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SLOPE HEURISTICS FOR HETEROSCEDASTIC REGRESSION ON A
RANDOM DESIGN

By Sylvain Arlot and Pascal Massart

Universite Paris-Sud

In a recent paper [BM06], Birgé and Massart have introduced the
notion of minimal penalty in the context of penalized least squares
for Gaussian regression. They have shown that for several model se-
lection problems, simply multiplying by 2 the minimal penalty leads
to some (nearly) optimal penalty in the sense that it approximately
minimizes the resulting oracle inequality. Interestingly, the minimal
penalty can be evaluated from the data themselves which leads to a
data-driven choice of the penalty that one can use in practice. Unfor-
tunately their approach heavily relies on the Gaussian nature of the
stochastic framework that they consider. Our purpose in this paper
is twofold: stating a heuristics to design a data-driven penalty (the
slope heuristics) which is not sensitive to the Gaussian assumption
as in [BM06] and proving that it works for penalized least squares
random design regression. As a matter of fact, we could prove some
precise mathematical results only for histogram bin-width selection.
For some technical reasons which are explained in the paper, we could
not work at the level of generality that we were expecting but still
this is a first step towards further results and even if the mathemat-
ical results hold in some specific framework, the approach and the
method that we use are indeed general.

1. Introduction. Model selection has received much interest in the last decades. A very
common approach is penalization. In a nutshell, it chooses the model which minimizes the sum
of the empirical risk (how does the algorithm fit the data) and some complexity measure of the
model (called the penalty). This is the case of FPE (Akaike [Aka70]), AIC (Akaike [Aka73]) and
Mallows’ Cp or CL (Mallows [Mal73]).

In this article, we consider the question of the efficiency of such penalization procedures, i.e.
that their quadratic risk is asymptotically equivalent to the risk of the oracle. This property
is often called asymptotic optimality. It does not mean that the procedure finds out a “true
model” (which may not even exist), which would be the consistency problem. A procedure is
efficient when it makes the best possible use of the data in terms of the quadratic risk of the
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final estimator.
There is a huge amount of literature about this question. About the asymptotic optimality of

Mallows’ Cp, Akaike’s FPE and AIC, we mention here the works of Shibata [Shi81] for Gaussian
errors, Li [Li87] under suitable moment assumptions on the errors, and Polyak and Tsybakov
[PT90] for sharper moment conditions in the Fourier case. Then, non-asymptotic oracle inequal-
ities (with a constant K > 1) have been proven by Barron, Birgé and Massart [BBM99], Birgé
and Massart [BM01] in the Gaussian case, and Baraud [Bar00, Bar02] under some moment con-
ditions on the errors. In the gaussian case, non-asymptotic oracle inequalities with a constant
Kn which goes to 1 when n goes to infinity have been obtained by Birgé and Massart [BM06a].

A related problem is how much should we penalize at least? In other words, is there a minimal
penalty? In the framework of Gaussian regression on a fixed-design, this question has been
addressed by Birgé and Massart [BM01, BM06a], and Baraud, Giraud and Huet [BGH07] (the
latter considering the unknown variance case).

Apart from the theoretical understanding of penalization methods, this question is of much
interest from the practical viewpoint. In Sect. 4 of [BM06a], Birgé and Massart describe their
so-called “slope heuristics” (see also Massart [Mas07], Sect. 8.5.2). It relies on the fact that twice
the minimal penalty is almost the optimal penalty. Then, if one knows that a good penalty has
the form pen(m) = KF (Dm) (where Dm is the dimension of the model and K > 0 a tuning
parameter), they propose the following strategy for choosing K from the data. Define m̂(K) the
selected model as a function of K. First, compute Kmin such that Dm̂(K) is huge for K < Kmin

and reasonable when K ≥ Kmin. Secondly, define m̂ := m̂(2Kmin). Such a method has been
successfully applied for multiple change points detection by Lebarbier [Leb05].

However, all the results about minimal penalties concern the homoscedastic fixed-design
framework, where the penalty is a function of the dimension, often linear. In this paper, we
prove that a similar phenomenon occurs in the heteroscedatic random-design case: the optimal
penalty is about twice the minimal one. Our main advance is that we no longer assume the
penalties to be linear in the dimension, nor even to be functions of the dimension. For proving
such a result, we have to assume that each model is the vector space of piecewise constant func-
tions on some partition of the feature space. This is quite a restriction, but we conjecture that it
is mainly technical, and that the slope heuristics stays valid at least in the general least-square
regression framework. We provide some evidence for this by proving several key concentration
inequalities without the restriction to histograms.

Another argument supporting this conjecture is that several simulation studies have shown
recently that the slope heuristics could be used in several frameworks: mixture models (Maugis
and Michel [MM07]), clustering (Baudry [Bau07]), spatial statistics (Verzelen [Ver07]), estima-
tion of oil reserves (Lepez [Lep02]) and genomics (Villers [Vil07]). Our results do not give a
formal proof for these applications of the slope heuristics. However, they are a first step towards
such a result, by proving that it may be applied when the ideal penalty has a general shape.
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This paper is organized as follows. We describe our framework and give some notations in
Sect. 2. Our main theoretical results are stated in Sect. 3. We then discuss their practical
consequences in Sect. 4. Appendix A is devoted to computational issues. All the proofs are given
in Appendix B.

2. Framework.

2.1. Regression. We observe some data (Xi, Yi) ∈ X ×R, i.i.d. with common law P . Denoting
by s the regression function, we have

(1) Yi = s(Xi) + σ(Xi)ǫi

where σ : X 7→ R is the heteroscedastic noise-level and ǫi are i.i.d. centered noise terms, possibly
dependent from Xi, but with mean 0 and variance 1 conditionally to Xi. Typically, the feature
space X is a compact set of R

d. Throughout this paper, we make two main assumptions (which
can also be relaxed, see Sect. 3):

• The data is bounded: ‖Y ‖∞ ≤ A <∞.
• Uniform lower-bound on the noise-level: σ(X) ≥ σmin > 0 a.s.

Given a predictor t : X 7→ Y, its quality is measured by the (quadratic) prediction loss

E(X,Y )∼P [γ(t, (X,Y )) ] =: Pγ(t) where γ(t, (x, y)) = (t(x) − y )2

is the least-square contrast. Then, the Bayes predictor1 is the regression function s, and we
define the excess loss as

l(s, t) := Pγ (t) − Pγ (s) = E(X,Y )∼P (t(X) − s(X))2 .

Given a particular set of predictors Sm (called a model), we define the best predictor over Sm

sm := arg min
t∈Sm

{Pγ(t)} ,

and its empirical counterpart
ŝm := arg min

t∈Sm

{Pnγ(t)}

(when it exists and is unique), where Pn = n−1∑n
i=1 δ(Xi,Yi). This estimator is the well-known

empirical risk minimizer, also called least-square estimator since γ is the least-square contrast.

