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Abstract

Global sensitivity analysis is used to quantify the influence of uncertain input parame-

ters on the response variability of a numerical model. The common quantitative methods

are applicable to computer codes with scalar input variables. This paper aims to illus-

trate different variance-based sensitivity analysis techniques, based on the so-called Sobol

indices, when some input variables are functional, such as stochastic processes or random

spatial fields. In this work, we focus on large cpu time computer codes which need a

preliminary meta-modeling step before performing the sensitivity analysis. We propose

the use of the joint modeling approach, i.e., modeling simultaneously the mean and the

dispersion of the code outputs using two interlinked Generalized Linear Models (GLM) or

Generalized Additive Models (GAM). The“mean”model allows to estimate the sensitivity

indices of each scalar input variables, while the “dispersion” model allows to derive the

total sensitivity index of the functional input variables. The proposed approach is com-

pared to some classical SA methodologies on an analytical function. Lastly, the proposed

methodology is applied to a concrete industrial computer code that simulates the nuclear

fuel irradiation.

Keywords: functional data, Sobol indices, joint modeling, generalized additive model,

metamodel
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1 INTRODUCTION

Modern computer codes that simulate physical phenomenas often take as inputs a high

number of numerical parameters and physical variables, and return several outputs -

scalars or functions. For the development and the use of such computer models, Sensitivity

Analysis (SA) is an invaluable tool. The original technique, based on the derivative

computations of the model outputs with respect to the model inputs, suffers from strong

limitations for most of computer models. More recent global SA techniques take into

account all the variation ranges of the inputs and aim to apportion the whole output

uncertainty to the input factor uncertainties (Saltelli et al. [19]). The global SA methods

can also be used for model calibration, model validation, decision making process, i.e., any

process where it is useful to know which variables that mostly contribute to the output

variability.

The common quantitative methods are applicable to computer codes with scalar input

variables. For example, in the nuclear engineering domain, global SA tools have been

applied to numerous models where all the uncertain input parameters are modeled by

random variables, possibly correlated - such as thermal-hydraulic system codes (Marquès

et al. [12]), waste storage safety studies (Helton et al. [6]), environmental model of dose

calculations (Iooss et al. [9]), reactor dosimetry processes (Jacques et al [10]). Recent

research papers have tried to consider more complex input variables in the global SA

process, especially in petroleum and environmental studies:

• Tarantola et al. [23] work on an environmental assessment on soil models which

use spatially distributed maps affected by random errors. For the SA, they propose

to replace the spatial input by a “trigger” parameter that governs the random field

simulation.

• Ruffo et al. [15] evaluate an oil reservoir production using a model that depends

on different heterogeneous geological media scenarios. These scenarios, which are of

limited number, are then substituted for a discrete factor (a scenario number) before

performing the SA.

• Iooss et al. [8] study a groundwater radionuclide migration model which is based

on geostatistical simulations of the hydrogeological layer heterogeneity. The authors

propose to consider the spatial input parameter as an “uncontrollable” parameter.

In this paper, we tackle the problem of the global SA for numerical models and when
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some input parameters ε are functional. ε(u) is a one or multi-dimensional stochastic

function where u can be spatial coordinates, time scale or any other physical parameters.

Our work focuses with models that depend on scalar parameter vector X and need some

stochastic processes simulations or random fields ε(u) as input parameters. The computer

code output value Y depends on the realizations of these random functions. These models

are typically non linear with strong interactions between input parameters. Therefore, we

concentrate our methodology on the variance based sensitivity indices estimation; that is,

the so-called Sobol indices (Sobol [22], Saltelli et al. [19]).

To deal with this situation, a first natural approach consists in the discretization

of the input functional parameter ε(u) or its decomposition into an appropriate basis

of orthogonal functions. Then, for all the new scalar parameters which represent ε(u),

sensitivity indices are computed. However, in the case of complex functional parameters,

this approach seems to be rapidly intractable as these parameters cannot be represented

by a small number of scalar parameters (Tarantola et al. [23]). Moreover, when dealing

with non physical parameters (for example coefficients of orthogonal functions used in the

decomposition), sensitivity indices interpretation may be labored. Indeed, most often,

physicists would prefer to obtain one global sensitivity index related to ε(u).

The following section presents three different strategies to compute the Sobol indices

with functional inputs: (a) the macroparameter method, (b) the trigger parameter method

and (c) the proposed joint modeling approach. Section 3 compares the relevance of these

three strategies an analytical function: the WN-Ishigami function. Then, the proposed

approach is illustrated on an industrial computer code simulating fuel irradiation in a

nuclear reactor.

