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Abstract

We study the stability of single server retrial queues under general distribution
for retrial times and stationary ergodic service times, for three main retrial policies
studied in the literature: classical linear, constant and control policies. The approach
used is the renovating events approach to obtain sufficient stability conditions by
strong coupling convergence of the process modeling the dynamics of the system
to a unique stationary ergodic regime. We also obtain instability conditions by
convergence in distribution to improper limiting sequences.
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Introduction

The analysis of stability in queueing systems is the first step in studying such
models. The steady state solutions and performance characteristics of the sys-
tem do not exist if it is not stable. The efficiency of a queueing system is related
closely to its stability and is considered as inefficient if it is unstable. Retrial
queues have the characteristic that an arriving customer who finds all waiting
positions and service zones occupied must join a group of ”blocked” customers
in an additional queue called ”orbit” and reapplies for getting served after ran-
dom time intervals according to a specific retrial policy. They arise in many
practical situations. The classical example can be found in telephone traffic
theory where subscribers redial after receiving a busy signal. For computer
and communication applications, peripherals in computer systems may make
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retrials to receive service from a central processor. Another example can be
adopted from the aviation where an aircraft is directed into the waiting zone,
if the runway is found busy, from which the demand of landing is repeated at
random periods of time. Retrial queueing models are generally more compli-
cated than traditional ones especially when dealing with general distribution
for retrial times. The existence of this supplementary flow from the orbit and
the random access to the server (as for the linear policies that depend on the
number of customers in orbit) make the system more congested and difficult
to model by simple random processes like Markovian ones, which have prop-
erties that allow to derive easily conditions for stability, especially when we do
not assume an exponential distribution (which has the memorylless property)
allowing to obtain Markovian processes modeling the system. Furthermore,
it has been observed in telecommunication systems that the exponential law
is not a good estimator for the distribution of retrial times (see Yang et al.,
1994).

The subject of this paper is to analyze the stability of single server retrial
queues under general distribution for retrial times and stationary ergodic ser-
vice times (without independence assumption), for three main retrial policies
studied in the literature: classical linear, constant and control policies. Stabil-
ity results for such models with general retrial times are rare and generally
reduced to Markovian assumptions. For the linear retrial policy, Koba and Ko-
valenko (2004) obtained a sufficient stability condition (arrival rate is less than
the service rate) for an M/G/1 system with non-lattice distribution for retrial
times satisfying an additional estimate condition, with i.i.d service times. For
the constant retrial policy, Koba (2002) derived a stability condition for a
GI/G/1 retrial system with a FIFO discipline for the access from the orbit to
the server and a general distribution for orbit time in latticed and non-latticed
cases with i.i.d service times. For the control policy, Gomez-Corral (1999) stud-
ied extensively an M/G/1 retrial queue with general retrial times where he
derived the stability condition for i.i.d service times and a FIFO discipline.
For non-independent service times, Altman and Borovkov (1997) obtained a
sufficient condition for the stability of a linear retrial queue under general sta-
tionary ergodic service times and independent and exponentially distributed
interarrival and retrial times using the method of renovation events. Kernane
and Äıssani (2006) obtained sufficient conditions for the stability of various
retrial queues with versatile retrial policy which incorporates the constant
and linear retrial policies under general stationary ergodic service times and
independent and exponentially distributed interarrival and retrial times.

The main approach used in this paper is the method of renovation events
originated in the work of Akhmarov and Leont’eva (1976) and developed by
Borovkov (1984) in the stationary ergodic setting. In the following section,
we derive stability and instability conditions for the classical linear retrial
policy with general retrial times, stationary ergodic service times and Poisson
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arrivals. In Section 3, we obtain a stability condition and an instability one
for the constant retrial policy system with general retrial times, stationary
ergodic service times and Poisson arrivals. With the later assumptions, we
derive in Section 4, stability and instability conditions for the control policy
retrial model.

1 Linear Retrial Policy

We begin by considering the classical single server retrial system with linear
retrial policy. Customers arrive from outside according to a Poisson process
with rate λ. If an arriving customer finds the server busy, he joins the orbit
and repeats his attempt to get served after random time intervals. We consider
the linear retrial policy where each customer in orbit attempts to get served
independently of other customers and we assume that the sequence of inter-
retrial times of a single customer is an independent sequence with general
distribution R(·), density function r(·) and Laplace transform r∗(z), z > 0.
The successive service times {σn} are assumed to form a stationary (in the
strict sense) and ergodic (which essentially means that time averages converge
to constants a.s) sequence with 0 < Eσn < ∞. The inter-arrival, inter-retrial
and service times are assumed to be mutually independent.