1i.e. the minimizer of Pγ(t) over the set of all predictors.
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2.2. Ideal model selection. We now assume that we have a family of models (Sm)m∈Mn ,
hence a family of estimators (ŝm)m∈Mn (via empirical risk minimization). We are looking for
some data-dependent m̂ ∈ Mn such that l(s, ŝm̂) is as small as possible. This is the model
selection problem. For instance, we would like to prove some oracle inequality of the form

l(s, ŝm̂) ≤ K inf
m∈Mn

{ l(s, ŝm)} +Rn

in expectation or on a set of large probability, with K close to 1 and Rn = o(n−1).
General penalization procedures can be described as follows. Let pen : Mn 7→ R

+ be some
penalty function, possibly data-dependent. Then, define

(2) m̂ ∈ arg min
m∈Mn

{crit(m)} with crit(m) := Pnγ(ŝm) + pen(m) .

Since the ideal criterion crit is the true prediction error Pγ ( ŝm ), the ideal penalty is

penid(m) := Pγ(ŝm) − Pnγ(ŝm) .

Of course, this quantity is unknown because it depends on the true distribution P . A natural
idea is to choose pen as close as possible to penid for every model m ∈ Mn. We show below, in a
very general setting, that when pen estimates well the ideal penalty penid, m̂ satisfies an oracle
inequality with constant K close to 1.

By definition of m̂,

∀m ∈ Mn, Pnγ(ŝm̂) ≤ Pnγ(ŝm) + pen(m) − pen(m̂) .

For every m ∈ Mn, we define

p1(m) = P (γ(ŝm) − γ(sm) ) p2(m) = Pn (γ(sm) − γ(ŝm))

δ(m) = (Pn − P )γ(sm) δ(m) = δ(m) − (Pn − P )γ(s)

so that

l(s, ŝm) = Pnγ(ŝm) + p1(m) + p2(m) − δ(m) − Pnγ(s) .

We then have, for every m ∈ Mn,

l(s, ŝm̂) + (pen− pen′
id)(m̂) ≤ l(s, ŝm) + (pen− pen′id)(m)(3)

where pen′
id(m) := p1(m) + p2(m) − δ(m) = penid(m) + (Pn − P )γ (s) .

In order to derive an oracle inequality from (3), we have to show that for every m ∈ Mn, pen(m)
is close to pen′

id(m) (or, equivalently, to penid(m), since pen′
id − penid does not depend on m).

Actually, both penid and pen′
id are ideal penalties (they lead to select the same optimal model).
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The reason why we prefer pen′
id in (3) is that it has lower deviations around its expectation than

penid.

When the penalty pen is too large, the left-hand side of (3) stays larger than l(s, ŝm̂) so that
we can still obtain an oracle inequality (possibly with a large constant K). On the contrary,
when pen is too small, the left-hand side of (3) can become negligible in front of l(s, ŝm̂) (which
makes K explode) or — worse — can be nonpositive (so that we can no longer derive an oracle
inequality from (3)). We shall see in the following that this corresponds to the existence of a
“minimal penalty”.

Consider first the case pen(m) = p2(m) in (2). Then, E [crit(m) ] = E [Pnγ (sm ) ] = Pγ (sm ),
so that m̂ tends to be the model with the smallest bias, hence the more complex one. As a
consequence, the risk of ŝm̂ is very large. When pen(m) = Cp2(m) with C < 1, crit(m) is a
decreasing function of the complexity of m, so that m̂ is still one of the more complex models.
On the contrary, when pen(m) > p2(m), crit(m) starts to increase with the complexity of m (at
least for the largest models), so that m̂ has a smallest complexity. This intuition supports the
conjecture that the “minimal amount of penalty” required for the model selection procedure to
work may be p2(m).

In this article, we prove (in a particular framework, see Sect. 2.3) that

∀m ∈ Mn, p1(m) ≈ p2(m) ,

so that the ideal penalty penid(m) ≈ p1(m)+p2(m) is close to 2p2(m). On the other hand, p2(m)
is actually a “minimal penalty”. So, we deduce that the optimal penalty is close to twice the
minimal penalty:

penid(m) ≈ 2 penmin(m) .

This is the so-called “slope heuristics”, which was first introduced by Birgé and Massart [BM06a]
in a Gaussian setting. It is splitted into two main results. First, an oracle inequality with constant
almost one when pen = 2E [p2 ] (Thm. 1), relying on (3) and the comparison p1 ≈ p2. Second,
lower bounds on Dm̂ and the risk of ŝm̂ when pen is smaller than p2 (Thm. 2).

These theorems rely on two kinds of results. First, both p1, p2 and δ concentrate around
their expectations (which can be done in a quite general framework, at least for p2 and δ, see
App. B.5). Second, E [p1(m) ] ≈ E [p2(m) ] for every m ∈ Mn. This last point is quite hard in
general, so that we must make a structural assumption on the models. In this article, we consider
the histogram case, where Sm is the set of piecewise constant functions on some fixed partition
(Iλ )λ∈Λm

. We describe this framework in the next subsection.

2.3. Histograms. A “model of histograms” Sm is the the set of piecewise constant func-
tions (histograms) on some partition (Iλ)λ∈Λm

of X . It is thus a vector space of dimension
Dm = Card(Λm), spanned by the family (1Iλ

)λ∈Λm
. As this basis is orthogonal in L2(µ) for
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any probability measure on X , computations are quite easy. This is the only reason why we
assume that each Sm is a model of histograms in Sect. 3. The following notations will be useful
throughout this paper.

pλ := P (X ∈ Iλ) p̂λ := Pn(X ∈ Iλ)

(σr
λ)2 := E

[
σ(X)2

∣∣∣ X ∈ Iλ
] (

σd
λ

)2
:= E

[
(s(X) − sm(X))2

∣∣∣ X ∈ Iλ
]

sm := arg min
t∈Sm

Pγ(t) =
∑

λ∈Λm

βλ1Iλ
with βλ = EP [Y | X ∈ Iλ ]

ŝm := arg min
t∈Sm

Pnγ(t) =
∑

λ∈Λm

β̂λ1Iλ
with β̂λ =

1

np̂λ

∑

Xi∈Iλ

Yi

Remark that ŝm is uniquely defined if and only if each Iλ contains at least one of the Xi.
Otherwise, we will consider that the model m can not be chosen. In order to make E [p1(m) ]
well-defined and finite, we choose a convention for p1(m) when minλ∈Λm

p̂λ = 0 (see (34) in
App. B).

In order to understand the main difference between our framework and the homoscedastic
fixed-design one, let us compare the expectations of the ideal penalty.

In the homoscedastic fixed-design framework2, it is quite straightforward to show that

(4) E [penid(m) ] =
2σ2Dm

n
.