2 COMPUTATION METHODS OF SOBOL INDICES

First, let us recall some basic notions about Sobol indices. Let define the model

f : R
p → R

X 7→ Y = f(X)
(1)

where Y is the code output, X = (X1, . . . , Xp) are p independent inputs, and f is the

model function, which is analytically not known. The main idea of the variance-based

SA methods is to evaluate how the variance of an input or a group of input parameters
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contributes to the output variance. These contributions are described using the following

sensitivity indices:

Si =
Var [E (Y |Xi)]

Var(Y )
, Sij =

Var [E (Y |XiXj)]

Var(Y )
− Si − Sj , Sijk = . . . (2)

These coefficients, namely the Sobol indices, can be used for any complex model functions

f . The second order index Sij expresses the model sensitivity to the interaction between

the variables Xi and Xj (without the first order effects of Xi and Xj), and so on for higher

orders effects. The interpretation of these indices is natural as all indices lie in [0, 1] and

their sums are equal to one. The larger an index value is, the greater is the importance

of the variable or the group of variables related to this index.

For a model with p inputs, the number of Sobol indices is 2p − 1; leading to an

intractable number of indices as p increases. Thus, to express the overall output sensitivity

to an input Xi, Homma & Saltelli [7] introduce the total sensitivity index:

STi
= Si +

∑

j 6=i

Sij +
∑

j 6=i,k 6=i,j<k

Sijk + . . . =
∑

l∈#i

Sl (3)

where #i represents all the “non-ordered” subsets of indices containing index i. Thus,
∑

l∈#i Sl is the sum of all the sensitivity indices having i in their index. The estimation

of these indices (Eqs. (2) and (3)) can be performed by Monte-Carlo simulations based on

independent samples (Sobol [21], Saltelli [17]), or by refined sampling designs introduced to

reduce the number of required model evaluations significantly, for instance FAST (Saltelli

et al. [20]) and quasi-random designs (Saltelli et al. [18]).

Let us now consider a supplementary input parameter which is a functional input

variable ε(u) ∈ R where u ∈ R
d is a d-dimensional location vector. ε(u) is defined by all

its marginal and joint probability distributions. In this work, it is supposed that random

function realizations can be simulated. For example, these realizations can be produced

using geostatistical simulations (Lantuéjoul [11]) or stochastic processes simulations (Gen-

tle [4]). Our model writes now

Y = f(X, ε) (4)

and in addition to the Sobol indices related to X, our goal is to derive methods to compute

the sensitivity indices relative to ε, i.e., Sǫ (first order index), STε
(total sensitivity index),

Siε (second order indices), Sijε, . . .
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2.1 The macroparameter method

To resolve the problem of correlated input parameters in the Sobol indices calculations,

Jacques et al. [10] propose the use of multi-dimensional sensitivity indices (Sobol [22]):

each group of correlated parameters is considered as a multi-dimensional parameter or

macroparameter. The different Sobol indices (first order, second order, . . . , total) are

then computed using independent Monte-Carlo sampling techniques (Sobol [21], Saltelli

[17]). These techniques allow correlations between input parameters; while it is prohibited

with other methods - for example FAST.

In our context, this approach seems to be relevant as the input functional parameter

ε(u) can be considered as an unique input multi-dimensional parameter (i.e. a macropa-

rameter). For instance, the first order Sobol index related to ε(u) is defined as previously

by

Sε =
Var [E (Y |ε)]

Var(Y )
(5)

A simple way to estimate Sε = Dε/D is based on the Sobol [21] algorithm:

f̂0 =
1

N

N
∑

k=1

f(X
(1)
k , εk) (6a)

D̂ =
1

N

N
∑

k=1

f2(X
(1)
k , εk) − f̂2

0 (6b)

D̂ε =
1

N

N
∑

k=1

f(X
(1)
k , εk)f(X

(2)
k , εk) − f̂2

0 (6c)

where (X
(1)
k )k=1...N and (X

(2)
k )k=1...N are two independent sets of N simulations of the

input vector X and (εk)k=1...N is a sample of N realizations of the random function ε(u).

To compute the sensitivity indices Si, the same algorithm is used with two independent

samples of (εk)k=1...N . In the same way, the total sensitivity index STε
is derived from

the algorithm of Saltelli [17].

The major drawback of this method is that it may be cpu time consuming. A pre-

cise estimation of Sobol indices by this naive Monte-Carlo method requires more than

thousand model evaluations for one input parameter. In complex industrial applications,

it is intractable due to the cpu time cost of one model evaluation and the possible large

number of input parameters.
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2.2 The “trigger” parameter method

Dealing with spatially distributed input variables, Tarantola et al. [23] propose an al-

ternative that uses an additional scalar input parameter ξ - called “trigger” parameter.

ξ ∼ U [0, 1] governs the random function simulation. For each simulation, if ξ < 0.5,

the functional parameter ε(u) is fixed to a nominal value ε0(u) (for example the mean

E[ε(u)]), while if ξ > 0.5, the functional parameter ε(u) is simulated. Using this method-

ology, it is possible to estimate how sensitive the model output is to the presence of the

random function. Tarantola et al. [23] use the Extended FAST method to compute the

first order and total sensitivity indices of 6 scalar input factors and 2 additional “trigger”

parameters. For their study, the sensitivity indices according to the “trigger” parameters

are small and the authors conclude that it is unnecessary to model these spatial errors

more accurately.

