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Interpolation of Sobolev spaces, Littlewood-Paley
inequalities and Riesz transforms on graphs

Nadine Badr* Emmanuel Russ '

Université de Paris-Sud Université Paul Cézanne

February 7, 2008

Abstract. Let ' be a graph endowed with a reversible Markov kernel p, and P the associated
operator, defined by Pf(z) = >_, p(x,y)f(y). Denote by V the discrete gradient. We give
necessary and/or sufficient conditions on I' in order to compare ||V f]|, and H(I — P)/2f Hp
uniformly in f for 1 < p < +o00. These conditions are different for p < 2 and p > 2.
The proofs rely on recent techniques developed to handle operators beyond the class of
Calderén-Zygmund operators. For our purpose, we also prove Littlewood-Paley inequalities
and interpolation results for Sobolev spaces in this context, which are of independent interest.
AMS numbers 2000: Primary: 60J10. Secondary: 42B20, 42B25.
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1 Introduction and results

It is well-known that, if n > 1, HVfHLp(Rn) and H(—A)l/QfHLp(Rn)
in f for all 1 < p < +oo. This fact means that the classical Sobolev space W1P(R") defined
by means of the gradient coincides with the Sobolev space defined through the Laplace
operator. This is interesting in particular because V is a local operator, while (—A)Y?2 is
not.

Generalizations of this result to geometric contexts can be given. On a Riemannian
manifold M, it was asked by Strichartz in [[[7] whether, if 1 < p < 400, there exists C), > 0
such that, for all function f € C§°(M),

are comparable uniformly

Co A A < Dldflll, < Gy [|AMf| (1.1)
where A stands for the Laplace-Beltrami operator on M and d for the exterior differential.
Under suitable assumptions on M, which can be formulated, for instance, in terms of the
volume growth of balls in M, uniform L? Poincaré inequalities on balls of M, estimates on
the heat semigroup (i.e. the semigroup generated by A) or the Ricci curvature, each of the
two inequalities contained in ([[.J]) holds for a range of p’s (which is, in general, different for
the two inequalities). The second inequality in ([T]) means that the Riesz transform dA~1/2
is LP-bounded. We refer to ([B, B, B, BZ|) and the references therein.

In the present paper, we consider a graph equipped with a discrete gradient and a dis-
crete Laplacian and investigate the corresponding counterpart of ([L1]). To that purpose, we
prove, among other things, an interpolation result for Sobolev spaces defined via the differ-
ential, similar to those already considered in [fZ], as well as L” bounds for Littlewood-Paley
functionals.



1.1 Presentation of the discrete framework

Let us give precise definitions of our framework. The following presentation is partly bor-
rowed from [27]. Let T" be an infinite set and ji,y = jty, > 0 a symmetric weight on I" x T
We call (I', 1) a weighted graph. In the sequel, we write most of the time I instead of (', u),
somewhat abusively. If z,y € I', say that  ~ y if and only if y,, > 0. Denote by E the set
of edges in I', i.e.

E={(z,y) eI'x s x~yj,
and notice that, due to the symmetry of u, (z,y) € F if and only if (y,x) € E.

For =,y € T', a path joining = to y is a finite sequence of edges xg = z,...,xy = y such
that, forall 0 <i¢ < N —1, x; ~ x;,1. By definition, the length of such a path is N. Assume
that I" is connected, which means that, for all x,y € I, there exists a path joining x to y.
For all x,y € T, the distance between x and y, denoted by d(z,y), is the shortest length
of a path joining x and y. For all z € " and all » > 0, let B(z,r) = {y €T, d(y,z) <r}.
In the sequel, we always assume that I' is locally uniformly finite, which means that there
exists N € N* such that, for all x € T', §B(z, 1) < N(here and after, A denotes the cardinal
of any subset A of I'). If B = B(x,r) is a ball, set aB = B(x,ar) for all a > 0, and write
C1(B) = 4B and Cj(B) = 2*'B\ 2/ B for all integer j > 2.

For any subset A C T', set

OA={x € A; Jy~uz, y¢ A}.
For all x € T, set m(z) = Y pzy. We always assume in the sequel that m(x) > 0 for all

y~zx
xel. If AcCT, define m(A) = > m(x). For all z € I and r > 0, write V (z,r) instead of
€A
m(B(z,r)) and, if B is a ball, m(B) will be denoted by V(B).
For all 1 < p < 400, say that a function f on I" belongs to LP(I",m) (or LP(I")) if

1/p
I, = (Z |f(9€)|pm(x)> < 4o0.

zel

Say that f € L>(I',m) (or L>(I")) if
1/ lloe := sup | f(z)] < +oo.
zell
Define p(z,y) = fizy/m(z) for all z,y € I'. Observe that p(z,y) = 0 if d(z,y) > 2. Set also

polz,y) = 6(x,y)
and, for all £ € N and all z,y € T,
Pe1(7,y) = ZP(SU, 2)pi(2, y)-
zel

The py’s are called the iterates of p. Notice that, for all x € T", there are at most N non-zero
terms in this sum. Observe also that, for all x € T,

> play) =1 (1.2)

yel’



and, for all z,y € T,
p(z, y)m(z) = ply, z)m(y). (1.3)
For all function f on I' and all x € ', define

= " plwy)f(y)

yel’

(again, this sum has at most N non-zero terms). Since p(z,y) > 0 for all z,y € T and ([.9)
holds, one has, for all p € [1,+00] and all f € LP(T),

1Pl oy < I llzoqry - (1.4)

We make use of the operator P to define a Laplacian on T'. Consider a function f € L*(T).

By ([A), (I — P)f € LA(T) and
(I=P)f, feay = Zp z,y)(f(x) = f () f(x)m(x)

15
= —pry f (@) = fy)P m(z), -

where we use ([.2) in the first equality and ([.3J) in the second one. If we define now the
operator “length of the gradient” by

1/2
- (; S pew) () - f(:c)|2>

yel’

for all function f on I' and all x € T' (this definition is taken from [B3]), (.3) shows that
(I=P)f, f>L2(F) - ”Vf|’i2(r)- (1.6)

Because of (1), the operator P is self-adjoint on L*(T") and I — P, which, by ([.g) , can be
considered as a discrete “Laplace” operator, is non-negative and self-adjoint on L*(T"). By
means of spectral theory, one defines its square root (I — P)/2. The equality ([C0) exactly
means that

(1= P) 2 f|| oy = IVl 2y (1.7)
(r)

This equality has an interpretation in terms of Sobolev spaces defined through V. Let
1 < p < +oo. Say that a scalar-valued function f on I' belongs to the (inhomogeneous)
Sobolev space WP(T') (see also 2], [B4]) if and only if

1 oy = 1A oy + IV Fll oy < o0

If B is any ball in T and 1 < p < 400, denote by Wy *(B) the subspace of W*(I") made of
functions supported in B.



We will also consider the homogeneous versions of Sobolev spaces. For 1 < p < 400, define
E'?(T) as the space of all scalar-valued functions f on I' such that Vf € LP(T'), equipped
with the semi-norm

1Al oy = IV Fll oy -

Then W?(T') is the quotient space E?(T')/R, equipped with the corresponding norm. It is
then routine to check that both inhomogeneous and homogeneous Sobolev spaces on I' are
Banach spaces.

The equality ([77) means that ||(/ — P)l/QfHLQ(F) = [[fll zr2(ry- In other words, for p = 2,
the Sobolev spaces defined by V and by the Laplacian coincide. In the sequel, we address
the analogous question for p # 2.

1.2 Statement of the problem

To that purpose, we consider separately two inequalities, the validity of which will be dis-
cussed in the sequel. Let 1 < p < 4+00. The first inequality we look at says that there exists
C, > 0 such that, for all function f on I such that (I — P)2f € LP(T),

IV, < Cyp||(1 = P)2f]| . (R,)

This inequality means that the operator V(I — P)~'/2, which is nothing but the Riesz

transform associated with (I — P), is LP(I")-bounded. Here and after, say that a (sub)linear
operator 1" is LP-bounded, or is of strong type (p,p), if there exists C' > 0 such that [|T'f||, <
C|fll, for all f € LP(T'). Say that it is of weak type (p,p) if there exists C' > 0 such
that m ({z € T, [T'f(z)| > A\}) < 5 ||IfI) for all f € LP(T) and all A > 0. Notice that he
functions f will be defined on I', whereas T'f may be defined on I" or on E.
The second inequality under consideration says that there exists Cj, > 0 such that, for all
function f € EWP(I),

|- Py2s| < G IV, (RR)

(The notations (R,) and (RR,) are borrowed from [§.) We have just seen, by (1), that
(Ry) and (RRs) always hold. A well-known fact (see [[] for a proof in this context) is that,
if ([R]) holds for some 1 < p < +oo, then ([RR]) holds with p’ such that 1/p+ 1/p' =1,
while the converse is unclear in this discrete situation (it is false in the case of Riemannian

manifolds, see [B]). As we will see, we have to consider four distinct issues: ([B)]) for p < 2,

(R)) for p > 2, (RR)) for p < 2, (RR)) for p > 2.

