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ABSTRACT

We propose an image deconvolution algorithm when the data isfficients has been recentl proposﬂdﬂ

91191 Gif-sur-Yvette France

In the context of deconvolution with gaussian white noise,
sparsity-promoting regularization over orthogonal wavedo-
4, 5]. Generalizato

contaminated by Poisson noise. The image to restore is @bsumframes was proposed iﬂ[ 7). |H [8], the authors presented a

to be sparsely represented in a dictionary of waveforms agch
the wavelet or curvelet transform. Our key innovations &iest,

image deconvolution algorithm by iterative thresholdimgain
overcomplete dictionary of transforms. However, all sipgrs

we handle the Poisson noise properly by using the Anscombgased approaches published so far have mainly focused on

variance stabilizing transform leading tonan-linear degrada-
tion equation with additive Gaussian noise. Second, therdec
volution problem is formulated as the minimization of a caxv
functional with a data-fidelity term reflecting the noise peo
ties, and a non-smooth sparsity-promoting penalties dneeimn-
age representation coefficients (efg-norm). Third, a fast iter-
ative backward-forward splitting algorithm is proposedstive
the minimization problem. We derive existence and unigesne
conditions of the solution, and establish convergence efitth
erative algorithm. Experimental results are carried oughow
the striking benefits gained from taking into account thesPoi
son statistics of the noise. These results also suggestisiray
sparse-domain regularization may be tractable in manyrideco
lution applications, e.g. astronomy or microscopy.

Index Terms— Deconvolution, Poisson noise, Proximal
iteration, forward-backward splitting, Iterative thredting,
Sparse representations.

1. INTRODUCTION

Gaussian noise.

In this paper, we propose an image deconvolution algorithm
for data blurred and contaminated by Poisson noise. Tha®wis
noise is handled properly by using the Anscombe VST, leaiting
anon-lineardegradation equation with additive Gaussian noise,
see [IZ). To regularize the solution, we impose a sparsity pri
on the representation coefficients of the image to restore, e
wavelet or curvelet coefficients. Then, the deconvolutioobp
lem is formulated as the minimization of a convex functiomih
a data-fidelity term reflecting the noise properties, and @& no
smooth sparsity-promoting penalties over the image reptas
tion coefficients. Inspired by the work in| [5], a fast proxima
iterative algorithm is proposed to solve the minimizationlp
lem. We also provide an analysis of the optimization problem
and establish convergence of the iterative algorithm. Expn-
tal results are carried out to compare our approach and diew t
striking benefits gained from taking into account the Paissa-
ture of the noise.

Notation

Deconvolution is a longstanding problem in many areas of sigLet 7 a real Hilbert space, here a finite dimensional vector sub-

nal and image processing (e.g. biomedical imag[llwg [1]oastr
omy [E], remote-sensing, to quote a few). For example, rekea
in astronomical image deconvolution has recently seenidens
able work, partly triggered by the Hubble space telescof&T(H
optical aberration problem at the beginning of its missidn.
biomedical imaging, researchers are also increasingfyngebn
deconvolution to improve the quality of images acquired by-c

space ofR™. We denote by|.||, the norm associated with the in-
ner product ir{, andl is the identity operator o#(. x anda are
respectively reordered vectors of image samples and tnansf
coefficients. A functionf is proper if it is not identically+oco
everywhere. A functiory is coercive, iflim .|, 4o f (z) =
+oo. T'o(H) is the class of all proper lower semi-continuous
convex functions front{ to ] — oo, +oc]. The subdifferential of

focal microscopes. Deconvolution may then prove crucial fo f is denotedf.

exploiting images and extracting scientific content.

There is an extensive literature on deconvolution problems

2. PROBLEM STATEMENT

One might refer to well-known dedicated monographs on the

subject. In presence of Poisson noise, several decorwoluti

Consider the image formation model where an input imagg

methods have been proposed such as Tikhonov-Miller inversblurred by a point spread function (PSEpand contaminated by

filter and Richardson-Lucy (RL) algorithms; S(ﬂel, 2] forean
cellent review. The RL has been used extensively in apjbicat

Poisson noise. The observed image is then a discrete dofiect
of countsy = (yi)i<i<n Wheren is the number of samples.

because it is adapted to Poisson noise. The RL algorithm; howEach county; is a realization of an independent Poisson random

ever, amplifies noise after a few iterations, which can bedseb
by introducing regularization. In[|[3], the authors preseht
Total Variation (TV)-regularized RL algorithm, and Starekal.
advocated a wavelet-regularized RL algoritrﬂn [2].

variable with a meafh®x);, where® is the circular convolution
operator. Formally, this writeg, ~ P ((h ® z);).