Contrary to the previous method, there is no restriction about the sensitivity indices

estimation procedure - i.e. Monte-Carlo, FAST, quasi Monte-Carlo. However, there are

two major drawbacks for this approach:

• As the macroparameter method, it also requires the use of the computer model to

perform the SA and it may be problematic for large cpu time computer models. This

problem can be compensate by the use of an efficient quasi Monte-Carlo algorithm.

• As underlined by Tarantola et al. [23], ξ reflects only the presence or the absence of

the stochastic errors on ε0(u). Therefore, the term Var[E(Y |ξ)] does not quantify

the contribution of the random function variability to the output variability Var(Y ).

We will discuss about the significance of Var[E(Y |ξ)] later, during our analytical

function application.

2.3 The joint modeling approach

To perform a variance-based SA for time consuming computer models, some authors

propose to approximate the computer code by a mathematical function (Marseguerra et

al. [13], Volkova et al. [24]), often called response surface or metamodel (Fang et al.

[2]). For metamodels with sufficient prediction capabilities, the bias due to the use of

the metamodel instead of the true model is negligible. Several choices of metamodel can

be found in the literature: polynomials, splines, Gaussian processes, neural networks,

. . . Thus, for the functional input problem, one strategy may be to fit a metamodel with
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a multi-dimensional scalar parameters representing ε(u) as an input parameter - i.e. its

discretization or its decomposition into an appropriate basis. However, this approach

seems to be impracticable due to the potential large number of scalar parameters.

A second option is to substitute each random function realization for a discrete number,

which can correspond to the scenario parameter of Ruffo et al. [15] (where the number of

geostatistical realizations is finite and fixed, and where each different value of the discrete

parameter corresponds to a different realization). However, in the general context, this

restriction of the possible realizations of the input random function to a few ones is not

acceptable.

The last solution considers ε(u) as an uncontrollable parameter and a metamodel is

fitted in function of the other scalar parameters X:

Ym = E(Y |X) (7)

Therefore, using the relation

Var(Y ) = Var[E(Y |X)] + E[Var(Y |X)] (8)

it can be easily shown that the sensitivity indices of Y according to the scalar parameters

X = (Xi)i=1...p write (Iooss et al. [8])

Si =
Var[E(Ym|Xi)]

Var(Y )
, Sij =

Var[E(Ym|XiXj)]

Var(Y )
− Si − Sj , . . . (9)

and can be computed by classical Monte-Carlo techniques applied on the metamodel

Ym. Therefore, using equation (8), the total sensitivity index of Y according to ε(u)

corresponds to the expectation of the unexplained part of Var(Y ) by the metamodel Ym:

STε
=

E[Var(Y |X)]

Var(Y )
(10)

Using this approach, our objective is altered because we cannot decompose the ε effects

into elementary effect (Sε) and interaction effects between ε and the scalar parameters

(Xi)i=1...p. However, we see below that our technique allows a qualitative appraisal of the

interaction indices.

The sensitivity index estimations from equations (9) and (10) raise two difficulties:
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1. It is well known that classical parametric metamodels (based on least squares fitting)

are not adapted to estimate E(Y |X) accurately due to the presence of heteroscedas-

ticity (induced by the effect of ε). Such cases are analyzed by Iooss et al. [8]. The

authors show that heteroscedasticity may lead to sensitivity indices misspecifica-

tions.

2. Classical non parametric methods, such as Generalized Additive Model (Hastie and

Tibshirani [5]) and Gaussian process (Sacks et al. [16]) which can provide efficient

estimation of E(Y |X) (examples are given in Iooss et al. [8]), even in high dimen-

sional input cases (p > 5), are based on homoscedasticity hypothesis and do not

propose the estimation of Var(Y |X).

To resolve the second problem, Zabalza-Mezghani et al. [26] propose the use of a

theory developed for experimental data: the simultaneous fitting of the mean and the dis-

persion by two interlinked generalized linear models (McCullagh and Nelder [14]), which

is called the joint modeling. Besides, to resolve the first problem, this approach has been

extended by Iooss et al. [8] to non parametric models. This generalization allows more

complexity and flexibility while fitting the data. The authors propose the use of General-

ized Additive Models (GAMs) based on penalized smoothing splines (Wood [25]). GAMs

allow model and variable selections using quasi-likelihood function, statistical tests on co-

efficients and graphical display. However, compared to other complex metamodels, GAMs

impose an additive effects hypothesis. Therefore, two metamodels are obtained: one for

the mean component Ym = E(Y |X); and the other one for the dispersion component

Yd = Var(Y |X). The sensitivity indices of X are computed using Ym with the standard

procedure (Eq. (9)), while the total sensitivity index of ε(u) is computed from E(Yd)

(Eq. (10)). Using the explicit formula on Yd and the associated regression diagnostics,

qualitative sensitivity indices for the interactions between ε(u) and the scalar parameters

of X can also be deduced.

