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. They are concerned with nonlocal Eikonal equations arising in the study of the dynamics of dislocation lines in crystals. These equations are nonlocal but also non monotone. We use a notion of weak solution to provide solutions for all time. Then, we discuss the link between these weak solutions and the classical viscosity solutions, and state some uniqueness results in particular cases. A counter-example to uniqueness is given.

Introduction

It is a great honor to contribute to this proceedings of the Conference for the 25th Anniversary of Viscosity Solution and the Celebration of the 60th birthday of Professor Hitoshi Ishii. In this proceedings, we describe recent results [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF][START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] obtained by the author in collaboration with G. Barles, P. Cardaliaguet and R. Monneau for first-order nonlocal Hamilton-Jacobi modelling the dynamics of dislocations.

Dislocations are defects in crystals of typical length 10 -6 m and the dynamics of dislocations is the main microscopic explanation of the macroscopic behaviour of metallic crystals. For details about the physics of dislocations, see for instance Nabarro [START_REF] Nabarro | Theory of crystal dislocations[END_REF] or Hirth and Lothe [START_REF] Hirth | Theory of dislocations[END_REF]. We are interested in a particular model introduced in Rodney, Le Bouar and Finel [START_REF] Rodney | Phase field methods and dislocations[END_REF]; the dislocation line evolves in a plane called slip plane, with a normal velocity proportional to the Peach-Koehler force acting on this line. This Peach-Koehler force have two contributions. The first one is the self-force created by the elastic field generated by the dislocation line itself (i.e. this self-force is a nonlocal function of the shape of the dislocation line). The second one is due to exterior forces (like an exterior stress applied on the material for instance).

More precisely, we study the evolution of a dislocation line Γ t which is, at any time t ≥ 0, the boundary of an open bounded set Ω t ⊂ R N (with N = 2 for the physical application). The normal velocity, at each point x ∈ Γ t = ∂Ω t of the dislocation line, is given by

V n = c 0 ⋆ 1 1 Ω t + c 1 (1) 
where 1 1 Ωt (x) is the indicator function of the set Ω t . The function c 0 (x, t) is a kernel which only depends on the physical properties of the crystal. In the special case of the study of dislocations, the kernel c 0 does not depend on time, but to keep a general setting we allow here a dependence on the time variable. Here ⋆ denotes the convolution in space, namely

(c 0 (•, t) ⋆ 1 1 Ωt )(x) = R N c 0 (x -y, t)1 1 Ωt (y)dy, (2) 
and this term appears to be the Peach-Koehler self-force created by the dislocation itself, while c 1 (x, t) is the exterior contribution to the velocity, created by everything exterior to the dislocation line. We refer to Alvarez, Hoch, Le Bouar and Monneau [START_REF] Alvarez | Dislocation dynamics: shorttime existence and uniqueness of the solution[END_REF] for a detailed presentation and a derivation of this model. Using the level-set approach to front propagation problems, we can derive a partial differential equation to represent the evolution of Γ t . The level-set approach was introduced by Osher and Sethian [START_REF] Osher | Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF], and then developped first by Chen, Giga and Goto [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF], and Evans and Spruck [START_REF] Evans | Motion of level sets by mean curvature[END_REF]. This approach produced a lot of applications and now there is a huge literature; see the monograph of Giga [START_REF] Giga | Surface evolution equations[END_REF] for details.

The level-set approach consists in replacing the evolution of the set Γ t by the evolution of the zero level-set of an auxiliary function u. More precisely, given a set Γ 0 (the dislocation line at time t = 0) and a bounded uniformly continuous function u 0 : R N → R such that

{u 0 = 0} = Γ 0 and {u 0 > 0} = Ω 0 (3) 
(u 0 represents the initial dislocation line), we are looking for a function u :

R N ×[0, T ] → R which satisfies {u(•, t) = 0} = Γ t and {u(•, t) > 0} = Ω t for all t ≥ 0. (4) 
The function u has to satisfies the level-set equation (see [START_REF] Giga | Surface evolution equations[END_REF]) which reads here

∂u ∂t = (c 0 (•, t) ⋆ 1 1 {u(•,t)≥0} (x) + c 1 (x, t))|Du| in R N × (0, T ) u(•, 0) = u 0 in R N , (5) 
where ∂u ∂t , Du and | • | denote respectively the time and the spatial derivative of u, and the Euclidean norm. Note that (2) now reads

c 0 (•, t) ⋆ 1 1 {u(•,t)≥0} (x) = R N c 0 (x -y, t)1 1 {u(•,t)≥0} (y)dy. ( 6 
)
Note that ( 5) is not really a level-set equation because it is not invariant by increasing changes of functions. In order to have rigorously a level-set equation, the nonlocal term {u(•, t) ≥ 0} should be replaced by {u(•, t) ≥ u(x, t)} (see Slepčev [START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions[END_REF]). But here, ( 5) is the equation we are interested in.

The study of Equation ( 5) raises three main difficulties: the first one is the presence of the nonlocal term [START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF].