On the other hand, in our framework, we can prove the following (cf. [Arl07], Sect. 5.7.2). Denote
by E

Λm[·] the expectation conditionally to (1Xi∈Iλ
)1≤i≤n, λ∈Λm

. If for every λ ∈ Λm, p̂λ > 0, then

(5) E
Λm [penid(m) ] =

1

n

∑

λ∈Λm

(
pλ

p̂λ
+ 1

)((
σd

λ

)2
+ (σr

λ)2
)

.

Apart from the difference between pλ/p̂λ and 1 (which does not matter with large probability, see

App. B.5), there are two main differences between (4) and (5). Firstly, the bias term
(
σd

λ

)2
, which

is due to the randomness of the design. If s is highly non-smooth, this term can be significant.
Secondly, the variance term (σr

λ)2 depends on λ ∈ Λm, whereas it is constant equal to σ2 in
the homoscedastic case. When (pλ)λ∈Λm

are far from the uniform weights, n−1∑
λ∈Λm

(σr
λ)2 is

far from Dmn
−1

E
[
σ(X)2

]
. As shown in Chap. 4 of [Arl07], in such cases, it may happen that

any linear penalization procedure is suboptimal. Then, more general penalties than the ones
considered in [BM06a] are required.

2in which the true distribution P gives weights n−1 to each of the (deterministic) design points X1, . . . , Xn.
The unknown distribution is only the one of ( ǫi )1≤i≤n

.
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3. Theoretical results. In this section, we restrict ourselves to the histogram regression
case. Remember that we do not consider histograms as a final goal. We only make this assumption
in order to make explicit computations and obtain results from which we can derive heuristics
for practical applications.

Let (Sm)m∈M be a family of histogram models satisfying

(P1) Polynomial complexity of Mn: Card(Mn) ≤ cMnαM .
(P2) Richness of Mn: ∃m0 ∈ Mn s.t. Dm0 ∈ [

√
n, crich

√
n ].

Assumption (P1) is quite classical when one aims at proving the asymptotic optimality of a
model selection procedure (it is for instance implicitly assumed by Li [Li87], in the homoscedastic
fixed-design case).

For any penalty function pen : Mn 7→ R
+, we define the following model selection procedure:

(6) m̂ ∈ arg min
m∈Mn,minλ∈Λm{ p̂λ}>0

{Pnγ(ŝm) + pen(m)} .

3.1. Optimal penalties. Our first result is an oracle inequality. The following theorem shows
that the penalization procedure (6) is efficient (i.e. satisfies a non-asymptotic oracle inequality,
with constant C converging to 1 when n goes to infinity), provided that the penalty is well
chosen.

Theorem 1. Assume that the data (Xi, Yi)1≤i≤n are i.i.d. and satisfy the following:

(Ab) Bounded data: ‖Yi‖∞ ≤ A <∞.
(An) Noise-level bounded from below: σ(Xi) ≥ σmin > 0 a.s.
(Ap) Polynomial decreasing of the bias: there exists β1 ≥ β2 > 0 and C+

b , C
−
b > 0 such that

C−
b D

−β1
m ≤ l(s, sm) ≤ C+

b D
−β2
m .

(ArX
ℓ ) Lower regularity of the partitions for L(X): Dm minλ∈Λm

{P (X ∈ Iλ )} ≥ cXr,ℓ.

For every m ∈ Mn, consider the penalty

(7) pen(m) = 2E [Pn (γ(sm) − γ(ŝm)) ] .

Then, if m̂ is defined by (6), there exists a constant K1 and a sequence ǫn converging to zero
at infinity such that, with probability at least 1 −K1n

−2,

(8) l(s, ŝm̂) ≤ [1 + ǫn ] inf
m∈Mn

{ l(s, ŝm)} .

Moreover, we have the oracle inequality

(9) E
[
l(s, ŝm̂)

] ≤ [1 + ǫn ] E

[
inf

m∈Mn

{ l(s, ŝm)}
]

+
A2K1

n2
.
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The constant K1 may depend on the constants in (P1), (P2), (Ab), (An), (Ap) and (ArX
ℓ ),

but not on n. The small term ǫn depends only on n (it can for instance be upperbounded by
ln(n)−1/5).

The rationale behind this theorem is that the ideal penalty penid(m) is close to its expectation,
which is itself close to 2E [Pn (γ(sm) − γ(ŝm)) ]. Then, (3) directly implies an oracle inequality
like (8), hence (9).

Actually, Thm. 1 above is a corollary of a more general result, Thm. 3, that we state in
App. B.2. In particular, if

(10) pen(m) = CE [Pn (γ(sm) − γ(ŝm)) ]

instead of (7), then the constant 1+ ǫn in (8) becomes (C−1)−1 + ǫn if C ∈ (1, 2] and C−1+ ǫn
if C ≥ 2. This means that for every C > 1, the penalty defined by (10) is efficient, up to a
multiplicative constant. This is well known in the homoscedastic case [BM01, Bar00, Bar02],
but new in the heteroscedastic one.

We now make a few comments about the assumptions of Thm. 1:

• (Ab) and (An) are rather mild. In particular, they allow quite general heteroscedastic
noises. They can also be relaxed, for instance thanks to results proven by Arlot [Arl07]
(Chap. 6 and Sect. 8.3) , which allow the noise to vanish or to be unbounded.

• (ArX
ℓ ) is satisfied for “almost regular” histograms when X has a lower bounded density

w.r.t. Leb.
• The upper bound in (Ap) holds when (Iλ)λ∈Λm

is regular and s α-hölderian with α ∈ (0, 1].
The lower bound is more surprising. Indeed, it is classical to assume that l(s, sm) > 0 for
every m ∈ Mn for proving the asymptotic optimality of Mallows’ Cp (e.g. by Shibata
[Shi81], Li [Li87] and Birgé and Massart [BM06a]). We here make a stronger assumption
because we need a non-asymptotic lower bound on the dimension of both the oracle and
selected models.
The reason why this assumption is not too restrictive is that non-constant α-hölderian
functions satisfy (Ap) when (Iλ)λ∈Λm

is regular and X has a lower-bounded density w.r.t.
the Lebesgue measure on X ⊂ R

k (cf. Sect. 8.10 in [Arl07] for more details). Notice that
Stone [Sto85] and Burman [Bur02] used the same assumption in the density estimation
framework.

3.2. Minimal penalties. In the previous subsection, we have shown that the penalization
procedure built upon CE [p2(m) ] with any C > 1 satisfies an oracle inequality with a constant
K(C). According to our analysis, K(2) is close to 1, and K(C) explodes when C goes either to
1 or to infinity. However, this is not sufficient to state that C = 1 corresponds to the “minimal
amount of penalization” needed, since we only have upper bounds on the risk. Theorem 2 below
shows that C < 1 actually induces an explosion of the risk, so that the condition C ≥ 1 is
necessary (we do not study the critical situation C = 1).
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Theorem 2. Assume that the data (Xi, Yi)1≤i≤n are i.i.d. and satisfy the following:

(Ab) Bounded data: ‖Yi‖∞ ≤ A <∞.
(An) Noise-level bounded from below: σ(Xi) ≥ σmin > 0 a.s.