3 APPLICATION TO AN ANALYTICAL EXAMPLE

The three previously proposed methods are first illustrated on an artificial analytical

model with two scalar input variables and one functional input:

Y = f(X1, X2, ε(t)) = sin(X1) + 7 sin(X2)
2 + 0.1[max

t
(ε(t))]4 sin(X1) (11)
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where Xi ∼ U [−π; π] for i = 1, 2 and ε(t) is a white noise, i.e. an i.i.d. stochastic pro-

cess ε(t) ∼ N (0, 1). In our model simulations, ε(t) is discretized in one hundred values:

t = 1 . . . 100. The function (11) is similar to the well-known Ishigami function (Homma

and Saltelli [7]) but substitute the third parameter for the maximum of a stochastic pro-

cess. Consequently, we call our function the white-noise Ishigami function (WN-Ishigami).

Although the WN-Ishigami function is an artificial model, the introduction of the maxi-

mum of a stochastic process inside a model is quite realistic. For example, some computer

models simulating physical phenomena can use the maximum of time-dependent variable

- river height, rainfall quantity, temperature. Such input variable can be modeled by a

temporal stochastic process.

As for the Ishigami function, we can immediately deduce from the formula (11) the

sensitivity indices which are worse zero:

Sε = S12 = S2ε = S12ε = 0 (12)

Then, we have

ST1
= S1 + S1ε, ST2

= S2, STε
= S1ε (13)

In the following, we focus our attention on the estimation of S1, S2 and STε
.

Because of a particularly complex probability distribution of the maximum of a white

noise, there is no analytical solution for the theoretical Sobol indices S1, S2 and S1ε for

the WN-Ishigami function. Even with the asymptotic hypothesis (number of time steps

tending to infinity), where the maximum of the white noise follows Generalized Extreme

Value distribution, theoretical indices are unreachable. Therefore, our benchmark Sobol

indices values are derived from the Monte-Carlo method. However, these benchmark

values can be considered as relevant because of the negligible computation time required

to evaluate equation (11).

3.1 The macroparameter and “trigger” parameter methods

Table 1 contains the Sobol indices estimates using the macroparameter and “trigger”

parameter methods. As explained before, we can only use the two algorithms based on

independent Monte-Carlo samples: the algorithm of Sobol [21] which computes S1, S2,

S1ε, and the algorithm of Saltelli [17] which computes the first order indices S1, S2 and
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the total sensitivity indices ST1
, ST2

, STε
. For the estimation, the size of the Monte-

Carlo samples are limited to N = 10000 because of memory computer limit. Indeed, the

functional input ε(u) contains for each simulation set 100 values. Then, the input sample

matrix has the dimension N × 102 which becomes extremely large when N increases. To

evaluate the effect of this limited Monte-Carlo sample size N , each Sobol index estimate

is associated to a standard-deviation estimated by bootstrap - with 100 replicates of the

input-output sample. The obtained standard-deviations are relatively small, of the order

of 0.01, which is rather sufficient for our exercise.

[Table 1 about here.]

For the macroparameter method, the theoretical relations between indices given in

(13) are verified. We are therefore confident with the estimates obtained with this method

(which is in addition theoretically well-founded) and we choose the Sobol indices obtained

with Saltelli’s algorithm as the indices references:

S1 = 55.1%, S2 = 20.7%, STε
= 24.8%

The Sε, S12, Sε2 and S12ε indices (Eq. (12)) are not reported in table 1 as estimates are

negligible.

With the “trigger” parameter method, the obtained values in table 1 are not close

to the reference values. The inadequacies are larger than 30% for all the indices, and

can be larger than 60% for a few ones. Moreover, the relations given in (13) are not

satisfied at all. Actually, replacing the input parameter ε(u) by ξ which governs the

presence or absence of the functional input parameter changes the model. When ε is

not simulated, it is replaced by its mean (zero) and the WN-Ishigami function becomes

Y = sin(X1) + 7 sin(X2)
2. Therefore, the mix of the WN-Ishigami model and this new

model perturbs the estimation of the sensitivity indices, even those unrelated to ε (like

X2).

This example confirms our intuition: the sensitivity indices derived from the “trigger”

parameter method have not the same sense that the classical ones, i.e., the measure of

the contribution of the input parameter variability to the output variable variability. The

sensitivity indices obtained with these two methods are unconnected because the “trigger”

parameter method changes the structure of the model.
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3.2 The joint modeling approach

We apply now the joint modeling approach which requires an initial input-output sample

to fit the joint metamodel - the mean component Ym and the dispersion component Yd.