Let Q(t) be the number of customers in orbit at time t and denote by sn

the instant when the nth service time ends. Consider the embedded process
Qn = Q(sn+) of the number of customers in orbit just after the end of the nth
service duration. Denote by Nλ(t) the counting Poisson process with parameter
λ which counts the number of arriving customers during a time interval (0, t].
If Qn = k, then we denote by π1(n), ..., πk(n) the residual retrial times (forward
recurrence times) of the customers in orbit just after the instant sn and by γn

the residual external arrival time at the same instant.

It is easy to see that the process Qn satisfies the following recurrence relation:

Qn+1 = (Qn + ξn)+, (1)

where x+ = max[0, x] and

ξn = Nλ(σn) − I {min(π1(n), ..., πQn
(n)) < γn} , (2)

We have then expressed Qn as a Stochastic Recursive Sequence (SRS) (for the
definition see Borovkov, 1998).

We introduce the σ−algebra Fσ
n generated by the set of random variables

{σk : k ≤ n} and Fσ generated by the entire sequence {σn : −∞ < n < +∞}
and for which any independent sequence not depending on {σn} is Fσ-measurable
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(see Borovkov (1976) p.14). Let U be the measure preserving shift transforma-
tion of Fσ-measurable random variables, that is Uσk = σk+1, and if η ∈ Fσ

then the sequence {ηn = Unη : −∞ < n < +∞} is a stationary ergodic
sequence where Un is the nth iteration of U and U−n is the inverse transfor-
mation of Un n ∈ Z. We shall denote by T the corresponding transformation
of events in Fσ, that is for any Fσ-measurable sequence ηn :

T {ω : (η0(ω), ..., ηk(ω)) ∈ (B0, ..., Bk)} = {ω : (η1(ω), ..., ηk+1(ω)) ∈ (B0, ..., Bk)} ,
(3)

where the events Bi ∈ Fσ, i = 0, ..., k.

An event A ∈ F ξ
n+m, m ≥ 0, is a renovation event for the SRS {Qn} on the

segment [n, n + m] if there exists a measurable function g such that on the set
A

Qn+m+1 = g(ξn, ..., ξn+m). (4)

The sequence An, An ∈ F ξ
n+m, is a renovating sequence of events for the SRS

{Qn} if there exists an integer n0 such that (4) holds true for n ≥ n0 with a
common function g for all n.

We say that the SRS {Qn} is coupling convergent to a stationary sequence
{Qn = UnQ0} if

lim
n→∞

P

{
Qk = Qk; ∀ k ≥ n

}
= 1. (5)

Set νk = min{n ≥ −k : U−kQn+k = Qn} and ν = supk≥0 νk.

A SRS {Qn} is strong coupling convergent to a stationary sequence {Qn = UnQ0}
if ν < ∞ with probability 1.

Theorem 1 Assume that λEσ1 < 1. Then the process {Qn} is strong coupling
convergent to a unique stationary ergodic regime.
If λEσ1 > 1, then the process {Qn} converges in distribution to an improper
limiting sequence.

PROOF. Since the driving sequence ξn depend on Qn, we will proceed first
by considering an auxiliary sequence Q∗

n which majorizes Qn and having a
driving sequence ξ∗n independent of Qn and it has the following form:

Q∗
0 = Q0, Q∗

n+1 = max(C, Q∗
n + ξ∗n), (6)

where
ξ∗n = Nλ(σn) − I {min(π1(n), ..., πC(n)) < γn} . (7)

The constant integer C will be chosen later appropriately, and if Q∗
n > C the C

customers for which we consider the forward recurrence times π1(n), ..., πC(n)
are chosen randomly by an urn scheme without repetition. Following the pro-
cedure used in Altman and Borovkov (1997) and later in Kernane and Äıssani
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(2006), we will construct stationary renovation events with strictly positive
probability for Qn from those of Q∗

n, and applying an ergodic theorem (The-
orem 11.4 in Borovkov, 1998) which states that an SRS is strong coupling
convergent to a unique stationary regime, satisfying the same recursion, if
there exist stationary renovating events of strictly positive probability.
The stationarity and ergodicity of ξ∗n follows from the fact that ξ∗n is Fσ-
measurable (for more details on the ergodicity and stationarity of ξ∗n see Ker-
nane and Äıssani, 2006). We have

Eξ∗n = λEσ1 − P (min(π1(n), ..., πC(n)) < γn) (8)

= λEσ1 − [1 − P (π1(n) ≥ γn, ..., πC(n) ≥ γn)] (9)

= λEσ1 −


1 −

∞∫

0

λe−λt
P (π1(n) ≥ t, ..., πC(n) ≥ t) dt


 (10)

= λEσ1 −



1 −

∞∫

0

λe−λt
C∏

i=1

P(πi(n) ≥ t) dt



 . (11)