A naive solution to this deconvolution problem would be to
apply traditional approaches designed for Gaussian ndisg.



this would be awkward as (i) the noise tends to Gaussian only.1. Optimization problem
for large mearth ® x); (central limit theorem), and (ii) the noise o . .
variance depends on the mean anyway. A more adapted Waym cla_lss of minimization problems we are interested in @n b
would be to adopt a bayesian framework with an adapted anti-tated in the general forrﬂ [5]:

log-likelihood score reflecting the Poisson statisticshef moise. .

Unfortunately, doing so, we would end-up with a functional argerﬁm fi(@) + fal2). “)
which does not satisfy some key properties (the Lipschitzia o ] )
property in [F]), hence preventing us from using the backivar Wherefi € T'o(H), f2 € Lo(H) and f1 is differentiable with
forward splitting proximal algorithm to solve the optimimn  *-Lipschitz gradient. We denote by the set of solutions.
problem. To circumvent this difficulty, we propose to haniie ~ From () and[f3), we immediately deduce the data fidelity term
noise statistical properties by using the Anscombe VST dédfin

as FoHo® (a), with 5)

L 43 ; n 2
zi=2/yi+35 1<i<n 1) FZT]»—)Zf(ni), f(m):%(zif%/niJr%),

Some previous author{l [9] have already suggested to use the

Anscombe VST, and then deconvolve with wavelet-domain reg- ) .
ularization as if the stabilized observatian were linearly de- Where H denotes the (block-Toeplitz) convolution operator.

graded byh and contaminated by additive Gaussian noise. Buf_0m @ statistical perspective]] (5) corresponds to thelagti
this is not valid as standard asymptotic results of the Amgmo  lIKelinood score.

VST state that . Adopting a bgyesian framework ano! using .alstgndard max-
imum a posteriori (MAP) rule, our goal is to minimize the fol-
zi=2/(h®z)i+2+e, e~N(01) 2) lowing functional with respect to the representation cofits

wheres is an additive white Gaussian noise of unit variance. In®
V\(ords,z is non-llnear_ly rglated toz. In Sect_lon_, we pro- (Px.y) : arg min J () (6)
vide an elegant optimization problem and a fixed point atbori @

taking into account such a non-linearity.

L
J:ou—>FoHo<I>(oe)+zco@(a)—&—)\zw(ai),
—_— =

3. SPARSE IMAGE REPRESENTATION i) =1

fa(a)
Let z € H be any/n x \/n image. x can be written as the o .
superposition of elementary atomss parameterized by € Z ~ Where we implicitly assumed thdtv;)1<;<. are independent

such that: and identically distributed with a Gibbsian densitye =% ().
B _ % T L 3 Notice thatfs is not smooth. The penalty functiahis chosen to
= ZIO‘W’W =®a, |I]= 4 enforce sparsity) > 0 is a regularization parameter angis the
YyE

indicator function of a convex sét In our case( is the positive
We denote by® the dictionary i.e. thex x L matrix whose  orthant. We remind that the positivity constraint is beeaus
columns are the generating waveforfys,)_ ., all normalized  are fitting Poisson intensities, which are positive by ratuve
to a unité2-norm. The forward transform is then defined by a have the following,

non-necessarily square matflx = ®T ¢ RY*" with L > n.

When L > n the dictionary is said to be redundant or over- Proposition 1.

complete. In the case of the simple orthogonal basis, trersev e f1 is convex function. Itis strictly convexdfis an ortho-
transform is trivially® = TT. Whereas assuming thdt is a basis andker (H) = 0 (i.e. the spectrum of the PSF does
tight frame implies that the frame operator satisflgST = AI, not vanish).
whereA > 0 is the tight frame constant. For tight frames, the e f1is continuously differentiable with & Lipschitz gradi-
pseudo-inverse reconstruction operator reducestoT. ent where

Our prior is that we are seeking for a good representation
of = with only few significant coefficients. This makes sense K< (%)3/2 4A|H|3 |12l o < +oo. (7)

since most practical signals or images are compressiblenie s
transform domain (e.g. wavelets, curvelets, DCT, etc). s€he
transforms generally correspond to an orthogonal basigight.
frame. In the rest of the papeb, will be an orthobasis or a tigth 4.1.1. Characterization of the solution
frame of H.

e (P»,y) isaparticular case of probler@).

Proposition 2. SinceJ is coercive and convex, the following
holds:

1. Existence(P, ) has at least one solution, i.&1 # .
We first define the notion of a proximity operator, which was 2. Unigueness(P, ) has a unique solution i is a basis
introduced in ] as a generalization of the notion of a esnv andker (H) = 0, or if ¢ is strictly convex.
projection operator.