For our application, a learning sample size of n = 500 was considered; i.e., n independent

random samples of (X1, X2, ε(u)) were simulated leading to n observations for Y . Let

first remark that this method is extremely less cpu time consuming than the previous ones

which needed a 10000-size sample.

Joint GLM and joint GAM fitting procedures are fully described in Iooss et al. [8].

Some graphical residual analyses are particularly well suited to check the relevance of the

mean and dispersion components of the joint models. In the following, we give the results

of the joint models fitting on a learning sample (X1, X2, ε(u), Y ). Let us recall that we

fit a model to predict Y in function of (X1, X2).

Joint GLM fitting

For the joint GLM, fourth order polynomial for the parametric form of the model is

considered. Moreover, only the explanatory terms are retained in our regression model

using analysis of deviance and the Fisher statistics. The Student test on the regression

coefficients and residuals graphical analysis make it possible to appreciate the model

goodness-of-fit. The mean component gives:

Deviance Residuals:

Min 1Q Median 3Q Max

-5.79193 -0.59880 0.03988 0.64202 3.51148

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.92634 0.22128 8.706 <2e-16 ***

X1 4.74256 0.16198 29.278 <2e-16 ***

I(X2^2) 2.22879 0.14130 15.773 <2e-16 ***

I(X1^3) -0.51398 0.02453 -20.951 <2e-16 ***

I(X2^4) -0.28501 0.01588 -17.952 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for quasi family taken to be 1.010101)

Null deviance: 1901.0 on 499 degrees of freedom

Residual deviance: 500.0 on 495 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 2

The explained deviance of this model is Dexpl = 74%. It can be seen that it remains

26% of non explained deviance due to the model inadequacy and/or to the functional input
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parameter. The predictivity coefficient, i.e. coefficient of determination R2 computed on

a test sample, is Q2 = 71%. Q2 is relatively coherent with the explained deviance.

For the dispersion component, using analysis of deviance techniques, none significant

explanatory variable were found: the heteroscedastic character of the data has not been

retrieved. Thus, the dispersion component is supposed to be constant; and the joint GLM

model is equivalent to a simple GLM - but with a different fitting process.

Joint GAM fitting

At present, we try to model the data by joint GAM. The resulting model is described

by the following features (s(.) denotes a penalized spline smoothing term):

Mean component:

Family: quasi

Link function: identity

Formula:

y ~ X1 + s(X1) + s(X2)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.19914 0.08727 48.12 <2e-16 ***

X1 -5.39131 0.34285 -15.72 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:

edf Est.rank F p-value

s(X1) 5.503 8 144.1 <2e-16 ***

s(X2) 8.738 9 316.5 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.979 Deviance explained = 90.5%

GCV score = 1.0683 Scale est. = 1.0336 n = 500

Dispersion component:

Family: Gamma

Link function: log

Formula:

d ~ s(X1)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.98812 0.07965 12.41 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:

edf Est.rank F p-value

s(X1) 8.814 9 28.39 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.0481 Deviance explained = 26.3%

GCV score = 3.2355 Scale est. = 3.172 n = 500
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The explained deviance of the mean component is Dexpl = 90% and the predictivity

coefficient is Q2 = 77%. Therefore, the joint GAM approach outperforms the joint GLM

one. Indeed, the proportion of explained deviance is clearly greater for the GAM model.

Even if this is obviously related to an increasing number of parameters; this is also ex-

plained as GAMs are more adjustable than GLMs. This is confirmed by the increase of

the predictivity coefficient - from 71% to 77%. Moreover, due to the GAMs flexibility,

the explanatory variable X1 is identified for the dispersion component. The interaction

between X1 and the functional input parameter ε(u) which governs the heteroscedasticity

of this model is therefore retrieved.

Sobol indices

From the joint GLM and the joint GAM, Sobol sensitivity indices can be computed

using equations (9) and (10) - see Table 2. The reference values are extracted from

the macroparameter method and Saltelli’s algorithm in table 1. The standard deviation

estimates (sd) are obtained from 100 repetitions of the Monte-Carlo estimation procedure

- which uses N = 10000 model computations for one index estimation. The joint GLM

and joint GAM gives good estimations of S1 and S2. Despite the joint GLM leads to an

accurate estimation for STε
, we will see later that it is a lucky break. A problem occurs

with the estimation of STε
with joint GAM. In fact, an efficient modeling of Var(Y |X)

is difficult, which is a common statistical difficulty in heteroscedastic regression problems

(Antoniadis & Lavergne [1]). Another way to estimate the total sensitivity index STε

is to compute the unexplained variance of the mean component model given directly by

1 − Q2, with Q2 the predictivity coefficient of the mean component model. In practical

applications, Q2 can be estimated via leave-one-out or cross validation procedures. In our

analytical case, the index estimated with this method and the joint GAM gives a correct

estimation - 0.23 instead of 0.25.

[Table 2 about here.]