(Apu) Polynomial upper bound on the bias: there exists β2 > 0 and C+
b > 0 such that

l(s, sm) ≤ C+
b D

−β2
m .

(ArX
ℓ ) Lower regularity of the partitions for L(X): Dm minλ∈Λm

{P (X ∈ Iλ )} ≥ cXr,ℓ.

Let C ∈ [0; 1) and assume that for every m ∈ Mn,

0 ≤ pen(m) ≤ CE [Pn (γ(sm) − γ(ŝm)) ](11)

with probability at least 1 − Ln−2.
Then, if m̂ is defined by (6), there exists two constants K2, K3 such that, with probability at

least 1 −K2n
−2,

(12) Dm̂ ≥ K3n ln(n)−1 .

On the same event,

(13) l(s, ŝm̂) ≥ ln(n) inf
m∈Mn

{ l(s, ŝm)} .

The constants K2 and K3 may depend on C and constants in (P1), (P2), (Ab), (An), (Ap)
and (ArX

ℓ ), but not on n.

Together with Thm. 1 (and the remarks below), this proves that E [p2(m) ] is a “minimal
penalty”: when pen(m) = CE [p2(m) ], m̂ satisfies an oracle inequality if C > 1, but not if
C < 1. This confirms the intuitive reasoning exposed at the end of Sect. 2.2.

As in the results of Birgé and Massart [BM06a], Thm. 2 points out two simultaneous phe-
nomena when the penalty is too small. First, the dimension of the selected model explodes (12).
Second, the efficiency of the model selection strongly decreases (13). This coupling is quite in-
teresting. Indeed, we want to avoid underpenalization because of the second phenomenon, while
the blow up of the dimension allows us to detect it more easily. This is crucial from the practical
viewpoint, as we shall see in Sect. 4.

The novelty in Thm. 2 is that it does not make restrictive assumptions on the distribution of
the noise, which may be nongaussian and heteroscedastic. Then, the minimal penalty may not
be a function of the dimension Dm. Even more interesting consequences of Thm. 2 come from
an accurate comparison with Thm. 1. This is the purpose of the next section.

3.3. Comments.
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3.3.1. Optimal penalty vs. minimal penalty. First, Thm. 1 and 2 show that there is a link
between the optimal penalty penopt(m) = 2E [p2(m) ] and the minimal penalty penmin(m) =
E [p2(m) ]. Apart from the particular expression of E [p2(m) ], we can retain the following rule
of thumb:

“optimal” penalty ≈ 2 × “minimal” penalty .

This has already been proposed by Birgé and Massart [BM06a], but their results were restricted
to the Gaussian homoscedastic framework. In this paper, we extend them to a non-Gaussian
and heteroscedastic setting.

From the practical viewpoint, this means that we can design an optimal penalty as soon as
we can find the minimal one from the data. Of course, the ratio between the excess loss of ŝm̂

and the one of the oracle is unknown, so that it is not straightforward to detect that a penalty
is “minimal”. Interestingly, it appears from Thm. 1 and 2 and their proofs that the dimension of
the selected model Dm̂ jumps exactly when the penalty is minimal. We detail this phenomenon
in the next paragraph.

3.3.2. Dimension jump. In the statement of Thm. 2, we mention that Dm̂ is very large
(proportionnal to n/ ln(n)) with a large probability when pen(m) ≤ CE [penmin(m) ] for some
C < 1. This is not only the key of our proof that the risk of ŝm̂ explodes when pen is too small.

Under the same assumptions, when pen(m) ≈ CE [penmin(m) ] for some C > 1, the proof of
Thm. 1 shows that

∀1/2 > α > (1 − β2 )+ /2, P

(
Dm̂ ≤ n1/2+α

)
≥ 1 −K ′

1(α)n−2 .

Denoting by m̂(C) the selected model when pen(m) ≈ C penmin(m), we have proven that there
is an event of large probability on which

∀C ∈ [0, 1), Dm̂(C) ≥
K3n

ln(n)
and ∀C ∈ (1, 2], Dm̂(C) ≤ n1−δ

for some δ > 0. In a nutshell, there is a large dimension jump around the minimal penalty.

Contrary to the explosion of the excess loss, the dimension jump can be observed from the
data only. It is clearly observed in simulation studies (see Fig. 1 in App. A). This means that
if one knows (at least approximately) the optimal penalty up to some multiplicative constant,
the dimension jump allows to determine accurately the minimal penalty. Then, multiplying by
two this estimate, one obtains an optimal penalty. In the next section, we discuss the resulting
algorithm.

4. Practical use of the slope heuristics.
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4.1. Data-driven penalties. We are now in position to define a data-driven calibration algo-
rithm for penalization procedures. A similar method has already been proposed by Birgé and
Massart [BM06a] (see also [BM06b]) and implemented by Lebarbier [Leb05].

Algorithm 1 (Data-driven penalization with slope heuristics).

1. Choose a shape of penalty penshape : Mn 7→ R
+.

2. Compute the selected model m̂(K) as a function of K > 0

m̂(K) ∈ arg min
m∈Mn

{
Pnγ(ŝm) +K penshape(m)

}
.

3. Find K̂min > 0 such that Dm̂(K) is too large for K < K̂min and “reasonably small” for

K > K̂min.
4. Select the model m̂ = m̂(2K̂min).

Computational aspects are discussed in App. A. Let us now focus on another practical ques-
tion, which is step 1 of Algorithm 1. In the homoscedastic framework, it is quite straightforward,
the good shape of penalty being given by explicit formulas [BM06a]. If Mn has a polynomial
complexity (i.e. satisfies (P1)), then penshape(m) = Dm is a good choice, since Mallows’ Cp is
asymptotically optimal. When the noise is highly heteroscedastic, this is no longer the case so
that step 1 may become much harder. We study this question in the next subsection.

4.2. Shape of the penalty. In the heteroscedastic framework, the shape of the ideal penalty
is unknown, because it does not depend only of the dimension of the models. In addition, it
has been proved ([Arl07], Chap. 4) that any penalty of the form ĈDm is suboptimal for model
selection in some heteroscedastic situation, even if Ĉ is allowed to depend on the true distribution
P . Then, optimal model selection with heteroscedastic data strongly requires to estimate the
shape of penid(m).

A natural idea for solving this problem is the use of resampling. As shown in [Arl07], re-
sampling penalties (Chap. 6) or V -fold penalties (Chap. 5) provide good estimates of the shape
of penid in the heteroscedastic framework. Whereas these results are also restricted to the his-
togram case (for which the use of Algorithm 1 is unnecessary, because the optimal calibration
constants are known), several theoretical results supports the conjecture that they are valid in
a much more general situation.

Notice also that resampling does not give the exact shape of E [p2(m) ] (as required in Thm. 1),
but only an approximation on an event of large probability. This why we state a more general
result, Thm. 3, which allows pen to be only near the right penalty shape.