4. SPARSE ITERATIVE DECONVOLUTION

o Proof: The existence is obvious becausés coercive. If®
Definition 1 (Moreau[Lq]). Lety € I'o(H). Then, for every s an ortho-basis aner (H) = 0 then f; is strictly convex and

. 2 . .
z € M, the functiony — ¢(y) + [z —y||” /2 achieves its g js s leading to a strict minimum. Similarly, if is strictly
infimum at a unique point denoted Ipyox, z. The operator  ~onvex so isf2, henceJ.

prox,, : H — 'H thus defined is the proximity operator of m



4.1.2. Proximal iteration

For notational simplicity, we denote b¥ the functiona —
>, ¥(au). The following useful lemmas are first stated:

Lemma 1. The gradient oV f; is
Vii(a)=dToH* oVFoHo® (a) (8)
with

VE(n) = (m i 2) 1<i<n ?

The proof is straightforward.
Lemma 2. The proximity operator of: is given by
(10)

prox, (a) = Per o (proxy,, ai)i<i<r

whereP. = prox, ,, = AT oPro® + (I —A71oT o <I>),
Pc is the projector onto the positive orthaf®cn); = max(n;, 0).
prox,, is given by Theorei] 2 for a wide class of penalties

5. EXPERIMENTAL RESULTS

The performance of our approach has been assessed on several
2D datasets, from which we here illustrate two examples. Our
algorithm was compared to RL without regularization, RLHwit
multi-resolution support wavelet regularizatioﬂ [2, RLRE],
the naive proximal method that would assume the noise to be
Gaussian (NaiveGauss), and the approacﬂ of [9] (AnsGdluss).
all results presented, each algorithm was run with 200titers,
except RL which was stopped when its MSE was smallest.

In Figﬂ, the original Lena image with a maximum intensity
of 30 is depicted in (a), its blurred and blurred+noisy vanmsi
are in (b) and (c). With Lena, and for NaiveGauss, AnsGauss
and our approach, the dictionafly contained the curvelet tight
frame. The deconvolution results are shown in ﬂ:ig.l(d)-(ks
expected, the RL is the worst as it lacks regularization.r& lage
also noticeable artifacts in NaiveGauss, AnsGauss and RISM
Our deconvolved image appears much cleaner. This visual im-
pression is confirmed by quantitative measures of the guailit
deconvolution, where we used both the méaerror (adapted to

Proof: Using successivel[]5, Proposition 27] and Theorempoisson noise), and the well-known MSE criteria. The m&an

E, we obtairprox,, = P¢s o proxyy = Per (Prox,,, ;) 1<i<r -
From, [1], Proposition 11] we have

Per = prox, ,, = prox, e = I+ AT o (Pe —1) 0 ®.

/

|
We are now ready to state our main proximal iterative albanit
to solve the minimization problertP . ):

Theorem 1. For ¢t > 0, let (u¢): be a sequence ij), +oo[ such
that0 < inf, pe < sup, e < (2)%/ (2A[|H|?||z]l.). Fix
ao € H, for everyt > 0, set

Q41 = Prox,,, ¢ (e — pe (Vfi(awr))) (11)

whereV f; and prox,,, . are given by Lemmf 1 arf§i 2. Then

(ait)e>0 converges (weakly) to a solution @,y ).

error for Lena is shown in Teﬂ).l (similar results were olséifor
the MSE). In general, our approach performs very well. At low
intensity levels, RL-MRS has the smallest error very corapar
ble to our approach. For the other intensity levels, our ritlgm
provides the best performance. At high intensity levelsivéta
Gauss is competitive. This comes as no surprise since this is
intensity regime where Poisson noise approaches the Gaussi
behavior. On the other hand, the results reveal that AnsGaus
performs poorly just after RL, probably because it does aoth
dle properly the non-linearity of the degradation motﬂela(ﬂér
the VST.