The second difficulty is the weak regularity in time of the equation. Indeed, as soon as {u(•, t) = 0} develops an interior (fattening phenomenon), the map t → c 0 (•, t) ⋆ 1 1 {u(•,t)≥0} (x) is no longer continuous and we have to deal with [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] which is an equation with measurable-in-time coefficients. The study of such equations was initiated by Ishii [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF] (see the Appendix).

The third difficulty, which is more involved, is a lack of monotonicity for [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]. In many cases, proofs of existence and uniqueness for such geometrical equations rely on the preservation of inclusion property which can be stated as follows. Consider a front propagation problem (see ( 4)) with a given normal velocity. Let Γ 0 and Γ0 be two different initial fronts evolving independently. Then,

Ω 0 ⊂ int( Ω0 ) =⇒ Ω t ⊂ int( Ωt ) for all time t ≥ 0. ( 7 
)
Such a property is the key point to use the classical viscosity solutions' theory. For instance, it is satisfied for local evolution problems as propagation by constant normal velocities, mean curvature flow (see [START_REF] Giga | Surface evolution equations[END_REF]) or for some nonlocal problems as in Cardaliaguet [START_REF] Cardaliaguet | On front propagation problems with nonlocal terms[END_REF][START_REF] Cardaliaguet | Front propagation problems with nonlocal terms[END_REF], Dalio, Kim and Slepčev [START_REF] Da Lio | Nonlocal front propagation problems in bounded domains with Neumann-type boundary conditions and applications[END_REF], Srour [START_REF] Srour | Nonlocal second-order Hamilton-Jacobi equations arising in tomographic reconstruction[END_REF], etc. But, for dislocation dynamics, the kernel c 0 has a zero mean which implies that it changes sign. Therefore, the preservation of inclusion property is not true in general. It follows that we cannot expect a principle of comparison (that is: the subsolutions of (5) are below the supersolutions).

For geometrical evolutions without preservation of inclusion, few results are known, see however Giga, Goto and Ishii [START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF], Soravia and Souganidis [START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF] and Alibaud [START_REF] Alibaud | Existence, uniqueness and regularity for nonlinear degenerate parabolic equations with nonlocal terms[END_REF]. In the case of (5), under suitable assumptions on c 0 , c 1 (see (H1)-(H2)) and on the initial data, the existence and the uniqueness of the solution were proved first for short time in [START_REF] Alvarez | Résolution en temps court d'une équation de Hamilton-Jacobi non locale décrivant la dynamique d'une dislocation[END_REF][START_REF] Alvarez | Dislocation dynamics: shorttime existence and uniqueness of the solution[END_REF]. In [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF][START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF][START_REF] Cardaliaguet | Regularity of the eikonal equation with Neumann boundary conditions in the plane: application to fronts with nonlocal terms[END_REF], such results were proved for all time under the additional assumption that V n ≥ 0, which is for instance always satisfied for c 1 satisfying c 1 (x, t) ≥ |c 0 (•, t)| L 1 (R N ) . In the general case, a notion of weak solutions was introduced in [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF].

The aim of this paper is to describe global-in-time results obtained in [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF][START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF][START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF]. In Section 2, we define the weak solutions and prove an existence theorem. In Section 3, we state some uniqueness results. Section 4 is devoted to the study of a counter-example to uniqueness. Finally, we recall the definition of L 1 -viscosity solutions and a new stability result proved by Barles [6] in the Appendix.

Definition and existence of weak solutions

We introduce the following notion of weak solutions for (5): Definition 2.1 (Classical and weak solutions) [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] For any T > 0, we say that a Lipschitz continuous function u : R N × [0, T ] → R is a weak solution of equation ( 5) on the time interval [0, T ), if there is some measurable map χ : R N × (0, T ) → [0, 1] such that u is a L 1 -viscosity solution of

∂u ∂t = c(x, t)|Du| in R N × (0, T ) u(•, 0) = u 0 in R N , (8) 
where c(x, t) = c 0 (•, t) ⋆ χ(•, t)(x) + c 1 (x, t) (9) 
and

1 1 {u(•,t)>0} (x) ≤ χ(x, t) ≤ 1 1 {u(•,t)≥0} (x) , (10) 
for almost all (x, t) ∈ R N × [0, T ]. We say that u is a classical solution of equation ( 5) if u is a weak solution to (8) and if

1 1 {u(•,t)>0} (x) = 1 1 {u(•,t)≥0} (x) (11) 
for almost all

(x, t) ∈ R N × [0, T ].
We recall that L 1 -viscosity solutions were introduced by Ishii [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF], see the appendix for details. Note that, for classical solutions, we have

χ(x, t) = 1 1 {u(•,t)>0} (x) = 1 1 {u(•,t)≥0} (x) for almost all (x, t) ∈ R N × [0, T ].
To state our first existence result, we introduce the following assumptions

