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F.-X. Duṕea, M.J. Fadilia and J.-L. Starckb

a GREYC UMR CNRS 6072 b DAPNIA/SEDI-SAP CEA-Saclay
14050 Caen France 91191 Gif-sur-Yvette France

ABSTRACT

We propose an image deconvolution algorithm when the data is
contaminated by Poisson noise. The image to restore is assumed
to be sparsely represented in a dictionary of waveforms suchas
the wavelet or curvelet transform. Our key innovations are:First,
we handle the Poisson noise properly by using the Anscombe
variance stabilizing transform leading to anon-linear degrada-
tion equation with additive Gaussian noise. Second, the decon-
volution problem is formulated as the minimization of a convex
functional with a data-fidelity term reflecting the noise proper-
ties, and a non-smooth sparsity-promoting penalties over the im-
age representation coefficients (e.g.ℓ1-norm). Third, a fast iter-
ative backward-forward splitting algorithm is proposed tosolve
the minimization problem. We derive existence and uniqueness
conditions of the solution, and establish convergence of the it-
erative algorithm. Experimental results are carried out toshow
the striking benefits gained from taking into account the Pois-
son statistics of the noise. These results also suggest thatusing
sparse-domain regularization may be tractable in many deconvo-
lution applications, e.g. astronomy or microscopy.

Index Terms— Deconvolution, Poisson noise, Proximal
iteration, forward-backward splitting, Iterative thresholding,
Sparse representations.

1. INTRODUCTION

Deconvolution is a longstanding problem in many areas of sig-
nal and image processing (e.g. biomedical imaging [1], astron-
omy [2], remote-sensing, to quote a few). For example, research
in astronomical image deconvolution has recently seen consider-
able work, partly triggered by the Hubble space telescope (HST)
optical aberration problem at the beginning of its mission.In
biomedical imaging, researchers are also increasingly relying on
deconvolution to improve the quality of images acquired by con-
focal microscopes. Deconvolution may then prove crucial for
exploiting images and extracting scientific content.

There is an extensive literature on deconvolution problems.
One might refer to well-known dedicated monographs on the
subject. In presence of Poisson noise, several deconvolution
methods have been proposed such as Tikhonov-Miller inverse
filter and Richardson-Lucy (RL) algorithms; see [1, 2] for anex-
cellent review. The RL has been used extensively in applications
because it is adapted to Poisson noise. The RL algorithm, how-
ever, amplifies noise after a few iterations, which can be avoided
by introducing regularization. In [3], the authors presented a
Total Variation (TV)-regularized RL algorithm, and Starcket al.
advocated a wavelet-regularized RL algorithm [2].

In the context of deconvolution with gaussian white noise,
sparsity-promoting regularization over orthogonal wavelet co-
efficients has been recently proposed [4, 5]. Generalization to
frames was proposed in [6, 7]. In [8], the authors presented an
image deconvolution algorithm by iterative thresholding in an
overcomplete dictionary of transforms. However, all sparsity-
based approaches published so far have mainly focused on
Gaussian noise.

In this paper, we propose an image deconvolution algorithm
for data blurred and contaminated by Poisson noise. The Poisson
noise is handled properly by using the Anscombe VST, leadingto
a non-lineardegradation equation with additive Gaussian noise,
see (2). To regularize the solution, we impose a sparsity prior
on the representation coefficients of the image to restore, e.g.
wavelet or curvelet coefficients. Then, the deconvolution prob-
lem is formulated as the minimization of a convex functionalwith
a data-fidelity term reflecting the noise properties, and a non-
smooth sparsity-promoting penalties over the image representa-
tion coefficients. Inspired by the work in [5], a fast proximal
iterative algorithm is proposed to solve the minimization prob-
lem. We also provide an analysis of the optimization problem
and establish convergence of the iterative algorithm. Experimen-
tal results are carried out to compare our approach and show the
striking benefits gained from taking into account the Poisson na-
ture of the noise.

Notation
Let H a real Hilbert space, here a finite dimensional vector sub-
space ofRn. We denote by‖.‖2 the norm associated with the in-
ner product inH, andI is the identity operator onH. x andα are
respectively reordered vectors of image samples and transform
coefficients. A functionf is proper if it is not identically+∞
everywhere. A functionf is coercive, iflim‖x‖2→+∞ f (x) =
+∞. Γ0(H) is the class of all proper lower semi-continuous
convex functions fromH to ] −∞,+∞]. The subdifferential of
f is denoted∂f .