Combining Algorithm 1 with some resampling penalization algorithm (see [Arl07], Chap. 5
and 6), we now have a completely data-driven way for designing optimal penalties. The theoreti-
cal justification of this procedure allows the noise to be heteroscedastic and non-gaussian, which
is a quite interesting point. Apart from the histogram case, we believe that it remains valid, but
theoretical justification remains an open problem.
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4.3. Large number of models. Contrary to Birgé and Massart [BM06a], we have restricted
our study to the situation where the collection of models Mn is “small”, i.e. has a size growing
at most like a power of n. For several problems, such that complete variable selection, this
assumption does not hold, and it is known from the homoscedastic case that the minimal penalty
is much larger than E [p2(m) ].

Following (42) and the surrounding comments in [BM06a], we suggest to answer this question
as follows. First, group the models according to some complexity index Cm (for instance their

dimensions, or the approximate value of their resampling penalty): for C ∈
{

1, . . . , nk
}
, define

S̃C =
⋃

Cm=C Sm. Then, replace the model selection problem with the family (Sm)m∈Mn by a

“complexity selection problem”, i.e. model selection with the family
(
S̃C

)
1≤C≤nk

.

We believe that this grouping of the models is sufficient to take into account the richness of
Mn for the optimal calibration of the penalty. A theoretical justification of this point may rely
on the extension of our results to any kind of model, not only histogram ones (each S̃C is not an
“histogram model”, since it is even not a vector space). As mentioned in the previous subsection,
this remains an interesting open problem.

5. Conclusion. We have seen in this paper that it is possible to provide mathematical evi-
dences that the method introduced in [BM06a] to design data-driven penalties remains efficient
in a non Gaussian context. Our purpose in this conclusive section is to relate the heuristics
that we have developped in Sect. 2 to the well known Mallows’Cp and Akaike’s criteria and
to the unbiased risk (or almost unbiased) estimation of the risk principle. To explain our idea
which consists in guessing what is the right penalty to be used from the data themselves, let us
come come back to Gaussian model selection. Towards this aim let us consider some empirical
criterion γn (which can be the least squares criterion as in this paper but which could be the
log-likelihood criterion as well). Let us also consider some collection of models (Sm )m∈M and in
each model Sm some minimizer sm of t 7→ E [γn (t) ] over Sm (assuming that such a point does
exist). Defining for every m ∈ M,

b̂m = γn (sm ) − γn (s) and v̂m = γn (sm ) − γn ( ŝm ) ,

minimizing some penalized criterion

γn ( ŝm ) + pen(m)

over M amounts to minimize
b̂m − v̂m + pen(m).

The point is that since b̂m is an unbiased estimator of the bias term l(s, sm). If we have in
mind to use concentration arguments, one can hope that minimizing the quantity above will be
approximately equivalent to minimize

l(s, sm) − E [ v̂m ] + pen(m) .
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Since the purpose of the game is to minimize the risk E [ l(s, ŝm) ], an ideal penalty would therefore
be

pen(m) = E [ v̂m ] + E [ℓ (sm, ŝm ) ] .

In the Mallows’ Cp case (for Gaussian fixed design regression least squares), the models Sm are
linear and E [ v̂m ] = E [ℓ (sm, ŝm ) ] are explicitly computable (at least if the level of noise is
assumed to be known). For Akaike’s penalized log-likelihood criterion, this is similar, at least
asymptotically. More precisely, one uses the fact that

E [ v̂m ] ≈ E [ℓ (sm, ŝm ) ] ≈ Dm

2n
,

where Dm stands for the number of parameters defining model Sm. The conclusion of these
considerations is that Mallows’ Cp as well as Akaike’s criterion are indeed both based on the
unbiased risk (or asymptotically unbiased) estimation principle.

The first idea that we are using in this paper is that one can go further in this direction
and that the approximation E [ v̂m ] ≈ E [ℓ (sm, ŝm ) ] remains valid even in a non-asymptotic
context. If one believes in it then a good penalty becomes 2E [ v̂m ] or equivalently (having
still in mind concentration arguments) 2v̂m. This in some sense explains the rule of thumb
which is given in [BM06a] and further studied in this paper and connect it to Mallows’ Cp

and Akaike’s heuristics. Indeed, the minimal penalty is v̂m while the optimal penalty should be
v̂m+E [ℓ (sm, ŝm ) ] and their ratio is approximately equal to 2. The second idea that we are using
in this paper is that one can guess the minimal penalty from the data. There are indeed several
ways to perform the estimation of the minimal penalty. Here we have studied a slope heuristics
which amounts to consider that the shape of the minimal penalty is (at least approximately)
of the form αDm and estimate the unknown value α by the slope of the graph of γn ( ŝm )
for large enough values of Dm. It is easy to extend this method to other shapes of penalties,
simply by replacing Dm by some (known!) function f (Dm ). For instance, Émilie Lebarbier has

used f (Dm ) = Dm

(
2.5 + ln

(
n

Dm

))
for multiple change points detection from n noisy data.

It is even possible to combine resampling ideas with the slope heuristics by taking a random
function f which is built from a randomized empirical criterion. As shown in Arlot [Arl07] this
approach turns out to be much more efficient than the rougher choice f (Dm) = Dm for highly
heteroscedastic random regression frameworks. Of course, the question of the optimality of the
slope heuristics remains widely open but we believe that on the one hand this heuristics can be
helpfull in practice and that on the other hand, proving its efficiency even on a toy model as we
did in this paper is already something.

APPENDIX A: COMPUTATIONAL ASPECTS OF THE SLOPE HEURISTICS

With Algorithm 2 (possibly combined with resampling penalties for step 1), we have a com-
pletely data-driven and optimal model selection procedure. From the practical viewpoint, the
last two problems may be steps 2 and 3. First, at step 2, how can we compute exactly m̂(K)
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for every K ∈ (0,+∞), this latter set being uncountable? The answer is that the whole trajec-
tory (m̂(K) )K≥0 can be described with a small number of parameters, which can be computed
fastly. This point is the object of Sect. A.1. Second, at step 3, how can the jump of dimension
be detected automatically in practice. In other words, how should K̂min be defined exactly, as a
function of (m̂(K))K≥0? We try to answer this question in Sect. A.2.

A.1. Computation of (m̂(K))
K≥0

. For every model m ∈ Mn, define

f(m) = Pnγ ( ŝm ) g(m) = penshape(m)

and ∀K ≥ 0, m̂(K) ∈ arg min
m∈Mn

{f(m) +Kg(m)} .

Since the latter definition can be ambiguous, we choose any total ordering � on Mn such that
g is non-decreasing. Then, m̂(K) is defined as the smallest element of

E(K) := arg min
m∈Mn

{f(m) +Kg(m)}

for �. The main reason why the whole trajectory (m̂(K))K≥0 can be computed efficiently is its
very particular shape.