1.3 The LP-boundedness of the Riesz transform
1.3.1 The case when p < 2

Let us first consider ([R]) when p < 2. This problem was dealt with in [13], and we just recall
the result proved therein, which involves some further assumptions on I'. The first one is of
geometric nature. Say that (I, u) satisfies the doubling property if there exists C' > 0 such
that, for all z € I' and all » > 0,

Vx,2r) < CV(x,r). (D)

5



Note that this assumption implies that there exist C, D > 0 such that, for all x € I", all
r>0andall  >1,
V(x,0r) < COPV(x,r). (1.8)

Remark 1.1 Observe also that, since (I',p) is infinite, it is also unbounded (since it is
locally uniformly finite) so that, if (D)) holds, then m(T') = 400 (see [£Q)).

The second assumption on (I', 1) is a uniform lower bound for p(x,y) when z ~ y, i.e. when
p(z,y) > 0. For a > 0, say that (I", u) satisfies the condition A(«) if, for all x,y € T,

(x ~y & fizy > am(x)) and x ~ . (A(a))

The next two assumptions on (I', 1) are pointwise upper bounds for the iterates of p. Say
that (I', u) satisfies (DUFE) (a on-diagonal upper estimate for the iterates of p) if there exists
C' > 0 such that, for all x € I and all £ € N*,

Cm(x)

Vv (DUE)

pr(z,x) <

Say that (I, i) satisfies (UFE) (an upper estimate for the iterates of p) if there exist C,c¢ > 0
such that, for all z,y € I' and all £ € N*,

Cm(x)
V(z,Vk)
Recall that, under assumption ([[J), estimates ([DUE]) and (UE]) are equivalent (and the

conjunction of ([0) and ([DUH) is also equivalent to a Faber-Krahn inequality, ], Theorem
1.1). The following result holds:

Theorem 1.2 ([f3/) Under assumptions ([0), and (DUH), (R]) holds for all 1 <

p < 2. Moreover, the Riesz transform is of weak (1,1) type, which means that there exists
C > 0 such that, for all A > 0 and all function f € LY(T),

d2(z,y)

pr(z,y) < eE (UE)

m({z € T; V(I = PY25(x) > A}) < S,

As a consequence, under the same assumptions, (RR)) holds for all 2 < p < +o0.

Notice that, according to [B7], the assumptions of Theorem [[.J hold, for instance, when T is
the Cayley graph of a group with polynomial volume growth and p(x,y) = h(y~'z), where
h is a symmetric bounded probability density supported in a ball and bounded from below
by a positive constant on an open generating neighborhood of e, the identity element of G,
and actually Theorem [[.3 had already been proved in [BT].



1.3.2 The case when p > 2

When p > 2, assumptions ([[]), (UE]) and (A{«])) are not sufficient to ensure the validity of
(R)), as the example of two copies of Z? linked between with an edge shows (see [, Section
4). More precisely, in this example, as explained in Section 4 of [[[], the validity of ([B)]) for
p > 2 would imply an L? Poincaré inequality on balls.
Say that (', u) satisfies a scaled L? Poincaré inequality on balls (this inequality will be
denoted by (P) in the sequel) if there exists C' > 0 such that, for any € I', any r > 0 and
any function f locally square integrable on I' such that V f is locally square integrable on
B,

Yo fw) - falPmy) <t Y V)P miy), (Py)

yeB(x,r) yeB(x,r)

1
jéf(x)m x

is the mean value of f on B. Under assumptions ([), ([P) and (A{a]]), not only does (TE])
hold, but the iterates of p also satisfy a pointwise Gaussian lower bound. Namely, there exist
c1,Ch, co, Cy > 0 such that, for all n > 1 and all z,y € I' with d(z,y) < n,

where

em(z) g e Com(z) _, 2@w

R O < < ZET) ety

Vv S S
Actually, (LUEF]) is equivalent to the conjunction of ([[J), () and (A(c)), and also to a

discrete parabolic Harnack inequality, see [ (see also [[] for another approach of (LUH)).
Let p > 2 and assume that ([B)) holds. Then, if f € LP(T") and n > 1,

(LUE)

VP fll, < \F =1, (Gy)

Indeed, ([R,)) implies that
IVPfIl, < Gy [|(1 = P)2P £,

and, due to the analyticity of P on LP(I"), one also has

I — P 1/2Pn

I fll, < f Hf I, -

More precisely, as was explained in [[BJ], assumption A(«) implies that —1 does not belong to
the spectrum of P on L*(T'). As a consequence, P is analytic on L*(T') (see [RH], Proposition
3), and since P is submarkovian, P is also analytic on LP(I") (see B3], p. 426). Proposition
2 in [R5 therefore yields the second inequality in (|G]). Thus, condition (G]) is necessary for
(IB]) to hold. Our first result is that, under assumptions (), (&) and (RA{a]), for all ¢ > 2,
condition (G,) is also sufficient for (R,) to hold for all 2 < p < ¢:

Theorem 1.3 Let py € (2,400]. Assume that (T, u) satisﬁes D), (1), BAla]) and (Gy,).
Then, for all 2 < p < po, ([R]) holds. As a consequence, if pj is such that 1/py+ 1/pl = 1,

(RR)) holds for all pj < p < 2.



An immediate consequence of Theorem [[.J and the previous discussion is the following result:

Theorem 1.4 Assume that (T, u) satisfies (D), (P) and [Ala)). Let py € (2,+0c]. Then,
the following two assertions are equivalent:

(¢) for allp € (2,p0), (G,) holds,

(17) for allp € (2,po), (R,) holds.

Remark 1.5 In the recent work [29], property (G,) is shown to be true for all p € (1,2]
under the sole assumption that I' satisfies a local doubling property for the volume of balls.

Remark 1.6 On Riemannian manifolds, the L* Poincaré inequality on balls is neither nec-
essary, nor sufficient to ensure that the Riesz transform is LP-bounded for all p € (2,00),
see [J] and the references therein. We do not know if the corresponding assertion holds in
the context of graphs.

1.3.3 Riesz transforms and harmonic functions

We also obtain another characterization of the validity of (R,) for p > 2 in terms of reverse
Hoélder inequalities for the gradient of harmonic functions, in the spirit of [f[] (in
the Euclidean context for second order elliptic operators in divergence form) and [fJ (on
Riemannian manifolds). If B is any ball in I" and u a function on B, say that « is harmonic
on B if, for all x € B\ 0B,

(I — P)u(z) = 0. (1.9)

We will prove the following result:

Theorem 1.7 Assume that (0), (Ala)) and (Pd) hold. Then, there exists py € (2,+0o0]
such that, for all g € (2,pg), the following two conditions are equivalent:

1. (Ry) holds for all p € (2,q),

2. for all p € (2,q), there exists C, > 0 such that, for all ball B C I, all function u
harmonic in 328,

1 ’ 1 ’

(V@§§:WMWN”M@> SC%(;@@g;EZIVM@VWWM>- (RH,)
zeB r€l6B

Assertion 3. says that the gradient of any harmonic function in 32B satisfies a reverse Holder

inequality. Remember that such an inequality always holds for solutions of div(AVu) = 0

on any ball B C R", if u is assumed to be in H'(B) and A is bounded and uniformly elliptic

(see [[]). In the present context, a similar self-improvement result can be shown:

Proposition 1.8 Assume that ([0), [Ala)) and (P]) hold. Then there exists py > 2 such
that ([RHJ) holds for any p € (2,p0). As a consequence, ([R]) holds for any p € (2, po).

As a corollary of Theorem [[.3 and Proposition [[.§, we get:

Corollary 1.9 Assume that (D)), [Ala]) and (Py) hold. Then, there exists € > 0 such that,
forall2 —e <p<2+¢ |[Vfl, ~ [T - P)/2f| .



1.4 The reverse inequality

Let us now focus on ([RR]). As already seen, ([RRJ]) holds for all p > 2 under (D), (Ala))
and (DUE), and for all p{ < p < 2 under (), (A), (BRla])) and (Gp,) if po > 2 and
1/po + 1/pl, = 1. However, we can also give a sufficient condition for (RRR]) to hold for all
p € (qo,2) (for some ¢y < 2) which does not involve any assumption such that (G),). For
1 < p < +o0, say that (I, 1) satisfies a scaled L? Poincaré inequality on balls (this inequality
will be denoted by (F,) in the sequel) if there exists C' > 0 such that, for any € I', any
r > 0 and any function f on I' such that |f]” and |V f|” are locally integrable on T,

ST f@) — falPmy) <Crt Y V)P mly). (P,)

yEB(z,r) yEB(z,r)

If 1 <p<q< +oo, then (F,) implies (F,) (this is a very general statement on spaces of
homogeneous type, i.e. on metric measured spaces where ([[]) holds, see [Bf]). The converse
implication does not hold but an LP Poincaré inequality still has a self-improvement in the
following sense:

Proposition 1.10 Let (I, u) satisfy {D). Then, for all p € (1,400), if (P,) holds, there
exists € > 0 such that (P,_.) holds.

This deep result actually holds in the general context of spaces of homogeneous type, i.e.
when ([[J) holds, see [BY].
Assuming that (P,) holds for some ¢ < 2, we establish (RR,) for ¢ < p < 2:

Theorem 1.11 Let 1 < ¢ < 2. Assume that (), [A(a])) and (P,) hold. Then, for all
q <p <2, (RR,) holds. Moreover, there exists C > 0 such that, for all X\ >0,

m({xef‘;

(I = P)2f(z)| > A}) < IIVfIIq (1.10)

S
As a corollary of Theorem [[.3, Proposition [[.IJ and Theorem [[.T1], we get the following
consequence:

Corollary 1.12 Assume that (D), (A(a]) and (P,) hold for some p € (1,2). Then, there
exists € > 0 such that, for allp — e < q < 400, (RR,) holds. In particular, (RR,) holds.