(H0) u 0 : R N → [-1, 1] is Lipschitz continuous and there exists R 0 > 0 such that u 0 (x) ≡ -1 for |x| ≥ R 0 , (H1) c 0 ∈ C([0, T ); L 1 R N ), D x c 0 ∈ L ∞ ([0, T ]; L 1 R N ), c 1 ∈ C(R N × [0, T ]
) and there exists constants M 1 , L 1 such that, for any x, y ∈ R N and t ∈ [0, T ]

|c 1 (x, t)| ≤ M 1 and |c 1 (x, t) -c 1 (y, t)| ≤ L 1 |x -y|. (12) 
Let us make some comments about these assumptions. The role of u 0 is to represent the initial dislocation Γ 0 which lies in a bounded region (see ( 3)). In general, we choose u 0 as a truncation of the signed distance to Γ 0 (positive in Ω 0 ). Such a function u 0 is Lispchitz continuous and satisfies (H0). Note that we do not impose any sign condition on c 0 in (H1). In the sequel, we denote by M 0 , L 0 some constants such that, for any (or almost every) t ∈ [0, T ), we have

|c 0 (•, t)| L 1 (R N ) ≤ M 0 and |D x c 0 (•, t)| L 1 (R N ) ≤ L 0 . (13) 
Our first main result is the following.

Theorem 2.2 (Existence of weak solutions) [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] Under assumptions (H0)-(H1), for any T > 0 and for any initial data u 0 , there exists a weak solution of equation ( 5) on the time interval [0, T ].

We give only the main ideas of the proof of Theorem 2.2. The whole proof can be found in [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] and an alternative proof is presented in [8].

Sketch of proof of Theorem 2.2. 1. Introduction of a perturbated equation. We consider the equation

∂u ε ∂t = c ε [u ε ](x, t)|Du ε | in R N × (0, T ) , (14) 
where the unknown is

u ε , c ε [u] = (c 0 (•, t) ⋆ ψ ε (u(•, t))(x) + c 1 (x, t)) for any u : R N × [0, T ] → R,
and

ψ ε : R → R is a sequence of continuous functions such that ψ ε (r) ≡ 0 for r ≤ -ε, ψ ε (r) ≡ 1 for t ≥ 0 and ψ ε is an affine function on [-ε, 0].
2. Definition of a map T . Let

X = {u ∈ C(R N × [0, T ]) : u ≡ -1 in R N \B(0, R 0 + MT ), |Du|, | ∂u ∂t |/M ≤ |Du 0 | L ∞ (R N ) e LT },
where M = M 0 +M 1 and L = L 0 +L 1 (see [START_REF] Bourgoing | Vicosity solutions of fully nonlinear second order parabolic equations with L 1 -time dependence and Neumann boundary conditions. existence and applications to the level-set approach[END_REF] and ( 13) for the definition of M 0 , M 1 , L 0 , L 1 ). By Ascoli's Theorem, X is a compact and convex subset of (

C(R N × [0, T ]), | • | ∞ ). We define the map T : X → X by : if u ∈ C(R N × [0, T ]), then u ε := T (u) is the unique solution of (14) with c ε [u] (instead of c ε [u ε ]
). The existence and uniqueness of u ε come from classical results for Eikonal equations with finite speed propagation property (see [7, Theorem 2.1], Crandall & Lions [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF], [START_REF] Ley | Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts[END_REF] and [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF]) since, under assumption (H1) on c 1 and c 0 , c ε [u] satisfies (H1) with fixed constants M and L.

3. Application of Schauder's fixed point theorem to T . The map T is continuous since ψ ε is continuous, by using the classical stability result for viscosity solutions (see Barles [5]). Therefore, T has a fixed point u ε which is bounded in W 1,∞ (R N × [0, T ]) uniformly with respect to ε (since M and L are independent of ε).

4. Convergence of the fixed point when ε → 0. From Ascoli's Theorem, we extract a subsequence (u ε ′ ) ε ′ which converges locally uniformly to a function denoted by u. The functions

χ ε ′ := ψ ε ′ (u ε ′ ) satisfy 0 ≤ χ ε ′ ≤ 1. Therefore, we can extract a subsequence- still denoted (χ ε ′ )-which converges weakly- * in L ∞ loc (R N × [0, T ]) to some function χ : R N × (0, T ) → [0, 1]. Furthermore, setting c ε ′ = c 0 ⋆ χ ε ′ + c 1 , we have, for all (x, t) ∈ R N × [0, T ], t 0 c ε ′ (x, s)ds = t 0 R N c 0 (x -y, s)χ ε ′ (y, s)dyds + t 0 c 1 (x, s)ds → t 0 c(x, s)ds, where c(x, t) = c 0 (•, t) ⋆ χ(•, t)(x) + c 1 (x, t).
The above convergence is pointwise but, noticing that c ε ′ is bounded Lipschitz continuous in space uniformly in time and measurable in time, we can apply the stability Theorem 4.3 of Barles [START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF] for weak convergence in time.

We conclude that u is L 1 -viscosity solution to (8) with c satisfying ( 9)- [START_REF] Barles | Front propagation and phase field theory[END_REF].

2
3 Classical solutions and uniqueness results

Our second main result gives a sufficient condition for a weak solution to be a classical one.