Indeed, the results below (mostly Lemma 2) show that K 7→ m̂(K) is piecewise constant, and
non-increasing for �. We then have

∀i ∈ {0, . . . , imax } , ∀K ∈ [Ki,Ki+1) , m̂(K) = mi ,

and the whole trajectory (m̂(K))K≥0 can be represented by:

• a non-negative integer imax ≤ Card(Mn) − 1 (the number of jumps),
• an increasing sequence of positive reals (Ki)0≤i≤imax+1 (the location of the jumps, with
K0 = 0 and Kimax+1 = +∞)

• a non-increasing sequence of models (mi)0≤i≤imax .

We are now in position to give an efficient algorithm for step 2 in Algorithm 2. The point is
that theKi and themi can be computed sequentially, each step having a complexity proportional
to Card(Mn). This means that its overall complexity is lower than a constant times Card(Mn)2.
Notice also that Algorithm 2 can be stopped earlier if the only goal is to identify K̂min (which
may be done only with the first mi).

Algorithm 2 (Step 2 of Algorithm 1). For every m ∈ Mn, define f(m) = Pnγ ( ŝm ) and
g(m) = penshape(m). Choose � any total ordering on Mn such that g is non-decreasing.

• Init: K0 = 0, m0 = arg minm∈Mn {f(m)} (when this minimum is attained several times,
m0 is defined as the smallest one for �).
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• Step i, i ≥ 1: Let

G(mi−1) := {m ∈ Mn s.t. f(m) > f(mi−1) and g(m) < g(mi−1)} .

If G(mi−1) = ∅, then put Ki = +∞, imax = i− 1 and stop.
Otherwise, define

(14) Ki := inf

{
f(m) − f(mi−1)

g(mi−1) − g(m)
s.t. m ∈ G(mi−1)

}

and mi the smallest element (for �) of

Fi := arg min
m∈G(mi−1)

{
f(m) − f(mi−1)

g(mi−1) − g(m)

}
.

The validity of Algorithm 2 is justified by the following proposition, showing that these Ki

and mi are the same as the ones describing (m̂(K))K≥0.

Proposition 1. If Mn is finite, algorithm 2 terminates and imax ≤ Card(Mn) − 1. Using
the notations of Algorithm 2, and defining m̂(K) as the smallest element (for �) of

E(K) := arg min
m∈Mn

{f(m) +Kg(m)} ,

(Ki)0≤i≤imax+1 is increasing and ∀i ∈ {0, . . . , imax − 1}, ∀K ∈ [Ki,Ki+1), m̂(K) = mi.

It is proven in Sect. A.3.

A.2. Definition of K̂min. We now come to the question of defining K̂min as a function of
(m̂(K))K>0. As we have mentioned in Sect. 3.3.2, it corresponds to a “dimension jump”, which

should be observable since the whole trajectory of
(
Dm̂(K)

)
K≥0

is known.

On Fig. 1, we represented Dm̂(K) as a function of K for two simulated data sets. On the left

(a), the dimension jump is quite clear, and we expect a formal definition of K̂min to find this
jump. The same picture holds for approximately 85% of the data sets. On the right (b), there
seems to be several jumps, and a proper definition of K̂min is problematic. What is sure is the
necessity to find some automatic choice for K̂min, that is defining it properly.

We now propose two definitions that seem reasonable to us. For the first one, choose a threshold
Dreas., of order n/(ln(n)), corresponding to the largest “reasonable” dimension for the selected
model. Then, define

K̂min := inf
{
K s.t. Dm̂(K) ≤ Dreas.

}
.

With this definition, one can stop Algorithm 2 as soon as the threshold is reached. However,
K̂min may depend strongly on the choice of the threshold, which may not be quite obvious in
the non-asymptotic situation (where n/ ln(n) is not so far from n).
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(a) One clear jump.
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(b) Two jumps, two values for K̂min.

Fig 1. D
m̂(K)

as a function of K for two different samples. Data are simulated with X ∼ U([0, 1]), ǫ ∼ N (0, 1),

s(x) = sin(πx), σ ≡ 1, n = 200. (Sm)m∈Mn
is the collection of regular histogram models with dimension between 1

and n/(ln(n)). penshape(m) = Dm. “Reasonable dimensions” are below n/(2 ln(n)) ≈ 19. See Sect. 5.4 in [Arl07]
for details (experiment (S1)).

Our second idea is that K̂min should match with the largest dimension jump, i.e.

K̂min := Kimax.jump
with imax.jump = arg max

i∈{0,...,imax−1}

{
Dmi+1 −Dmi

}
.

Although this definition may seem less arbitrary than the previous one, it still depends strongly
on Mn, which may not contain so many large models for computational reasons. In order to
ensure that there is a clear jump, an idea may be to add a few models of dimension ≈ n/2,
so that at least one3 has a well-defined empirical risk minimizer ŝm. This modification has the
default of being quite arbitrary.

We compared the two definitions above (“reasonable dimension” vs. “maximal jump”) on one
thousand simulated data sets similar to the one of Fig. 1. Three cases occured:

1. The values of K̂min do not differ (about 85% of the data sets; this is the (a) situation).

2. The values of K̂min differ, but the selected models m̂
(
K̂min

)
are still equal (about 8.5%

of the data sets).
3. The finally selected models are different (about 6.5% of the data sets; this is the (b)

situation).

Hence, in this non-asymptotic framework, the formal definition of K̂min does not matter in
general, but stays problematic in a few cases.

3several huge models may be necessary in practice, in order to decrease the variability of K̂min.
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In terms of prediction error, we have compared the two methods by estimating the constant
Cor that would appear in some oracle inequality:

Cor :=
E
[
l(s, ŝm̂)

]

E [ infm∈Mn { l(s, ŝm)} ]
.

With the “reasonable dimension” definition, Cor ≈ 1.88. With the “maximal jump” definition,
Cor ≈ 2.01. As a comparison, Mallows’ Cp (with a classical estimator of the variance σ2) has a
performance of Cor ≈ 1.93 on the same data. For the three procedures, the standard deviation
of the estimator of Cor is about 0.04. See [Arl07], Chap. 4, for more details. This preliminary
simulation study shows that Algorithm 1 works efficiently (it is competitive with Mallows’ Cp

in a situation where this one is also optimal). It also suggests that the “reasonable dimension”
definition may be better, but without very convincing evidence.

In order to make the choice of K̂min as automatic as possible, we suggest to use simultaneously
the two methods. When the selected models are not the same, then, send a warning to the final
user, advising him to look at the curve K 7→ Dm̂(K) himself. Otherwise, stay confident in the

automatic choice of m̂(2K̂min).

A.3. Proof of Prop. 1. First of all, since Mn is finite, the infimum in (14) is attained as
soon as G(mi−1) 6= ∅, so that mi is well defined for every i ≤ imax. Moreover, by construction,
g(mi) decreases with i, so that all the mi ∈ Mn are distinct. Hence, Algorithm 2 terminates
and imax + 1 ≤ Card(Mn). We now prove by induction the following property for every i ∈
{0, . . . , imax }:

Pi : Ki < Ki+1 and ∀K ∈ [Ki,Ki+1), m̂(K) = mi .