1.5 An overview of the method

Let us briefly describe the proofs of our results. Let us first consider Theorem [[.3. The
operator T' = V(I — P)~/2? can be written as

+o00
T=V (ZakPk>,

where the a;’s are defined by the expansion

(1—z) Y2 = Zakaz (1.11)



for —1 < x < 1. The kernel of T' is therefore given by

Ve <Z appr(, y)) :

It was proved in [f4] that, under ([J]) and ([P), this kernel satisfies the Hormander inte-
gral condition, which implies the H(T") — L!(T") boundedness of T" and therefore its LP(T)-
boundedness for all 1 < p < 2, where H!(T'") denotes the Hardy space on I' defined in the
sense of Coifman and Weiss ([[[§]). However, the Hormander integral condition does not
yield any information on the LP-boundedness of T" for p > 2. The proof of Theorem [[.3 ac-
tually relies on a theorem due to Auscher, Coulhon, Duong and Hofmann ([f]), which, given
some py € (2, +0c], provides sufficient conditions for an L?-bounded sublinear operator to
be LP-bounded for 2 < p < pg. Let us recall this theorem here in the form to be used in the
sequel for the sake of completeness (see [, Theorem 2.1, [, Theorem 2.2):

Theorem 1.13 Let py € (2,+0c]. Assume that T' satisfies the doubling property (D) and
let T be a sublinear operator acting on L*(T). For any ball B, let A be a linear operator
acting on L*(T'), and assume that there exists C' > 0 such that, for all f € L*(T'), allz € T
and all ball B > x,

vui( ST = A5) ) < © (MUSE) " @) (1.12)
and .
7y T8 i) < € (MATSE) ™ (2, (1.13)

If 2 <p <po and if, for all f € LP(I'), Tf € LP(I"), then there exists C, > 0 such that, for
all f € L*(T) N LP(T),
1T fll oy < CpllFll oy -

Notice that, to simplify the notations in our foregoing proofs, the formulation of Theorem
[.13 is slightly different from the one given in [J] and in [[], since the family of operators
(A,);~0 used in these papers is replaced by a family (Ap) indexed by the balls B C T, see
Remark 5 after Theorem 2.2 in []. Observe also that this theorem extends to vector-valued
functions (this will be used in Section B). Finally, here and after, M denotes the Hardy-
Littlewood maximal function: for any locally integrable function f on I' and any x € T,

Z|f

yEB

Mf(x) = = SUp

BBx

where the supremum is taken over all balls B containing z. Recall that, by the Hardy-
Littlewood maximal theorem, since ([[J) holds, M is of weak type (1,1) and of strong type
(p,p) for all 1 < p < +oc.

Following the proof of Theorem 2.1 in [[j], we will obtain Theorem [[.3 by applying Theorem
with Ap =1— (I — PkQ)” where k is the radius of B and n is an integer only depending
from the constant D in ([[.§).

10



As far as Theorem [[.I7] is concerned, note first that (RR,) cannot be derived from
(R,) in this situation (where 1/p + 1/p’ = 1), since we do not know whether (R,/) holds
or not under these assumptions. Following [g], we first prove ([LI(). The proof relies on
a Calderén-Zygmund decomposition for Sobolev functions, which is the adaptation to our
context of Proposition 1.1 in [[J] (see also [ in the Euclidean case and [fj] for the extension

to a weighted Lebesgue measure):

Proposition 1.14 Assume that ([}) and (P,) hold for some q € [1,00) and let p € [q, +00).
Let f € EYW(T') and a > 0. Then one can find a collection of balls (B;)icr, functions
(b;)icr € EY(T) and a function g € EY*° such that the following properties hold:

el
Vgl < Ca, (1.15)
suppb; C Bi, Y |Vbi|*(x)m(x) < Ca'V(By), (1.16)

rEeB,;

D V(B) < Ca? > |[VfP(x)m(w), (1.17)

el zel
D xm <N, (1.18)

el

where C' and N only depend on q, p and on the constants in (D) and (F,).

As in [B], we rely on this Calderén-Zygmund decomposition to establish ([.I(). The argument
also uses the LP(I")-boundedness, for all 2 < p < +00, of a discrete version of the Littlewood-
Paley-Stein g-function (see [[]), which does not seem to have been stated before in this
context and is interesting in itself. For all function f on I' and all x € T', define

1/2
9(f)(x) = (Zl (1 - P)Plf(x)]2> ,

>1

Observe that this is indeed a discrete analogue of the g-function introduced by Stein in [£q],
since (I — P)P' = P! — P! can be seen as a discrete time derivative of P! and P is a
Markovian operator.

It is easy to check that the sublinear operator g is bounded in L?*(T'). Indeed, as already
said, the assumption ([A{a]) implies that the spectrum of P is contained in [a, 1| for some
a > —1. As a consequence, P can be written as

P= /a1 AE(N),

so that, for all integer [ > 1,

(I - P)P' = /1(1 — MAAE(N)
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and, for all f € L*(I),

(= PP = [ 0= AN (),
It follows that, for all f € L*(T),
lg(Hlls = S t]|z = PP

>1
1
= /(1—)\)2Zl)\21dEf7f()\)
a %1
! A
= / <1+—)\) dEy ()
< |IfII5-

It turns out that, as in the Littlewood-Paley-Stein semigroup theory, g is also LP-bounded
for 1 < p < +oc:

Theorem 1.15 Assume that (00), (DUH) and (Ala])) hold. Let 1 < p < +oo. There exists
C, > 0 such that, for all f € LP(T),

L, < Coll I, -

Actually, this inequality will only be used for p > 2 in the sequel, but the result, which is
interesting in itself, does hold and will be proved for all 1 < p < 4o00.

Before going further, let us mention that, in [R9], N. Dungey establishes, under a local
doubling property for the volume of balls, the LP-boundedness for all p € (1,2] of another
version of the Littlewood-Paley-Stein functional, involving the gradient instead of the “time
derivative” and the (continuous time) semigroup generated by I — P. Although we do not
use Dungey’s result here, it may prove useful to study the boundedness of Riesz transforms
on graphs.

The proof of Theorem for p > 2 relies on the vector-valued version of Theorem [[.13,
while, for p < 2, we use the vector-valued version of the following result (see [P, Theorem
2.1 and also [[J] for an earlier version):

Theorem 1.16 Let py € [1,2). Assume that I satisfies the doubling property ({0)) and let
T be a sublinear operator of strong type (2,2). For any ball B, let Ag be a linear operator
acting on L*(T). Assume that, for all j > 1, there exists g(j ) > 0 such that, for all ball
B C T and all function [ supported in B,

1
VI2(241B) |T(I — AB)f”Lz(cj(B ) <90 >V1/P0( B) /Il e (1.19)
for all j > 2 and
m I Bf”L2 <g(j >V1/p0( B) 11| oo (1.20)

forallj > 1. [fZg(j)QDj < +o0 where D is given by ([.8), then T is of weak type (po, po),
j>1
and is therefore of strong type (p,p) for all po < p < 2.
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Going back to Theorem [[.T1], once ([.1() is established, we conclude by applying real inter-
polation theorems for Sobolev spaces, which are also new in this context. More precisely, we
prove:

Theorem 1.17 Let q € [1,+00) and assume that ({O0), (P,) and hold. Then, for all
g < p < +oo, WH(T) = (Wha(r), WHe=(r))

_a,
I=3p
As an immediate corollary, we obtain:

Corollary 1.18 (The reiteration theorem) Assume that I' satisfies ([O), (P,) for some
1 < ¢ < +oo and [Ala]). Define qo = inf {q € [1,00) : (P,) holds}. For gy <p; <p < ps <
+00, zf1 _ 1Y - g, then W'P(T) = (lepl(l“), lem(l“))

p D1 D2 0.p
Corollary [[.1§, in conjunction with ([.LI0), conclude the proof of Theorem [[.11]. Notice that,
since we know that Sobolev spaces interpolate by the real method, we do not need any
argument as the one in Section 1.3 of [{].

For the proof of Theorem [.7, we introduce a discrete differential and go through a
property analogous to (IL,) in [B], see Section J for detailed definitions. Proposition [.§
follows essentially from Gehring’s self-improvement of reverse Holder inequalities ([B9]).
The plan of the paper is as follows. After recalling some well-known estimates for the iterates
of p and deriving some consequences (Section B), we first prove Theorem [[.15], which is of
independent interest, in Section f|. In Section ], we prove Theorem [.3 using Theorem [.T3.
Section [ is devoted to the proof of Proposition [[.14. Theorem [[.17 is established in Section
B by methods similar to [§] and, in Section [], we prove Theorem [I]. Finally, Section
contains the proof of Theorem [[.7] and of Proposition [L.g.