Since limC→∞

C∏
i=1

P(πi(n) ≥ t) = 0, then by dominated convergence theorem

lim
C→∞

∞∫

0

λe−λt
C∏

i=1

P(πi(n) ≥ t) dt = 0. (12)

If the condition λEσ1 < 1 is satisfied, we can choose the constant C such
that Eξ∗n < 0. It follows from example 11.1 in Borovkov (1998) that there
exists a stationary renovating sequence of events with positive probability for
Q∗

n, from which we deduce those of Qn (see Altman and Borovkov, 1997).
Applying the ergodic theorem (Theorem 11.4 in Borovkov, 1998) we obtain
that the sequence Qn is strong coupling convergent to a unique stationary
process Q̃n = UnQ̃0, with Q̃0 Fσ-measurable and since Q̃n is an U−shifted
Fσ-measurable sequence then it is ergodic.
For the instability condition, consider the auxiliary process QS

n corresponding
to a simple single server queue without retrials, that is

QS
0 = Q0, QS

n+1 = (QS
n + ξS

n )+, (13)

where

ξS
n = Nλ(σn) − 1. (14)

Clearly QS
n ≤st Qn and it is well known that if λEσ1 > 1 then limn→∞ QS

n =
+∞ a.s. (see Theorem 1.7 in Borovkov, 1976). Thus, the process {Qn} con-
verges in distribution to an improper limiting sequence.
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2 Constant Retrial Policy

Consider now a single server retrial queue governed by the constant retrial
policy which is described as follows. After a random time generally distributed
(which we will call the orbit retrial time), one customer from the orbit (at the
head of the queue or a randomly chosen one if any) take his service if the
server is free, so an orbit time can be in progress even though the server is
busy, this may happen in system where the orbit has no information about
the state of the server. The sequence of orbit cycle times {ri} is assumed to be
i.i.d, having R(·) as cdf, r(·) as density function with mean Er1 and Laplace
transform r∗(z), z > 0. Let π(n) be the forward recurrence time of the orbit
retrial time after the end of the nth service time. Then the process Qn has
now the following representation as a SRS:

Qn+1 = (Qn + ξn)+, (15)

where

ξn = Nλ(σn) − I {π(n) < γn} . (16)

Theorem 2 If R is nonlattice and

λEσ1 <
[1 − r∗(λ)]

λEr1

, (17)

then the process {Qn} is strong coupling convergent to a unique stationary
ergodic regime.
If λEσ1 > (1 − r∗(λ))/(λEr1). Then the process Qn converges in distribution
to an improper limiting sequence.

PROOF. We have

Eξn = λEσ1 − P (π(n) < γn) . (18)

Since the interarrival times are exponentially distributed then so is the residual
arrival time γn, hence

P (π(n) < γn) =

+∞∫

0

P (π(n) < t) λ e−λtdt. (19)

Since we are interesting on steady state behaviour of the system and by as-
suming a nonlattice (also called non-arithmetic) distribution R(t) for orbit
retrial times, then from a well known result in renewal theory (see Cox, 1962)
we have the following asymptotic distribution for the forward recurrence time
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P (π(n) < t) =
1

Er1

t∫

0

[1 − R(x)] dx. (20)

The formula (19) becomes

P (π(n) < γn) =
1

Er1

+∞∫

0

[1 − R(x)]

+∞∫

x

λe−λtdt dx (21)

=
1

Er1

+∞∫

0

[1 − R(x)] e−λx dx =
1

Er1

[
1 − r∗(λ)

λ

]
. (22)

Now if condition (17) is satisfied then Eξn < 0. Since ξn is Fσ-measurable
(generated by σn) then it is a stationary ergodic sequence. From this and
example 11.1 in Borovkov (1998), there exists a stationary sequence of reno-
vation events with positive probability for {Qn}. Hence, using Theorem 11.4 of
Borovkov (1998), the sequence {Qn} is strong coupling convergent to a unique
stationary sequence Q̃n obeying the equation Q̃n+1 = (Q̃n + ξn)

+, the ergodic-
ity of Q̃n follows from the fact that Q̃n is an U−shifted sequence (Q̃n = UnQ̃0,
with Q̃0 F

σ
0 -measurable) generated by the stationary and ergodic sequence ξn.

The instability condition λEσ1 > [1 − r∗(λ)] /λEr1 yields to Eξn > 0, and it
is well known that for SRS of the form Qn+1 = (Qn + ξn)

+ this implies the
convergence of the process Qn to an improper limiting sequence (see Theorem
1.7 of Borovkov (1976)).