For the other sensitivity indices, the conclusions draw from the GLM formula are

completely erroneous: as the dispersion component is constant, the interaction indices are

null. Thus, Sε = STε
= 0.25 while Sε = 0 in reality. In contrary, the deductions draw

from GAM formulas are correct: (X1, ε) interaction sensitivity is positive, S2ε = S12ε = 0,

ST2
= S2, S12 = S23 = S123 = 0. The drawback of this method is that some indices (ST1
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and Sε) remain unknown due to the non separability of the dispersion component effects.

By estimating Sobol indices with those obtained from other learning samples, we

observe that the estimates are rather dispersed: it seems that the estimates are not robust

according to different learning samples for the joint models. To examine this effect, we

propose to study two different sample sizes: n = 200 and n = 500. For each sample size,

we repeat 25 times, the fitting process on different learning samples, and we compute

Sobol indices as previously. In fact, for each sample size, we obtain 25 estimates of each

sensitivity index. The variability of the indices is due at present to the learning sample

variability. Figures 1 and 2 show the results of this investigation, which are particularly

convincing. The boxplots are based on the 25 different estimates. From these figures,

several conclusion can be drawn:

• For the joint GAM, the boxplot interquartile interval of each index contains its

reference value. In contrary, the joint GLM fails to obtain correct estimates: except

for S1, the sensitivity reference values are outside the interquartile intervals of the

obtained boxplots.

• The superiority of the joint GAM with respect to the joint GLM is corroborated,

especially for S2 and STε
.

• The increase of the learning sample size has no effect on the joint GLM results (due

to the parametric form of this model). However, for the joint GAM, boxplots widths

are strongly reduced from n = 200 to n = 500. In addition, the mean estimates

seem to converge to the reference values.

• As explained before, the estimation of STε
using the predictivity coefficient Q2 is

markedly better than through the dispersion component model. This is not the case

for the joint GLM.

[Figure 1 about here.]

[Figure 2 about here.]

In conclusion, this example shows that the joint models, and specially the joint GAM,

can adjust complex heteroscedastic situations. Moreover, the joint models offer a theoret-

ical basis to compute efficiently global sensitivity indices for models with functional input

parameter.
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4 APPLICATION TO A NUCLEAR FUEL IRRADI-

ATION SIMULATION

The METEOR computer code, developed within the Fuel Studies Department in CEA

Cadarache, studies the thermo-mechanical behavior of the fuel rods under irradiation in

a nuclear reactor core. In particular, it computes the fission gas swelling and the cladding

creep (Garcia et al. [3]). These two output variables are considered in our analysis.

These variables are of fundamental importance for the physical comprehension of the fuel

behavior and for the monitoring of the nuclear reactor core.

Input parameters of such mechanical models can be evaluated either by database analy-

ses, arguments invoking simplifying hypotheses, expert judgment. All these considerations

lead to assign to each input parameter a nominal value associated with an uncertainty.

In this study, six uncertain input parameters are considered: the initial internal pressure

X1, the pellet and cladding radius X2, X3, the microstructural fuel grain diameter X4,

the fuel porosity X5 and the time-dependent irradiation power P (t). X1, . . . , X5 are

all modeled by Gaussian independent random variables with the following coefficient of

variations: cv(X1) = 0.019, cv(X2) = 1.22×10−3, cv(X3) = 1.05×10−3, cv(X4) = 0.044,

cv(X5) = 0.25. The last variable P (t) is a temporal function (discretized in 3558 values)

and its uncertainty ε(t) is modelled like a stochastic process. For simplicity, a temporal

white noise (of uniform law ranging between −5% and +5%) was introduced.

As in the previous application, additionally to its scalar random variables, the model

includes an input functional variable P (t). To compute Sobol indices of this model, we

have first tried to use the macroparameter method. We have succedeed to perform the

calculations with N = 1000 (for the Monte-Carlo sample sizes of Eqs. (6a), (6b) and (6c)).

The sensitivity indices estimates have been obtained after 10 computation days and were

extremely imprecise, with strong variations between 0 and 1. Because of the required

cpu time, an increase of the sample size N to obtain acceptable sensitivity estimates was

unconceivable. Therefore, the goal of this section is to show how the use of the joint

modeling approach allows to estimate the sensitivity indices of the METEOR model and,

in particular, to quantify the functional input variable influence.

500 METEOR calculations were carried out using 500 Monte-Carlo sampling of the

input parameters. As expected, the white noise on P (t) generates an increase in the

standard deviation of the output variables (compared to simulations without a white
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noise): 6% increase for the variable fission gas swelling and 60% for the variable cladding

creep.

