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Let Γ be a graph endowed with a reversible Markov kernel p, and P the associated operator, defined by P f (x) = y p(x, y)f (y). Denote by ∇ the discrete gradient. We give necessary and/or sufficient conditions on Γ in order to compare ∇f p and (I -P ) 1/2 f p uniformly in f for 1 < p < +∞. These conditions are different for p < 2 and p > 2. The proofs rely on recent techniques developed to handle operators beyond the class of Calderón-Zygmund operators. For our purpose, we also prove Littlewood-Paley inequalities and interpolation results for Sobolev spaces in this context, which are of independent interest.

Introduction and results

It is well-known that, if n ≥ 1, ∇f L p (R n ) and (-∆) 1/2 f L p (R n ) are comparable uniformly in f for all 1 < p < +∞. This fact means that the classical Sobolev space W 1,p (R n ) defined by means of the gradient coincides with the Sobolev space defined through the Laplace operator. This is interesting in particular because ∇ is a local operator, while (-∆) 1/2 is not.

Generalizations of this result to geometric contexts can be given. On a Riemannian manifold M, it was asked by Strichartz in [START_REF] Strichartz | Analysis of the Laplacian on the complete Riemannian manifold[END_REF] whether, if 1 < p < +∞, there exists C p > 0 such that, for all function f ∈ C ∞ 0 (M),

C -1 p ∆ 1/2 f p ≤ |df | p ≤ C p ∆ 1/2 f p , (1.1) 
where ∆ stands for the Laplace-Beltrami operator on M and d for the exterior differential. Under suitable assumptions on M, which can be formulated, for instance, in terms of the volume growth of balls in M, uniform L 2 Poincaré inequalities on balls of M, estimates on the heat semigroup (i.e. the semigroup generated by ∆) or the Ricci curvature, each of the two inequalities contained in (1.1) holds for a range of p's (which is, in general, different for the two inequalities). The second inequality in (1.1) means that the Riesz transform d∆ -1/2 is L p -bounded. We refer to ( [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF][START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF][START_REF] Bakry | Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée[END_REF][START_REF] Coulhon | Riesz transforms for 1 ≤ p ≤ 2[END_REF]) and the references therein.

In the present paper, we consider a graph equipped with a discrete gradient and a discrete Laplacian and investigate the corresponding counterpart of (1.1). To that purpose, we prove, among other things, an interpolation result for Sobolev spaces defined via the differential, similar to those already considered in [START_REF] Ostrovskii | Sobolev spaces on graphs[END_REF], as well as L p bounds for Littlewood-Paley functionals.

Presentation of the discrete framework

Let us give precise definitions of our framework. The following presentation is partly borrowed from [START_REF] Delmotte | Parabolic Harnack inequality[END_REF]. Let Γ be an infinite set and µ xy = µ yx ≥ 0 a symmetric weight on Γ × Γ. We call (Γ, µ) a weighted graph. In the sequel, we write most of the time Γ instead of (Γ, µ), somewhat abusively. If x, y ∈ Γ, say that x ∼ y if and only if µ xy > 0. Denote by E the set of edges in Γ, i.e. E = {(x, y) ∈ Γ × Γ; x ∼ y} , and notice that, due to the symmetry of µ, (x, y) ∈ E if and only if (y, x) ∈ E. For x, y ∈ Γ, a path joining x to y is a finite sequence of edges x 0 = x, ..., x N = y such that, for all 0 ≤ i ≤ N -1, x i ∼ x i+1 . By definition, the length of such a path is N. Assume that Γ is connected, which means that, for all x, y ∈ Γ, there exists a path joining x to y. For all x, y ∈ Γ, the distance between x and y, denoted by d(x, y), is the shortest length of a path joining x and y. For all x ∈ Γ and all r ≥ 0, let B(x, r) = {y ∈ Γ, d(y, x) ≤ r}.

In the sequel, we always assume that Γ is locally uniformly finite, which means that there exists N ∈ N * such that, for all x ∈ Γ, ♯B(x, 1) ≤ N(here and after, ♯A denotes the cardinal of any subset A of Γ). If B = B(x, r) is a ball, set αB = B(x, αr) for all α > 0, and write C 1 (B) = 4B and C j (B) = 2 j+1 B \ 2 j B for all integer j ≥ 2. For any subset A ⊂ Γ, set ∂A = {x ∈ A; ∃y ∼ x, y / ∈ A} .

For all x ∈ Γ, set m(x) = y∼x µ xy . We always assume in the sequel that m(x) > 0 for all

x ∈ Γ. If A ⊂ Γ, define m(A) = x∈A m(x)
. For all x ∈ Γ and r > 0, write V (x, r) instead of m(B(x, r)) and, if B is a ball, m(B) will be denoted by V (B). For all 1 ≤ p < +∞, say that a function f on Γ belongs to L p (Γ, m) (or L p (Γ)) if

f p := x∈Γ |f (x)| p m(x) 1/p < +∞. Say that f ∈ L ∞ (Γ, m) (or L ∞ (Γ)) if f ∞ := sup x∈Γ |f (x)| < +∞.
Define p(x, y) = µ xy /m(x) for all x, y ∈ Γ. Observe that p(x, y) = 0 if d(x, y) ≥ 2. Set also p 0 (x, y) = δ(x, y)

and, for all k ∈ N and all x, y ∈ Γ, p k+1 (x, y) = z∈Γ p(x, z)p k (z, y).

The p k 's are called the iterates of p. Notice that, for all x ∈ Γ, there are at most N non-zero terms in this sum. Observe also that, for all x ∈ Γ, y∈Γ p(x, y) = 1 (1.2)

and, for all x, y ∈ Γ, p(x, y)m(x) = p(y, x)m(y).

(1.3) For all function f on Γ and all x ∈ Γ, define P f (x) = y∈Γ p(x, y)f (y) (again, this sum has at most N non-zero terms). Since p(x, y) ≥ 0 for all x, y ∈ Γ and (1.2) holds, one has, for all p ∈ [1, +∞] and all f ∈ L p (Γ),

P f L p (Γ) ≤ f L p (Γ) . (1.4) 
We make use of the operator P to define a Laplacian on Γ. Consider a function f ∈ L 2 (Γ).

By (1.4), (I -P )f ∈ L 2 (Γ) and

(I -P )f, f L 2 (Γ) = x,y p(x, y)(f (x) -f (y))f (x)m(x) = 1 2 x,y p(x, y) |f (x) -f (y)| 2 m(x), (1.5) 
where we use (1.2) in the first equality and (1.3) in the second one. If we define now the operator "length of the gradient" by

∇f (x) = 1 2 y∈Γ p(x, y) |f (y) -f (x)| 2 1/2
for all function f on Γ and all x ∈ Γ (this definition is taken from [START_REF] Coulhon | Random walks on graphs with regular volume growth[END_REF]), (1.5) shows that

(I -P )f, f L 2 (Γ) = ∇f 2 L 2 (Γ) . (1.6) 
Because of (1.3), the operator P is self-adjoint on L 2 (Γ) and I -P , which, by (1.6) , can be considered as a discrete "Laplace" operator, is non-negative and self-adjoint on L 2 (Γ). By means of spectral theory, one defines its square root (I -P ) 1/2 . The equality (1.6) exactly means that (

I -P ) 1/2 f L 2 (Γ) = ∇f L 2 (Γ) . (1.7) 
This equality has an interpretation in terms of Sobolev spaces defined through ∇. Let 1 ≤ p ≤ +∞. Say that a scalar-valued function f on Γ belongs to the (inhomogeneous) Sobolev space W 1,p (Γ) (see also [START_REF] Ostrovskii | Sobolev spaces on graphs[END_REF], [START_REF] Gol'dshtein | Axiomatic theory of Sobolev Spaces[END_REF]) if and only if

f W 1,p (Γ) := f L p (Γ) + ∇f L p (Γ) < +∞.
If B is any ball in Γ and 1 ≤ p ≤ +∞, denote by W 1,p 0 (B) the subspace of W 1,p (Γ) made of functions supported in B.

We will also consider the homogeneous versions of Sobolev spaces. For 1 ≤ p ≤ +∞, define Ė1,p (Γ) as the space of all scalar-valued functions f on Γ such that ∇f ∈ L p (Γ), equipped with the semi-norm f Ė1,p (Γ) := ∇f L p (Γ) .

Then Ẇ 1,p (Γ) is the quotient space Ė1,p (Γ)/R, equipped with the corresponding norm. It is then routine to check that both inhomogeneous and homogeneous Sobolev spaces on Γ are Banach spaces.

The equality (1.7) means that (

I -P ) 1/2 f L 2 (Γ) = f Ė1,2 (Γ)
. In other words, for p = 2, the Sobolev spaces defined by ∇ and by the Laplacian coincide. In the sequel, we address the analogous question for p = 2.

Statement of the problem

To that purpose, we consider separately two inequalities, the validity of which will be discussed in the sequel. Let 1 < p < +∞. The first inequality we look at says that there exists C p > 0 such that, for all function f on Γ such that (

I -P ) 1/2 f ∈ L p (Γ), ∇f p ≤ C p (I -P ) 1/2 f p . (R p )
This inequality means that the operator ∇(I -P ) -1/2 , which is nothing but the Riesz transform associated with (I -P ), is L p (Γ)-bounded. Here and after, say that a (sub)linear operator T is L p -bounded, or is of strong type (p, p), if there exists

C > 0 such that T f p ≤ C f p for all f ∈ L p (Γ). Say that it is of weak type (p, p) if there exists C > 0 such that m ({x ∈ Γ, |T f (x)| > λ}) ≤ C λ p f p p for all f ∈ L p (Γ)
and all λ > 0. Notice that he functions f will be defined on Γ, whereas T f may be defined on Γ or on E. The second inequality under consideration says that there exists C p > 0 such that, for all function f ∈ Ė1,p (Γ), (I -P ) 1/2 f p ≤ C p ∇f p .

(RR p ) (The notations (R p ) and (RR p ) are borrowed from [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF].) We have just seen, by (1.7), that (R 2 ) and (RR 2 ) always hold. A well-known fact (see [START_REF] Russ | Riesz transforms on graphs for 1 ≤ p ≤ 2[END_REF] for a proof in this context) is that, if (R p ) holds for some 1 < p < +∞, then (RR p ) holds with p ′ such that 1/p + 1/p ′ = 1, while the converse is unclear in this discrete situation (it is false in the case of Riemannian manifolds, see [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF]). As we will see, we have to consider four distinct issues: (R p ) for p < 2, (R p ) for p > 2, (RR p ) for p < 2, (RR p ) for p > 2.

1.3 The L p -boundedness of the Riesz transform Let us first consider (R p ) when p < 2. This problem was dealt with in [START_REF] Russ | Riesz transforms on graphs for 1 ≤ p ≤ 2[END_REF], and we just recall the result proved therein, which involves some further assumptions on Γ. The first one is of geometric nature. Say that (Γ, µ) satisfies the doubling property if there exists C > 0 such that, for all x ∈ Γ and all r > 0,

V (x, 2r) ≤ CV (x, r). (D)
Note that this assumption implies that there exist C, D > 0 such that, for all x ∈ Γ, all r > 0 and all θ > 1, V (x, θr) ≤ Cθ D V (x, r).

(1.8)

Remark 1.1 Observe also that, since (Γ, µ) is infinite, it is also unbounded (since it is locally uniformly finite) so that, if (D) holds, then m(Γ) = +∞ (see [START_REF] Martell | Desigualdades con pesos en el Análisis de Fourier: de los espacios de tipo homogéneo a las medidas no doblantes[END_REF]).