2.1 Exponential retrial times

By assuming an exponential distribution with parameter θ for retrial times,
that is R(x) = 1−e−θx, it is well known that r∗(s) = s/(s+θ), and Er1 = 1/θ.
The condition (17) will read up, after some algebra, as follows

λEσ1 <
θ

λ + θ
. (23)

Which is the condition obtained in the paper of Kernane and Äıssani (2006),
in exponential retrial context.

3 Retrial Control Policy

Consider a single server retrial queue with a control retrial policy. Primary
customers enter from the outside according to a Poisson process with rate λ.
If a primary customer finds the server busy upon arrival it joins the orbit
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to connect later according to the control retrial policy, which is described as
follows. Just after the end of a service time a generally distributed retrial time
begins to find the server free. If the retrial time finishes before an external
arrival, then one customer from the orbit (at the head of the queue or a
randomly chosen one if any) receives its service and leaves the system. We
assume that the sequence of retrial times {rn} is an i.i.d sequence having r(·)
as pdf, R(·) as cdf and Laplace transform r∗(·), with finite mean Er1. The nth
service duration of a call is σn and we assume that the sequence of service
times {σn} is stationary and ergodic with 0 < Eσ1 < ∞.

The process {Qn} has the following representation as a stochastic recursive
sequence SRS:

Qn+1 = (Qn + ξn)+, (24)

where

ξn = Nλ(σn) − I {rn < γn} , (25)

where γn is the residual arrival time of an external call at the end of the nth
service period.

Theorem 3 Assume that

λEσ1 < r∗(λ). (26)

Then the process Qn is strong coupling convergent to a unique stationary er-
godic regime.
If λEσ1 > r∗(λ). Then the process Qn converges in distribution to an improper
limiting sequence.

PROOF. The proof is similar to that of Theorem 2, by noting that Eξn =
λEσ1 − r∗(λ).

3.1 Exponential retrial times

Assume that the retrial times are exponentially distributed with mean 1/θ,
then r∗(λ) = θ/(λ + θ) and the stability condition (26) becomes:

λEσ1 <
θ

λ + θ
. (27)

This condition is quite evident since it can be obtained from the constant
policy from the memorylless property of the exponential distribution.
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3.2 Hyperexponential distribution for retrial times

Assume now that the retrial times follow the hyperexponential distribution
with density r(x) = pθ exp(−θx) + (1 − p) θ2 exp(−θ2x), 0 ≤ p < 1. Then
r∗(λ) = θ [λ (p + (1 − p) θ) + θ2] /(λ + θ) (λ + θ2) , and the stability condition
(26) in this case is

λEσ1 <
θ [λ (p + (1 − p) θ) + θ2]

(λ + θ) (λ + θ2)
. (28)

3.3 The Erlang distribution for retrial times

The Erlang distribution has been found useful for describing random variables
in queueing applications. The density of an Erlang (n, µ) distribution is given
by r(x) = µn exp(−µx)xn−1/ (n − 1)!, x > 0 and n ∈ N

∗. Its Laplace transform
is r∗(s) = µn/ (s + µ)n . Then the control policy model will be stable if

λEσ1 <

(
µ

λ + µ

)n

. (29)

Remark 4 It should be noted that the assumption Eξn = 0, and weak depen-
dence among the ξn, does not preclude the possibility that the process {Qn}
converges to a proper stationary regime.

Remark 5 Conditions for the stability of modified models with general retrial
times, such as allowing breakdowns of the server, two types of arrivals, neg-
ative arrivals and batch arrivals models may be obtained easily following the
procedure used in Kernane and Aı̈ssani (2006). The conditions of the stability
will be written by replacing the left hand side of the classical linear policy by
the left hand sides of the case of a linear versatile policy obtained in Kernane
and Aı̈ssani (2006). For the constant policy, we have to make the appropri-
ate changes to the driving sequences in the SRS modeling the dynamics of the
modified models in Kernane and Aı̈ssani (2006) by considering the residual
orbit time as shown here in Section 3, the conditions of stability will follow
directly after some algebra.

Remark 6 We may also consider the versatile retrial policy by incorporating
the residual orbit retrial time π(n) in the equation 2 and considering the whole
retrial times of the customers in orbit r1(n), ..., rQn

(n) as follows

ξn = Nλ(σn) − I {min(π(n) + r1(n), ..., π(n) + rQn
(n)) < γn} , (30)

the condition of Theorem 1 still holds for this versatile retrial policy, by noting
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that in the proof we have to consider

Eξ∗n = λEσ1 −


1 −

∞∫

0

t∫

0

λe−λt P (r1(n) ≥ t − s, ..., rC(n) ≥ t − s) dG(s)dt


 ,

(31)
where G(s) is the cdf of the residual orbit retrial time satisfying

G(s) =
1

Eα1

s∫

0

[1 − A(x)] dx, (32)

with Eα1 the mean of the orbit retrial time and A(x) its cdf.
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