14]. 

This modelling is grounded on the definition of target points in time ~ frequency space: these target 

points correspond to the inflections in f0 curve where the slope is null (i.e. the first derivative equals 

zero). To obtain a smooth curve, the pitch targets are linked by a quadratic spline function. The 

level of phonetic representation is primarily acoustically oriented. At the same time, the tonal 

targets could be viewed as the sites where the speaker voluntary changes the direction of the 

fundamental frequency curve to achieve his/her communicational goals. The MOMEL algorithm is 

currently implemented under the Praat software [15]. 

At the upper, surface phonological level, the f0 targets receive a symbolic coding in terms of the 

Intsint prosodic alphabet [10]. The INTSINT alphabet comprises 8 distinct symbols. In this 

annotation the target points are characterised either globally with respect to the speaker’s pitch 

range (via the long-term parameters of key and range; the corresponding labels are T(op), B(ottom) 

and M(edium)) or locally, by the reference to the preceding target (H(igher), L(ower), S(ame)). The 

H and L labels have the iterative variants D(ownstepped) and U(pstepped). The Insint coding of 

detected target points provides a symbolic representation of tonal phenomena, which underlines 

probabilistic modelling proposed in our study. 

3. Empirical study design 

3.1. Corpus and annotations 

Our study is based on a corpus of Russian spontaneous speech. This corpus was collected for the 

INTAS project 915 at the department of Phonetics, Saint-Petersburg State University. For the 

current study, the recordings of an informal spontaneous dialogue between two female speakers in 

their twenties were used and the productions of one of the speakers were analysed (17 minutes of 

speech including pauses). 



As we stipulated earlier, the phonological representation of the pitch phenomena used in our study 

is the one obtained via the application of MOMEL-INTSINT algorithm. At the same time, we 

integrated into our model a minimal hierarchical structure. MOMEL-INTSINT algorithm crucially 

relies on two speaker dependent parameters: key and range (span), which define together the 

speaker’s pitch range. Pitch range variations being rightly related to the message informational 

organisation, we choose to apply this annotation to the units corresponding to one speaker’s turn in 

the dialogue. At the same time, our study explores the issue of corpus and speech parsing in terms 

of prosodic words, which correspond to the lower level in our prosodic annotation. 

Next, the relationship of prosodic words to lexical words needs be clarified. In fact, Nespor and 

Vogel [1] distinguish two levels of prosodic phrasing, the level of prosodic words and that of clitic 

groups: if the former are homologous to lexical words, the latter are formed by a content word and 

all its clitics. However, other constituencies either include only one unit or propose a recursive 

structure. Simultaneously, studying the role of tonal cues to segmentation, we should take into 

account the distribution of prosodically meaningful tonal events, namely, pitch accent distribution. 

A set of units, associated with a pitch prominence have been proposed within intonational 

phonology: accentual units, tone association domains, tone units of the British school, feet and 

prosodic words. But for most of these units, their relevance for the prosodic analysis of Russian was 

not proved by experimental studies. Hence, we decided to focus our study on prosodic words: 

Russian tradition of prosodic studies relies on prosodic words in the description of rhythmical 

structure of speech. Note as well that speech production studies [16] argue that at the stage of 

preliminary processing, the unit of phonological encoding is the prosodic word. 

The corpus was manually annotated as to the distribution 

of prosodic word boundaries and further each prosodic 

word received its annotation according to whether the 

word bears or not a pitch prominence. The corpus 

comprises 825 prosodic words. 

The corpus annotation procedure allowed us to obtain a 

minimal hierarchical structure, which comprises two 

levels: the level of speaker’s turns in conversation and the 

level of prosodic words. Next, we extracted tonal patterns, 

which are associated with each prosodic word. The 

annotation has been done in Praat and further transformed 

into XML format (cf. fig. 1). This hierarchical symbolic 

representation is further used as an input for the 

probabilistic grammar building module to infer the 

regularities about Intsint labels phonotactics. Next section 

presents a mathematical apparatus used in our study. 

 

 
 

Fig. 1: Example of XML corpus 

annotation 

 

3.2. Mathematical apparatus 

One of the central assumptions of the present study postulates that there are the regularities in the 

Intsint tonal patterns and consequently the dependency relations between the labels. Our modelling 

relies on the apparatus of probabilistic grammars. Two mathematical concepts are of interest: the 

concept of conditional probability and that of entropy. 