The second assumption on (Γ, µ) is a uniform lower bound for p(x, y) when x ∼ y, i.e. when p(x, y) > 0. For α > 0, say that (Γ, µ) satisfies the condition ∆(α) if, for all x, y ∈ Γ,

(x ∼ y ⇔ µ xy ≥ αm(x)) and x ∼ x. (∆(α))
The next two assumptions on (Γ, µ) are pointwise upper bounds for the iterates of p. Say that (Γ, µ) satisfies (DUE) (a on-diagonal upper estimate for the iterates of p) if there exists C > 0 such that, for all x ∈ Γ and all k ∈ N * ,

p k (x, x) ≤ Cm(x) V (x, √ k) . (DUE)
Say that (Γ, µ) satisfies (UE) (an upper estimate for the iterates of p) if there exist C, c > 0 such that, for all x, y ∈ Γ and all k ∈ N * ,

p k (x, y) ≤ Cm(x) V (x, √ k) e -c d 2 (x,y) k . (UE)
Recall that, under assumption (D), estimates (DUE) and (UE) are equivalent (and the conjunction of (D) and (DUE) is also equivalent to a Faber-Krahn inequality, [START_REF] Coulhon | Random walks on graphs with regular volume growth[END_REF], Theorem 1.1). The following result holds: [START_REF] Russ | Riesz transforms on graphs for 1 ≤ p ≤ 2[END_REF]) Under assumptions (D), (∆(α)) and (DUE), (R p ) holds for all 1 < p ≤ 2. Moreover, the Riesz transform is of weak (1, 1) type, which means that there exists C > 0 such that, for all λ > 0 and all function f ∈ L 1 (Γ),

Theorem 1.2 ([
m x ∈ Γ; ∇(I -P ) -1/2 f (x) > λ ≤ C λ f 1 .
As a consequence, under the same assumptions, (RR p ) holds for all 2 ≤ p < +∞.

Notice that, according to [START_REF] Hebisch | Gaussian estimates for Markov chains and random walks on groups[END_REF], the assumptions of Theorem 1.2 hold, for instance, when Γ is the Cayley graph of a group with polynomial volume growth and p(x, y) = h(y -1 x), where h is a symmetric bounded probability density supported in a ball and bounded from below by a positive constant on an open generating neighborhood of e, the identity element of G, and actually Theorem 1.2 had already been proved in [START_REF] Hebisch | Gaussian estimates for Markov chains and random walks on groups[END_REF].

The case when p > 2

When p > 2, assumptions (D), (UE) and (∆(α)) are not sufficient to ensure the validity of (R p ), as the example of two copies of Z 2 linked between with an edge shows (see [START_REF] Russ | Riesz transforms on graphs for 1 ≤ p ≤ 2[END_REF], Section 4). More precisely, in this example, as explained in Section 4 of [START_REF] Russ | Riesz transforms on graphs for 1 ≤ p ≤ 2[END_REF], the validity of (R p ) for p > 2 would imply an L 2 Poincaré inequality on balls. Say that (Γ, µ) satisfies a scaled L 2 Poincaré inequality on balls (this inequality will be denoted by (P 2 ) in the sequel) if there exists C > 0 such that, for any x ∈ Γ, any r > 0 and any function f locally square integrable on Γ such that ∇f is locally square integrable on E,

y∈B(x,r) |f (y) -f B | 2 m(y) ≤ Cr 2 y∈B(x,r) |∇f (y)| 2 m(y), ( P 2 ) 
where

f B = 1 V (B) x∈B f (x)m(x)
is the mean value of f on B. Under assumptions (D), (P 2 ) and (∆(α)), not only does (UE) hold, but the iterates of p also satisfy a pointwise Gaussian lower bound. Namely, there exist c 1 , C 1 , c 2 , C 2 > 0 such that, for all n ≥ 1 and all x, y ∈ Γ with d(x, y) ≤ n,

c 1 m(x) V (x, √ n) e -C 1 d 2 (x,y) n ≤ p n (x, y) ≤ C 2 m(x) V (x, √ n) e -c 2 d 2 (x,y) n . (LUE)
Actually, (LUE) is equivalent to the conjunction of (D), (P 2 ) and (∆(α)), and also to a discrete parabolic Harnack inequality, see [START_REF] Delmotte | Parabolic Harnack inequality[END_REF] (see also [START_REF] Auscher | Gaussian lower bounds for random walks from elliptic regularity[END_REF] for another approach of (LUE)). Let p > 2 and assume that (R p ) holds. Then, if f ∈ L p (Γ) and n ≥ 1,

∇P n f p ≤ C p √ n f p . (G p )
Indeed, (R p ) implies that

∇P n f p ≤ C p (I -P ) 1/2 P n f p ,
and, due to the analyticity of P on L p (Γ), one also has

(I -P ) 1/2 P n f p ≤ C ′ p √ n f p .
More precisely, as was explained in [START_REF] Russ | Riesz transforms on graphs for 1 ≤ p ≤ 2[END_REF], assumption ∆(α) implies that -1 does not belong to the spectrum of P on L 2 (Γ). As a consequence, P is analytic on L 2 (Γ) (see [START_REF] Coulhon | Puissances d'un opérateur régularisant[END_REF], Proposition 3), and since P is submarkovian, P is also analytic on L p (Γ) (see [START_REF] Coulhon | Puissances d'un opérateur régularisant[END_REF], p. 426). Proposition 2 in [START_REF] Coulhon | Puissances d'un opérateur régularisant[END_REF] therefore yields the second inequality in (G p ). Thus, condition (G p ) is necessary for (R p ) to hold. Our first result is that, under assumptions (D), (P 2 ) and (∆(α)), for all q > 2, condition (G q ) is also sufficient for (R p ) to hold for all 2 < p < q:

Theorem 1.3 Let p 0 ∈ (2, +∞]. Assume that (Γ, µ) satisfies (D), (P 2 ), (∆(α)) and (G p 0 ).

Then, for all 2 ≤ p < p 0 , (R p ) holds. As a consequence, if p ′ 0 is such that 1/p 0 + 1/p ′ 0 = 1, (RR p ) holds for all p ′ 0 < p ≤ 2.

An immediate consequence of Theorem 1.3 and the previous discussion is the following result:

Theorem 1.4 Assume that (Γ, µ) satisfies (D), (P 2 ) and (∆(α)). Let p 0 ∈ (2, +∞]. Then, the following two assertions are equivalent:

(i) for all p ∈ (2, p 0 ), (G p ) holds, (ii) for all p ∈ (2, p 0 ), (R p ) holds.

Remark 1.5 In the recent work [START_REF] Dungey | A Littewood-Paley-Stein estimate on graphs and groups[END_REF], property (G p ) is shown to be true for all p ∈ (1, 2] under the sole assumption that Γ satisfies a local doubling property for the volume of balls.

Remark 1.6 On Riemannian manifolds, the L 2 Poincaré inequality on balls is neither necessary, nor sufficient to ensure that the Riesz transform is L p -bounded for all p ∈ (2, ∞), see [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF] and the references therein. We do not know if the corresponding assertion holds in the context of graphs.

Riesz transforms and harmonic functions

We also obtain another characterization of the validity of (R p ) for p > 2 in terms of reverse Hölder inequalities for the gradient of harmonic functions, in the spirit of [START_REF] Shen | Bounds of Riesz transforms on L p spaces for second order elliptic operators[END_REF] (in the Euclidean context for second order elliptic operators in divergence form) and [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF] (on Riemannian manifolds). If B is any ball in Γ and u a function on B, say that u is harmonic on B if, for all x ∈ B \ ∂B, (I -P )u(x) = 0.

(1.9)

We will prove the following result:

Theorem 1.7 Assume that (D), (∆(α)) and (P 2 ) hold. Then, there exists p 0 ∈ (2, +∞] such that, for all q ∈ (2, p 0 ), the following two conditions are equivalent:

1. (R p ) holds for all p ∈ (2, q), 2. for all p ∈ (2, q), there exists C p > 0 such that, for all ball B ⊂ Γ, all function u harmonic in 32B,

1 V (B) x∈B |∇u(x)| p m(x) 1 p ≤ C p 1 V (16B) x∈16B |∇u(x)| 2 m(x) 1 2 
.

(RH p ) Assertion 3. says that the gradient of any harmonic function in 32B satisfies a reverse Hölder inequality. Remember that such an inequality always holds for solutions of div(A∇u) = 0 on any ball B ⊂ R n , if u is assumed to be in H 1 (B) and A is bounded and uniformly elliptic (see [START_REF] Meyers | An L p estimate for the gradient of solutions of second order elliptic divergence equations[END_REF]). In the present context, a similar self-improvement result can be shown:

Proposition 1.8 Assume that (D), (∆(α)) and (P 2 ) hold. Then there exists p 0 > 2 such that (RH p ) holds for any p ∈ (2, p 0 ). As a consequence, (R p ) holds for any p ∈ (2, p 0 ).

As a corollary of Theorem 1.2 and Proposition 1.8, we get:

Corollary 1.9 Assume that (D), (∆(α)) and (P 2 ) hold. Then, there exists ε > 0 such that, for all 2ε < p < 2 + ε, ∇f p ∼ (I -P ) 1/2 f p .

The reverse inequality

Let us now focus on (RR p ). As already seen, (RR p ) holds for all p > 2 under (D), (∆(α)) and (DUE), and for all p ′ 0 < p < 2 under (D), (P 2 ), (∆(α)) and (G p 0 ) if p 0 > 2 and 1/p 0 + 1/p ′ 0 = 1. However, we can also give a sufficient condition for (RR p ) to hold for all p ∈ (q 0 , 2) (for some q 0 < 2) which does not involve any assumption such that (G p 0 ). For 1 ≤ p < +∞, say that (Γ, µ) satisfies a scaled L p Poincaré inequality on balls (this inequality will be denoted by (P p ) in the sequel) if there exists C > 0 such that, for any x ∈ Γ, any r > 0 and any function f on Γ such that |f | p and |∇f | p are locally integrable on Γ,

y∈B(x,r) |f (y) -f B | p m(y) ≤ Cr p y∈B(x,r) |∇f (y)| p m(y). (P p )
If 1 ≤ p < q < +∞, then (P p ) implies (P q ) (this is a very general statement on spaces of homogeneous type, i.e. on metric measured spaces where (D) holds, see [START_REF] Hajlasz | Sobolev met Poincaré[END_REF]). The converse implication does not hold but an L p Poincaré inequality still has a self-improvement in the following sense:

Proposition 1.10 Let (Γ, µ) satisfy (D). Then, for all p ∈ (1, +∞), if (P p ) holds, there exists ε > 0 such that (P p-ε ) holds.

This deep result actually holds in the general context of spaces of homogeneous type, i.e. when (D) holds, see [START_REF] Keith | The Poincaré inequality is an open ended condition[END_REF].

Assuming that (P q ) holds for some q < 2, we establish (RR p ) for q < p < 2:

Theorem 1.11 Let 1 ≤ q < 2.
Assume that (D), (∆(α)) and (P q ) hold. Then, for all q < p < 2, (RR p ) holds. Moreover, there exists C > 0 such that, for all λ > 0,

m x ∈ Γ; (I -P ) 1/2 f (x) > λ ≤ C λ q ∇f q q .
(1.10)

As a corollary of Theorem 1.2, Proposition 1.10 and Theorem 1.11, we get the following consequence:

Corollary 1.12 Assume that (D), (∆(α)) and (P p ) hold for some p ∈ (1, 2). Then, there exists ε > 0 such that, for all pε < q < +∞, (RR q ) holds. In particular, (RR p ) holds.