2 Kernel bounds

In this section, we gather some estimates for the iterates of p and some straightforward
consequences of frequent use in the sequel. We always assume that ([[), ([P]) and (A{«])
hold. First, as already said, ([LUE]) holds. Moreover, we also have the following pointwise
estimate for the discrete “time derivative” of p;: there exist C, ¢ > 0 such that, forall z,y € I’
and all [ € N*,

2
< Cmly) e

WV

This “time regularity” estimate, which is a consequence of the L? analyticity of P, was first
proved by Christ ([If]) by a quite difficult argument. Simpler proofs have been given by
Blunck ([I7]) and, more recently, by Dungey ([Bg]).

Thus, if B is a ball in I' with radius k, f any function supported in B and i > 2, one
has, for all x € C;(B) and all | > 1,

iz, y) — prea(z, y) (2.1)

C
V(B)

|PLf(@)| +1](T = PYP(2)] < e T [ 0 (2.2)

13



This “off-diagonal” estimate follows from ([JF) and (B.T]) and the fact that, for all y € B,

by (D),
V(y, k) k"

Similarly, if B is a ball in I with radius k, ¢ > 2 and f any function supported in C;(B), one
has, for all x € B and all [ > 1,

C
V(2B)

[P'f(2)| +1|(I - P)P'f(z)| < e | flln (2.3)

Finally, for all ball B with radius k, all i > 2, all function f supported in C;(B) and all
1 >1,
l C 7(2%
VP oy < N 1AW 22 cumy) - (24)
See Lemma 2 in [[£3]. If one furthermore assumes that (G,,) holds for some py > 2, then,
by interpolation between (B.4)) and (G,,), one obtains, for all p € (2,py), all f supported in

Ci(B) and all [ > 1,

C 4%k2
[P oy < 2 1 vy (2.5)

Inequalities (B.4) and (2.§) may be regarded as “Gaffney” type inequalities, in the spirit of

BT

3 Littlewood-Paley inequalities

In this section, we establish Theorem [.T5
The case 1 < p < 2: We apply the vector-valued version of Theorem with T"= ¢ and
po = 1 and, for all ball B with radius k, Ag defined by

Ap=1— (I — Py,

where n is a positive integer, to be chosen in the proof. More precisely, we consider, for
fel?T)andx €T,

i) = (VItl = P)P'f()) .

>1

so that T maps L*(T") into L*(T, [?).
Let B be a ball and f supported in B. Let us first check ([.I9). Using the expansion

(I — P¥)n ZC” 1) PP,

we obtain

T(I—Ap)f = (Oél([ - P)Plf)z21

14



where

ap = Z CP(—1)P+/1 — pk2.

0<p<n; I>pk?
Since it follows from (B.7) that

1

2 el
V(2/+1B) HU - P>PlfHL2(c (B e ! Hf”il, (3.1)

<Y
) = I2V2(B)
we will be able to go on thanks to the following estimate:

Lemma 3.1 There exists C' > 0 only depending on n such that, for all j > 2,

Z \041\

>1

2nj

Proof of Lemma B: If mk? <1 < (m+1)k? for some integer 0 < m < n, one obviously

has
loy| < Ckvm + 1, (3.2)

where C' > 0 only depends on n, while, if [ > (n + 1)k?, one has

| <C (3-3)

This estimate follows from the following inequality, valid for any C™ function ¢ on (0, +00):

< C sup ’go(” (u)| K", (3.4)

u>—t

Z CP(—1)Po(t — pk?)
>t

where C' > 0 only depends on n (see [BU], problem 16, p. 65). It follows from (B.3) that, for
all 0 <m <mn,

2 . 5 _
> et <oy oo
mk2<l<(m+1)k? mk2<I<(m+1)k?
(m+1)k? 2 )
C / (m T DR o2 gy
mk? t
S 067041

IA

where C, ¢ > 0 only depend on n. Similarly, thanks to (B-3),

- (2n— 1)k4n

|Oél|2 49 k2 49 k2
E Z—Qe’c o< C E —_—e

I>(n+1)k? I>(n+1)k?

“+oo k4n 4'7]62
—c
= C/+1)k2 ZEN “

+00 efc/w

—2nj
< (4 /0 T dw,

= C47%,

(n
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which concludes the proof of Lemma B.T]. r
Finally, one obtains

1 4=mi
ViR B) 1T = Ap) fll 2@ mvaipyzy < Cm 10z
. . . , . D .
which means that ([L.19) holds with g(j) = 47, and one just has to choose n > 5 in order
to have Zg(j)ZDj < 4o00.

J

Let us now check ([:20). Since
Ap =y Ch(-1p P,

it is enough to prove that, for all 7 > 1 and all 1 < p < n,

1
V172(2i71)

For all z € C;(B), (R.2) yields

s

N
o < Q(J)m 1l L) - (3.5)

J
Y

k2
P 5@ < Oy Wl
if 7 > 2, and
[P 10| < 5 Wi

for j =1, just by ([JE]). As a consequence,

14l

e ¢ .
<C Vi2(2i+1B (B >

|71

so that () holds. This ends the proof of Theorem [.T when 1 < p < 2.

The case 2 < p < +oo: This time, we apply the vector-valued version of Theorem
with the same choices of T" and Ap. Let us first check ([[[IF), which reads in this situation
as

1 1/2
V1/2< ) HT<[ AB)fHLQ(B 2) = ( (|f| )) ( )
for all f € L*(T'), all ball B C T and all y € B. Fix such an f, such a ball B and y € B.

Write
F=Y fxem=>_1
j>1 j>1
The L*-boundedness of g and Ap and the doubling property ([J) yield

Vl/;( ) HT<[ AB)leLz B,12) V1/§< ) ”fHL2(4B < ( (‘f‘ ))1/2< )
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Let j > 2. Using the same notations as for the case 1 < p < 2, one has

1T = Ap) fill7a sy = D la* D |(T = PYP'f()| m(x).

>1 reB

For all x € B, it follows from (R.3) and the Cauchy-Schwarz inequality that

(1= P)Plyy(a)| < %c/“fv(;@) S @)

z€2i+t1B

1/2
C ;49 2 2
Tm( > et

z€21+t1B
C _ s

< e (M) )"

As a consequence, by Lemma B.]],

IN

6]
17 = Ap) fi gy < C < ol ) M (IfP) ()V(B)
l>1
< CV(B) Q"JM (1/17) (),
which yields ([.13) by summing up on j > 1.
To prove ([.13), it suffices to establish that, for all 1 < j < n, all ball BC T and all y € B,

1/2

HTPJ”“Qf < C(MTF% (v))

)LOO(B,P)

Let x € B. By Cauchy-Schwarz and the fact that

Z piz(z,y) =1

yell

for all z € T', one has, for any function h € L*(T),
’ijgh(:p)’ < (ij? Ih? (x))l/ g
It follows that, for all [ > 1,
P - PP )| < P (1] - PP ()

so that

S|P - PP )|

>1

IN

pik? (Zz (1 - P)Plf}2> (z)

1>1
= P*(|TfI%) (x)
< CM(|ITfIl2) (y),

which is the desired estimate (note that the last inequality follows easily from ([ZE])). Thus,
(LI3) holds and the proof of Theorem [.T7 is therefore complete. C
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4 Riesz transforms for p > 2

In the present section, we establish Theorem [[.3, applying Theorem with the same
choice of Ap as in Section B One has ||Ag||,, = 1. In view of Theorem [.T3, it suffices to
show that

[Py (M) (@) (4.1)

‘/1/2

L2<B>

and

s [T (-0 =P) s ¢ (MATFR) " (@) 12)

for all f € L*(T'), all # € T and all ball B C T containing z. Fix such data f,z and B.
Proof of ([@d)): Set fi = fxcy(m) for all i > 1. The L?-boundedness of T'(I — P¥)"
yields

Lo (B)

=,

VW W( e Mille <C MU @, @)

Fix now 7 > 2. In order to estimate the left-hand side of (f.1]) with f replaced by f;, we use
the expansion

(I-P)'?=) P

1=0
where the g;’s are defined by ([L.I1]) (observe that, for all { > 0, a; > 0). Therefore, one has

+o0
(I—P)"2(I1=P¥)f; = Zazpl([— P)
_ Za’l Z C_] Pl+]k2f
= Zlelfi,
=0

where

dl = Z (-1)‘701‘10,1,]]62

0<j<n, jk2<l

It follows that
T~ PR) fil)| < mem 7)

for all x € B. Indeed, if x € B and [ = 0, VPlfi(:c) = Vfi(z) = 0 because f; is supported
in C;(B). Thus, one has

HT (I — Py,

< Z [V P fill] 2 -
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According to (R4), one has

4Zk2

Z |dl ||f||L2(22+1B\QZB) (4-4)

HTI PPy,

e =

We claim that the following estimates hold for the d;’s:

Lemma 4.1 There exists C' > 0 only depending on n with the following properties: for all
integer [ > 1,

(i) if there exists an integer 0 < m < n such that mk* <1 < (m + 1)k?, |d;| <

I—mk?’