Consider the general case when we dispose of N categories ci to annotate a speech phenomenon. We 

assume as well to dispose of a training speech corpora, from which the distributions of tonal 

categories as well as their interdependencies are studied. Our task is then to estimate the probability 

of any produced sequence, say for example the time-ordered sequence (c1, c2, c3, c4) which 

corresponds to the f0 curve annotated in terms of INTSINT tonal categories as (U, S, T, D). The 

probability of this sequence is calculated with the application of the concept of conditional 

probabilities: 

<block> 
 <P> 

    <U />  

    <H />  
    <B />  

   </P> 

 <N> 
    <S />  

    <S />  

   </N> 
  <N> 

    <H />  

   </N> 

  </block> 

 



P (c1, c2, c3, c4) = π1 * π 2 * π 3 * π 4, 

where π1 = P(c1), π 2 = P(c2| c1), π 3 = P(c3| c1, c2) and π 4 = P(c4| c1, c2, c3). Herein the quantity π 3 = 

P(c3| c1, c2) stands for the conditional probability of the category c3 given the preceding sequence of 

tonal labels (c1, c2). 

In our study a Patterns model [17] is tested. The Patterns model is a new method belonging to the 

family of probabilistic finite state automaton approaches like n-gram models, for example (see [18] 

for a presentation of Hidden Markov Models). The Patterns model is characterized by an optimal 

extraction of the information content contained in the training corpora. Contrary to the n-gram 

model, the left context is not limited to a fixed number of symbols but rather takes into account the 

regularities observed in the corpus: if a sequence of tonal labels frequently occurs in the training 

database, the model calculates and memorises conditional probabilities for all the categories given 

the pattern. Three Patterns models were built: 

• Flat model, for which no hierarchical structure is specified; 

• Hierarchical model with two levels distinguished; 

• Hierarchy & Prominence model, which integrates both the hierarchical structure and the 

distinction between prominence bearing and non-prominent prosodic words. 

To evaluate the performance of the model, we resort to the measure of entropy, which is the 

measure of the informational organisation of the system. For a tonal unit the entropy allows us to 

measure the informational charge of this unit and consequently to answer the question of how 

informative this unit is. Simultaneously, for a given distribution it quantifies the difference between 

this distribution and an equiprobable distribution of the categories. The entropy of the system varies 

between 0 and lnN (where N is the number of categories of the encoding scheme): an entropy of 0 

characterises a completely deterministic system, while an entropy of lnN is found for the 

equiprobable distribution. We will introduce the concept of normalised entropy to bring the entropy 

values to the interval between 0 and 1. Subsequently, to evaluate the performance of the patterns 

model we calculate the entropy of the probability distribution with and without the language model. 

When the probabilistic models of the label sequences were built we sought to test them in prediction 

by applying the Viterbi algorithm: given the sequence of tonal labels and the underlying 

probabilistic grammar, we look for the optimal distribution of the prosodic words’ boundaries. The 

performance of the prediction heuristics is quantified and evaluated with the measures of recall, 

precision and F-measure, traditionally used in information retrieval studies [18]. 

4. Results 

4.1. Model building stage 

The table 1 presents the values of entropy and normalised entropy for three experimental conditions 

(Flat, Hierarchical and Hierarchy&Prominence models). WhithoutM values stand for the measures of 

information organisation of the frequency distribution of tonal labels, when no Patterns model is 

specified: we evaluate so the information weight of the frequency distribution alone. The values of 

normalised data are close to 1, which points out at the quasi-equiprobable distribution. The smallest 

value of normalised entropy for the WithoutM situation is observed for the Hierarachical Model, which 

probably indicates that the frequency distribution of the tonal labels bears more information load. 

Our data show that WithoutM and WithM entropy values differ for three experimental conditions: 

to take into account one of the probabilistic models of the frequency distributions for the Intsint 

tonal labels reduces considerably the normalised entropy of the model. Moreover, a conditioning 

effect is more marked if a rudimentary hierarchical model is taken into account. 

These data are particularly interesting in the context of the debate as to the relevance and 

meaningfulness of two prosodic annotation systems, ToBI, a standard in intonational phonology 



framework [8], and INTSINT. The authors of ToBI criticize the INTSINT notation for just fixing the 

alternations of rises and falls without establishing any regularity for anchoring tune to text. In fact, as we 

pointed out earlier, the INTSINT annotation should be coupled with IF functional annotation in order to 

analyse a part of pitch contour as a contrastive pitch event. At the same time, our results point out that 

there do are the regularities in the phonotactics of INTSINT pitch labels, which combine to produce 

prominence landing pitch movements. Moreover, in our study we integrated only a part of IF annotation 

(namely, the distinction between prominent and non-prominent units). We could expect that the values 

of normalised entropy will be smaller if a more precise functional annotation be incorporated in our 

probabilistic grammar. This work should nevertheless be grounded on a larger speech corpus. 