An overview of the method

Let us briefly describe the proofs of our results. Let us first consider Theorem 1.3. The operator T = ∇(I -P ) -1/2 can be written as

T = ∇ +∞ k=0 a k P k ,
where the a k 's are defined by the expansion

(1 -x) -1/2 = +∞ k=0 a k x k (1.11) for -1 < x < 1.
The kernel of T is therefore given by

∇ x +∞ k=0 a k p k (x, y) .
It was proved in [START_REF] Russ | H 1 -L 1 boundedness of Riesz transforms on Riemannian manifolds and on graphs[END_REF] that, under (D) and (P 2 ), this kernel satisfies the Hörmander integral condition, which implies the H 1 (Γ) -L 1 (Γ) boundedness of T and therefore its L p (Γ)boundedness for all 1 < p < 2, where H 1 (Γ) denotes the Hardy space on Γ defined in the sense of Coifman and Weiss ([18]). However, the Hörmander integral condition does not yield any information on the L p -boundedness of T for p > 2. The proof of Theorem 1.3 actually relies on a theorem due to Auscher, Coulhon, Duong and Hofmann ( [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF]), which, given some p 0 ∈ (2, +∞], provides sufficient conditions for an L 2 -bounded sublinear operator to be L p -bounded for 2 < p < p 0 . Let us recall this theorem here in the form to be used in the sequel for the sake of completeness (see [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF], Theorem 2.1, [2], Theorem 2.2):

Theorem 1.13 Let p 0 ∈ (2, +∞].
Assume that Γ satisfies the doubling property (D) and let T be a sublinear operator acting on L 2 (Γ). For any ball B, let A B be a linear operator acting on L 2 (Γ), and assume that there exists C > 0 such that, for all f ∈ L 2 (Γ), all x ∈ Γ and all ball B ∋ x,

1 V 1/2 (B) T (I -A B )f L 2 (B) ≤ C M(|f | 2 ) 1/2 (x) (1.12) and 1 V 1/p 0 (B) T A B f L p 0 (B) ≤ C M(|T f | 2 ) 1/2 (x). (1.13) If 2 < p < p 0 and if, for all f ∈ L p (Γ), T f ∈ L p (Γ), then there exists C p > 0 such that, for all f ∈ L 2 (Γ) ∩ L p (Γ), T f L p (Γ) ≤ C p f L p (Γ) .
Notice that, to simplify the notations in our foregoing proofs, the formulation of Theorem 1.13 is slightly different from the one given in [START_REF] Auscher | On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF] and in [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF], since the family of operators (A r ) r>0 used in these papers is replaced by a family (A B ) indexed by the balls B ⊂ Γ, see Remark 5 after Theorem 2.2 in [START_REF] Auscher | On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]. Observe also that this theorem extends to vector-valued functions (this will be used in Section 3). Finally, here and after, M denotes the Hardy-Littlewood maximal function: for any locally integrable function f on Γ and any x ∈ Γ,

Mf (x) = sup B∋x 1 V (B) y∈B |f (y)| m(y),
where the supremum is taken over all balls B containing x. Recall that, by the Hardy-Littlewood maximal theorem, since (D) holds, M is of weak type (1, 1) and of strong type (p, p) for all 1 < p ≤ +∞. Following the proof of Theorem 2.1 in [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF], we will obtain Theorem 1.3 by applying Theorem 1.13 with

A B = I -(I -P k 2 ) n
where k is the radius of B and n is an integer only depending from the constant D in (1.8).

As far as Theorem 1.11 is concerned, note first that (RR p ) cannot be derived from (R p ′ ) in this situation (where 1/p + 1/p ′ = 1), since we do not know whether (R p ′ ) holds or not under these assumptions. Following [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF], we first prove (1.10). The proof relies on a Calderón-Zygmund decomposition for Sobolev functions, which is the adaptation to our context of Proposition 1.1 in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF] (see also [START_REF] Auscher | On L p estimates for square roots of second order elliptic operators on R n[END_REF] in the Euclidean case and [START_REF] Auscher | Weighted norm inequalities, off-diagonal estimates and elliptic operators: Part IV[END_REF] for the extension to a weighted Lebesgue measure): Proposition 1.14 Assume that (D) and (P q ) hold for some q ∈ [1, ∞) and let p ∈ [q, +∞). Let f ∈ Ė1,p (Γ) and α > 0. Then one can find a collection of balls (B i ) i∈I , functions (b i ) i∈I ∈ Ė1,q (Γ) and a function g ∈ Ė1,∞ such that the following properties hold:

f = g + i∈I b i , (1.14) ∇g ∞ ≤ Cα, (1.15 
)

supp b i ⊂ B i , x∈B i |∇b i | q (x)m(x) ≤ Cα q V (B i ), (1.16) i∈I V (B i ) ≤ Cα -p x∈Γ |∇f | p (x)m(x), (1.17) i∈I χ B i ≤ N, (1.18) 
where C and N only depend on q, p and on the constants in (D) and (P q ).

As in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF], we rely on this Calderón-Zygmund decomposition to establish (1.10). The argument also uses the L p (Γ)-boundedness, for all 2 < p < +∞, of a discrete version of the Littlewood-Paley-Stein g-function (see [START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF]), which does not seem to have been stated before in this context and is interesting in itself. For all function f on Γ and all x ∈ Γ, define

g(f )(x) = l≥1 l (I -P )P l f (x) 2 1/2
.

Observe that this is indeed a discrete analogue of the g-function introduced by Stein in [START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF], since (I -P )P l = P l -P l+1 can be seen as a discrete time derivative of P l and P is a Markovian operator.

It is easy to check that the sublinear operator g is bounded in L 2 (Γ). Indeed, as already said, the assumption (∆(α)) implies that the spectrum of P is contained in [a, 1] for some a > -1. As a consequence, P can be written as

P = 1 a λdE(λ),
so that, for all integer l ≥ 1, (I -

P )P l = 1 a (1 -λ)λ l dE(λ)
and, for all f ∈ L 2 (Γ),

(I -P )P l f 2 2 = 1 a (1 -λ) 2 λ 2l dE f,f (λ).
It follows that, for all f ∈ L 2 (Γ),

g(f ) 2 2 = l≥1 l (I -P )P l f 2 2 = 1 a (1 -λ) 2 l≥1 lλ 2l dE f,f (λ) = 1 a λ 1 + λ 2 dE f,f (λ) ≤ f 2 2 .
It turns out that, as in the Littlewood-Paley-Stein semigroup theory, g is also L p -bounded for 1 < p < +∞: Theorem 1.15 Assume that (D), (DUE) and (∆(α)) hold. Let 1 < p < +∞. There exists

C p > 0 such that, for all f ∈ L p (Γ), g(f ) p ≤ C p f p .
Actually, this inequality will only be used for p > 2 in the sequel, but the result, which is interesting in itself, does hold and will be proved for all 1 < p < +∞. Before going further, let us mention that, in [START_REF] Dungey | A Littewood-Paley-Stein estimate on graphs and groups[END_REF], N. Dungey establishes, under a local doubling property for the volume of balls, the L p -boundedness for all p ∈ (1, 2] of another version of the Littlewood-Paley-Stein functional, involving the gradient instead of the "time derivative" and the (continuous time) semigroup generated by I -P . Although we do not use Dungey's result here, it may prove useful to study the boundedness of Riesz transforms on graphs. The proof of Theorem 1.15 for p > 2 relies on the vector-valued version of Theorem 1.13, while, for p < 2, we use the vector-valued version of the following result (see [START_REF] Auscher | On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF], Theorem 2.1 and also [START_REF] Blunck | Calderón-Zygmund theory for non-integral operators and the H ∞ functional calculus[END_REF] for an earlier version): [START_REF] Auscher | On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]. Assume that Γ satisfies the doubling property (D) and let T be a sublinear operator of strong type (2, 2). For any ball B, let A B be a linear operator acting on L 2 (Γ). Assume that, for all j ≥ 1, there exists g(j) > 0 such that, for all ball B ⊂ Γ and all function f supported in B,

Theorem 1.16 Let p 0 ∈ [1,
1 V 1/2 (2 j+1 B) T (I -A B )f L 2 (C j (B)) ≤ g(j) 1 V 1/p 0 (B) f L p 0 (1.19)
for all j ≥ 2 and

1 V 1/2 (2 j+1 B) A B f L 2 (C j (B)) ≤ g(j) 1 V 1/p 0 (B) f L p 0 (1.20)
for all j ≥ 1. If j≥1 g(j)2 Dj < +∞ where D is given by (1.8), then T is of weak type (p 0 , p 0 ), and is therefore of strong type (p, p) for all p 0 < p < 2.

Going back to Theorem 1.11, once (1.10) is established, we conclude by applying real interpolation theorems for Sobolev spaces, which are also new in this context. More precisely, we prove:

Theorem 1.17 Let q ∈ [1, +∞) and assume that (D), (P q ) and (∆(α)) hold. Then, for all

q < p < +∞, Ẇ 1,p (Γ) = Ẇ 1,q (Γ), Ẇ 1,∞ (Γ) 1-q p ,p
.

As an immediate corollary, we obtain:

Corollary 1.18 (The reiteration theorem) Assume that Γ satisfies (D), (P q ) for some 1 ≤ q < +∞ and (∆(α)). Define

q 0 = inf {q ∈ [1, ∞) : (P q ) holds}. For q 0 < p 1 < p < p 2 ≤ +∞, if 1 p = 1 -θ p 1 + θ p 2 , then Ẇ 1,p (Γ) = Ẇ 1,p 1 (Γ), Ẇ 1,p 2 (Γ) θ,p
.

Corollary 1.18, in conjunction with (1.10), conclude the proof of Theorem 1.11. Notice that, since we know that Sobolev spaces interpolate by the real method, we do not need any argument as the one in Section 1.3 of [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF].

For the proof of Theorem 1.7, we introduce a discrete differential and go through a property analogous to (Π p ) in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF], see Section 8 for detailed definitions. Proposition 1.8 follows essentially from Gehring's self-improvement of reverse Hölder inequalities ( [START_REF] Gehring | The L p integrability of the partial derivative of a quasi-conformal mapping[END_REF]). The plan of the paper is as follows. After recalling some well-known estimates for the iterates of p and deriving some consequences (Section 2), we first prove Theorem 1.15, which is of independent interest, in Section 3. In Section 4, we prove Theorem 1.3 using Theorem 1.13. Section 5 is devoted to the proof of Proposition 1.14. Theorem 1.17 is established in Section 6 by methods similar to [START_REF] Badr | Real interpolation of Sobolev spaces[END_REF] and, in Section 7, we prove Theorem 1.11. Finally, Section 8 contains the proof of Theorem 1.7 and of Proposition 1.8.