Theorem 3.1 (Links between weak solutions and classical continuous viscosity solutions) [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] Assume (H0)-(H1) and suppose that there is some δ ≥ 0 such that, for all measurable map χ :

R N × (0, T ) → [0, 1], f or all (x, t) ∈ R N × [0, T ], c 0 (•, t) ⋆ χ(•, t)(x) + c 1 (x, t) ≥ δ, (15) 
and that the initial data u 0 satisfies (in the viscosity sense)

-|u 0 | -|Du 0 | ≤ -η 0 in R N (16) 
for some η 0 > 0. Then any weak solution u of (5) in the sense of Definition 2.1, is a classical continuous viscosity solution of [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF].

Assumption [START_REF] Cardaliaguet | Front propagation problems with nonlocal terms[END_REF] ensures that the velocity V n in (1) is nonnegative, i.e. the dislocation line is expanding. Of course, we can state similar results in the case of negative velocity for shrinking dislocation lines. Assumption [START_REF] Cardaliaguet | Regularity of the eikonal equation with Neumann boundary conditions in the plane: application to fronts with nonlocal terms[END_REF] comes from [START_REF] Ley | Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts[END_REF]. It means that u 0 is a viscosity subsolution of -|v(x)| -|Dv(x)| + η 0 ≤ 0. It can be seen as a nonsmooth generalization of the following situation: if u 0 is C 1 , (16) implies that the gradient of u 0 does not vanish on the set {u 0 = 0} and therefore this latter set is a C 1 hypersurface.

Sketch of proof of Theorem 3.1. At first, if u is a weak solution and c is associated with u, then, from [START_REF] Cardaliaguet | Front propagation problems with nonlocal terms[END_REF], for any x ∈ R N and for almost all t ∈ [0, T ], we have c(x, t) ≥ δ ≥ 0 and therefore the Hamiltonian c(x, t)|Du| of ( 5) is convex 1-homogeneous in the gradient variable. Then, the conclusion is a consequence of a preservation of the lower-bound gradient estimate [START_REF] Cardaliaguet | Regularity of the eikonal equation with Neumann boundary conditions in the plane: application to fronts with nonlocal terms[END_REF] proved in [START_REF] Ley | Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts[END_REF]Theorem 4.2] for equations with convex Hamiltonians H (such that H(x, t, λp) = λH(x, t, p) for all λ ≥ 0): there exists η(T ) > 0 such that

-|u(•, t)| -|Du(•, t)| ≤ -η(T ) on R N × (0, T ). ( 17 
)
It follows that for every t ∈ (0, T ), the 0-level-set of u(•, t) has a zero Lebesgue measure and therefore [START_REF] Bourgoing | Vicosity solutions of fully nonlinear second order parabolic equations with L 1 -time dependence and Neumann boundary conditions[END_REF] holds. Moreover t → 1 1 {u(•,t)≥0} is also continuous in L 1 , and then c is continuous. 2

Let us turn to uniqueness results. If the evolving set has positive velocity or if the velocity is nonnegative and the following additional condition is fulfilled, then we can prove uniqueness results.

(H2) c 1 and c 0 satisfy (H1) and there exists constants m 0 , N 1 and a positive function

N 0 ∈ L 1 (R N ) such that, for any x, h ∈ R N , t ∈ [0, T ), we have |c 0 (x, t)| ≤ m 0 , c 1 (x + h, t) + c 1 (x -h, t) -2c 1 (x, t) ≥ -N 1 |h| 2 , c 0 (x + h, t) + c 0 (x -h, t) -2c 0 (x, t) ≥ -N 0 (x)|h| 2 .
Second and third conditions means that c 0 and c 1 are semiconvex in space. 15) and ( 16) hold. The solution of ( 5) is unique if (i) either δ = 0 and u 0 is semiconvex, i.e. satisfies for some constant C > 0:

u 0 (x + h) + u 0 (x -h) -2u 0 (x) ≥ -C|h| 2 , ∀x, h ∈ R N ;
(ii) or δ > 0.

Even if it has no physical meaning in the theory of dislocations, an important particular case of application of Theorem 3.1 is the uniqueness for (5) when c 0 ≥ 0 and c 1 ≡ 0 (this implies [START_REF] Cardaliaguet | Regularity of the eikonal equation with Neumann boundary conditions in the plane: application to fronts with nonlocal terms[END_REF]). In this case, the preservation of inclusion property [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] holds and some classical results apply, see Cardaliaguet [START_REF] Cardaliaguet | On front propagation problems with nonlocal terms[END_REF] and [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF]Theorem 1.5]. But let us point out that a nonnegative kernel c 0 does not ensure uniqueness in general, see the counterexample in Section 4.

Point (i) of the theorem is the main result of [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF][START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF]. Let us compare the two articles. In [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF], it is proved that we have uniqueness for (5) if we start with an initial dislocation Γ 0 = ∂Ω 0 such that Ω 0 has the interior ball property of radius r > 0 that is: for any x ∈ Ω 0 , there exists p ∈ R N \{0} such that B(xr p |p| , r) ⊂ Ω 0 . In [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF], uniqueness is proved under the asumption that u 0 is semiconvex and satisfies the lower-bound gradient [START_REF] Cardaliaguet | Regularity of the eikonal equation with Neumann boundary conditions in the plane: application to fronts with nonlocal terms[END_REF]. This latter set of assumptions is equivalent to the interior ball property for {u 0 ≥ 0} (see [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF]Lemma A.1]).