(1) if there exists an integer 0 < m < n such that | = (m + 1)k?, |d)| < C,
(iid) if | > (n+1)k2, |dy| < Ck*> 1"z,

We postpone the proof of this lemma to the Appendix and end the proof of (f.1]). According

to (E.4), one has
4'k2

m S CZ Z |dl| i 1|l 21 mroimy

m=0mk2<i<(m+1)k

A

|7 =Py,

4’L
e m+1
+ C Z ‘d(m+1)k2‘ th Hf”L2(2i+1B\2iB) (4.5)
41k2
+ C Z |dl \/ ||f||L2 (21+1B\2/B)
1> (n+1)k2
= f;1 ‘F’fgg + f;g
For S;, Lemma yields
41k2

|Sl| < C Z Z \/—\/7]{:2 ||f||L2(22+1B\22B)

m=0 mk2<i<(m+1)k?2

But, for each 1 <m <n,

—cdk2 (mA+1)k2 a2
> < C / ———dl
VIVT=mk? \/z — mk? mk2 VE—mk2Vt

mk2<l<(m+1)k?2

1 6 n(l-lkw)
<
Vw(w + 1
S 616764z
where C, ¢ > 0 only depend on n. For m = 0,
7.2
e to gdu —
D
l 0 u

0<i<k?



Therefore,

|G| < Cem* flr2@ivipain) - (4.6)
As for Sy, Lemma [£.] gives at once
o] < Ce™ || fll 2ot maimy - (4.7)
where C, ¢ > 0 only depend on n once more. Finally, for S3, Lemma [I.] provides
e_c4ilk2
n —n—21
|S3] < CK? Z =" G 1l 21 praim) -
I>(n+1)k?
But one clearly has
4tk to0 o Ak?
D R R / D S
> ()2 l (n+1)k2 Vi
oo cd
— (4lk2) n/ ufnefa_u
n+1 u

so that, since k& > 1,

|S5] < CA™™ (1 £l 2201 pr2iy - (4.8)
Summing up the upper estimates ([.6), (.9) and (E.§) and using (f.5), one obtains
2\n —in
|r =Py, < O I g s, (4.9)

The definition of the maximal function and property ([.§) yield

1/2

1l 2eima < V2@B) (M) < C20P2V(B)V2 (M| f1) () .

D
Choosing now n > 1 and summing up over i > 1, one concludes from ([.3) and ([.9) that

HT(I—P’“Q)"f

) <C (Z 2i<%_2">> V(B)l/Q (M<‘f‘2)(x))l/2’

)LQ(B

which ends the proof of (f.1]). C
Proof of (B.Z): We use the following lemma:

Lemma 4.2 Forallp € (2,p), there exists C,a > 0 such that, for all ball B C T with radius
k, all integer i > 1 and all function f € L*(T) supported in Cy(B), and for all j € {1,...,n}
(where n is chosen as above), one has

(i) [v7s SCRE—

Lr(B) < L V(2i+1B)1/2 ||f||L2(F) :
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Proof of Lemma [.%: This proof is very similar to the one of Lemma 3.2 in [ff], and we
will therefore only indicate the main steps. Consider first the case when ¢ = 1. If j = 2m
for some integer m > 0, (B.5)) yields

(4.10)

» C
piK* f —’
v :

’Pka

Le(r)

Using (E]), and noticing that, by ([), for y € B, V(y,ky/m) ~ V(B), one has, for all

zeTlandalye B,
C d*(z,y)
< — .
=v(B) P ( iz )W)

Pmk2 (SL’, y)

As a consequence, for all z € T,

it C
P71 @)] < iy W aeam (4.11)
The L? contractivity of P shows that
mk?
|27 1]y < O am) (112)
so that, gathering (fE.11) and (E132),
p <CV(B) 2| fll oy 4.13
||,y <OV Il (4.13)

Finally, (£.13) and (f.I() yield the conclusion of Lemma .3 when ¢ = 1 and j = 2m. If
j =2m+ 1, argue similarly, writing j = m + (m + 1).

Consider now the case when i > 2 and assume that j = 2m (one argues similarly if
j=2m+1=m+ (m+1)). Let x; the characteristic function of C;(B) for all { > 1. One
has, for all x € T,

VPR f(a) <Y VPP () =) gi(x)

1>1 1>1

By (£3) and (L),

1 V(2 B)\ et 1 .
< pP™
v Il < c( o ) v [P
l

- 1
(1+1)D/p € H mk?
< 2 k Vl/p(2l+1B) Pt

Lp(2+1B\2! B)

Lp(21+1B\2!B)

Using (UF]) and arguing as in the proof of Lemma 3.2 in [[J], one obtains

! H mk? (4.14)

V(2l+lB)

< Ky 5
£2(Cy) — V(22+1B> ”f”L
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and, for all z € 2'"' B\ 2'B,

mk? % 1
’P g f(fb’)’ < K2l +2)Dm 121520 » (4.15)
where _
Ce=* ifl<i—2,
Ky=<¢ C ifi—1<1<i+1,
Ce=* if 1 >i+2.
Interpolating between ([.14) and ([.13) therefore yields
1 mk?2 (i+2)D(1-2) 1
V1/p(2+1B) HP f r(Cy) < K2 : V1/2(2i+1B) HfHLQ(Ci)'
Summing up in [, one ends the proof of Lemma as in [f]. L

To prove ({.9), it is enough to show that, if p € (2, pg), there exists C,, > 0 such that, for
all j € {1,...,n}, all function f € L} (T') with Vf € L (T'), all ball B C T with radius k
and any point x € B,

1 2
- - Pk
Vn(B) [vrs
But, since for all [ > 0, P'1 = 1, one has

VP'f=VP(f - fip),

1/2

< oMV @)

)LP(B)

so that A A
VPR § = ZVP]kQ(Xl(f — fiB)).

1>1

One concludes the proof of (f.9) as in [f], using the Poincaré inequality and Lemma [[.9. |

5 The Calderén-Zygmund decomposition for functions
in Sobolev spaces

The present section is devoted to the proof of Proposition ,' for which we adapt the
proof of Proposition 1.1 in [J] to the discrete setting. Let f € E'?(T'), a > 0. Consider
Q={z el : M(|Vf|)(z) > a?}. If Q =10, then set

g=Ff, bj=0foralliel

so that ([[I7) is satisfied thanks to the Lebesgue differentiation theorem and the other
properties in Proposition [[.14 obviously hold. Otherwise the Hardy-Littlewood maximal
theorem gives

m(Q) < Ca™ (V1)
= Ca (Y [V (2)m(a)) (5.1)

xT

< +00.
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In particular, 2 is a proper open subset of I', as m(I') = 400 (see Remark [.T]). Let (B;)ics
be a Whitney decomposition of Q ([1J]). That is, Q is the union of the B;’s, the B;’s being
pairwise disjoint open balls, and there exist two constants Cy > Cy > 1, depending only on
the metric, such that, if £/ =T\ Q,

1. the balls B; = € B; are contained in {2 and have the bounded overlap property;
2. foreachi eI, r,=r(B;) = %d(azi, F') where x; is the center of B;;
3. foreach i € I, if B, = CyB;, B;NF #( (Cy = 4C, works).

For x € Q, denote I, = {i € I; x € B;}. By the bounded overlap property of the balls B;,
there exists an integer N such that I, < N for all z € Q. Fixing 57 € [, and using the
properties of the B;’s, we easily see that éri <r; <3r;foralli € I,. In particular, B; C 7B;
for all 2 € I,.

Condition ([[.TI§) is nothing but the bounded overlap property of the B;’s and ([.I7)
follows from ([LI8) and (B-1)). The doubling property and the fact that B; N F # () yield:

DIV @mz) < Y VU (x)m(z) < a®V(B;) < Ca'V(By). (5.2)
zeDB; z€B;
Let us now define the functions b;’s. Let (;);es be a partition of unity of 2 subordinated
to the covering (B;)icr, which means that, for all ¢ € I, x; is a Lipschitz function supported
C
in B; with [|[Vx;|lec < — and sz(az) = 1 for all x € T (it is enough to choose y;(z) =
r

v el

w(a ) (Zw(& . ))> . where ¢ € D(R), ¢ = 1 on [0,1], ¢ = 0 on

[1+201 ,+0o0)and 0 < ¢ < 1). Note that Vy; is supported in 2B; C Q. We set b; = (f — fB,)X:
It is clear that supp b; C B;. Let us estimate ) 5 [Vb;|?(x)m(z). Since

Vbi(z) = V((f = fe)xi) (@) < maxxi(y)VF(2) + /(@) = 5] Vxi(2)

and since x;(y) <1 for all y € T, we get by (P,) and (£.9) that

> Vbil'm(z) < © <Z V|4 (z)m

z€B,; rEB; rEB;

)|Vl (z)m ())

< Ca'V (B +C—r > IV
rEB,;

S ClOéqV(BZ)

Thus ([[.I€) is proved.
Set g = f — Z b;. Since the sum is locally finite on 2, g is defined everywhere on I' and
el

g=fonF.
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It remains to prove ([[.I3). Since Z Xi(x) =1 for all x € Q, one has

il
g=fxr+Y_ faxi
il
where xr denotes the characteristic function of F'. We will need the following lemma:

Lemma 5.1 There exists C' > 0 such that, for all j € I, allu € FN4B; and all v € By,
9(u) — g(v)] < Cad(u, v).