Kernel bounds

In this section, we gather some estimates for the iterates of p and some straightforward consequences of frequent use in the sequel. We always assume that (D), (P 2 ) and (∆(α)) hold. First, as already said, (LUE) holds. Moreover, we also have the following pointwise estimate for the discrete "time derivative" of p l : there exist C, c > 0 such that, for all x, y ∈ Γ and all l ∈ N * ,

|p l (x, y) -p l+1 (x, y)| ≤ Cm(y) lV (x, √ l) e -c d 2 (x,y) l . (2.1)
This "time regularity" estimate, which is a consequence of the L 2 analyticity of P , was first proved by Christ ([16]) by a quite difficult argument. Simpler proofs have been given by Blunck ( [START_REF] Blunck | Perturbation of analytic operators and temporal regularity of discrete heat kernels[END_REF]) and, more recently, by Dungey ([28]). Thus, if B is a ball in Γ with radius k, f any function supported in B and i ≥ 2, one has, for all x ∈ C i (B) and all l ≥ 1,

P l f (x) + l (I -P )P l f (x) ≤ C V (B) e -c 4 i k 2 l f L 1 . (2.2)
This "off-diagonal" estimate follows from (UE) and (2.1) and the fact that, for all y ∈ B, by (D),

V (y, k) ∼ V (B) and V (y, k) V (y, √ l) ≤ C sup 1, k √ l D .
Similarly, if B is a ball in Γ with radius k, i ≥ 2 and f any function supported in C i (B), one has, for all x ∈ B and all l ≥ 1,

P l f (x) + l (I -P )P l f (x) ≤ C V (2 i B) e -c 4 i k 2 l f L 1 . (2.3) 
Finally, for all ball B with radius k, all i ≥ 2, all function f supported in C i (B) and all l ≥ 1,

∇P l f L 2 (B) ≤ C √ l e -c 4 i k 2 l f L 2 (C i (B)) . (2.4) 
See Lemma 2 in [START_REF] Russ | Riesz transforms on graphs for 1 ≤ p ≤ 2[END_REF]. If one furthermore assumes that (G p 0 ) holds for some p 0 > 2, then, by interpolation between (2.4) and (G p 0 ), one obtains, for all p ∈ (2, p 0 ), all f supported in C i (B) and all l ≥ 1,

∇P l f L p (B) ≤ C p √ l e -c 4 i k 2 l f L p (C i (B)) . (2.5) 
Inequalities (2.4) and (2.5) may be regarded as "Gaffney" type inequalities, in the spirit of [START_REF] Gaffney | The conservation property of the heat equation on Riemannian manifolds[END_REF].

Littlewood-Paley inequalities

In this section, we establish Theorem 1.15.

The case 1 < p < 2: We apply the vector-valued version of Theorem 1.16 with T = g and p 0 = 1 and, for all ball B with radius k, A B defined by

A B = I -(I -P k 2 ) n ,
where n is a positive integer, to be chosen in the proof. More precisely, we consider, for

f ∈ L 2 (Γ) and x ∈ Γ, T f (x) = √ l(I -P )P l f (x) l≥1 , so that T maps L 2 (Γ) into L 2 (Γ, l 2 ).
Let B be a ball and f supported in B. Let us first check (1.19). Using the expansion

(I -P k 2 ) n = n p=0 C p n (-1) p P pk 2 ,
we obtain

T (I -A B )f = α l (I -P )P l f l≥1
where

α l := 0≤p≤n; l≥pk 2 C p n (-1) p l -pk 2 .
Since it follows from (2.2) that

1 V (2 j+1 B) (I -P )P l f 2 L 2 (C j (B)) ≤ C l 2 V 2 (B) e -c 4 j k 2 l f 2 L 1 , (3.1) 
we will be able to go on thanks to the following estimate:

Lemma 3.1 There exists C > 0 only depending on n such that, for all j ≥ 2,

l≥1 |α l | 2 l 2 e -c 4 j k 2 l ≤ C4 -2nj .
Proof of Lemma 3.1:

If mk 2 ≤ l < (m + 1)k 2 for some integer 0 ≤ m ≤ n, one obviously has |α l | ≤ Ck √ m + 1, (3.2) 
where C > 0 only depends on n, while, if l > (n + 1)k 2 , one has

|α l | ≤ Cl -2n-1 2 k 2n . (3.3) 
This estimate follows from the following inequality, valid for any C n function ϕ on (0, +∞):

n p=0 C p n (-1) p ϕ(t -pk 2 ) ≤ C sup u≥ t n+1 ϕ (n) (u) k 2n , (3.4) 
where C > 0 only depends on n (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF], problem 16, p. 65). It follows from (3.2) that, for all 0 ≤ m ≤ n,

mk 2 <l≤(m+1)k 2 |α l | 2 l 2 e -c 4 j k 2 l ≤ C mk 2 <l≤(m+1)k 2 (m + 1)k 2 l 2 e -c 4 j k 2 l ≤ C (m+1)k 2 mk 2 (m + 1)k 2 t 2 e -c 4 j k 2 t dt ≤ Ce -c4 j
where C, c > 0 only depend on n. Similarly, thanks to (3.3),

l>(n+1)k 2 |α l | 2 l 2 e -c 4 j k 2 l ≤ C l>(n+1)k 2 l -(2n-1) k 4n l 2 e -c 4 j k 2 l ≤ C +∞ (n+1)k 2 k 4n t 2n+1 e -c 4 j k 2 t dt ≤ C4 -2nj
+∞ 0 e -c/w w 2n+1 dw, = C4 -2nj , which concludes the proof of Lemma 3.1. Finally, one obtains

1 V 1/2 (2 j+1 B) T (I -A B )f L 2 ((2 j+1 B\2 j B),l 2 ) ≤ C 4 -nj V (B) f L 1 ,
which means that (1.19) holds with g(j) = 4 -nj , and one just has to choose n > D 2 in order to have j g(j)2 Dj < +∞.

Let us now check (1.20). Since

A B = n p=1 C p n (-1) p P pk 2 ,
it is enough to prove that, for all j ≥ 1 and all 1 ≤ p ≤ n,

1 V 1/2 (2 j+1 B) P pk 2 f L 2 (C j (B)) ≤ g(j) 1 V (B) f L 1 (B) . (3.5) 
For all x ∈ C j (B), (2.2) yields

P pk 2 f (x) ≤ C e -c ′ 4 j p V (B) f L 1 (B)
if j ≥ 2, and

P pk 2 f (x) ≤ C V (B) f L 1 (B)
for j = 1, just by (UE). As a consequence,

P pk 2 f L 2 (C j (B)) ≤ C e -c ′ 4 j p V (B) V 1/2 (2 j+1 B) f L 1 (B) ,
so that (3.5) holds. This ends the proof of Theorem 1.15 when 1 < p < 2. The case 2 < p < +∞: This time, we apply the vector-valued version of Theorem 1.13 with the same choices of T and A B . Let us first check (1.12), which reads in this situation as

1 V 1/2 (B) T (I -A B )f L 2 (B,l 2 ) ≤ C M |f | 2 1/2 (y)
for all f ∈ L 2 (Γ), all ball B ⊂ Γ and all y ∈ B. Fix such an f , such a ball B and y ∈ B.

Write f = j≥1 f χ C j (B) := j≥1 f j .
The L 2 -boundedness of g and A B and the doubling property (D) yield

1 V 1/2 (B) T (I -A B )f 1 L 2 (B,l 2 ) ≤ C V 1/2 (B) f L 2 (4B) ≤ C M |f | 2 1/2 (y).
Let j ≥ 2. Using the same notations as for the case 1 < p < 2, one has

T (I -A B )f j 2 L 2 (B,l 2 ) = l≥1 |α l | 2 x∈B (I -P )P l f j (x) 2 m(x).
For all x ∈ B, it follows from (2.3) and the Cauchy-Schwarz inequality that

(I -P )P l f j (x) ≤ C l e -c ′ 4 j k 2 l 1 V (2 j B) z∈2 j+1 B |f j (z)| m(z) ≤ C l e -c ′ 4 j k 2 l 1 V 1/2 (2 j+1 B) z∈2 j+1 B |f j (z)| 2 m(z) 1/2 ≤ C l e -c ′ 4 j k 2 l M |f | 2 (y) 1/2 .
As a consequence, by Lemma 3.1,

T (I -A B )f j 2 L 2 (B,l 2 ) ≤ C l≥1 |α l | 2 l 2 e -c 4 j k 2 l M |f | 2 (y)V (B) ≤ CV (B)4 -2nj M |f | 2 (y),
which yields (1.12) by summing up on j ≥ 1.

To prove (1.13), it suffices to establish that, for all 1 ≤ j ≤ n, all ball B ⊂ Γ and all y ∈ B,

T P jk 2 f L ∞ (B,l 2 ) ≤ C M T f 2 l 2 (y) 1/2 .
Let x ∈ B. By Cauchy-Schwarz and the fact that y∈Γ p jk 2 (x, y) = 1 for all x ∈ Γ, one has, for any function h ∈ L 2 (Γ),

P jk 2 h(x) ≤ P jk 2 |h| 2 (x) 1/2 .
It follows that, for all l ≥ 1,

P jk 2 ( √ l(I -P )P l f )(x) 2 ≤ P jk 2 l (I -P )P l f 2 (x), so that l≥1 P jk 2 ( √ l(I -P )P l f )(x) 2 ≤ P jk 2 l≥1 l (I -P )P l f 2 (x) = P jk 2 T f 2 l 2 (x) ≤ CM T f 2 l 2 (y)
, which is the desired estimate (note that the last inequality follows easily from (UE)). Thus, (1.13) holds and the proof of Theorem 1.15 is therefore complete.

Riesz transforms for p > 2

In the present section, we establish Theorem 1.3, applying Theorem 1.13 with the same choice of A B as in Section 3. One has A B 2,2 = 1. In view of Theorem 1.13, it suffices to show that 1

V 1/2 (B) T (I -P k 2 ) n f L 2 (B) ≤ C M(|f | 2 ) 1/2 (x) (4.1) and 1 V 1/p 0 (B) T I -(I -P k 2 ) n f L p 0 (B) ≤ C M(|T f | 2 ) 1/2 (x) (4.2)
for all f ∈ L 2 (Γ), all x ∈ Γ and all ball B ⊂ Γ containing x. Fix such data f, x and B.

Proof of (4.1):

Set f i = f χ C i (B) for all i ≥ 1. The L 2 -boundedness of T (I -P k 2 ) n yields 1 V 1/2 (B) T (I -P k 2 ) n f 1 L 2 (B) ≤ C V 1/2 (B) f 1 L 2 (Γ) ≤ C M(|f | 2 ) 1/2 (x). (4.3) 
Fix now i ≥ 2. In order to estimate the left-hand side of (4.1) with f replaced by f i , we use the expansion

(I -P ) -1/2 = +∞ l=0 a l P l ,
where the a l 's are defined by (1.11) (observe that, for all l ≥ 0, a l > 0). Therefore, one has

(I -P ) -1/2 (I -P k 2 ) n f i = +∞ l=0 a l P l (I -P k 2 ) n f i = +∞ l=0 a l n j=0 C j n (-1) j P l+jk 2 f i = +∞ l=0 d l P l f i , where d l = 0≤j≤n, jk 2 ≤l (-1) j C j n a l-jk 2 .
It follows that

T (I -P k 2 ) n f i (x) ≤ +∞ l=1 |d l | ∇P l f i (x) for all x ∈ B. Indeed, if x ∈ B and l = 0, ∇P l f i (x) = ∇f i (x) = 0 because f i is supported in C i (B)
. Thus, one has

T (I -P k 2 ) n f i L 2 (B) ≤ +∞ l=1 |d l | ∇P l f i L 2 (B) .
According to (2.4), one has

T (I -P k 2 ) n f i L 2 (B) ≤ C +∞ l=1 |d l | e -c 4 i k 2 l √ l f L 2 (2 i+1 B\2 i B) . (4.4)
We claim that the following estimates hold for the d l 's:

Lemma 4.1 There exists C > 0 only depending on n with the following properties: for all integer l ≥ 1, (i) if there exists an integer 0 ≤ m ≤ n such that

mk 2 < l < (m + 1)k 2 , |d l | ≤ C √ l-mk 2 , (ii) if there exists an integer 0 ≤ m ≤ n such that l = (m + 1)k 2 , |d l | ≤ C, (iii) if l > (n + 1)k 2 , |d l | ≤ Ck 2n l -n-1 2 .
We postpone the proof of this lemma to the Appendix and end the proof of (4.1). According to (4.4), one has