Sketch of proof of Theorem 3.2. 1. Part (i) Definition of a map F . We follow the ideas of [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF] and refer to this paper for details. The proof relies on the Banach contraction fixed point theorem. Let

Y = {χ ∈ C([0, T ], L 1 (R N )) : 0 ≤ χ ≤ 1, |χ(•, t)| L 1 (R N ) ≤ L N (B(0, R 0 + MT ))},
where M = M 0 + M 1 (see ( 12) and ( 13) for the definition of M 0 , M 1 ), L N is the Lebesgue measure in R N and B(0, R) is the open ball of center 0 and radius R > 0. For τ > 0 fixed, the set Y is endowed with the norm

|χ| Y,τ = sup t∈[0,τ ] |χ(•, t)| L 1 (R N )
Define F : Y → Y by: for all χ ∈ Y, F (χ) = 1 1 u(•,t)≥0 where u is the unique continuous viscosity solution of

∂u ∂t = c[χ](x, t)|Du| in R N × (0, T ) u(•, 0) = u 0 in R N , (18) 
where

c[χ] = c 0 (•, t) ⋆ χ(•, t)(x) + c 1 (x, t).
We have to check that F is well-defined.

Part (i)

The map F is well defined. From (H1)-(H2), for all χ ∈ Y, the map

(x, t) ∈ R N × [0, T ] → c[χ](x, t) is bounded continuous in R N × [0, T ],
Lispchitz continuous and semiconvex in x (uniformly with respect to t) with some constants which depends only on the given data M 0 , M 1 , L 0 , L 1 , R 0 , η(T ), C. It follows that for all Lipschitz continuous u 0 , (18) has a unique Lipschitz continuous viscosity solution u. Next, if u 0 satisfies (H0), then, by the finite speed of propagation property, for all t ≥ 0, {u(•, t) ≥ 0} ⊂ B(0, R 0 + Mt). Let us give a geometrical interpretation of this latter property: by [START_REF] Cardaliaguet | Front propagation problems with nonlocal terms[END_REF], Equation ( 18) is monotone and the preservation inclusion principle [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] holds. Noticing that M is an upper bound for the speed of propagation of the 0-level-set of u and that B(0, R 0 + Mt) is the propagation of the ball B(0, R 0 ) with normal velocity M, by preservation of inclusion, the property follows.

Part (i)

The map F is continuous. It comes from the continuity of the map t ∈ [0, T ] → R N 1 1 u(•,t)≥0 (x)dx. The proof of this result is an immediate consequence of the preservation of the lower-bound gradient estimate ( 16)-( 17) (see the proof of Theorem 3.1).

Part (i) Contraction property for F (beginning of the calculation).

Let χ 1 , χ 2 ∈ Y and u 1 , u 2 be the solution of ( 18) with c[χ 1 ] and c[χ 2 ] respectively. Set

ρ := sup t∈[0,τ ] |(u 1 -u 2 )(•, t)| L ∞ (R N ) . ( 19 
) (note that ρ → 0 as τ → 0 since u 1 (•, 0) = u 2 (•, 0) = u 0 ). For all t ∈ [0, T ], a straightfor- ward computation leads to |(F (χ 1 ) -F (χ 1 ))(•, t)| L 1 (R N ) = |1 1 u 1 (•,t)≥0 -1 1 u 2 (•,t)≥0 | L 1 (R N ) ≤ L N ({u 1 (•, t) ≥ 0, u 2 (•, t) < 0}) + L N ({u 2 (•, t) ≥ 0, u 1 (•, t) < 0}) ≤ L N ({-ρ ≤ u 2 (•, t) < 0}) + L N ({-ρ ≤ u 1 (•, t) < 0}). ( 20 
)
5. Part (i) Contraction property for F (L 1 -estimates). The estimate of the last two terms in [START_REF] Evans | Motion of level sets by mean curvature[END_REF] are based on some fundamental L 1 -estimates obtained in [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF]: let ϕ ε be a smooth

approximation of 1 1 [-ρ,0) (with 1 1 [-ρ,0) ≤ ϕ ε ≤ 1 1 [-ρ-ε,ε]
) and 0 < ρ < η(T )/2 (where η(T ) is given by ( 17)). Then, there exists K > 0 such that

R N ϕ ε (u 2 (x, t))dx ≤ e Kt R N ϕ ε (u 0 (x)dx (21)
which implies by sending ε → 0,

L N ({-ρ ≤ u 2 (•, t) < 0}) ≤ e Kt L N ({-ρ ≤ u 0 < 0})
(we have the same formula for u 1 ). We provide a formal calculation which emphasizes the main ideas (see [9, Proposition 3.1] for a rigorous computation). We have

d dt R N ϕ ε (u 2 (x, t))dx = R N ϕ ′ ε (u 2 (x, t)) ∂u 2 ∂t (x, t)dx
for a.e. t ∈ [0, T ]. Using Equation ( 18), it follows