Notice also that Ki can always be defined by (14) with the convention inf ∅ = +∞.

P0 holds true. By definition of K1, it is clear that K1 > 0 (it may be equal to +∞ if
G(m0) = ∅). For K = K0 = 0, the definition of m0 is the one of m̂(0), so that m̂(K) = m0. For
K ∈ (0,K1), Lemma 2 shows that either m̂(K) = m̂(0) = m0 or m̂(K) ∈ G(0). In the latter
case, by definition of K1,

f(m̂(K)) − f(m0)

g(m0) − g(m̂(K))
≥ K1 > K

so that
f(m̂(K)) +Kg(m̂(K)) > f(m0) +Kg(m0)

which is contradictory with the definition of m̂(K). Hence, P0 holds true.
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Pi ⇒ Pi+1 for every i ∈ {0, . . . , imax − 1}. Assume that Pi holds true. First, we have to prove
that Ki+2 > Ki+1. Since Kimax+1 = +∞, this is clear if i = imax − 1. Otherwise, Ki+2 < +∞
and mi+2 exists. Then, by definition of mi+2 and Ki+2 (resp. mi+1 and Ki+1), we have

f(mi+2) − f(mi+1) = Ki+2(g(mi+1) − g(mi+2))(15)

f(mi+1) − f(mi) = Ki+1(g(mi) − g(mi+1)) .(16)

Moreover, mi+2 ∈ G(mi+1) ⊂ G(mi), and mi+2 ≺ mi+1 (because g is non-decreasing). Using
again the definition of Ki+1, we have

(17) f(mi+2) − f(mi) > Ki+1(g(mi) − g(mi+2))

(otherwise, we would have mi+2 ∈ Fi+1 and mi+2 ≺ mi+1, which is not possible). Combining
the difference of (17) and (16) with (15), we have

Ki+2(g(mi+1) − g(mi+2)) > Ki+1(g(mi+1) − g(mi+2)) ,

so that Ki+2 > Ki+1 (since g(mi+1) > g(mi+2)).
Second, we prove that m̂(Ki+1) = mi+1. From Pi, we know that for every m ∈ Mn, for every

K ∈ [Ki,Ki+1), f(mi) + Kg(mi) ≤ f(m) + Kg(m). Taking the limit when K goes to Ki+1,
we obtain that mi ∈ E(Ki+1). By (16), we then have mi+1 ∈ E(Ki+1). On the other hand, if
m ∈ E(Ki+1), Lemma 2 shows that either f(m) = f(mi) and g(m) = g(mi) orm ∈ G(mi). In the
first case, mi+1 ≺ m (because g is non-decreasing). In the second one, m ∈ Fi+1, so mi+1 � m.
Since m̂(Ki+1) is the smallest element of E(Ki+1), we have proven that mi+1 = m̂(Ki+1).

Last, we have to prove that m̂(K) = mi+1 for every K ∈ (K1,K2). From the last statement
of Lemma 2, we have either m̂(K) = m̂(K1) or m̂(K1) ∈ G(m̂(K)). In the latter case (which is
only possible if Ki+2 <∞), by definition of Ki+2,

f(m̂(K)) − f(mi+1)

g(mi+1) − g(m̂(K))
≥ Ki+2 > K

so that
f(m̂(K)) +Kg(m̂(K)) > f(mi+1) +Kg(mi+1)

which is contradictory with the definition of m̂(K).

Lemma 2. Use the notations of Prop. 1 and its proof. If 0 ≤ K < K ′, m ∈ E(K) and
m′ ∈ E(K ′), then we have either

(a) f(m) = f(m′) and g(m) = g(m′).
(b) f(m) < f(m′) and g(m) > g(m′).

In particular, we have either m̂(K) = m̂(K ′) or m̂(K ′) ∈ G(m̂(K)).
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proof of Lemma 2. By definition of E(K) and E(K ′), we have

f(m) +Kg(m) ≤ f(m′) +Kg(m′)(18)

f(m′) +K ′g(m′) ≤ f(m) +K ′g(m) .(19)

Summing (18) and (19) gives (K ′ −K)g(m′) ≤ (K ′ −K)g(m) so that

(20) g(m′) ≤ g(m) .

Since K ≥ 0, (18) and (20) give f(m) +Kg(m) ≤ f(m′) +Kg(m), i.e.

(21) f(m) ≤ f(m′) .

Moreover, using (19), g(m) = g(m′), implies f(m′) ≤ f(m), i.e. f(m) = f(m′) by (21). In
the same way, (18) and (20) show that f(m) = f(m′) imply g(m) = g(m′). In both cases, (a) is
satisfied. Otherwise, f(m) < f(m′) and g(m) > g(m′), i.e. (b) is satisfied.

The last statement follows by taking m = m̂(K) and m′ = m̂(K ′), because g is non-decreasing,
so that the minimum of g in E(K) is attained by m̂(K).

APPENDIX B: PROOFS

B.1. Conventions and notations. In the following, when we do not want to write explic-
itly some constants, we use the letter L. It means “some absolute constant, possibly different
from a line to another, or even within the same line”. When L is not numerical, but depends on
some parameters p1, . . . , pk, it is written Lp1,...,pk

. L(SH1) (resp. L(SH2)) denotes a constant that
depends only on the set of assumptions of Thm. 3 (resp. Thm. 2), including (P1) and (P2).

We also make use of the following notations: for every a, b ∈ R, a∧ b is the minimum of a and
b, a ∨ b is the maximum of a and b, a+ = a ∨ 0 is the positive part of a and a− = a ∧ 0 is its
negative part.

B.2. A general oracle inequality. First of all, let us state a general theorem, from which
Thm. 1 is an obvious corollary.

Theorem 3. Assume that the data (Xi, Yi)1≤i≤n are i.i.d. and satisfy the following:

(Ab) Bounded data: ‖Yi‖∞ ≤ A <∞.
(An) Noise-level bounded from below: σ(Xi) ≥ σmin > 0 a.s.
(Ap) Polynomial decreasing of the bias: there exists β1 ≥ β2 > 0 and C+

b , C
−
b > 0 such that

C−
b D

−β1
m ≤ l(s, sm) ≤ C+

b D
−β2
m .

(ArX
ℓ ) Lower regularity of the partitions for L(X): Dm minλ∈Λm

pλ ≥ cXr,ℓ.