T (I -P k 2 ) n f i L 2 (B) ≤ C n m=0 mk 2 <l<(m+1)k 2 |d l | e -c 4 i k 2 l √ l f L 2 (2 i+1 B\2 i B) + C n m=0 d (m+1)k 2 e -c 4 i m+1 k √ m + 1 f L 2 (2 i+1 B\2 i B) + C l>(n+1)k 2 |d l | e -c 4 i k 2 l √ l f L 2 (2 i+1 B\2 i B) := S 1 + S 2 + S 3 . (4.5) 
For S 1 , Lemma 4.1 yields

|S 1 | ≤ C n m=0 mk 2 <l<(m+1)k 2 e -c 4 i k 2 l √ l √ l -mk 2 f L 2 (2 i+1 B\2 i B) .
But, for each 1 ≤ m ≤ n,

mk 2 <l<(m+1)k 2 e -c 4 i k 2 l √ l √ l -mk 2 ≤ C (m+1)k 2 mk 2 e -c 4 i k 2 t √ t -mk 2 √ t dt ≤ C 1 0 e -c 4 i n(1+w) w(w + 1) dw ≤ Ce -c4 i ,
where C, c > 0 only depend on n. For m = 0,

0<l<k 2 e -c 4 i k 2 l l ≤ 1 0 e -c 4 i u du u ≤ Ce -c4 i .
Therefore,

|S 1 | ≤ Ce -c4 i f L 2 (2 i+1 B\2 i B) . (4.6) 
As for S 2 , Lemma 4.1 gives at once

|S 2 | ≤ Ce -c4 i f L 2 (2 i+1 B\2 i B) , (4.7) 
where C, c > 0 only depend on n once more. Finally, for S 3 , Lemma 4.1 provides

|S 3 | ≤ Ck 2n l>(n+1)k 2 l -n-1 2 e -c 4 i k 2 l √ l f L 2 (2 i+1 B\2 i B) .
But one clearly has

l>(n+1)k 2 l -n-1 2 e -c 4 i k 2 l √ l ≤ +∞ (n+1)k 2 t -n-1 2 e -c 4 i k 2 t √ t dt = (4 i k 2 ) -n +∞ n+1 4 i u -n e -c u du u ≤ Ck -2n 4 -in +∞ 0 u -n e -c u du u ≤ C4 -in , so that, since k ≥ 1, |S 3 | ≤ C4 -in f L 2 (2 i+1 B\2 i B) . (4.8) 
Summing up the upper estimates (4.6), (4.7) and (4.8) and using (4.5), one obtains

T (I -P k 2 ) n f i L 2 (B) ≤ C4 -in f L 2 (2 i+1 B\2 i B) . (4.9)
The definition of the maximal function and property (1.8) yield

f L 2 (2 i+1 B\2 i B) ≤ V 1/2 (2 i+1 B) M(|f | 2 )(x) 1/2 ≤ C2 (i+1)D/2 V (B) 1/2 M(|f | 2 )(x) 1/2 .
Choosing now n > D 4 and summing up over i ≥ 1, one concludes from (4.3) and (4.9) that

T (I -P k 2 ) n f L 2 (B) ≤ C +∞ i=0 2 i( D 2 -2n) V (B) 1/2 M(|f | 2 )(x) 1/2 ,
which ends the proof of (4.1).

Proof of (4.2): We use the following lemma: Lemma 4.2 For all p ∈ (2, p 0 ), there exists C, α > 0 such that, for all ball B ⊂ Γ with radius k, all integer i ≥ 1 and all function f ∈ L 2 (Γ) supported in C i (B), and for all j ∈ {1, ..., n} (where n is chosen as above), one has

1 V (B) 1/p ∇P jk 2 f L p (B) ≤ Ce -α4 i k 1 V (2 i+1 B) 1/2 f L 2 (Γ) .
Proof of Lemma 4.2: This proof is very similar to the one of Lemma 3.2 in [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF], and we will therefore only indicate the main steps. Consider first the case when i = 1. If j = 2m for some integer m ≥ 0, (2.5) yields

∇P jk 2 f L p (B) ≤ C k P mk 2 f L p (Γ)
.

(4.10)

Using (UE), and noticing that, by (D), for y ∈ B, V (y, k √ m) ∼ V (B), one has, for all x ∈ Γ and all y ∈ B,

p mk 2 (x, y) ≤ C V (B) exp -c d 2 (x, y) mk 2 m(y).
As a consequence, for all x ∈ Γ,

P mk 2 f (x) ≤ C V 1/2 (B) f L 2 (4B) . (4.11)
The L 2 contractivity of P shows that

P mk 2 f L 2 (Γ) ≤ C f L 2 (4B) , (4.12) 
so that, gathering (4.11) and (4.12),

P mk 2 f L p (Γ) ≤ CV (B) 1 p -1 2 f L 2 (Γ) . (4.13) 
Finally, (4.13) and (4.10) yield the conclusion of Lemma 4.2 when i = 1 and j = 2m. If j = 2m + 1, argue similarly, writing j = m + (m + 1). Consider now the case when i ≥ 2 and assume that j = 2m (one argues similarly if j = 2m + 1 = m + (m + 1)). Let χ l the characteristic function of C l (B) for all l ≥ 1. One has, for all x ∈ Γ,

∇P jk 2 f (x) ≤ l≥1 ∇P mk 2 χ l P mk 2 f (x) =: l≥1 g l (x).
By (2.5) and (1.8),

1 V 1/p (B) g l L p (B) ≤ C V (2 l+1 B) V (B) 1/p e -c4 l k 1 V 1/p (2 l+1 B) P mk 2 f L p (2 l+1 B\2 l B) ≤ C2 (l+1)D/p e -c4 l k 1 V 1/p (2 l+1 B) P mk 2 f L p (2 l+1 B\2 l B)
.

Using (UE) and arguing as in the proof of Lemma 3.2 in [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF], one obtains

1 V (2 l+1 B) P mk 2 f 2 L 2 (C l ) ≤ K il 1 V (2 i+1 B) f 2 L 2 (C i ) (4.14)
and, for all x ∈ 2 l+1 B \ 2 l B,

P mk 2 f (x) ≤ K il 2 (i+2)D 1 V 1/2 (2 i+1 B) f L 2 (2 i+1 B\2 i B) , (4.15) 
where

K il =    Ce -c4 i if l ≤ i -2, C if i -1 ≤ l ≤ i + 1, Ce -c4 l if l ≥ i + 2.
Interpolating between (4.14) and (4.15) therefore yields

1 V 1/p (2 l+1 B) P mk 2 f L p (C l ) ≤ K il 2 (i+2)D(1-2 p ) 1 V 1/2 (2 i+1 B) f L 2 (C i ) .
Summing up in l, one ends the proof of Lemma 4.2 as in [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF].

To prove (4.2), it is enough to show that, if p ∈ (2, p 0 ), there exists C p > 0 such that, for all j ∈ {1, ..., n}, all function f ∈ L 2 loc (Γ) with ∇f ∈ L 2 loc (Γ), all ball B ⊂ Γ with radius k and any point x ∈ B,

1 V 1/p (B) ∇P jk 2 f L p (B) ≤ C M(|∇f | 2 ) 1/2 (x).
But, since for all l ≥ 0, P l 1 = 1, one has

∇P l f = ∇P l (f -f 4B ), so that ∇P jk 2 f = l≥1 ∇P jk 2 (χ l (f -f 4B )).
One concludes the proof of (4.2) as in [START_REF] Auscher | Riesz transforms on manifolds and heat kernel regularity[END_REF], using the Poincaré inequality and Lemma 4.2.

The Calderón-Zygmund decomposition for functions in Sobolev spaces

The present section is devoted to the proof of Proposition 1.14, for which we adapt the proof of Proposition 1.1 in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF] to the discrete setting. Let f ∈ Ė1,p (Γ), α > 0. Consider Ω = {x ∈ Γ : 

M(|∇f | q )(x) > α q }. If Ω = ∅, then set g = f , b i = 0 for all i ∈ I so that (1.
m(Ω) ≤ Cα -p (∇f ) q p q p q = Cα -p x |∇f | p (x)m(x) (5.1) < +∞.
In particular, Ω is a proper open subset of Γ, as m(Γ) = +∞ (see Remark 1.1). Let (B i ) i∈I be a Whitney decomposition of Ω ( [START_REF] Coifman | Extensions of Hardy spaces and their use in analysis[END_REF]). That is, Ω is the union of the B i 's, the B i 's being pairwise disjoint open balls, and there exist two constants C 2 > C 1 > 1, depending only on the metric, such that, if F = Γ \ Ω, 1. the balls B i = C 1 B i are contained in Ω and have the bounded overlap property;

2. for each i ∈ I, r i = r(B i ) = 1 2 d(x i , F ) where x i is the center of B i ;

3. for each i ∈ I, if B i = C 2 B i , B i ∩ F = ∅ (C 2 = 4C 1 works).
For x ∈ Ω, denote I x = {i ∈ I; x ∈ B i }. By the bounded overlap property of the balls B i , there exists an integer N such that ♯I x ≤ N for all x ∈ Ω. Fixing j ∈ I x and using the properties of the B i 's, we easily see that 1 3 r i ≤ r j ≤ 3r i for all i ∈ I x . In particular, B i ⊂ 7B j for all i ∈ I x .

Condition (1.18) is nothing but the bounded overlap property of the B i 's and (1.17) follows from (1.18) and (5.1). The doubling property and the fact that B i ∩ F = ∅ yield:

x∈B i |∇f | q (x)m(x) ≤ x∈B i |∇f | q (x)m(x) ≤ α q V (B i ) ≤ Cα q V (B i ).
(5.2)

Let us now define the functions b i 's. Let (χ i ) i∈I be a partition of unity of Ω subordinated to the covering (B i ) i∈I , which means that, for all i ∈ I, χ i is a Lipschitz function supported

in B i with ∇χ i ∞ ≤ C r i and i∈I χ i (x) = 1 for all x ∈ Γ (it is enough to choose χ i (x) = ψ C 1 d(x i , x) r i k ψ C 1 d(x k , x) r k -1
, where ψ ∈ D(R), ψ = 1 on [0, 1], ψ = 0 on

[ 1+C 1 2 , +∞) and 0 ≤ ψ ≤ 1). Note that ∇χ i is supported in 2B i ⊂ Ω. We set b i = (f -f B i )χ i . It is clear that supp b i ⊂ B i . Let us estimate x∈B i |∇b i | q (x)m(x). Since ∇b i (x) = ∇((f -f B i )χ i )(x) ≤ max y∼x χ i (y)∇f (x) + |f (x) -f B i |∇χ i (x)
and since χ i (y) ≤ 1 for all y ∈ Γ, we get by (P q ) and (5.2) that

x∈B i |∇b i | q m(x) ≤ C x∈B i |∇f | q (x)m(x) + x∈B i |f -f B i | q (x)|∇χ i | q (x)m(x) ≤ Cα q V (B i ) + C C q r q i r q i x∈B i |∇f | q (x)m(x) ≤ C ′ α q V (B i ). Thus (1.16) is proved. Set g = f - i∈I b i .
Since the sum is locally finite on Ω, g is defined everywhere on Γ and g = f on F .