R N ϕ ′ ε (u 2 ) ∂u 2 ∂t dx = R N ϕ ′ ε (u 2 )c[χ 2 ]|Du 2 |dx = R N ϕ ′ ε (u 2 )Du 2 , c[χ 2 ]Du 2 |Du 2 | dx = R N Dϕ ε (u 2 ), c[χ 2 ]Du 2 |Du 2 | dx
since, from 0 < ρ < η(T )/2, and ( 17), we have |Du 2 | > η(T )/2, for almost every (x, t) such that ϕ(u 2 (x, t)) = 0. By an integration by parts, we obtain

R N Dϕ ε (u 2 ), c[χ 2 ]Du 2 |Du 2 | dx = - R N ϕ ε (u 2 ) div(c[χ 2 ] Du 2 |Du 2 | )dx.
Since u 0 is semiconvex and (H1)-(H2) hold, by [25, Theorem 5.2], the solutions u 1 , u 2 of (18) are still semiconvex in space, i.e. there exists C such that

D 2 u 1 , D 2 u 2 ≥ -C Id for a.e. (x, t) ∈ R N × [0, T ].
Using this estimate and the lower-bound gradient estimate ( 17) again, we have, for almost every

(x, t) ∈ R N × [0, T ] such that ϕ(u 2 (x, t)) = 0, -div( Du 2 |Du 2 | ) = - 1 |Du 2 | trace Id - Du 2 ⊗ Du 2 |Du 2 | 2 D 2 u 2 ≤ 2C η(T ) .
It gives

-div(c[χ 2 ] Du 2 |Du 2 | ) = -Dc[χ 2 ], Du 2 |Du 2 | -c[χ 2 ] div( Du 2 |Du 2 | ) ≤ |Dc[χ 2 ]| L ∞ (R N ) + 2C|c[χ 2 ]| L ∞ (R N ) η(T ) := K since c[χ 2 ]
is nonnegative bounded Lipschitz continuous by [START_REF] Cardaliaguet | Front propagation problems with nonlocal terms[END_REF] and Step 1. Finally, we obtain, for a.e. t ∈ [0, T ],

d dt R N ϕ ε (u 2 (x, t))dx ≤ K R N ϕ ε (u 2 (x, t))dx
which yields (21) through a classical Gronwall's argument. By the same kind of arguments, we can estimate L N ({-ρ ≤ u 0 < 0}) to obtain

L N ({-ρ ≤ u 2 (•, t) < 0}) + L N ({-ρ ≤ u 1 (•, t) < 0}) ≤ 2C η 0 L N (B(0, R 0 +1))e Kt ρ. (22) 
6. Part (i) Contraction property for F (stability estimates with respect to variations of the velocity). Since u 1 and u 2 are the solutions of ( 18) with c[χ 1 ] and c[χ 2 ] respectively, we have the "continuous dependence" type result: for all t ∈ [0, T ],

|(u 1 -u 2 )(•, t)| L ∞ (R N ) ≤ |Du 0 | L ∞ (R N ) e Λt t 0 |(c[χ 1 ] -c[χ 2 ])(•, s)| L ∞ (R N ) ds, (23) 
where

Λ = max{|Dc[χ 1 ]| L ∞ (R N ) , |Dc[χ 2 ]| L ∞ (R N ) }.
7. Part (i) Contraction property for F (end of the proof ). From ( 19), ( 20), ( 22) and ( 23), we get

|F (χ 1 ) -F (χ 1 )| Y,τ ≤ 2C η 0 L N (B(0, R 0 +1))e Kt sup t∈[0,τ ] |(u 1 -u 2 )(•, t)| L ∞ (R N ) ≤ L sup t∈[0,τ ] t 0 |(c[χ 1 ] -c[χ 2 ])(•, s)| L ∞ (R N ) ds ≤ Lτ |χ 1 -χ 2 | Y,τ
for some constant L. Therefore, we have contraction for τ small enough. This implies the uniqueness of a classical solution to (5) on the time interval [0, τ ]. Noticing that all the constants depend only on the given data, we conclude by a step-by-step argument to obtain the uniqueness on the whole interval [0, T ].

Part (ii).

The additional difficulty comparing to the proof of (i) is the fact that u 0 is not supposed to be semiconvex anymore and then u(•, t) is not semiconvex. Nevertheless, we assume that δ > 0, i.e. the velocity is positive. Such a property implies the creation of the interior ball property of radius γt for {u(•, t) ≥ 0} for every t > 0 (see Cannarsa and Frankowska [START_REF] Cannarsa | Interior sphere property of attainable sets and time optimal control problems[END_REF] and [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF]Lemma 2.3]). Roughly speaking, we recover this way the semiconvexity property for u(•, t) (see the comment after the statement of Theorem 3.2).