4.1 Gas swelling

We start by studying the gas swelling model output. With a joint GLM, the following

result for Ym and Yd were obtained:











Ym = −76 − 0.4X1 + 20X2 + 8X4 + 134X5 + 0.02X2
4 − 2X2X4 − 6X4X5

log(Yd) = −2.4X1

(14)

The explained deviance of the mean component is Dexpl = 86%. As the residual analyses

of mean and dispersion components do not show any biases, the resulting model seems

satisfactory. The joint GAM was also fitted on these data and led to similar results. Thus,

it seems that spline terms are useless and that a joint GLM model is suited.

Table 3 shows the results for the Sobol indices estimation using Monte-Carlo methods

applied on the metamodel (14). The standard deviation (sd) estimates are obtained from

100 repetitions of the Monte-Carlo estimation procedure -which uses 105 model compu-

tations for one index estimation. It is useless to perform the Monte-Carlo estimation for

some indices because they can be deduced from the joint model equations. For example,

S3 = 0 (resp. Sε2 = 0) because X3 (res. X2) is not involved in the mean (resp. dis-

persion) component in equation (14). Moreover, we know that Sε1 > 0 because X1 is an

explanatory variable inside the dispersion component Yd. However, this formulation does

not allow to have any idea about Sǫ which reflects the first order effect of ε. Therefore,

some indices are not accessible, such as Sε and Sε1 non distinguishable inside the total

sensitivity index STε
. Finally, we can check that

5
∑

i=1

Si +

5
∑

i,j=1,i<j

Sij + STε
= 1 holds -

up to numerical approximations.

It can be seen that X4 (grain diameter) and X5 (fuel porosity) are the most influent

factors (each one having 40% of influence), and do not interact with the irradiation power

P (t) (representing by its uncertainty ε). In addition, the effect of P (t) is not negligible

(14%) and parameter X1 (internal pressure) acts only with its interaction with P (t). A

sensitivity analysis by fixing X1 could allow us to obtain some information about the first

order effect of ε in the model.
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4.2 Cladding creep

We study now the cladding creep model output. With a joint GLM, the model for Ym

and Yd is:










Ym = −2.75 + 1.05X2 − 0.15X3 − 0.58X5

log(Yd) = 156052− 76184X2 + 9298X2
2

(15)

The explained deviance of the mean component is Dexpl = 26%. As the residual analyses of

mean and dispersion components show some biases, the resulting model is not satisfactory.

For the joint GAM, the spline terms {s(X2), s(X3), s(X5)} and s(X2) are added within

the mean component and the dispersion component respectively. The explained deviance

of the mean component is Dexpl = 29% which is not significantly greater than 26%.

However, as the mean component residual biases of the joint GAM are smaller than those

observed for the joint GLM, the joint GAM seems to be more relevant than the joint

GLM.

Table 3 shows the Sobol indices estimates using Monte-Carlo methods and deductions

from the joint model equations. For the joint GLM and joint GAM of the cladding creep,
5

∑

i=1

Si +

5
∑

i,j=1,i<j

Sij +STε
= 1 holds – up to numerical imprecisions. Due to the proximity

of the two joint models, results are similar. This analysis shows that the parameter X2

(pellet radius) explains 28% of the uncertainty of the cladding creep phenomenon, while

the other scalar parameters have negligible influence. The greater part of the cladding

creep variance (70%) is explained by the irradiation power uncertainty. Physicists may

be interested in quantifying the interaction influence between the pellet radius and the

irradiation power. Unfortunately, this interaction is not available for the moment in our

analysis.

[Table 3 about here.]

5 CONCLUSION

This paper has proposed a solution to perform global sensitivity analysis for time consum-

ing computer models which depend on functional input parameters, such as a stochastic

process or a random field. Our purpose concerned the computation of variance-based im-

portance measures of the model output according the the uncertain input parameters. We

have discussed a first natural solution which consists in integrating the functional input
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parameter inside a macroparameter, and using standard Monte-Carlo algorithms to com-

pute sensitivity indices. This solution is not applicable for time consuming computer code.

We have discussed another solution, used in previous studies, based on the replacement

of the functional input parameter by a “trigger” parameter that governs the integration

or not of the functional input uncertainties. However, the estimated sensitivity indices

are strongly biased due to changes in the model structure carrying out by the method

itself. Finally, we have proposed an innovative solution, the joint modeling method, based

on a preliminary step of double (and joint) metamodel fitting, which resolves the large

cpu time problem of Monte-Carlo methods. It consists in rejecting the functional input

parameters in noisy input variables. Then, two metamodels depending only on the scalar

random input variables are simultaneously fitted: one for the mean function and one for

the dispersion (variance) function.

Tests on an analytical function have shown the relevance of the joint modeling method,

which provides all the sensitivity indices of the scalar input parameters and the total

sensitivity index of the functional input parameter. In addition, it reveals in a qualitative

way the influential interactions between the functional parameter and the scalar input

parameters. A research way for the future would be to distinguish the contributions

of several functional input parameters, who are at the moment totally mixed in one

sensitivity index. This is the main drawback of the proposed method.