Proof: Since Z X; = 1 on I', one has
iel
g(u) = g(v) = flu) = fexi(v)

= () — Fa) o). (5.3

el

For all 2 € I such that v € B;,

+o0
|f(u) = [l < Z | F w2t = FBuz—r-1ry| + | fBOwr) — B,
o

For all £ > 0, (F,) yields

’fB(u,Z*kri) - fB(u,Q*kflri)

_ m S () = Fawa-se) ml2)

2€B(u,27k=1r;)

C
= V(u, 27Fr;) Z | f(2) = [y m(2)
2€B(u,27kr;) 1

C ) a
< V(2 9Ok ) - —
B Viu,27r:) zeB(ngm) ‘f(Z) fB(u’Q kri)‘ m(z)

1
< CZ_kTi m Z IV f(2)]"m(2)
' ! ZEB(UQ*’“T'Z-)

< Cz_kﬁ (M (Vf)q)a (u)
< C27%ar; < C27%ary,

(5.4)
where the penultimate inequality relies on the fact that v € F' and the last one from the fact
that B; N B; # 0. Moreover, since u € 4B;,

B(u,r;)) C B(zj,r; +d(u,x;))
C B(ZEj,Ti+4Tj)C7Bj-

24



Since one also has B; C 7B5;, one obtains, arguing as before,
| fB@r) — ] < }fgg,m) — frg,| + | B, — B,
S VB > () = frg, | m(z) (5.5)

ZG?BJ'

VAN

Car;.
It follows from (5.4) and (B.5) that
|f(u) = fB,| < Car; < Cad(u,v),

since 1 1 1 1
r; = =d(z;,F)< §d(a:j,u) < id(:cj,v) + §d(v,u)

1
< 5t §d(v,u).
This ends the proof of Lemma p.1] because of (B.3). |
To prove ([.I7), it is clearly enough to check that |g(z) — g(y)| < Ca for all x ~ y € T'. Let
us now prove this fact, distinguishing between three cases:

1. Assume that = € Q. Then, z € B; for some j € I, and for all y ~ z, y € 2B, C , so
that xr(x) = xr(y) = 0. It follows that

9(y) —g(x) = Z (fBi - fBj) (xi(y) — xi(@)),
el
so that [g(y) — g(z)| < C> }fBi - fBj} Vxi(z) := h(z). We claim that |h(z)| < Ca.
To see this, note that, for all ¢ € I such that Vy;(z) # 0, we have |fp, — f5,| < Crja.
Indeed, d(z, B;) < 1, which easily implies that 7, < 3r; +1 < 4r;, hence B; C 10B;.
As a consequence, we have, arguing as before again,

= fuom,| < 3 1700) = fun )

C
< V(Bj) y@;gj |f(y) — f1OBj im(y)
1 g ’
< Cr, V(TBJ‘)ygo:B V1% (y)m(y)
< Cria (5.6)

where we used Hodlder inequality, (D), (F,) and the fact that (|Vf[?)p, <
M(|V f])4(z) for some z € F N B;. Analogously | fios, — f5,| < Crjo. Hence

@)l ={ > (fo — f5,)Vlz)

iel; ze2B;

<C > fs =Sl

iel; xe2B;

< CNa.

25



2. Assume now that z € F'\ OF. In this case |g(y) — g(z)| = |f(y) — f(x)| < Ca by the
definition of F.

3. Assume finally that x € OF.

i Ify € F, we have [g(y) — g(z)| = |f(z) — f(y)| < CV f(z) < Co.

ii. Consider now the case when y € Q. There exists j € I such that y € B;. Since
x ~y, one has x € 4B;, Lemma p.J] therefore yields

9(z) — g(y)| < Cad(z,y) < Ca.

Thus the proof of Proposition is complete. L

Remark 5.2 [t is easy to get the following estimate for the b;’s: for alli € I,

1 1
V(Bz) H Hl = V(Bz)l/q H ”q ar

Indeed, the first inequality follows from Holder and the fact that b; is supported in B;. More-
over, by (P,) and (p23),

1

1
W 1/q ”vf”Lq(Bi) S COéTi.

e, = T

) < Cricre

T

6 An interpolation result for Sobolev spaces

To prove Theorem [[.17, we will characterize the K functional of interpolation for homoge-
neous Sobolev spaces in the following theorem.

Theorem 6.1 Under the same hypotheses as Theorem [[.17 we have that

1. there exists Cy such that for every f € WH(T) + Wh(T) and all t > 0
(.47, W W) = Gt (V£ (0);

2. for q < p < o0, there exists Cy such that for every f € Wl’p(F) and every t > 0
K (f. 0, W W) < Cott ([9£19°)3 (1),

Proof: We first prove item 1. Assume that f = h + ¢ with h € W4, g € W1, we then
have

> K(Vf,ti, L9, L)
> Cta(|Vf]7*)a (1)

1 1
1Pllyira + tllgllirree = [1VAllg + 20| Vgllo
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Hence we conclude that K(f, ta, Wha Jytee) > Clt§(|Vf|q**)%(t).
We prove now item 2. Let f € WP, ¢ < p < oco. Let t > 0, we consider the Calderén-

1

Zygmund decomposition of f given by Proposition with a = o(t) = (M(|Vf|)q>*a(t).

Thus we have f = Z b; +¢g = b+ g where (b;);cr, g satisfy the properties of the proposition.
el
We have the estimate

Ivells <> (Z \Vbz\> (@)m(z)

zel el

< CNZ Z V| (z)m(x

i€l x€B;
< Co(t)) V(B
el

< Cal(t)ym(€),

where the B;’s are given by Proposition [[.14 and (2 is defined as in the proof of Proposition
[.14. The last inequality follows from the fact that Z X, < N and Q = UB Hence

el

Vb, < C’oz(t)m(Q)%. Moreover, since (M f)* ~ f** (see [, Chapter 3, Theorem 3.8), we

obtain ) )
a(t) = MV @) < C(IVF7)a ().

Hence, also noting that m(Q) < t (see [, Chapter 2, Proposition 1.7), we get

K(f, to, Wha WL ) < Cta |Vf|q**%( t) for all t > 0 and obtain the desired inequality. L
Proof of Theorem [.17:  The proof follows directly from Theorem .. Indeed,
item 1. of Theorem [.I] gives us that (Wl’q,leoo)l_%vp C W and || f|lyi, < CHle__p,

while item 2. gives us that W' < (Wh, W), o and ||f|l1_s, < C| fllyir1p. Hence
. . . P P
Whe = (Whe, Wl’oo)l_%,p with equivalent norms. |

7 The proof of (RR,) for p < 2

In view of Theorem [[.I7 and since (RR») holds, it is enough, for the proof of Theorem [[.1]],

to establish ([LI0).
Proof of ([.10): We follow the proof of (1.9) in [f. Consider such an f and fix A > 0.

Perform the Calderon-Zygmund decomposition of f given by Proposition [.I4. We also use
the following expansion of (I — P)'/%

(I —P)/? = Zak] P)P (7.1)
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where the (a;)’s were already considered in Section f]. For each ¢ € I, pick the integer k € Z
such that 28 < r(B;) < 281 and define r; = 2%. We split the expansion (1) into two parts:

(I —P)/? = Zakl P)P* + Zakl P)P* =T, + U,

k= r2+1

We first claim that
C
m ({x €T (1= P) ()| > A}) < - IV 7. (72)

Indeed, one has

(- Py >N < S| - Pyl

&

— 199l

and since Vg < CA on I' and [[Vgl[, < C ||V f]],, we obtain

m({x el;

> Tibi(x)

el

/:]H/—/

IVgll; < CX*7|[Vgll; < OV f|I2,
which ends the proof of ([.2).
We now claim that, for some constant C' > 0,
C q
m(qzel; |Y Tbi(x)|>Ap] < 2 VA (7.3)
el
To prove ([7.3), write
m ({x el; Zszz(ﬂf) > A}) <m <U4Bi> +m ({x o2 U4B“
icl i
Observe first that, by ([D)) and Proposition [[.14),
m(JaB:) <o vas) < S v
S YT ¢
1 S
As far as the second term in the right-hand side of ([7.4) is concerned, it can be estimated by

({x ¢ U4BZ, > Tibi(x) }) <3 xezr > xrus, (2)Tbi(x)

el el
Arguing as in [B, [3, Bg], we estimate this last quantity by duality. Fix a function u €
L*(T,m) with [|ul|, = 1. One has

ZZXF\4Bi($)Tb x)u(x)m

zel' i€l

2

m(z).

l‘) S ZZAi’j

€l j=2
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where, for all « € I and all j > 2,

A= Y |Tb(@)]u(@)|m(z).

:B€2j+1Bi\2jBi

If 4, 7 are fixed, since (I — P)b; is supported in 25;,

g

Hnbi”L2(2j+1Bi\2jBi) = Z x| HU - P)PkbiHLQ(QJ'-HBi)\%Bi)
k:QO

- Z|@k\ [(1 — P)P*; HL2(21+1B)\2JB)
k=1

Given 1 < k <72, one has, for all z € 2771 B; \ 2 B;, using (1)),

‘(I P) Pk Z px(, y) — prya (2, y)] bi(y)| < Z

yeB; yeB;

WV VR

C d2 (2.y)
—cdlew)

1bi(y)| m(y).

Using ([.§) and arguing exactly as in [[] (relying, in particular, on Remark [.9), we obtain

2D
T f Ty _
HU P) P, HL2(21+1B \27 B;) S CE (\/E) €

Since

(see Appendix), it follows that

||Ebi||L2(2j+1Bi\2jBi) < 06_64jV1/2(2j+1B,~))\.