We further illustrate the capabilities of our approach on a
confocal microscopy simulation. We have created a phantom o
an image of a neuron dendrite segment with a mushroom-shaped
spines, see FiE.Z. The experimental settings were the same a
for Lena except that the dictionary here contained the veavel

Proof: We give a sketch of the proof. The main theorem ontransform. The findings are similar to those of Lena bothaligu
the proximal iteration can be found if) [5, Theorem 3.4]. HBnC and quantitatively.

combining this theorem with Lem
tionﬂ, the result follows.
|

Note that if the PSF is low-pass normalized to a unit sum, then

IH]I5 = 1.
We now turn toprox,,, which is given by the following result:

Theorem 2. Suppose that) satisfies, (i)y is convex even-
symmetric , non-negative and non-decreasing®@n-oo), and
(0) = 0. (ii) v is twice differentiable orR \ {0}. (iii) ¢ is

continuous orR, it is not necessarily smooth at zero and admits

a positive right derivative at zem)/+ (0) = limy,_,o+ % > 0.
Then, the proximity operatoprox;,(3) = &(3) has exactly
one continuous solution decoupled in each coordirtate

850 = {o it 16:] < 69/ (0)

Lo ; (12)
Bi = 0y (&) if [Bi] > 694.(0)

1, Lemifja 2 and Proposi-

Intensity regime
Method <5 | <30 | <100 | <255
Our method| 0.39| 0.93 | 2.63 7.21
NaiveGauss 0.59| 1.65| 3.56 6.9
AnsGauss | 0.87| 2.33 | 4.61 8.35
RL-MRS | 0.35| 1.76 | 4.31 9.5
RL 1.97| 5.07| 9.53 | 15.68

Table 1. Mean/;-error of all algorithms as a function of
the intensity level.

6. CONCLUSION

A proof of this theorem can be found iE[lZ]. Among the In this paper, we presented a sparsity-based fast iterthtiesh-
most popular penalty functiong satisfying the above require- olding deconvolution algorithm that takes account of thespr
ments, we have(«;) = |as|, in which case the associated prox- ence of Poisson noise. A careful theoretical charactéoizat

imity operator is soft-thresholding. In this case, itevat{L]) is
essentially an iterative thresholding algorithm with aipaisy
constraint.

of the algorithm and its solution is provided. The encourag-
ing experimental results clearly confirm the capabiliti€or
approach.



@ ©@ O @ © 0

@ () © (h)

Fig. 1. Deconvolution of Lena. (a) Original, (b) Blurred, Fig. 2. Deconvolution of Neuron image. (a) Original, (b)

(c) Blurred+noisy, (d) RL, (e) NaiveGauss, (f) AnsGauss,Blurred, (c) Blurred+noisy, (d) RL (meah-error2.1841),

(9) RL-MRS, (h) Our algorithm. (e) NaiveGauss (1.6368), (f) AnsGauss (2.0477), (9) RL-
MRS (1.1926), (h) Our algorithm (1.335).

7. REFERENCES
[9] C.Chaux, L. Blanc-Féraud, and J. Zerubia, “Waveleidzh

[1] P. Sarder and A. Nehorai, “Deconvolution Method for 3-D restoration methods: application to 3d confocal microgcop
Fluorescence Microscopy Image$ZEE Sig. Pro, vol. 23, images,” inSPIE Wavelets X|R007.
pp. 32-45, 2006. [10] J.-J. Moreau, “Fonctions convexes duales et pointgipro

maux dans un espace hilbertielCRAS Sér. A Mathvol.
255, pp. 2897-2899, 1962.

[11] P. L. Combettes and J.-. Pesquet, “A douglas-rachford
splittting approach to nonsmooth convex variational signa
recovery,”|EEE Journal on STSR2007, to appear.

[2] J.-L. Starck and F. Murtaghhstronomical Image and Data
Analysis Springer, 2006.

[3] N. Dey, L. Blanc-Fraud, C. Zimmer, Z. Kam, J.-C. Olivo-
Marin, and J. Zerubia., “A deconvolution method for confo-
cal microscopy with total variation regularization,” lBEE

ISBI, 2004. [12] M.J. Fadili, J.-L. Starck, and F. Murtagh, “Inpainting
. . ] ) and zooming using sparse representatioifie Computer
[4] |. Daubechies, M. Defrise, and C. De Mol, “An iterative Journal, 2006, in press.

thresholding algorithm for linear inverse problems with a
sparsity constraints,"Comm. Pure Appl. Mathvol. 112,
pp. 14131541, 2004.

[5] P.L.Combettes and V. R. Wajs, “Signal recovery by prox-
imal forward-backward splitting,"SIAM MMS vol. 4, no.
4, pp. 1168-1200, 2005.

[6] G. Teschke, “Multi-frame representations in lineardrse
problems with mixed multi-constraints,ACHA vol. 22,
no. 1, pp. 43-60, 2007.

[7] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs,
“A variational formulation for frame-based inverse prob-
lems,” Inv. Prob, vol. 23, pp. 1495-1518, 2007.

[8] M. J. Fadili and J.-L. Starck, “Sparse representatiaseul
image deconvolution by iterative thresholding,”ADA IV,
France, 2006, Elsevier.



