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Abstract

This paper presents a new and original method for dynamical analysis of multi-stage

cyclic structures such as turbomachinery compressors or turbines. Each stage is modeled

cyclically by its elementary sector and the inter-stage coupling is achieved through a cyclic

recombination of the interface degrees of freedom. This method is quite simple to set-up; it

allows to handle the finite element models of each stage’s sector directly and, as in classical

cyclic symmetry analysis, to study the nodal diameter problems separately. The method is

first validated on a simple case study which shows good agreements with a complete 360

degrees reference calculation. An industrial example involving two HP compressor stages is

then presented. Then the forced response application is presented in which synchronous of

engine order type excitations are considered.

1 Introduction

The mechanical design of gas turbine rotors is traditionally fulfilled through stage by stage anal-
ysis. However, in modern engines, dynamical phenomena involving multiple stages (adjoining
or not) of bladed disks tend to appear and can then be of primary interest for gas turbine pro-
fessionals. On the other hand, the traditional (single stage) analysis of bladed disks dynamics
is usually performed using the cyclic symmetry reduction which allows to analyze a complete
rotationally periodic structure by considering only one of its elementary sector. Examples in the
literature are numerous on this subject, from the early developments of cyclic symmetry method
Thomas (1979); Wildheim (1981) to specific researches on bladed disks dynamics Srinivasan
(1984); Slater (1999). Withal, in such analysis, the interstage coupling is necessarily neglected,
its eventual effects can not be accounted for and this can lead to significant deviations from the
real (multi-stage) system. For example, Bladh et al. Bladh et al. (2003) have show that the
interstage coupling can significantly affect the dynamics of the multistage assembly and that
the traditional single stage analysis can, in some cases, leads to an underestimation of vibratory
levels.

Few strategies exist to answer the challenge of multistage modeling and a major issue is that,
since a multistage assembly of cyclic structures is a priori no longer cyclic, the cyclic symmetry
reduction cannot be used straightforward. Some Rzadkowski and Drewczynski (2006) have
used full 360 degrees models to study the (free and forced) dynamics of multi-stage systems.
However, as such techniques often yield prohibitive computational costs. Component mode
synthesis methods (with multilevel reductions) has also been used Bladh et al. (2001); Song
et al. (2005) but these strategies can be somewhat difficult to use in a design process.

In the present paper, we put forward a new strategy to study the dynamics of multistage
assemblies using a cyclic symmetry reduction. This method handles the sector finite element
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modeling directly and involves a realistic interstage coupling based on a cyclic recombination
of the interface on the chosen nodal diameter. Following a brief review of the cyclic symmetry
method (section 2), the proposed method will be detailed in section 3. Then, some numerical
examples and results will be presented in section 4 to validate the method and highlight the
importance of such multi-stage calculations in the design of turbomachinery components.

2 Cyclic symmetry for single stages

In this first section, a brief review of the classical cyclic symmetry modeling is done which mainly
aims at defining some notations. A cyclic structure composed of N sectors is considered. Its
displacement vector can be split as,

x =
[

x0, x1, . . . , xN−1

]T
(1)

where xj is the displacement vector of the j-th sector.
As a consequence of the rotational periodicity, the mode shapes are such that each sector has

the same deflection and a constant phase difference from the adjacent sectors. This inter-sector
phase angle is βn = 2πn/N and the harmonic index n = 0, 1, . . ., N − 1 is called the nodal
diameter number.

As a result, any dynamical problem on the complete cyclic structure,

M ẍ + Cẋ + Kx = f e (2)

can be transform (exactly) into reduced problems on the reference sector (corresponding to each
nodal diameter number n)

Mn
¨̃xn + Cn

˙̃xn + Knx̃n = f̃e,n (3)

The displacement vector, in the cyclic base, x̃n is obtained from the reference sector’s displace-
ment vector in which the left inter-sector degrees-of-freedom, lx0, have been eliminated using
the relation to the right inter-sector degrees-of-freedom, rx0, for each n nodal diameter,

lx0 = e−
2iπn

N
rx0 (4)

The reduced matrices Mn, Cn and Kn are obtained by applied this periodicity conditions on the
reference sector’s structural matrices.