2. PROBLEM STATEMENT

Consider the image formation model where an input imagex is
blurred by a point spread function (PSF)h and contaminated by
Poisson noise. The observed image is then a discrete collection
of countsy = (yi)16i6n wheren is the number of samples.
Each countyi is a realization of an independent Poisson random
variable with a mean(h⊛x)i, where⊛ is the circular convolution
operator. Formally, this writesyi ∼ P ((h⊛ x)i).

A naive solution to this deconvolution problem would be to
apply traditional approaches designed for Gaussian noise.But



this would be awkward as (i) the noise tends to Gaussian only
for large mean(h⊛x)i (central limit theorem), and (ii) the noise
variance depends on the mean anyway. A more adapted way
would be to adopt a bayesian framework with an adapted anti-
log-likelihood score reflecting the Poisson statistics of the noise.
Unfortunately, doing so, we would end-up with a functional
which does not satisfy some key properties (the Lipschitzian
property in [5]), hence preventing us from using the backward-
forward splitting proximal algorithm to solve the optimization
problem. To circumvent this difficulty, we propose to handlethe
noise statistical properties by using the Anscombe VST defined
as

zi = 2
√

yi + 3
8
, 1 6 i 6 n. (1)

Some previous authors [9] have already suggested to use the
Anscombe VST, and then deconvolve with wavelet-domain reg-
ularization as if the stabilized observationzi were linearly de-
graded byh and contaminated by additive Gaussian noise. But
this is not valid as standard asymptotic results of the Anscombe
VST state that

zi = 2
√

(h⊛ x)i + 3
8

+ ε, ε ∼ N (0, 1) (2)

whereε is an additive white Gaussian noise of unit variance. In
words, z is non-linearly related tox. In Section 4.1, we pro-
vide an elegant optimization problem and a fixed point algorithm
taking into account such a non-linearity.

3. SPARSE IMAGE REPRESENTATION

Let x ∈ H be an
√
n × √

n image. x can be written as the
superposition of elementary atomsϕγ parameterized byγ ∈ I
such that:

x =
∑

γ∈I

αγϕγ = Φα, |I| = L (3)

We denote byΦ the dictionary i.e. then × L matrix whose
columns are the generating waveforms(ϕγ)γ∈I all normalized
to a unitℓ2-norm. The forward transform is then defined by a
non-necessarily square matrixT = ΦT ∈ R

L×n with L > n.
WhenL > n the dictionary is said to be redundant or over-
complete. In the case of the simple orthogonal basis, the inverse
transform is triviallyΦ = T

T. Whereas assuming thatT is a
tight frame implies that the frame operator satisfiesT

T
T = AI,

whereA > 0 is the tight frame constant. For tight frames, the
pseudo-inverse reconstruction operator reduces toA−1

T.
Our prior is that we are seeking for a good representation

of x with only few significant coefficients. This makes sense
since most practical signals or images are compressible in some
transform domain (e.g. wavelets, curvelets, DCT, etc). These
transforms generally correspond to an orthogonal basis or atight
frame. In the rest of the paper,Φ will be an orthobasis or a tigth
frame ofH.

4. SPARSE ITERATIVE DECONVOLUTION

We first define the notion of a proximity operator, which was
introduced in [10] as a generalization of the notion of a convex
projection operator.

Definition 1 (Moreau[10]). Let ϕ ∈ Γ0(H). Then, for every
x ∈ H, the functiony 7→ ϕ(y) + ‖x− y‖2 /2 achieves its

infimum at a unique point denoted byproxϕ x. The operator
proxϕ : H → H thus defined is the proximity operator ofϕ. We
define the reflection operatorrproxϕ = 2proxϕ−I.

4.1. Optimization problem

The class of minimization problems we are interested in can be
stated in the general form [5]:

arg min
x∈H

f1(x) + f2(x). (4)

wheref1 ∈ Γ0(H), f2 ∈ Γ0(H) andf1 is differentiable with
κ-Lipschitz gradient. We denote byM the set of solutions.
From (2) and (3), we immediately deduce the data fidelity term

F ◦H ◦ Φ (α), with (5)

F : η 7→
n∑

i=1

f(ηi), f(ηi) =
1

2

(

zi − 2
√

ηi + 3
8

)2

,

where H denotes the (block-Toeplitz) convolution operator.
From a statistical perspective, (5) corresponds to the anti-log-
likelihood score.