Table 1. Entropy and normalised entropy for three probabilistic models built 

Entropy Normalised Entropy Model 

WithoutM WithM WithoutM WithM 

Flat model 2.259 1.796 0.942 0.749 

Hierarchical model 2.064 1.494 0.897 0.649 

Hierarchy&Prominence model 2.696 1.638 0.915 0.556 

4.1. Testing models in prediction 

On the next step, we evaluated the performance of two probabilistic models, Hierarchical model and 

Hierarchy&Prominence model, in prediction of the distribution of prosodic words boundaries. As we 

specified early, the prediction heuristics uses Viterbi algorithm and so, tests different solutions with a 

boundary inserted after every Intsint symbol. The algorithm looks for the optimal distribution of 

prosodic word boundaries within the speaker’s turn in conversation, i.e. within the unit of higher level 

in the hierarchical structure. The confusion matrix and the corresponding evaluation statistics are 

presented in tables 2-3. 

Table 2. Confusion tables for Hierarchical and Hierarchy & Prominence models 

Hierarchical Model 

Prediction  

no boundary boundary 

no boundary 2003 190 

boundary 329 497 

Hierarchy & Prominence model 

Prediction  

no boundary boundary 

no boundary 2003 194 

boundary 398 428 

Table 3. Evaluation metrics 

 Hierarchical 

Model 

Hierarchy&Prominence 

Model 

Precision 0.72 0.688 

Recall 0.6 0.518 

F-measure 0.655 0.591 

 

The recall quantifies the accuracy of the model, i.e. the proportion of correctly predicted cases over 

the data: the overall accuracy of the algorithm is 0.6 in case of Hierarchical model and 0.52 for 

Hierarchy&Prominence model. On the other hand, the precision measures the proportion of 

correctly predicted locations of prosodic word boundaries over all the boundaries, which were 

predicted. The precision values are greater: it means that when a boundary is inserted, in 70% of 

cases it is inserted at the right location. For the optimal performance of the model, the couple 

<recall, precision > should show maximal values: this is the f-measure statistics which take into 

account simultaneously the values of precision and recall. In our study, Hierarchical model benefits 

from an f-measure of 65.5% and overrules the Hierarchy&Prominence model (59.1%). We can 



conclude that there is plenty of room for the improvement, though it was an interesting goal to test 

the probabilistic grammar techniques in speech segmentation task and the overall quality of 

prediction is comparatively good. 

5. Discussion and conclusions 

Methodologically oriented, the present work sketches an approach for prosodic information 

retrieval and speech segmentation, based on both symbolic and probabilistic information. 

The goal of our study was three-fold: 

• to test whether there are the regularities in Intsint labels sequences associated with prosodic words; 

• to model how the probabilities over the tonal space could be integrated into speech segmentation 

task, performed by both human listeners and automatic corpus segmentation heuristics; 

• to test an impact of a rudimentary hierarchical structure. 

Our data confirm that there are the probabilistic regularities in the way how the Intsint labels are 

combined. We hypothesise that this information is explored by listeners: in fact, psycholinguistic 

studies have underscore the role of frequency and probabilities information at the early stages of 

speech signal processing. 

The proposed algorithm was tested in prediction of prosodic words boundaries. The model achieves 

60% of correct prediction and benefits from the f-measure of 65.5%: the overall quality of 

prediction is so comparatively good. Note that our model was trained on a very limited speech 

corpus: we expect that to dispose of more annotated data would help refine the probabilistic model 

and augment the quality of prediction heuristics. 

We constated as well that to implement a hierarchical model within a probabilistic grammar 

contributes to the information organisation within the tonal space. Note that the model applied in 

our study does not reflect a more developed prosodic constituency. A more fine-grained annotation 

of prosodic functions could be also implemented if more data are available. At the same time, the 

findings of our present study encourage us to pursue the application of probabilistic methods in the 

linguistic research, both for speech annotation task and in treatment of more theoretically oriented 

problematic of speech processing. 
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