C q
A}> < 5 IV 1.

4 T
iel; ri=27

> bi=28;

i€l ri=27

One concludes, as in [[J], that ([-J) holds.
What remains to be proved is that

m ({x el ZUibi(x) >

el
Define, for all j € Z,

so that, for all j € Z,
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One has

S Uk = Y ay(l - P)P*,

icl i€l k>r?

= > a(I-P)P* >
k>0 iel; r; 2<k

= Y a(I-P)P* Z b,
k>0 i€l; r?=22i<k

= Y a(I-P)P* > 2p;
k>0 g; 4i<k

For all k > 0, define
7 4zf<k

It follows from the previous computation and Theorem [.T§ that

+oo 1 1/2
>om <0 (34 )

el k=1

To see this, we estimate the left-hand side of this inequality by duality, as in [[J] and use the
C
fact that |a;| < —= for all k£ > 1. Since, by Cauchy-Schwarz,

VE
|fk <22 \/—|ﬁj )

j; 4i<k

one obtains

(f lfk Z m

k=1 k‘GZ

By the bounded overlap property,
1/2]|4 |b
() | sompt
kezZ zel i€l Z

so that, using Remark p.J, one obtains

ZZ ‘big”qm(x) < C)\qZV(B

zel' el v iel

As a conclusion,

m<{xen

which is exactly ([-J). The proof of ([.I0) is therefore complete. C

el

}) <CY V(B) <+ HVfH

el

30



8 Riesz transforms and harmonic functions

Let us now prove Theorem [L.7. The proof goes through a property analogous to (II,) in [f],
the statement of which requires a notion of discrete differential.

8.1 The discrete differential and its adjoint
To begin with, for any v = (z,y),~ = (2/,3') € E (recall that E denotes the set of edges in
'), set
d(v,7") = max(d(z, 2'), d(y,y")).
It is straightforward to check that d is a distance on E. We also define a measure on subsets
on E. For any A C E, set
n(A) = Z Hay-

(z,y)€A

We claim that F, equipped with the metric d and the measure p, is a space of homogeneous
type. Indeed, let v = (a,b) € E and r > 0. Assume first that r > 5. Then, by ([D),

pBOL2) = Y S D Y = V(a2 SOV (a5 ).

d(z,a)<2r, d(y,b)<2r d(z,a)<2r yel’
But . .
V(a7m> = Z Z ,umyg Z Z :u:l:y:,u(B (775))7
d(z,a)< 155 d(y,x)<1 d(z,a)<g d(y,b)<3
since, when d(z,a) < 155 and d(y,r) < 1, then d(y,b0) <2+ 155 < 3.

Assume now that r < 5. One has, using ([J)) again,
1
(B 21)) £ V(0,20 < V(10 £ OV (a,3) = Omlo) < o < Cu(Bl07).

since, whenever x ~ y, one has am(x) < pi,,, by ([A(a]). The claim is therefore proved.

We can then define LP spaces on E in the following way. For 1 < p < 400, say that a
function F' on E belongs to LP(FE) if and only if F' is antisymmetric (which means that
F(z,y) = —F(y,z) for all (z,y) € E) and

1
1F Iy =5 D 1@ 9)I hay < +oo.
(z,y)eE
Observe that the L?(E)-norm derives from the scalar product
1
(F.Gramy =5 Y Fla,y)G(@,y)tay
zyel

Finally, say that F' € L>*(F) if and only if F' is antisymmetric and

1
1N ooy = 5 sup [ F(z,y)] < +oo.
(z,y)EE
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Our notion of discrete differential is the following one: for any function f on I' and any
v = (z,y) € E, define

df(v) = f(y) = f(=).
The function df is clearly antisymmetric on E and is related to the length of the gradient of
f. More precisely, it is not hard to check that, if (A{«]) holds, then for all p € [1, +o0] and

all function f on T,
”df”LP(E) ~ ”vf”LP(F) :
Indeed, if 1 < p < 400, for all function f and all x € T,

IVf(z (Zp Y |f(y) = flz )I)

> v y) [f ) - f@)f
> o, y) 1f(y) = f(2)

where the last line is due to ([A{a]). As a consequence,

VAL~ DO play) |fy) - f@) m(z)

zell y~z

> df (. ) pray

z,yel’

= Ndf o) -

The case when p = 400 is analogous and even easier. We could therefore reformulate

properties ([B]) and (BR)) replacing ||V f{| 1oy by lldf [l o)
Besides d, we also consider its adjoint in L?. If df € L?*(E) and G is any (antisymmetric)
function in L?(FE) such that the function x + Y- p(x,y)G(z,y) belongs to L*(T"), one has

<df7 G)LQ(E) - % Z df(l’, y)G($’, y)umy

ZEZf(y) G(x,y)pay — Zf (T, Y) ey
z,y€el :vyeF

= — Z f 1‘ y My
z,yel’

= Y f@) (Zp(x,y)G(x,y)> m(z).
zel yel

Thus, if we define

0G(x) = plz,y)G(x,y)
y
for all x € T, it follows that

(df, G)r2ey = —(f,0G) 12(r)
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whenever f € L*(T"), dF € L*(FE), G € L*(E) and 6G € L*(T). Notice also that [ —P = —dd.

The following lemma, very similar to Lemma 4.2 in [{], holds:

Lemma 8.1 Assume that (), (B(a]) and (DUE]) hold. There exists C > 0 such that,
for all ball B and all function f € L*(T') supported in B, there erists a unique function
h € Wy*(B) such that
(I—Ph=finD (8.6)
and h satisfies
1Pllwremy < Clfll 2y -
Proof: This proof relies on a Sobolev inequality, which will be used again in the proof of

Theorem and reads as follows: there exist v € (0,1) and C' > 0 such that, for all ball B
with radius r > % and all function f supported in B,

Ifll, < Crv(B)~2 [V ], (8.7)

with ¢ = lf—y This inequality is actually equivalent to a relative Faber-Krahn inequality,

which is itself equivalent to the conjunction of ([[]) and (DUH), see [23, B3, [3, BT, [T, Bg].
Let B and f as in the statement of Lemma B.]. Since I — P = —dd, (B.9) is equivalent to

(dh, dv) 2y = (f,v) L2

for all v € Wy*(B). For all u,v € Wy*(B), set B(u,v) = (du, dv) 12z It is obvious that B
is a continuous bilinear form on W,"*(B). Moreover, for all u € W,?(B),

2 2
Blu,u) = [[dull2agg > cllullfeg -

by (B7) (see also Lemma 4.1 in [[]]). The conclusion of Lemma follows then from the
Lax-Milgram theorem. L

Let F € L*(E). Tt is easy to check that 6F € L*(T") and

10F 2y < NE Ml 22y - (8.8)
Indeed, for all g € L*(T),
z,yel’
z,yel’
1/2 1/2
< (Z |F($ay)|2ﬂx,y> (Z |g($)|2m($)> :
z,yel’ zel

As a consequence of Lemma B1], for all FF € L*(F) with bounded support, there exists a
unique function f € W'2(T') such that (I — P)f = 6F. Since functions in L*(E) with
bounded support are dense in L?(E), we can therefore extend the operator d(I — P)~1§ to
an L*(F)-bounded operator.
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8.2 The proof of Theorem [.7

For all 1 <p < 400, say that (II,) holds if and only if there exists C,, > 0 such that, for all
F € LP(E)N LX(E),
Hd(j - P)_15FHLP(E) S Cp ||F||LP(E)' (Hp)

Since L*(E) N LP(E) is dense in LF(E), if (II,) holds, the operator d(I — P)~'§ extends to a
bounded operator from LP(E) to itself.
Let us now turn to the proof of Theorem [[.7. Let py > 2 and ¢ € (2, py). Denote by (2') the
following property:

for all p € (2,¢), (II,) holds. (2)
We show that, for some py > 2, if ¢ € (2,pp), then 2. = 2. = 1. = 2.
Proof of 2. = 2. In order to apply Theorem 2.3 in [JJ], observe first that E, equipped
with the metric d and the measure u, is a space of homogeneous type. Let 2 < p < p < q.
Consider F' € L*(E)N LP(E) with bounded support included in £\ 64B where B is a ball in
E centered at v = (a,b) and with radius 7. Lemma B and (B-§) therefore yield a function
h e W”(T) such that (I — P)h = 6F with ||h[ly o) < C0F |2y < C | F || p2(m
If » > = then the function h is harmonic in B(a 327“) Indeed, if E B(a,32r) \8B(a, 32r),

(I — P)h(x) =0F(x pry

Yy~

When = € B(a,32r) and y ~ z, d(y,b) < d(x,a) + 2 < 64r, so that F(z,y) = 0. It follows
from (RHj;) that

(ﬁ 3 \Vh(x)\ﬁm«c))

zeB

il

<C (@ 3 |Vh(:c)|2m(:c)> .

z€l6B

Ifr < 1—6, B = 16B and the same inequality holds. This shows that the operator T" defined by
TF = V(I — P)~'6F for all F' with bounded support in E, clearly satisfies the assumptions

of Theorem 2.3 in [B], and this theorem therefore yields
ITEN oy < CollFll o) (8.9)

for all F' with bounded support in E. Since the space of antisymmetric functions on F with
bounded support is dense in LP(E), (B.9) holds for all F' € LP(F), which exactly means that
(I1,) holds. r