It remains to prove (1.15). Since i∈I χ i (x) = 1 for all x ∈ Ω, one has

g = f χ F + i∈I f B i χ i
where χ F denotes the characteristic function of F . We will need the following lemma:

Lemma 5.1 There exists C > 0 such that, for all j ∈ I, all u ∈ F ∩ 4B j and all v ∈ B j ,

|g(u) -g(v)| ≤ Cαd(u, v). Proof: Since i∈I χ i = 1 on Γ, one has g(u) -g(v) = f (u) - i∈I f B i χ i (v) = i∈I (f (u) -f B i ) χ i (v). (5.3) For all i ∈ I such that v ∈ B i , |f (u) -f B i | ≤ +∞ k=0 f B(u,2 -k r i ) -f B(u,2 -k-1 r i ) + f B(u,r i ) -f B i .
For all k ≥ 0, (P q ) yields

f B(u,2 -k r i ) -f B(u,2 -k-1 r i ) = 1 V (u, 2 -k-1 r i ) z∈B(u,2 -k-1 r i ) f (z) -f B(u,2 -k r i ) m(z) ≤ C V (u, 2 -k r i ) z∈B(u,2 -k r i ) f (z) -f B(u,2 -k r i ) m(z) ≤   C V (u, 2 -k r i ) z∈B(u,2 -k r i ) f (z) -f B(u,2 -k r i ) q m(z)   1 q ≤ C2 -k r i   1 V (u, 2 -k r i ) z∈B(u,2 -k r i ) |∇f (z)| q m(z)   1 q ≤ C2 -k r i (M (∇f ) q ) 1 q (u) ≤ C2 -k αr i ≤ C2 -k αr j , (5.4 
) where the penultimate inequality relies on the fact that u ∈ F and the last one from the fact that

B i ∩ B j = ∅. Moreover, since u ∈ 4B j , B(u, r i ) ⊂ B(x j , r i + d(u, x j )) ⊂ B(x j , r i + 4r j ) ⊂ 7B j .
Since one also has B i ⊂ 7B j , one obtains, arguing as before,

f B(u,r i ) -f B i ≤ f B(u,r i ) -f 7B j + f 7B j -f B i ≤ C V (7B j ) z∈7B j f (z) -f 7B j m(z)
≤ Cαr j .

(

It follows from (5.4) and (5.5) that

|f (u) -f B i | ≤ Cαr j ≤ Cαd(u, v), since r j = 1 2 d(x j , F ) ≤ 1 2 d(x j , u) ≤ 1 2 d(x j , v) + 1 2 d(v, u) ≤ 1 2 r j + 1 2 d(v, u).
This ends the proof of Lemma 5.1 because of (5.3).

To prove (1.15), it is clearly enough to check that |g(x)g(y)| ≤ Cα for all x ∼ y ∈ Γ. Let us now prove this fact, distinguishing between three cases:

1. Assume that x ∈ Ω. Then, x ∈ B j for some j ∈ I, and for all y ∼ x, y ∈ 2B j ⊂ Ω, so that χ F (x) = χ F (y) = 0. It follows that

g(y) -g(x) = i∈I f B i -f B j (χ i (y) -χ i (x)), so that |g(y) -g(x)| ≤ C i∈I f B i -f B j ∇χ i (x) := h(x). We claim that |h(x)| ≤ Cα.
To see this, note that, for all i ∈ I such that ∇χ i (x) = 0, we have

|f B i -f B j | ≤ Cr j α. Indeed, d(x, B i ) ≤ 1, which easily implies that r i ≤ 3r j + 1 ≤ 4r j , hence B i ⊂ 10B j .
As a consequence, we have, arguing as before again,

|f B i -f 10B j | ≤ 1 V (B i ) y∈B i |f (y) -f 10B j |m(y) ≤ C V (B j ) y∈10B j |f (y) -f 10B j |m(y) ≤ Cr j   1 V (10B j ) y∈10B j |∇f | q (y)m(y)   1 q ≤ Cr j α (5.6) 
where we used Hölder inequality, (D), (P q ) and the fact that

(|∇f | q ) 10B j ≤ M(|∇f |) q (z) for some z ∈ F ∩ B j . Analogously |f 10B j -f B j | ≤ Cr j α. Hence |h(x)| = i∈I; x∈2B i (f B i -f B j )∇χ i (x) ≤ C i∈I; x∈2B i |f B i -f B j |r -1 i ≤ CNα.
Hence we conclude that K(f, t

1 q , Ẇ 1,q , Ẇ 1,∞ ) ≥ C 1 t 1 q (|∇f | q * * )
1 q (t). We prove now item 2. Let f ∈ Ẇ 1,p , q ≤ p < ∞. Let t > 0, we consider the Calderón-Zygmund decomposition of f given by Proposition 1.14 with α = α(t) = M(|∇f |) q * 1 q (t).

Thus we have f = i∈I b i + g = b + g where (b i ) i∈I , g satisfy the properties of the proposition.

We have the estimate

∇b q q ≤ x∈Γ i∈I |∇b i | q (x)m(x) ≤ CN i∈I x∈B i |∇b i | q (x)m(x) ≤ Cα q (t) i∈I V (B i ) ≤ Cα q (t)m(Ω),
where the B i 's are given by Proposition 1.14 and Ω is defined as in the proof of Proposition 1.14. The last inequality follows from the fact that

i∈I χ B i ≤ N and Ω = i B i . Hence ∇b q ≤ Cα(t)m(Ω) 1 
q . Moreover, since (Mf ) * ∼ f * * (see [START_REF] Bennett | Interpolation of operators[END_REF], Chapter 3, Theorem 3.8), we obtain

α(t) = (M(|∇f |) q ) * 1 q (t) ≤ C (|∇f | q * * ) 1 q (t).
Hence, also noting that m(Ω) ≤ t (see [START_REF] Bennett | Interpolation of operators[END_REF], Chapter 2, Proposition 1.7), we get K(f, t

1 q , Ẇ 1,q , Ẇ 1,∞ ) ≤ Ct 1 q |∇f | q * * 1 q (t
) for all t > 0 and obtain the desired inequality. Proof of Theorem 1.17:

The proof follows directly from Theorem 6.1. Indeed, item 1. of Theorem 6.1 gives us that ( Ẇ 1,q , Ẇ 1,∞ ) 1-q p ,p ⊂ Ẇ 1,p and f Ẇ 1,p ≤ C f 1-q p ,p , while item 2. gives us that Ẇ 1,p ⊂ ( Ẇ 1,q , Ẇ 1,∞ ) 1-q p ,p and f 1-q p ,p ≤ C f Ẇ 1,p . Hence Ẇ 1,p = ( Ẇ 1,q , Ẇ 1,∞ ) 1-q p ,p with equivalent norms.

7 The proof of (RR p ) for p < 2

In view of Theorem 1.17 and since (RR 2 ) holds, it is enough, for the proof of Theorem 1.11, to establish (1.10).

Proof of (1.10): We follow the proof of (1.9) in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF]. Consider such an f and fix λ > 0. Perform the Calderon-Zygmund decomposition of f given by Proposition 1.14. We also use the following expansion of (I -P ) 1/2 :

(I -P ) 1/2 = +∞ k=0 a k (I -P )P k (7.1)
where the (a k )'s were already considered in Section 4. For each i ∈ I, pick the integer k ∈ Z such that 2 k ≤ r(B i ) < 2 k+1 and define r i = 2 k . We split the expansion (7.1) into two parts:

(I -P ) 1/2 = r 2 i k=0 a k (I -P )P k + +∞ k=r 2 i +1 a k (I -P )P k := T i + U i .
We first claim that

m x ∈ Γ; (I -P ) 1/2 g(x) > λ ≤ C λ q ∇f q q . (7.2) 
Indeed, one has

m x ∈ Γ; (I -P ) 1/2 g(x) > λ ≤ C λ 2 (I -P ) 1/2 g 2 2 = C λ 2 ∇g 2 2 ,
and since ∇g ≤ Cλ on Γ and ∇g q ≤ C ∇f q , we obtain ∇g 2 2 ≤ Cλ 2-q ∇g q q ≤ Cλ 2-q ∇f q q , which ends the proof of (7.2).

We now claim that, for some constant C > 0,

m x ∈ Γ; i∈I T i b i (x) > λ ≤ C λ q ∇f q q . (7.3) 
To prove (7.3), write

m x ∈ Γ; i∈I T i b i (x) > λ ≤ m i 4B i + m x / ∈ i 4B i ; i∈I T i b i (x) > λ .
(7.4) Observe first that, by (D) and Proposition 1.14,

m i 4B i ≤ C i∈I V (4B i ) ≤ C λ q ∇f q q .
As far as the second term in the right-hand side of (7.4) is concerned, it can be estimated by

m x / ∈ i 4B i ; i∈I T i b i (x) > λ ≤ 1 λ 2 x∈Γ i∈I χ Γ\4B i (x)T i b i (x) 2 m(x).
Arguing as in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF][START_REF] Blunck | Calderón-Zygmund theory for non-integral operators and the H ∞ functional calculus[END_REF][START_REF] Hofmann | L p bounds for Riesz transforms and square roots associated to second order elliptic divergence operators[END_REF], we estimate this last quantity by duality. Fix a function u ∈ L 2 (Γ, m) with u 2 = 1. One has

x∈Γ i∈I χ Γ\4B i (x)T i b i (x)u(x)m(x) ≤ i∈I +∞ j=2 A i,j
where, for all i ∈ I and all j ≥ 2,

A i,j := x∈2 j+1 B i \2 j B i |T i b i (x)| |u(x)| m(x).
If i, j are fixed, since (I -P )b i is supported in 2B i ,

T i b i L 2 (2 j+1 B i \2 j B i ) ≤ r 2 i k=0 |a k | (I -P )P k b i L 2 (2 j+1 B i )\2 j B i ) = r 2 i k=1 |a k | (I -P )P k b i L 2 (2 j+1 B i )\2 j B i )
Given 1 ≤ k ≤ r 2 i , one has, for all x ∈ 2 j+1 B i \ 2 j B i , using (2.1),

(I -P )P k b i (x) ≤ y∈B i |p k (x, y) -p k+1 (x, y)| |b i (y)| ≤ y∈B i C kV (y, √ k) e -c d 2 (x,y) k |b i (y)| m(y).
Using (1.8) and arguing exactly as in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF] (relying, in particular, on Remark 5.2), we obtain

(I -P )P k b i L 2 (2 j+1 B i \2 j B i ) ≤ C r i k r i √ k 2D e -c 4 j r 2 i k V 1/2 (2 j+1 B i )λ. Since a k ∼ 1 √ kπ (see Appendix), it follows that T i b i L 2 (2 j+1 B i \2 j B i ) ≤ Ce -c4 j V 1/2 (2 j+1 B i )λ.
One concludes, as in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF], that (7.3) holds.

What remains to be proved is that

m x ∈ Γ; i∈I U i b i (x) > λ ≤ C λ q ∇f q q . (7.5) 
Define, for all j ∈ Z, For all k > 0, define

β j = i∈I; r i =2 j b i r i , so that, for all j ∈ Z, i∈I; r i =2 j b i = 2 j β j . 29 
f k = j; 4 j <k 2 j √ k β j .
It follows from the previous computation and Theorem 1.15 that

i∈I U i b i q ≤ C +∞ k=1 1 k |f k | 2 1/2 q .
To see this, we estimate the left-hand side of this inequality by duality, as in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF] and use the

fact that |a k | ≤ C √ k for all k ≥ 1. Since, by Cauchy-Schwarz, |f k | 2 ≤ 2 j; 4 j <k 2 j √ k |β j | 2 , one obtains +∞ k=1 1 k |f k | 2 1/2 q ≤ k∈Z |β k | 2 1/2 q .
By the bounded overlap property,

k∈Z |β k | 2 1/2 q q ≤ C x∈Γ i∈I |b i (x)| q r q i m(x),
so that, using Remark 5.2, one obtains

x∈Γ i∈I |b i (x)| q r q i m(x) ≤ Cλ q i∈I V (B i ).
As a conclusion,

m x ∈ Γ; i∈I U i b i (x) > λ ≤ C i∈I V (B i ) ≤ C λ q ∇f q q ,
which is exactly (7.5). The proof of (1.10) is therefore complete.