Adopting a bayesian framework and using a standard max-
imum a posteriori (MAP) rule, our goal is to minimize the fol-
lowing functional with respect to the representation coefficients
α

(Pλ,ψ) : arg min
α

J(α) (6)

J : α 7→ F ◦H ◦ Φ (α)
︸ ︷︷ ︸

f1(α)

+ ıC ◦ Φ (α) + λ

L∑

i=1

ψ(αi)

︸ ︷︷ ︸

f2(α)

,

where we implicitly assumed that(αi)16i6L are independent
and identically distributed with a Gibbsian density∝ e−λψ(αi).
Notice thatf2 is not smooth. The penalty functionψ is chosen to
enforce sparsity,λ > 0 is a regularization parameter andıC is the
indicator function of a convex setC. In our case,C is the positive
orthant. We remind that the positivity constraint is because we
are fitting Poisson intensities, which are positive by nature. We
have the following,

Proposition 1.
• f1 is convex function. It is strictly convex ifΦ is an ortho-

basis andker (H) = ∅ (i.e. the spectrum of the PSF does
not vanish).

• f1 is continuously differentiable with aκ-Lipschitz gradi-
ent where

κ 6
(

2
3

)3/2
4A ‖H‖2

2 ‖z‖∞ < +∞. (7)

• (Pλ,ψ) is a particular case of problem(4).

4.1.1. Characterization of the solution

Proposition 2. SinceJ is coercive and convex, the following
holds:

1. Existence:(Pλ,ψ) has at least one solution, i.e.M 6= ∅.
2. Uniqueness:(Pλ,ψ) has a unique solution ifΦ is a basis

andker (H) = ∅, or if ψ is strictly convex.

Proof: The existence is obvious becauseJ is coercive. IfΦ
is an ortho-basis andker (H) = ∅ thenf1 is strictly convex and
so isJ leading to a strict minimum. Similarly, ifψ is strictly
convex, so isf2, henceJ .



4.1.2. Proximal iteration

For notational simplicity, we denote byΨ the functionα 7→
∑

i ψ(αi). The following useful lemmas are first stated:

Lemma 1. The gradient of∇f1 is

∇f1(α) = ΦT ◦H∗ ◦ ∇F ◦H ◦ Φ (α) (8)

with

∇F (η) =

(

−zi
√

ηi + 3/8
+ 2

)

16i6n

(9)

The proof is straightforward.

Lemma 2. LetΦ an orthobasis or a tight frame with constantc.

1. If α ∈ C′ thenproxf2(α) = proxλΨ(α), C′ = {α|Φα ∈
C}.

2. Otherwise, let
∑

t νt(1 − νt) = +∞. Takeγ0 ∈ H, and
define the sequence of iterates:

γt+1 = γt + νt

(

rprox
λΨ+

1
2
‖.−α‖2

◦

rproxı
C′

−I

)

(γt),

(10)

where

prox
λΨ+

1
2
‖.−α‖2

(γt) =

(

proxλ
2
ψ
((αi + γti )/2)

)

16i6L

,

PC′ = proxı
C′

= c−1ΦT ◦ PC ◦ Φ +
(
I − c−1ΦT ◦ Φ

)

andPC is the projector onto the positive orthant(PCη)i =
max(ηi, 0). Then,

γt ⇀ γ and proxf2(α) = PC′(γ). (11)

We are now ready to state our main proximal iterative algorithm
to solve the minimization problem(Pλ,ψ):

Theorem 1. For t > 0, let (µt)t be a sequence in]0,+∞[ such

that 0 < inft µt 6 supt µt <
(

3
2

)3/2
/
(
2A ‖H‖2

2 ‖z‖∞
)
. Fix

α0 ∈ H, for everyt > 0, set

αt+1 = proxµtf2
(αt − µt (∇f1(αt))) (12)

where∇f1 and proxµtf2
are given by Lemma 1 and 2. Then

(αt)t>0 converges (weakly) to a solution of(Pλ,ψ).