Using arguments similar to those in the proof of Part (i) and the interior ball regularization, we prove the following Gronwall type inequality

|1 1 {u 1 (•,t)≥0} -1 1 {u 2 (•,t)≥0} | L 1 (R N ) ≤ C [per({u 1 (•, t) ≥ 0}) + per({u 2 (•, t) ≥ 0})] t 0 |1 1 {u 1 (•,s)≥0} -1 1 {u 2 (•,s)≥0} | L 1 (R N ) ds
where u i , i = 1, 2 are two weak solutions of (5), C is a constant depending on the constants of the problem and per({u i (•, t) ≥ 0}) is the H N -1 measure (the perimeter) of the set ∂{u i (•, t) ≥ 0}). In order to apply Gronwall's Lemma it is sufficient to know that the functions t → per({u i (•, t) ≥ 0}) belong to L 1 . This fact is proved by applying the coarea formula. Finally, it follows 1 1 {u 1 (•,t)≥0} = 1 1 {u 2 (•,t)≥0} for all t ∈ [0, T ] and therefore u 1 = u 2 since they are solution of the same equation. 2 4 A counter-example to uniqueness [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] The following example is inspired from [START_REF] Barles | Front propagation and phase field theory[END_REF].

Let us consider, in dimension N = 1, the following equation of type [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF],

   ∂U ∂t = (1 ⋆ 1 1 {U (•,t)≥0} (x) + c 1 (t))|DU| in R × (0, 2] U(•, 0) = u 0 in R , (24) 
where we set c 0 (x, t) := 1, c 1 (x, t) := c 1 (t) = 2(t -1)(2t) and u 0 (x) = 1 -|x|. Note that 1 ⋆ 1 1 A = L 1 (A) for any measurable set A ⊂ R.

Note that c 0 ≡ 1 does not satisfies exactly (H1) but this is not the point here: because of the finite speed of propagation property, it is possible to modify c 0 such that (H1) and the construction below holds.

We start by solving auxiliary problems for time in [0, 1] and [START_REF] Alibaud | Existence, uniqueness and regularity for nonlinear degenerate parabolic equations with nonlocal terms[END_REF][START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF] in order to produce a family of solutions for the original problem in [0, 2]. 1. Construction of a solution for 0 ≤ t ≤ 1. The function x 1 (t) = (t -1) 2 is the solution of the ordinary differential equation (ode in short) ẋ1 (t) = c 1 (t) + 2x 1 (t) for 0 ≤ t ≤ 1, and x(0) = 1,

(note that ẋ1 ≤ 0 in [0, 1]). Consider    ∂u ∂t = ẋ1 (t) ∂u ∂x in R × (0, 1], u(•, 0) = u 0 in R. (25) 
There exists a unique continuous viscosity solution u of [START_REF] Ley | Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts[END_REF]. Looking for u under the form u(x, t) = v(x, Γ(t)) with Γ(0) = 0, we obtain that v satisfies ∂v ∂t Γ(t) = ẋ1 (t) ∂v ∂x .

Choosing Γ(t) = -x 1 (t) + 1, we get that v is the solution of

   ∂v ∂t = - ∂v ∂x in R × (0, 1], v(•, 0) = u 0 in R.
By the Oleinik-Lax formula, v(x, t) = inf |x-y|≤t u 0 (y). Since u 0 is even, we have, for all

(x, t) ∈ R × [0, 1], u(x, t) = inf |x-y|≤Γ(t) u 0 (y) = u 0 (|x| + Γ(t)) = u 0 (|x| -x 1 (t) + 1). Therefore, for 0 ≤ t ≤ 1, {u(•, t) > 0} = (-x 1 (t), x 1 (t)) and {u(•, t) ≥ 0} = [-x 1 (t), x 1 (t)]. (26) 
We will see in Step 3 that u is a solution of ( 24) in [0, 1]. 

By comparison, we have 0 ≤ y 0 (t) ≤ y γ (t) ≤ y 1 (t) for 1 ≤ t ≤ 2, where y 0 , y 1 are the solutions of ( 27) obtained with γ(t) ≡ 0, 1. In particular, it follows that ẏγ ≥ 0 in [START_REF] Alibaud | Existence, uniqueness and regularity for nonlinear degenerate parabolic equations with nonlocal terms[END_REF][START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF]. Consider

   ∂u γ ∂t = ẏγ (t) ∂u γ ∂x in R × (1, 2], u γ (•, 1) = u(•, 1) in R,
where u is the solution of [START_REF] Ley | Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts[END_REF]. Again, this problem has a unique continuous viscosity solution u γ and setting Γ γ (t) = y γ (t) ≥ 0 for 1 ≤ t ≤ 2, we obtain that v γ defined by v γ (x, Γ γ (t)) = u γ (x, t) is the unique continuous viscosity solution of

   ∂v γ ∂t = ∂v γ ∂x in R × (0, Γ γ (2)], v γ (•, 0) = u(•, 1) in R.
Therefore, for all (x, t) ∈ R × [1, 2], we have

u γ (x, t) = sup |x-y|≤yγ(t) u(y, 1) = 0 if |x| ≤ y γ (t), u(|x| -y γ (t), 1) otherwise.
(Note that u(-x, t) = u(x, t) since u 0 is even and, since u(•, 1) ≤ 0, by the maximum principle, we have u γ ≤ 0 in R × [START_REF] Alibaud | Existence, uniqueness and regularity for nonlinear degenerate parabolic equations with nonlocal terms[END_REF][START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF].) It follows that, for all 1 ≤ t ≤ 2,