As the considered structures have symmetric structural matrices, x̃n and x̃N−n contains the
same relevant information and thus among the N possible values of the nodal diameter index n
only Ns of these are to be calculated,

Ns =

{

N/2 + 1 if N is even

(N + 1)/2 if N is odd
(5)

Each reduced problem (3) is solved in cyclic coordinates x̃n (for the reference sector) and
the transformation in physical coordinates (complete structure) is given by:

x = en⊗x̃n with en =
[

1 e
2jπn

N e
4jπn

N . . . e
2(N−1)jπn

N

]T

(6)

where ⊗ is the Kronecker product.
For further readings, see references Thomas (1979); Wildheim (1981); Henry (1980).
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3 A multistage cyclic symmetry method

We suggest a new strategy to analyze the dynamics of multistage cyclic structures. This method
was originally proposed by the authors in Laxalde et al. (2007a). It is called multistage cyclic
symmetry since the cyclic symmetry strategy is used to model each stage. The interstage
coupling is ensured through a cyclic expansion of the interface degrees of freedom of each stages.
The method will be detailed based on the example of two stages respectively composed of N1

and N2 sectors (N1 < N2). This method is applicable for any dynamical problems in free and
forced responses. In this paper, we focused on linear applications for modal analysis and forced
steady-state response. Extension to non-linear steady-state response calculations can easily be
considered by combining cyclic symmetry approach with Fourier methods Petrov (2004); Laxalde
et al. (2007b).

Equations of the motion. We consider the general dynamical problem involving several
coupled stages, each having a second-order equation of the motion of the form,

M (s)ẍ(s) + C(s)ẋ(s) + K(s)x(s) = f (s)
e (s = 1 or 2) (7)

in which, M (s), C(s) and K(s) are mass, damping and stiffness matrices, x(s) is the displacement

vector and f
(s)
e is the external forces on the full stage s.

Since each stage is rotationally periodic, it can be represented by its elementary sector in its
own cyclic base by the following uncoupled nodal diameters equations,

M (s)
n

¨̃x(s)
n + C(s)

n
˙̃x(s)

n + K(s)
n x̃(s)

n = f̃
(s)
e,n, for n ∈ [0 . . . N (s)

s − 1] (8)

The proposed method aims at coupling the models of each stage in their own cyclic components.

Interstage coupling. At the interface between stages 1 and 2, the coupling is achieved by
enforcing continuity of displacements (or other variables) on the interstage boundary in the
common physical base,

∆bx = Abx(1) − bx(2) = 0 (9)

where the left superscript b. refers the restrictions to the interstage boundary degrees-of-freedom
and A is a constraint matrix which makes the two interstage meshes compatible (multi-point
constraints).

Equation. (9) can be rewritten, using each stage’s cyclic base, as,

A

N1−1
∑

n=0

eN1,n ⊗ bx̃
(1)
i,n +

N2−1
∑

p=0

eN2,p ⊗
bx̃

(2)
i,p = 0 (10)

Then, we can project equation (10) on any nodal diameter vector of stage 2 cyclic base (p ∈

[0 . . . N2 − 1]) and obtain,

(

e∗

N2,p ⊗ Ib2

)

A

N1−1
∑

n=0

eN1,n ⊗ bx̃
(1)
i,n + bx̃

(2)
i,p = 0 (11)

where the identity mtrices Ibs
(s = 1, 2) ensure the compatibility of the interstage interface.

In equation (11), the coupling terms between nodal diameters n and p of each stage’s base
are

C(p, n) =
(

e∗

N2,p ⊗ Ib2

)

A
(

eN1,n ⊗ Ib1

)

(12)
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The cornerstone of the proposed method is to neglect the coupling between “distinct” nodal
diameters of each stage’s base. We can, here, define the correspondence of nodal diameters
indexes between the two stage’s bases (which may not be obvious since the stages have different
number of sectors). For any nodal diameter index p ∈ [0 . . . N2] of stage 2, we can define the
corresponding “equivalent” nodal diameter index of stage 1 n(p) as,

n(p) =











p if p ≤ N1

N1 −

{

p (mod N1) if N1 is odd

p (mod N1) if N1 is even
if p > N1

(13)

This correspond to the aliasing of the discrete Fourier transform. The “nodal diameter equiva-
lence” is illustrated by figures (1), with the even (fig. 1(a)) and odd (fig. 1(b)) cases. Finally, the
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Figure 1. “Nodal diameter equivalence” rule

restriction of the inter-stage projection given by equation (11) to “equivalent” nodal diameters
leads to:

(

e∗

N2,p ⊗ Ib2

)

A
(

eN1,n(p) ⊗ Ib1

)

bx̃
(1)
i,n(p) + bx̃

(2)
i,p = 0 (14)

This assumption will next be referred as the one-to-one nodal diameter coupling assumption.