Riesz transforms and harmonic functions

Let us now prove Theorem 1.7. The proof goes through a property analogous to (Π p ) in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF], the statement of which requires a notion of discrete differential.

The discrete differential and its adjoint

To begin with, for any γ = (x, y), γ ′ = (x ′ , y ′ ) ∈ E (recall that E denotes the set of edges in Γ), set d(γ, γ ′ ) = max(d(x, x ′ ), d(y, y ′ )).

It is straightforward to check that d is a distance on E. We also define a measure on subsets on E. For any A ⊂ E, set µ(A) = We can then define L p spaces on E in the following way. For 1 ≤ p < +∞, say that a function F on E belongs to L p (E) if and only if F is antisymmetric (which means that F (x, y) = -F (y, x) for all (x, y) ∈ E) and

F p L p (E) := 1 2 (x,y)∈E |F (x, y)| p µ xy < +∞.
Observe that the L 2 (E)-norm derives from the scalar product

F, G L 2 (E) = 1 2 x,y∈Γ F (x, y)G(x, y)µ xy .
Finally, say that F ∈ L ∞ (E) if and only if F is antisymmetric and

F L ∞ (E) := 1 2 sup (x,y)∈E |F (x, y)| < +∞.
Our notion of discrete differential is the following one: for any function f on Γ and any γ = (x, y) ∈ E, define df (γ) = f (y)f (x).

The function df is clearly antisymmetric on E and is related to the length of the gradient of f . More precisely, it is not hard to check that, if (∆(α)) holds, then for all p ∈ [1, +∞] and all function f on Γ, df L p (E) ∼ ∇f L p (Γ) .

Indeed, if 1 ≤ p < +∞, for all function f and all x ∈ Γ,

|∇f (x)| p ∼ y∼x p(x, y) |f (y) -f (x)| p ∼ y∼x p p (x, y) |f (y) -f (x)| p ∼ y∼x p(x, y) |f (y) -f (x)| p
where the last line is due to (∆(α)). As a consequence,

∇f p L p (Γ) ∼ x∈Γ y∼x p(x, y) |f (y) -f (x)| p m(x) ∼ x,y∈Γ |df (x, y)| p µ xy = df p L p (E)
. The case when p = +∞ is analogous and even easier. We could therefore reformulate properties (R p ) and (RR p ) replacing ∇f L p (Γ) by df L p (E) . Besides d, we also consider its adjoint in L 2 . If df ∈ L 2 (E) and G is any (antisymmetric) function in L 2 (E) such that the function x → y p(x, y)G(x, y) belongs to L 2 (Γ), one has

df, G L 2 (E) = 1 2 x,y∈Γ df (x, y)G(x, y)µ xy = 1 2 x,y∈Γ f (y)G(x, y)µ xy - 1 2 x,y∈Γ f (x)G(x, y)µ xy = - x,y∈Γ f (x)G(x, y)µ xy = - x∈Γ f (x) y∈Γ p(x, y)G(x, y) m(x).
Thus, if we define δG(x) = y p(x, y)G(x, y)

for all x ∈ Γ, it follows that df, G L 2 (E) = -f, δG L 2 (Γ) whenever f ∈ L 2 (Γ), dF ∈ L 2 (E), G ∈ L 2 (E)
and δG ∈ L 2 (Γ). Notice also that I -P = -δd.

The following lemma, very similar to Lemma 4.2 in [START_REF] Auscher | Gaussian lower bounds for random walks from elliptic regularity[END_REF], holds:

Lemma 8.1 Assume that (D), (∆(α)) and (DUE) hold. There exists C > 0 such that, for all ball B and all function f ∈ L 2 (Γ) supported in B, there exists a unique function h ∈ W 1,2 0 (B) such that (I -P )h = f in Γ (8.6)

and h satisfies h W 1,2 (Γ) ≤ C f L 2 (Γ) .
Proof: This proof relies on a Sobolev inequality, which will be used again in the proof of Theorem 1.7 and reads as follows: there exist ν ∈ (0, 1) and C > 0 such that, for all ball B with radius r > 1 2 and all function f supported in B,

f q ≤ CrV (B) -ν 2 ∇f 2 (8.7)
with q = 2 1-ν . This inequality is actually equivalent to a relative Faber-Krahn inequality, which is itself equivalent to the conjunction of (D) and (DUE), see [START_REF] Coulhon | Random walks on graphs with regular volume growth[END_REF][START_REF] Grigor'yan | Heat kernel upper bounds on a complete non-compact manifold[END_REF][START_REF] Carron | Inégalités isopérimétriques de Faber-Krahn et conséquences[END_REF][START_REF] Coulhon | Espaces de Lipschitz et inégalités de Poincaré[END_REF][START_REF] Bakry | Sobolev inequalities in disguise[END_REF][START_REF] Delmotte | Inégalité de Harnack elliptique sur les graphes[END_REF]. Let B and f as in the statement of Lemma 8.1. Since I -P = -δd, (8.6) is equivalent to

dh, dv L 2 (E) = f, v L 2 (Γ) for all v ∈ W 1,2 0 (B). For all u, v ∈ W 1,2 0 (B), set B(u, v) = du, dv L 2 (E) . It is obvious that B is a continuous bilinear form on W 1,2 0 (B). Moreover, for all u ∈ W 1,2 0 (B), B(u, u) = du 2 L 2 (E) ≥ c u 2 W 1,2 0 (B)
, by (8.7) (see also Lemma 4.1 in [4]). The conclusion of Lemma 8.1 follows then from the Lax-Milgram theorem.

Let F ∈ L 2 (E). It is easy to check that δF ∈ L 2 (Γ) and

δF L 2 (Γ) ≤ F L 2 (E) . (8.8) 
Indeed, for all g ∈ L 2 (Γ),

δF, g L 2 (Γ) = x,y∈Γ p(x, y)F (x, y)g(x)m(x) = x,y∈Γ F (x, y)g(x)µ xy ≤ x,y∈Γ |F (x, y)| 2 µ x,y 1/2 x∈Γ |g(x)| 2 m(x) 1/2 .
As a consequence of Lemma 8.1, for all F ∈ L 2 (E) with bounded support, there exists a unique function f ∈ W 1,2 (Γ) such that (I -P )f = δF . Since functions in L 2 (E) with bounded support are dense in L 2 (E), we can therefore extend the operator d(I -P ) -1 δ to an L 2 (E)-bounded operator.

The proof of Theorem 1.7

For all 1 ≤ p < +∞, say that (Π p ) holds if and only if there exists C p > 0 such that, for all

F ∈ L p (E) ∩ L 2 (E), d(I -P ) -1 δF L p (E) ≤ C p F L p (E) . (Π p ) Since L 2 (E) ∩ L p (E) is dense in L p (E), if (Π p
) holds, the operator d(I -P ) -1 δ extends to a bounded operator from L p (E) to itself.

Let us now turn to the proof of Theorem 1.7. Let p 0 > 2 and q ∈ (2, p 0 ). Denote by (2 ′ ) the following property: for all p ∈ (2, q), (Π p ) holds.

(

′ ) 2 
We show that, for some

p 0 > 2, if q ∈ (2, p 0 ), then 2. ⇒ 2 ′ . ⇒ 1. ⇒ 2.
Proof of 2. ⇒ 2 ′ . In order to apply Theorem 2.3 in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF], observe first that E, equipped with the metric d and the measure µ, is a space of homogeneous type. Let 2 < p < p < q. 

Consider F ∈ L 2 (E) ∩ L p (E)
)h = δF with h W 1,2 (Γ) ≤ C δF L 2 (Γ) ≤ C F L 2 (E) . If r ≥ 1 16 , then the function h is harmonic in B(a, 32r). Indeed, if x ∈ B(a, 32r) \ ∂B(a, 32r), (I -P )h(x) = δF (x) = y∼x p(x, y)F (x, y). When x ∈ B(a, 32r) and y ∼ x, d(y, b) ≤ d(x, a) + 2 ≤ 64r, so that F (x, y) = 0. It follows from (RH p ) that 1 V (B) x∈B |∇h(x)| p m(x) 1 p ≤ C 1 V (16B) x∈16B |∇h(x)| 2 m(x) 1 2 
.

If r < 1 16 , B = 16B and the same inequality holds. This shows that the operator T defined by T F = ∇(I -P ) -1 δF for all F with bounded support in E, clearly satisfies the assumptions of Theorem 2.3 in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF], and this theorem therefore yields

T F L p (E) ≤ C p F L p (E) (8.9) 
for all F with bounded support in E. Since the space of antisymmetric functions on E with bounded support is dense in L p (E), (8.9) holds for all F ∈ L p (E), which exactly means that (Π p ) holds.

Proof of 2 ′ . ⇒ 1. By Theorem 1.11 and Proposition 1.8, there exists ε > 0 such that (RR q ) holds for all q ∈ (2ε, 2). It is therefore enough to check that the conjunction of (Π p ) and

(RR p ′ ) implies (R p ), with 1 p + 1 p ′ = 1. But, if f ∈ L p (Γ) ∩ L 2 (Γ) and G ∈ L p ′ (E) ∩ L 2 (E), d(I -P ) -1/2 f, G L 2 (E) = (I -P ) -1/2 f, δG L 2 (Γ) = f, (I -P ) -1/2 δG L 2 (Γ) ≤ f L p (Γ) (I -P ) -1/2 δG L p ′ (Γ) = f L p (Γ) (I -P ) 1/2 (I -P ) -1 δG L p ′ (Γ) ≤ f L p (Γ) d(I -P ) -1 δG L p ′ (Γ) ≤ C f L p (Γ) G L p ′ (Γ) ,
which ends the proof.

Proof of 1. ⇒ 3. Assume now that (R p ) holds for some p ∈ (2, q). Let B be a ball with center x 0 and radius k and u a function harmonic in 32B, and fix a function ϕ supported in 3B, equal to 1 in 2B and satisfying 0 ≤ ϕ ≤ 1 and ∇ϕ ∞ ≤ C k . Up to an additive constant, one may assume that the mean value of u in 16B is 0. In order to control the left-hand side of (RH p ), it suffices to estimate x∈B |∇(uϕ)(x)| p m(x).