Proof: We give a sketch of the proof. The main theorem on
the proximal iteration can be found in [5, Theorem 3.4]. Hence,
combining this theorem with Lemma 1, Lemma 2 and Proposi-
tion 1, the result follows.

Note that if the PSFh is low-pass normalized to a unit sum, then
‖H‖2

2 = 1.
We now turn toproxδψ which is given by the following result:

Theorem 2. Suppose thatψ satisfies, (i)ψ is convex even-
symmetric , non-negative and non-decreasing on[0,+∞), and
ψ(0) = 0. (ii) ψ is twice differentiable onR \ {0}. (iii) ψ is
continuous onR, it is not necessarily smooth at zero and admits
a positive right derivative at zeroψ

′

+(0) = limh→0+
ψ(h)
h

> 0.
Then, the proximity operatorproxδψ(β) = α̂(β) has exactly
one continuous solution decoupled in each coordinateβi :

α̂i(βi) =

{

0 if |βi| 6 δψ
′

+(0)

βi − δψ
′

(α̂i) if |βi| > δψ
′

+(0)
(13)

A proof of this theorem can be found in [12]. Among the
most popular penalty functionsψ satisfying the above require-
ments, we haveψ(αi) = |αi|, in which case the associated prox-
imity operator is soft-thresholding. In this case, iteration (12) is
essentially an iterative thresholding algorithm with a positivity
constraint.

5. EXPERIMENTAL RESULTS

The performance of our approach has been assessed on several
2D datasets, from which we here illustrate two examples. Our
algorithm was compared to RL without regularization, RL with
multi-resolution support wavelet regularization [2, RL-MRS],
the naive proximal method that would assume the noise to be
Gaussian (NaiveGauss), and the approach of [9] (AnsGauss).For
all results presented, each algorithm was run with 200 iterations,
except RL which was stopped when its MSE was smallest.

In Fig.1, the original Lena image with a maximum intensity
of 30 is depicted in (a), its blurred and blurred+noisy versions
are in (b) and (c). With Lena, and for NaiveGauss, AnsGauss
and our approach, the dictionaryΦ contained the curvelet tight
frame. The deconvolution results are shown in Fig.1(d)-(h). As
expected, the RL is the worst as it lacks regularization. There are
also noticeable artifacts in NaiveGauss, AnsGauss and RL-MRS.
Our deconvolved image appears much cleaner. This visual im-
pression is confirmed by quantitative measures of the quality of
deconvolution, where we used both the meanℓ1-error (adapted to
Poisson noise), and the well-known MSE criteria. The meanℓ1-
error for Lena is shown in Tab.1 (similar results were obtained for
the MSE). In general, our approach performs very well. At low
intensity levels, RL-MRS has the smallest error very compara-
ble to our approach. For the other intensity levels, our algorithm
provides the best performance. At high intensity levels, Naive-
Gauss is competitive. This comes as no surprise since this isan
intensity regime where Poisson noise approaches the Gaussian
behavior. On the other hand, the results reveal that AnsGauss
performs poorly just after RL, probably because it does not han-
dle properly the non-linearity of the degradation model (2)after
the VST.

We further illustrate the capabilities of our approach on a
confocal microscopy simulation. We have created a phantom of
an image of a neuron dendrite segment with a mushroom-shaped
spines, see Fig.2. The experimental settings were the same as
for Lena except that the dictionary here contained the wavelet
transform. The findings are similar to those of Lena both visually
and quantitatively.

Intensity regime
Method 6 5 6 30 6 100 6 255

Our method 0.39 0.93 2.63 7.21
NaiveGauss 0.59 1.65 3.56 6.9
AnsGauss 0.87 2.33 4.61 8.35
RL-MRS 0.35 1.76 4.31 9.5

RL 1.97 5.07 9.53 15.68

Table 1. Meanℓ1-error of all algorithms as a function of
the intensity level.



(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 1. Deconvolution of Lena. (a) Original, (b) Blurred,
(c) Blurred+noisy, (d) RL, (e) NaiveGauss, (f) AnsGauss,
(g) RL-MRS, (h) Our algorithm.

6. CONCLUSION

In this paper, we presented a sparsity-based fast iterativethresh-
olding deconvolution algorithm that takes account of the pres-
ence of Poisson noise. A careful theoretical characterization
of the algorithm and its solution is provided. The encourag-
ing experimental results clearly confirm the capabilities of our
approach.
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