Multistage cyclic symmetry reduction. The one-to-one coupling assumption makes pos-
sible the multi-stage coupling in the cyclic bases for each nodal diameters separately. We can
append two stages models in their own cyclic base and according to the previously defined nodal
diameter correspondence relation (13) as,

(

M
(1)
n(p)

0

0 M
(2)
p

)[

¨̃x
(1)
n(p)

¨̃x
(2)
p

]

+

(

C
(1)
n(p)

0

0 C
(2)
p

)[

˙̃x
(1)
n(p)

˙̃x
(2)
p

]

+

(

K
(1)
n(p)

0

0 K
(2)
p

)[

x̃
(1)
n(p)

x̃
(2)
p

]

=

[

f̃
(1)
e,n(p)

f̃
(2)
e,p

]

(15)

Next, if each stage displacements vector is split as,

x̃
(1)
n(p) =

[

bx̃
(1)
n(p),

ix̃
(1)
n(p)

]T

and x̃(2)
p =

[

bx̃
(2)
p , ix̃

(2)
p

]T

Eq. (14) can be used to eliminate the cyclic components of the interstage boundary of stage 2,

[

x̃
(1)
n(p)

x̃
(2)
p

]

= Tpx̃
(1,2)
p (16)

4



with,

Tp =









Ib1 0 0
0 Ii1 0
Bp 0 0
0 0 Ii2









,Bp =
(

e∗

N2,p ⊗ Ib2

)

A
(

eN1,n(p) ⊗ Ib1

)

and,

x̃(1,2)
p =

[

bx̃
(1)
n(p)

ix̃
(2)
n(p)

ix̃
(2)
p

]T

The final multi-stage one-to-one nodal diameter dynamical problem can be defined as:

M (1,2)
p

¨̃x(1,2)
p + C(1,2)

p
˙̃x(1,2)

p + K(1,2)
p x̃(1,2)

p = f̃
(1,2)
e,p (17)

with,

M (1,2)
p = T T

p

(

M
(1)
n(p) 0

0 M
(2)
p

)

Tp

C(1,2)
p = T T

p

(

C
(1)
n(p) 0

0 C
(2)
p

)

Tp

K(1,2)
p = T T

p

(

K
(1)
n(p) 0

0 K
(2)
p

)

Tp

This method allows the study of nodal diameter modes separately as for individual stages,
each being modeled with its own elementary sector. The size of problems (15) or (17) is close to
the sum of the two individual stages problem sizes. The accuracy of this method in modal analy-
sis and particularly the validity of the one-to-one nodal diameter coupling will be demonstrated
by numerical examples in section 4.1.

Superposition. The multistage cyclic symmetry formalism allows to isolate the nodal diam-
eters contributions of the response. However, in some cases and particularly in forced response,
the dynamics of the multi-stage system can feature simultaneous contributions of different nodal
diameters. To handle with such problems, two strategies can be used. The first is to use the
“superposition principle” as in typical single stage cyclic symmetry analysis; that is to say, the
external forcing distribution on each stage is first decomposed into elementary cyclic forces corre-
sponding to nodal diameter contributions of each stage and then each uncoupled, nodal diameter
projected, equation can be solved individually. The global response is then obtained by sum-
ming all contributions. The second is to consider all harmonic components of the excitation (or
response) in the projection step of the multi-stage cyclic symmetry method. Example given, if
two harmonics (or nodal diameter numbers) p and q are considered, the projection equation (14)
becomes,

Bp,q

[

x̃
(1)
i,n(p)

x̃
(1)
i,n(q)

]

+

[

x̃
(2)
i,p

x̃
(2)
i,q

]

= 0 (19a)

with
Bp,q =

([

eN2,p,eN2,q

]

∗

⊗ Ib2

)

A
([

eN1,n(p),eN1,n(q)

]

⊗ Ib1

)

(19b)
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4 Numerical results

The next of the paper is dedicated to numerical applications. First, a validation example will be
used to evaluate the performances of the proposed method in modal analysis. Then, an industrial
application based on two HP compressor rotating stages will be presented in both modal and
forced responses. The importance of multi-stage dynamic analysis will also be discussed.

4.1 Validation example

In this part we evaluate the performance of the Multistage cyclic symmetry method on a numer-
ical example. We consider two stages of cyclic structures with simple geometry; the first being
composed of 24 elementary sectors and the second of 45 elementary sectors. The figure 2 shows
the finite elements meshes of the two elementary sectors and of the whole structure. The results

Figure 2. Finite element model of two cyclic structures – N1 = 24, N2 = 45

on the Multistage cyclic symmetry method are compared to a full 360 degrees analysis taken as
a reference.

Correlation on modal data Figure 3 gathers the eigenfrequencies calculated by the two
methods plotted versus their nodal diameter index. The correlation appears to be correct. This
attests for the quality of the prediction of the multistage cyclic symmetry method and the validity
of the one-to-one nodal diameter projection assumption.

Next, we show and compare (in a qualitative way) the modal deformed shapes. Figures 4
and 5 show results from (a) the reference analysis and (b) the Multistage cyclic symmetry for
various nodal diameter numbers. In these examples we can distinguish some modes localized
in only one stage (figure 5) and some others with a clear multistage behavior (figure 4). Here
again, the correlation is correct.