As in [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF] p. 35 and [3], Section 2.4, write

uϕ = P k 2 (uϕ) + k 2 -1 l=0 P l (I -P )(uϕ), so that ∇(uϕ) ≤ ∇ P k 2 (uϕ) + k 2 -1 l=0 ∇ P l (I -P )(uϕ) . (8.10) 
To treat the first term in the right-hand side of (8.10), fix ρ ∈ (p, q) and notice that, since (R ρ ) holds by assumption, it follows that k ∇P k 2 is L ρ (Γ)-bounded. Then, arguing as in Lemma 4.2, one obtains that

1 V (B) x∈B ∇P l f (x) p m(x) 1/p ≤ Ce -c4 j k 2 l √ l   1 V (2 j B) x∈C j (B) |f (x)| 2 m(x)   1/2 (8.11) 
for all j ≥ 1, all l ∈ {1, ..., k 2 } and all function f supported in C j (B). It follows at once from (8.11) applied with f = uϕ, the fact that u has zero integral on 16B and the Poincaré inequality (P 2 ) that To prove this inequality, if l = 2m, write ∇P l δF = ∇P m P m δF . We establish (8.15) by arguments similar to the proof of Lemma 4.2, combining (2.4) and an inequality analogous to (2.4 and derived by duality (see the proof of (2.6) in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF]). We finally obtain Let us first deal with v 1 . By (R p ),

1 V (B) x∈B ∇P k 2 (uϕ)(x) p m(x) 1/p ≤ C k 1 V (4B) x∈4B |u(x)| 2 m(x) 1/2 ≤ C 1 V (16B) x∈16B |∇u(x)| 2 m(x)
∇v 1 L p (Γ) ≤ C (I -P ) 1/2 v 1 L p (Γ) ≤ C v 1 L p (Γ) ,
where the last inequality follows from the L p -boundedness of (I -P ) 1/2 (see [START_REF] Coulhon | Puissances d'un opérateur régularisant[END_REF], p. 423 and also [START_REF] Coulhon | Suite d'opérateurs à puissances bornées dans les espaces ayant la propriété de Dunford-Pettis[END_REF]). But v 1 is supported in 4B and, for all x ∈ 4B,

|v 1 (x)| ≤ C k |u(x)| .
As a consequence,

v 1 L p (Γ) ≤ C k u L p (4B) ≤ C k uψ L p (8B) ,
where ψ is a nonnegative function equal to 1 on 4B, supported in 8B and satisfying ∇ψ ∞ ≤ C k . Now, (8.7) shows that, if q 0 = 2 1-ν and p ∈ (2, q 0 ), 1 V (B) 1/p uψ L p (8B) ≤ 1 V (8B) 1/q 0 uψ L q 0 (8B) ≤ C V (8B) 1/q 0 kV (8B) -ν/2 ∇(uψ) L 2 (8B) .

Using now the fact that ν 2 = 1 2 -1 q 0 , we finally conclude 1

V (B) 1/p v 1 L p (Γ) ≤ C V (8B) 1/2 ∇(uψ) L 2 (8B) ≤ C V (16B) 1/2 ∇u L 2 (16B) , (8.19) 
where the last inequality is due (P 2 ). All these computations yield

1 V (B) 1/p ∇v 1 L p (Γ) ≤ C V (16B) 1/2 ∇u L 2 (16B) (8.20) 
We argue similarly for v 2 . We just have to notice that, for all x ∈ 4B, Since m(x) ≤ Cm(y) whenever x ∼ y (this is a straightforward consequence of (D) and was noticed in [START_REF] Coulhon | Random walks on graphs with regular volume growth[END_REF], Section 4. and we conclude as for v 1 that 1

V (B) 1/p ∇v 2 L p (Γ) ≤ C V (16B) 1/2 ∇u L 2 (16B) , (8.21) 
Summing up (8.12), (8.17, (8.20) and (8.21), we obtain that (RH p ) holds.

As far as Proposition 1.8 is concerned, its proof is entirely similar to the one of Proposition 2.2 in [START_REF] Auscher | Riesz transforms on manifolds and Poincaré inequalities[END_REF] and will therefore be skipped. Let us just mention that it relies on an elliptic Caccioppoli inequality (analogous to the Euclidean version, see [START_REF] Giaquinta | Multiple integrals in the calculus of variations and non-linear elliptic equations[END_REF]), Proposition 1.10 and Gehring's self-improvement of reverse Hölder inequalities ( [START_REF] Gehring | The L p integrability of the partial derivative of a quasi-conformal mapping[END_REF]).

√ πl . Therefore, there exists C > 0 such that, for all l ≥ 1,

0 < a l ≤ C √ l .
Assume first that mk 2 < l < (m + 1)k 2 for some integer 0 ≤ m ≤ n. For each integer j ≥ 0 such that jk 2 ≤ l, one has ljk 2 > 0 and j ≤ m, so that |a l-jk Assume now that l = (m + 1)k 2 for some 0 ≤ m ≤ n. For each j ≥ 0 such that jk 2 ≤ l and ljk 2 > 0, one has j ≤ m again, so that |a l-jk We now argue as in the "Laplace" method. For all δ ∈ 0, π 2 , one clearly has, for all x > 1, 0 ≤ I n (x) ≤ |2 log sin t| n e 2x log sin t dt.
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  [START_REF] Carron | Inégalités isopérimétriques de Faber-Krahn et conséquences[END_REF] is satisfied thanks to the Lebesgue differentiation theorem and the other properties in Proposition 1.14 obviously hold. Otherwise the Hardy-Littlewood maximal theorem gives

One has i∈I U i b i = i∈I k>r 2 i

 2 a k (I -P )P k b i I -P )P k j; 4 j <k 2 j β j .

2 µ 2 , 2 =

 222 We claim that E, equipped with the metric d and the measure µ, is a space of homogeneous type. Indeed, let γ = (a, b) ∈ E and r > 0. Assume first that r ≥ 5. Then, by (D),µ(B(γ, 2r)) = d(x,a)<2r, d(y,b)<2r µ xy ≤ d(x,a)<2r y∈Γ µ xy = V (a, 2r) ≤ CV a, r 100 . xy = µ B γ, r since, when d(x, a) < r 100 and d(y, x) ≤ 1, then d(y, b) < 2 + r 100 ≤ r 2 . Assume now that r < 5. One has, using (D) again, µ(B(γ, 2r)) ≤ V (a, 2r) ≤ V (a, 10) ≤ CV a, 1 Cm(a) ≤ C ′ µ ab ≤ C ′ µ(B(γ, r)), since, whenever x ∼ y, one has αm(x) ≤ µ xy by (∆(α)). The claim is therefore proved.

1 / 2 .( 8 . 12 ) 1 ≤ 1 V

 1281211 Let us now turn to the second term in(8.10). A calculation shows that, for all x ∈ Γ,(I -P )(uϕ)(x) = y∈Γ p(x, y)((uϕ)(x) -(uϕ)(y)) = y∈Γ p(x, y)u(x)(ϕ(x)ϕ(y)) + y∈Γ p(x, y)(u(x)u(y))(ϕ(y)ϕ(x)) + y∈Γ p(x, y)(u(x)u(y))ϕ(x) := v 1 (x) + v 2 (x) + v 3 (x). (8.13)For all x ∈ Γ, v 3 (x) = 0 since u is harmonic in 32B. Because of the support condition on ϕ, one may apply (8.11) to v 2 , and since ∇ϕ ∞ ≤ C/k, one obtains1 V (B) x∈B ∇P l v 2 (x) p m(x) l ≤ k 2 -1. For v 1 , write 2v 1 (x) = y p(x, y)(u(x) + u(y))(ϕ(x)ϕ(y)) + y p(x, y)(u(x)u(y))(ϕ(x)ϕ(y)) = δF (x)v 2 (x),where, for all (x, y) ∈ E,F (x, y) = (u(x) + u(y))(ϕ(x)ϕ(y))is antisymmetric, belongs to L 2 (E) and is supported in B((x 0 , x 0 ), 4k) \ B((x 0 , x 0 ), 2k). It is therefore enough to show that, for all 1≤ l ≤ k 2 -1, x∈B ∇P l δF (x)p m(x) (B(x 0 , x 0 ), 4k) (x,y)∈B((x 0 ,x 0 ),4k)\B((x 0 ,x 0 ),2k)|F (x, y)| 2 µ xy

1 Vk 2 - 1 l=1P

 121 (B) x∈B ∇P l v 1 (x) p m(x) ≤ l ≤ k 2 -1. Summing up (8.14) and (8.16) for 1 ≤ l ≤ k 2 -1, we obtain 1 V (B) x∈B ∇ l (I -P )(uϕ) (x) p m(x)What remains to be treated in (8.10) is the term ∇(I -P )(uϕ). By (8.13),1 V (B) 1/p ∇(I -P )(uϕ) L p (B) ≤ 1 V (B) 1/p ∇v 1 L p (B) + 1 V (B)1/p ∇v 2 L p (B) . (8.18)

|v 2 (

 2 x)| p ≤ C k p y∼x (|u(y)| p + |u(x)| p ) ,hence x∈4B |v 2 (x)| p m(x) )| p m(x).

  2) and ♯ {y ∈ Γ; y ∼ x} ≤ N, we finally obtain that x∈4B |v 2 (x)| p m(x) ≤ C k p x∈8B |u(x)| p m(x),

= 2 π π 2 0(π π 2 0(π π 2 0( 2 π π 2 0

 22222 2 | ≤ C √ l-mk 2 = C k ≤ C. Moreover, a 0 = 1. One therefore has |d l | ≤ C + C m+1 n ≤ C,where, again, C only depends on n.Finally, assume that l > (n + 1)k 2 . The classical computation of Wallis integrals shows thata l sin t) 2l dt = ϕ(l)where, for all x > 0, ϕ(x) = 2 sin t) 2x dt. We can then invoke(3.4) and are therefore left with the task of estimating ϕ(n) . But, for all x > 0,ϕ (n) (x) = 2 log sin t) n e 2x log sin t dt ≤2|2 log sin t| n e 2x log sin t dt := 2 π I n (x).

π 2 -δ 0 |2 log sin t| n e 2x log sin t dt + π 2 π 2 -δ |2 log sin t| n e 2x log sin t dt ≤ sin π 2 -δ 2x- 2 I

 202222 n (1) + J n (x) = C n,δ α 2x-2 + J n (x) (8.1)where C n,δ > 0 only depends on n and δ, 0 < α = sin π 2δ < 1 and J n (x) :=

  with bounded support included in E \ 64B where B is a ball in E centered at γ = (a, b) and with radius r. Lemma 8.1 and (8.8) therefore yield a function h ∈ W 1,2 (Γ) such that (I -P

  2 | ≤

	follows at once that for some C > 0 only depending on n.	|d l | ≤	√	C l -mk 2	√	C l-jk 2 ≤	√	C l-mk 2 . It

ii. Consider now the case when y ∈ Ω. There exists j ∈ I such that y ∈ B j . Since

x ∼ y, one has x ∈ 4B j , Lemma 5.1 therefore yields

Thus the proof of Proposition 1.14 is complete.

Remark 5.2 It is easy to get the following estimate for the b i 's: for all i ∈ I,

Indeed, the first inequality follows from Hölder and the fact that b i is supported in B i . Moreover, by (P q ) and (5.2),

An interpolation result for Sobolev spaces

To prove Theorem 1.17, we will characterize the K functional of interpolation for homogeneous Sobolev spaces in the following theorem. Theorem 6.1 Under the same hypotheses as Theorem 1.17 we have that 1. there exists C 1 such that for every f ∈ Ẇ 1,q (Γ) + Ẇ 1,∞ (Γ) and all t > 0

2. for q ≤ p < ∞, there exists C 2 such that for every f ∈ Ẇ 1,p (Γ) and every t > 0

Proof: We first prove item 1. Assume that f = h + g with h ∈ Ẇ 1,q , g ∈ Ẇ 1,∞ , we then have

Appendix

We prove Lemma 4.1. For all l ≥ 0, a l = (2l)! 4 l (l!) 2 , and, as already used in Section 7, the Stirling formula shows a l ∼ 1

Observe now that J n (x) = δ 0 |2 log cos u| n e 2x log cos u du. Since log(cos u) ∼ -u 2 2 when u → 0, we fix δ > 0 such that, for all 0 < u < δ, -3 4 u 2 ≤ log(cos u) ≤ -1 4 u 2 , which implies

(8.2)

It follows from (8.1) and (8.2) that, for all x > 1,

which, joined with (3.4), yields assertion (iii) in Lemma 4.1, the proof of which is now complete.