In an industrial application, the feasibility and usefulness of our methodology was

established. Indeed, other methods are not applicable in this application because of large

cpu time of the computer code. To a better understanding of the model behavior, the

information brought by the global sensitivity analysis can be very useful to the physicist

or the modeling engineer. The joint model can also serve in propagation uncertainty and

reliability studies of complex models, containing input random functions, to obtain some

mean predictions with their confidence intervals.
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Figure 1: WN-Ishigami application. Comparison of Sobol indices estimates. Reference values:
S1, S2, STε

. Joint GLM: S1L, S2L, STεL, 1−Q2L. Joint GAM: S1A, S2A, STεA, 1−Q2A. 1−Q2L

(resp. 1−Q2A) is the estimation of STε
via the joint GLM (resp. joint GAM) Q2 coefficient.

Learning sample size: n = 200.
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Table 1: Sobol sensitivity indices (with standard deviations sd) obtained from two Monte-
Carlo algorithms (Sobol [21] and Saltelli [17]) and two integration methods of the functional
input ε (macroparameter and “trigger” parameter) on the WN-Ishigami function. “—” indi-
cates that the value is not available.

Indices
Macroparameter “Trigger” parameter

Sobol algo Saltelli algo Sobol algo Saltelli algo
Values sd Values sd Values sd Values sd

S1 0.540 1.3e-2 0.551 1.6e-2 0.304 1.3e-2 0.330 1.8e-2
ST1

— — 0.808 2.0e-2 — — 0.656 1.4e-2

S2 0.197 1.1e-2 0.207 0.8e-2 0.329 1.4e-2 0.348 1.5e-2
ST2

— — 0.212 0.7e-3 — — 0.532 1.3e-2

S1ε 0.268 2.4e-2 — — 0.177 2.2e-2 — —
STε

— — 0.248 1.3e-2 — — 0.336 1.4e-2
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Table 2: Sobol sensitivity indices (with standard deviations) for the WN-Ishigami function:
exact and estimated values from joint GLM and joint GAM (fitted with a 500-size sample).
“Method” indicates the estimation method: MC for the Monte-Carlo procedure, Eq for a
deduction from the model equations and Q2 for the deduction of the predictivity coefficient
Q2. “—” indicates that the value is not available.

Indices
Reference Joint GLM Joint GAM

Values Values sd Method Values sd Method

S1 0.551 0.572 4e-3 MC 0.569 5e-3 MC
S2 0.207 0.179 8e-3 MC 0.233 7e-3 MC
STε

0.248 0.250 2e-3 MC 0.197 1e-3 MC
0.29 — Q2 0.23 — Q2

S12 0 0 — Eq 0 — Eq
S1ε 0.248 0 — Eq > 0 — Eq
S2ε 0 0 — Eq 0 — Eq
S12ε 0 0 — Eq 0 — Eq
ST1

0.808 0.832 4e-3 Eq — — —
ST2

0.212 0.179 8e-3 Eq 0.233 7e-3 Eq
Sε 0 0.250 2e-3 Eq — — —
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Table 3: Sobol sensitivity indices (with standard deviations sd) from joint models fitted on
the outputs of the METEOR code. “Method” indicates the estimation method: MC for the
Monte-Carlo procedure and Eq for a deduction from the joint model equation. “—” indicates
that the value is not available.

Indices
Gas swelling Cladding creep
Joint GLM Joint GLM Joint GAM

Values sd Method Values sd Method Values sd Method

S1 0.029 6e-3 MC 0.000 1e-3 MC 0.000 1e-3 MC
S2 0.024 5e-3 MC 0.294 1e-4 MC 0.282 2e-4 MC
S3 0 — Eq 0.006 1e-3 MC 0.007 1e-3 MC
S4 0.394 5e-3 MC 0.000 1e-3 MC 0.000 1e-3 MC
S5 0.409 6e-3 MC 0.006 1e-3 MC 0.006 1e-3 MC
S24 0.002 5e-3 MC 0 — Eq 0 — Eq
S45 0.000 9e-3 MC 0 — Eq 0 — Eq

other Sij 0 — Eq 0 — Eq 0 — Eq
STε

0.143 1e-4 MC 0.694 1e-4 MC 0.704 3e-4 MC
Sε — — — — — — — — —
Sε1 — — — 0 — Eq 0 — Eq
Sε2 0 — Eq — — — — — —

other Sεi 0 — Eq 0 — Eq 0 — Eq
ST1

— — — 0.000 1e-3 Eq 0.000 4e-3 Eq
ST2

0.026 7e-3 Eq — — — — — —
ST3

0 — Eq 0.006 1e-3 Eq 0.007 4e-3 Eq
ST4

0.396 7e-3 Eq 0.000 1e-3 Eq 0.000 4e-3 Eq
ST5

0.409 0.011 Eq 0.006 1e-3 Eq 0.006 4e-3 Eq
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