Correlation on frequency responses We now investigated the forced response of the two
stages model of figure 2. We consider two distributions of forces on each blade of each stage
with a spatial periodicity of n (n nodal diameters), such that the force of the j-th blade of stage
s is,

f
(s)
j = F0 cos

2nπ

Ns

(j − 1) cos ωt, s = 1 or 2 (20)
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Figure 4. One nodal diameter mode at 4824Hz
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(a) (b)

Figure 5. Five nodal diameter mode at 6147Hz

For a wave number of n = 2, the frequency responses are displayed in figures 6 for the first
blade of each stage. The correlation appears to be globally correct. The resonances (frequency
and levels) are correctly represented by the multi-stage cyclic symmetry. There only appears
small shifts on the antiresonances between the two calculations. This might be related to the
one-to-one approximation of the multi-stage cyclic symmetry method described in section 3.
This is quite similar to a truncation effect in modal analysis. However, the global dynamics
remains well approximated.

4.2 Industrial case study

Next, an industrial application of the multi-stage cyclic symmetry method is presented. Fig-
ures 7 show the finite element models (sectors) of two HP compressor blisks which respectively
have 36 and 60 sectors. The computation times of a traditional multi-stage analysis (with 360
degrees models) are clearly prohibitive and thus useless during a realistic design process; in
contrast, multi-stage cyclic symmetry analysis can provide satisfying results with reasonable
computational times.

Modal analysis. For this representative model, we found interesting to show the influence
of the interstage coupling by comparing the results of single stage analysis to the multistage
case on a modal analysis. For the single stage analysis we applied a fixed boundary condition
on the interstage interface. Figure 8 gathers the (normalized) eigenfrequencies of these three
calculations. The influence of the interstage coupling is noticeable and new modes appear
that could not be predicted by a single stage analysis. This is particularly observable in small
nodal diameter numbers. In effect, in these cases, the blade/disk coupling is generally more
important than for higher nodal diameter numbers where the disk’s participation is usually
smaller. In addition, we provide some example of modal deformed shapes from the multi-
stage computation in figure 9. Some modes show a weak interstage coupling, such as the ones
represented in figures 9(a) and 9(b), and feature nearly a single stage behavior. On the other
hand, figure 9(c) displays a strongly (interstage) coupled behavior and can obviously not be
represented in traditional single stage analysis. This comparison clearly shows the influence of
the multistage coupling in the design of multi-stage blade disks systems.
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(a) 1
st stage – 36 sectors (b) 2

nd stage –
60 sectors

Figure 7. Finite Element Models of two HP compressor blisks
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(a) 5
th mode at 0 ND, 48 UF (b) 7

th mode at 9 ND, 124 UF (c) 5
th modes at 3 ND, 76 UF

Figure 9. Examples of modal deformed shapes

Forced response. The case of steady state response to a periodic excitation is now addressed.
We consider again the two HP blisks system and we apply synchronous excitations on each stage
with distinct engine orders. The excitation on stage 1 (36 sectors) is of engine order 7 and the
excitation on stage 2 (60 sectors) is of engine order 3. The distributions of forces are harmonic
and rotating and the excitation frequency are multiple of the rotation speed and of the engine
order. Figures (10), the response curves of the two stages (figure 10(a) for stage 1 and figure 10(b)
for stage 2) are plotted versus the rotation speed. We compare the response of each stage alone
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Figure 10. Frequency responses with and without interstage coupling

(with fixed inter-stage interface) to the two stages coupled. These response were calculated using
a modal superposition and a nodal diameter superposition as explained in section 3.

The first remark would be that the multi-stage responses have a higher frequency content
than the single-stage responses and that some peaks appears due to the interstage coupling.
This is a major remark for the designer. In effect, as the bladed disks are usually designed by
avoiding any coincidence of the modal response to the engine excitation, the possible transfer of
vibratory energy between stages (adjacent or not) can, with the present method, be predicted.
An other important point relates to the vibration levels which significantly differ between the
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two computations; in effect, even when the peaks location (frequency) seems to be correctly
evaluated by the single stage analysis, the resonant level are generally lower in the multi-stage
case. Because of the inter-stage coupling, the vibratory energy seems to spread over the two
stages and this tends to reduce the vibratory levels in individual stages.

5 Conclusions

A new strategy to study the dynamics of multistage cyclic structures, such as turbine engine
bladed disks, has been proposed. It is based on a cyclic symmetry modeling of individual stages
(in their respective cyclic base) and an accurate interstage coupling in the common physical
base. This method appears quite simple to carry out since the sector models of each stage are
handled directly and the coupling involves few additional difficulties. The results from numerical
simulations show a good accuracy of this method. Also, an industrial application highlight the
importance of such calculations for the designer.
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