Proof of 2. = 1. By Theorem [L.11 and Proposition [L.g, there exists € > 0 such that (RR,)
holds for all ¢ € (2 —¢,2). It is therefore enough to check that the conjunction of (II,) and
(RR,) implies (R,), with 1 + 1 = 1. But, if f € L?(T) N L*(T) and G € LP(E) N L*(E),

(AL = P)2f,G)ram)| = (= P)"2f,6G) 12|
[(f. (I = P)"Y%6G) 12|

IA I

gy 12 = PY26G L
= ||f||LP(F) HI Pl/Q(I P 15GHLP
< N oy |4 = PYTROG L
<

Clf Moy 1GN Ly »
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which ends the proof. r

Proof of 1. = 3. Assume now that (R,) holds for some p € (2,¢). Let B be a ball with
center xg and radius k£ and u a function harmonic in 325, and fix a function ¢ supported in
3B, equal to 1 in 2B and satisfying 0 < ¢ < 1 and ||Vl < <. Up to an additive constant,
one may assume that the mean value of v in 16 B is 0. In order to control the left-hand side

of (RH)), it suffices to estimate Y~ [V (uy)(x)[" m(x).
As in [[] p. 35 and [J], Section 2.4, write

k2—1
up = P¥(up) + > P'(I — P)(up),
=0
so that .
V(up) <V (Pk2 (ugo)) + 3"V (P = P)(ugp)). (8.10)

1=0
To treat the first term in the right-hand side of (B.10), fix p € (p,q) and notice that, since
(R,) holds by assumption, it follows that & ‘VP’§2
Lemma [L.9, one obtains that

is L°(I')-bounded. Then, arguing as in

. 1/2
704]]62 /

1/p
(ﬁZWPZf(x)]pm(ﬂfO Sce\/jl V(21jB) S /(@) mix) ®.11)

reB zeCj(B)

for all j > 1, all I € {1,...,k?} and all function f supported in C;(B). It follows at once
from (B.11) applied with f = uep, the fact that u has zero integral on 16B and the Poincaré
inequality (FP) that

1 . p O A , i
(W;\vpk (ug) ()] m<x>) < - (mxguw m<x>)

1/2
< C (ﬁ > |Vu(x)|2m(:p)> .

z€l6B

(8.12)

Let us now turn to the second term in (B.10). A calculation shows that, for all z € T,

(I = P)up)(x) = > plz,y)((up)(@) - (up)(y))

= Y play)ul@)(e(z) — o) + > pla,y)(u(z) — uy))(ely) — ¢(=))
+ > plr,y)(ule) —uly))p(@)

= zyjf(:c) + va(x) + v3(2).
(8.13)

35



For all z € T', v3(x) = 0 since u is harmonic in 32B. Because of the support condition on ¢,
one may apply (B-11) to ve, and since ||Vy|| . < C/k, one obtains

1/p 1/2
(ﬁZ’VPlvg(x)’pm(xO <@ < ) (8.14)

forall 1 <[ <Ek?—1.
For vy, write

20i(x) = Y ple,y)(u(x) +uy)(e(@) = e(y) + Y ple,y)(u(@) = uy)(e(r) - ¢(y))
= 5%@) — (), ’

where, for all (z,y) € E,

Fa,y) = (u(z) + uy))(e(z) — ¢(y))

is antisymmetric, belongs to L?(E) and is supported in B((zq, o), 4k) \ B((zo, z0), 2k). Tt is
therefore enough to show that, for all 1 <1 < k? — 1,

(ZWPZ&M)M@) <= VB 20, 40 2 P )F s

reB ($7y)EB((:L‘0,1‘0)7419)\B(($07$0),2k‘)
(8.15)

To prove this inequality, if [ = 2m, write VP'SF = VP™P™JF. We establish (B13) by
arguments similar to the proof of Lemma [£.9, combining (.4) and an inequality analogous

to (B4 and derived by duality (see the proof of (2.6) in [f]). We finally obtain

X 1/p o 1/2
(W; ‘VPlvl(az)‘p m(az)) < B Z |Vu(x ) (8.16)

r€4B

for all 1 <1 < k* —1. Summing up (B.14) and (B.16) for 1 < < k* — 1, we obtain

K21 1/p 1/2
( ZV<Z (P'(1 - p)(m))()pm@) ( 7i6E) 2 | Vu@ >> .

:BEB r€el6B

What remains to be treated in (B.10) is the term V(I — P)(uyp). By (B.13),

1 1 1

7 19U = Pty < 57 90 sy + 3707 1Vl (819)

Let us first deal with v;. By (R,),

VoLl oy < C (1= P)20ul] iy < Cllonll ey
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where the last inequality follows from the LP-boundedness of (I — P)"/? (see B9, p. 423 and
also [19)). But v is supported in 4B and, for all z € 4B,

(@) < T fu(@)].

As a consequence,

C
lillzoqry = £ Mull sy < 7 lwtllioss) »

C
k
where 1) is a nonnegative function equal to 1 on 45, supported in 8 B and satisfying ||V || <
€. Now, (B7) shows that, if o = = and p € (2, o),

1 1 C

R - - —v/2
V(B)l/p ||uw||LP(SB) < V(SB)I/qO ||U¢||qu(83) < V(SB)l/‘IO kV (8B) ||V(u¢)||L2(SB)'

Using now the fact that § = % — qLO, we finally conclude
1 C
V(BT o1l oy < V(SB)? IV () 2sp) < V(6B IVull 2165 - (8.19)
where the last inequality is due (P,). All these computations yield
1 C
o VUil ey < V(I6B) IVull 216 (8.20)

V(B)/»

We argue similarly for v,. We just have to notice that, for all x € 4B,

@) < o 3 ()P + ()P,

hence
> @) m(e) < o 3 S ) m) + o 3 3 ()P m(a).

Since m(z) < Cm(y) whenever = ~ y (this is a straightforward consequence of ([[) and was
noticed in [B3, Section 4.2) and §{y € I'; y ~ z} < N, we finally obtain that

> (@) m(z) < o 3 ula) P m(a),

x€4B re8B

and we conclude as for v; that

1 C
vy IVeeleo = gy 1Vlieen (8.21)
Summing up BI32), (BI7, (B:20) and (B.2])), we obtain that (RH,) holds. -

As far as Proposition is concerned, its proof is entirely similar to the one of Proposition
2.2 in [f] and will therefore be skipped. Let us just mention that it relies on an elliptic
Caccioppoli inequality (analogous to the Euclidean version, see [BJ]), Proposition and
Gehring’s self-improvement of reverse Holder inequalities ([B2]). C
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Appendix

@t
41
Stirling formula shows a; ~ \/% Therefore, there exists C' > 0 such that, for all { > 1,

We prove Lemma (1. For all [ > 0, g and, as already used in Section [q, the

C
O<ag < —.

Vi

Assume first that mk? < [ < (m + 1)k? for some integer 0 < m < n. For each integer j > 0

such that jk* < [, one has [ — jk* > 0 and j < m, so that |a_j2| < \/lc‘kQ < \/l,c = It
—J m.

follows at once that

C

di| € ——==
[ — mk?
for some C' > 0 only depending on n.
Assume now that [ = (m + 1)k? for some 0 < m < n. For each j > 0 such that jk% <1
and [ — jk* > 0, one has j < m again, so that |a;_j2| < 17 = % < C. Moreover, ag = 1.
One therefore has

ld)| < C+ O <O,

where, again, C' only depends on n.
Finally, assume that [ > (n 4+ 1)k*. The classical computation of Wallis integrals shows
that

2 [2
a; = —/ (sint)® dt = (1)
0

7

2 [3

where, for all z > 0, p(z) = — / (sint)* dt. We can then invoke (B-4) and are therefore
™ Jo

left with the task of estimating ™. But, for all z > 0,

2

o™ ()] = -

/ (2logsin t)" e*@lossint gp| <

2 2
/ |21ogsin t|" e*@lossint gy . — 2 ().
0 m m

We now argue as in the “Laplace” method. For all § € (O, g), one clearly has, for all x > 1,

279 _ 3 _
0<I(x) < / |210gsint|"62xl°g$ntdt+/ |21log sin t|" e*@ossint gt
’ 279 (8.1)

< (s (2 - 5))2”_2 (1) + Ju(2) = Crsa® 2 + Jo(x)

3

where C,5 > 0 only depends on n and 4, 0 < a = sin (% —5) < 1 and J,(z) =

us

/ |21log sin t|" e27lossint gy

™

2
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5
Observe now that J,(z) = / 2 1og cos u|" e*7 198y, Since log(cosu) ~ —% when
0
u — 0, we fix § > 0 such that, for all 0 < u <, —3u? <log(cosu) < —3u?, which implies

5
Jo(z) < C ue” 2" dy

0

1\ e 2 )

< C (—) / VeV dv < Cx "3,
ez 0

It follows from (B.]) and (B.3) that, for all z > 1,

(8.2)

o™ (@) < Ca "3,

which, joined with (B.4), yields assertion (774) in Lemma [, the proof of which is now
complete. L
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