{u γ (•, t) > 0} = ∅ and {u γ (•, t) ≥ 0} = {u γ (•, t) = 0} = [-y γ (t), y γ (t)]. (28) 
3. There are several weak solutions of [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF]. Set, for 0 ≤ γ(t) ≤ 1,

c γ (t) = c 1 (t) + 2x 1 (t), U γ (x, t) = u(x, t) if (x, t) ∈ R × [0, 1], c γ (t) = c 1 (t) + 2γ(t)y γ (t), U γ (x, t) = u γ (x, t) if (x, t) ∈ R × [1, 2].
Then, from Steps 1 and 2, U γ is the unique continuous viscosity solution of 26) and (28), we have

   ∂U γ ∂t = c γ (t) ∂U γ ∂x in R × (0, 2], U γ (•, 0) = u 0 in R. Taking χ γ (•, t) = γ(t)1 1 [-yγ(t),yγ (t)] for 1 ≤ t ≤ 2, from ( 
1 1 {Uγ(•,t)>0} ≤ χ γ (•, t) ≤ 1 1 {Uγ(•,t)≥0} ,
(see Figure 1). It follows that all the U γ 's, for measurable 0 ≤ γ(t) ≤ 1, are weak solutions of (24) so we do not have uniqueness and the set of solutions is quite large.

x 1 (t) Appendix: L 1 -viscosity solutions and a stability result for weak convergence in time

U γ = 0 U γ < 0 U γ < 0 U γ < 0 U γ < 0 U γ > 0 U γ = 0 y γ (t) y 1 (t) 0 1 2 t x - 1 
1 cγ>0 cγ<0
We recall that the definition of L 1 -viscosity solutions was introduced in Ishii's paper [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF]. We refer also to Nunziante [START_REF] Nunziante | Uniqueness of viscosity solutions of fully nonlinear second order parabolic equations with discontinuous time-dependence[END_REF][START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF] and Bourgoing [START_REF] Bourgoing | Vicosity solutions of fully nonlinear second order parabolic equations with L 1 -time dependence and Neumann boundary conditions[END_REF][START_REF] Bourgoing | Vicosity solutions of fully nonlinear second order parabolic equations with L 1 -time dependence and Neumann boundary conditions. existence and applications to the level-set approach[END_REF] for a complete presentation of the theory.

Consider the equation

     ∂v ∂t = c(x, t)|Dv| in R N × (0, T ) v(•, 0) = u 0 in R N , (29) 
where the velocity c : R N × (0, T ) → R is defined for almost every t ∈ (0, T ). We also assume that c satisfies (H3) The function c is continuous with respect to x ∈ R N and measurable in t. For all x, y ∈ R N and almost all t ∈ [0, T ],

|c(x, t)| ≤ M and |c(x, t)c(y, t)| ≤ L|x -y|. has a local maximum (respectively minimum) at (x 0 , t 0 ) over R N × (0, T ) and such that (ii) for almost every t ∈ (0, T ) in some neighborhood of t 0 and for every (x, p) in some neighborhood of (x 0 , p 0 ) with p 0 = Dϕ(x 0 , t 0 ), we have c(x, t)|p|b(t) ≤ G(x, t, p) (respectively c(x, t)|p|b(t) ≥ G(x, t, p)) then ∂ϕ ∂t (x 0 , t 0 ) ≤ G(x 0 , t 0 , p 0 ) (respectively ∂ϕ ∂t (x 0 , t 0 ) ≥ G(x 0 , t 0 , p 0 )).

Finally we say that a locally bounded function v defined on R N × [0, T ] is a L 1 -viscosity solution of ( 29), if its upper-semicontinuous (respectively lower-semicontinuous) envelope is a L 1 -viscosity subsolution (respectively supersolution).

Theorem 4.2 (Existence and uniqueness in the L 1 sense) For any T > 0, under assumptions (H0) and (H3), there exists a unique L 1 -viscosity solution to [START_REF] Osher | Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF].

Finally, let us consider the solutions v ε to the following equation

   ∂v ε ∂t = cε (x, t)|Dv ε | in R N × (0, T ), v ε (•, 0) = u 0 in R N . (30) 
The following stability result is a particular case of a general stability result proved by Barles in [START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF].

Theorem 4.3 (L 1 -stability) [START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF] Under assumption (H0), let us assume that the velocity cε satisfies (H3) (with some constants M, L independent of ε). Let us consider the L 1 -viscosity solution v ε to [START_REF] Rodney | Phase field methods and dislocations[END_REF]. Assume that v ε converges locally uniformly to a function v and, for all x ∈ R N , t 0 cε (x, s)ds → t 0 c(x, s)ds locally unif ormly in (0, T ).

Then v is a L 1 -viscosity solution of (29).
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