20 ARLOT, S. AND MASSART, P.

Let c1, c2, C1, C2 ≥ 0 such that c2 > 1 and assume that for every m ∈ Mn,

E [c1P (γ(ŝm) − γ(sm)) + c2Pn (γ(sm) − γ(ŝm)) ]

≤ pen(m) ≤ E [C1P (γ(ŝm) − γ(sm)) + C2Pn (γ(sm) − γ(ŝm)) ]
(22)

with probability at least 1 − Ln−2.
Then, if m̂ is defined by (6), there exists a constant K1 and a sequence ǫn converging to zero

at infinity such that, with probability at least 1 −K1n
−2,

(23) l(s, ŝm̂) ≤
[

1 + (C1 + C2 − 2)+
(c1 + c2 − 1) ∧ 1

+ ǫn

]
inf

m∈Mn

{ l(s, ŝm)} .

Moreover, we have the oracle inequality

(24) E
[
l(s, ŝm̂)

] ≤
[

1 + (C1 + C2 − 2)+
(c1 + c2 − 1) ∧ 1

+ ǫn

]
E

[
inf

m∈Mn

{ l(s, ŝm)}
]

+
A2K1

n2
.

The constant K1 may depend on c1, c2 and constants in (P1), (P2), (Ab), (An), (Ap) and
(ArX

ℓ ), but not on n. The small term ǫn depends only on n (it can for instance be upperbounded
by ln(n)−1/5).

The particular form of condition (22) on the penalty is motivated by the fact that the ideal
shape of penalty E [penid(m) ] (or equivalently E [2p2(m) ]) is unknown in general. Then, it has
to be estimated from the data, for instance by resampling. Notice also that (22) can be assumed
only for the models of dimension larger than ln(n)ξ (for some ξ ≥ 0), at the price of making
K1 depend on ξ > 0. Under the assumptions of Thm. 3, it has been proven ([Arl07], Chap. 5
and 6; see also [Arl08b, Arl08a]) that resampling penalties satisfy condition (22) with constants
c1 + c2 = 2 − δn and C1 + C2 = 2 + δn (for some absolute sequence δn converging to zero at
infinity), at least for models of dimension larger than ln(n)ξ (where ξ depends on the constants
in the assumptions on the data).

In such a situation (obtained by resampling or not), (23) shows that we have an asymptotically
optimal model selection procedure.

The rationale behind this theorem is that if pen is close to c1p1 + c2p2, then crit(m) =
l(s, sm) + c1p1(m) + (c2 − 1)p2(m). If c1 = c2 = 1, this is exactly the ideal criterion l(s, ŝm). If
c1 + c2 = 2 with c1 ≥ 0 and c2 > 1, we obtain the same result because p1(m) and p2(m) are
quite close (at least when Dm is large). This closeness between p1 and p2 is the keystone of the
slope heuristics. Notice that if maxm∈Mn Dm ≤ K ′

1(ln(n))−1n (for some constant K ′
1 depending

only on the assumptions of Thm. 1, like K1), one can replace the condition c2 > 1 by c1 + c2 > 1
and c1, c2 ≥ 0 .
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B.3. Proof of Thm. 3. This proof is very similar to the one of Thm. 5.1 of [Arl07]. We
give it for the sake of completeness.

From (3), we have for each m ∈ Mn such that An(m) := minλ∈Λm
{np̂λ} > 0

(25) l(s, ŝm̂) − (pen′
id(m̂) − pen(m̂)

) ≤ l(s, ŝm) +
(
pen(m) − pen′

id(m)
)
.

with pen′
id(m) = p1(m) + p2(m) − δ(m) = pen(m) + (P − Pn)γ(s). It is sufficient to control

pen− pen′
id for every m ∈ Mn.

We will thus use the concentration inequalities of Sect. B.5 with x = γ ln(n) and γ = 2+αM.
Define Bn(m) = minλ∈Λm

{npλ }. Let Ωn be the event on which

• for every m ∈ Mn, (22) holds
• for every m ∈ Mn such that Bn(m) ≥ 1:

p̃1(m) ≥ E [ p̃1(m) ] − L(SH1)

[
ln(n)2√
Dm

+ e−LBn(m)

]
E [p2(m) ](35)

p̃1(m) ≤ E [ p̃1(m) ] + L(SH1)

[
ln(n)2√
Dm

+
√
Dme

−LBn(m)

]
E [p2(m) ](36)

• for every m ∈ Mn such that Bn(m) > 0:

(37) p̃1(m) ≥
(

1

2 + (γ + 1)Bn(m)−1 ln(n)
− L(SH1) ln(n)2√

Dm

)
E [p2(m) ] .

|p2(m) − E [p2(m) ]| ≤ L(SH1) ln(n)√
Dm

[ l(s, sm) + E [p2(m) ] ](33)

∣∣∣δ(m)
∣∣∣ ≤ l(s, sm)√

Dm
+ L(SH1)

ln(n)√
Dm

E [p2(m) ](31)

From Prop. 5 (for p̃1), Prop. 4 (for p2), Prop. 3 (for δ(m)), we have

P (Ωn ) ≥ 1 − L
∑

m∈Mn

n−2−αM ≥ 1 − LcMn
−2 .

For every m ∈ Mn such that Dm ≤ LcX
r,ℓ
n ln(n)−1, (ArX

ℓ ) implies that Bn(m) ≥ L−1 ln(n) ≥
1. As a consequence, on Ωn, if ln(n)7 ≤ Dm ≤ LcX

r,ℓ
n ln(n)−1:

max
{
|p̃1(m) − E [ p̃1(m) ]| , |p2(m) − E [p2(m) ]| ,

∣∣∣δ(m)
∣∣∣
}

≤ L(SH1)E [ l(s, sm) + p2(m) ]

ln(n)
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Using (38) (in Prop. 6) and the fact that Bn(m) ≥ L−1 ln(n),

(c1 + c2)
(
1 − δ̃n

)

2
≤ E [pen(m) ] ≤

(C1 + C2)
(
1 + δ̃n

)

2
E [ p̃1(m) + p2(m) ]

with 0 ≤ δ̃n ≤ L ln(n)−1/4. We deduce: if n ≥ L(SH1), for every m ∈ Mn such that ln(n)7 ≤
Dm ≤ LcX

r,ℓ
n ln(n)−1, on Ωn,

[
(c1 + c2 − 2)− − L(SH1)

ln(n)1/4

]
p1(m) ≤ (pen− pen′

id)(m)

≤
[
(C1 + C2 − 2)+ +

L(SH1)

ln(n)1/4

]
p1(m) .

We need to assume that n is large enough in order to upper bound E [p2(m) ] in terms of p1(m),
since we only have

p1(m) ≥
[
1 − L(SH1)

ln(n)1/4

]

+

E [p2(m) ]

in general.
Combined with (25), this gives: if n ≥ L(SH1),

l(s, ŝm̂)1ln(n)5≤D
m̂
≤L

cX
r,ℓ

n ln(n)−1 ≤
[

1 + (C1 + C2 − 2)+
(c1 + c2 − 1) ∧ 1

+
L(SH1)

ln(n)1/4

]

× inf
m∈Mn s.t. ln(n)7≤Dm≤L

αM,cX
r,ℓ

n ln(n)−1
{ l(s, ŝm)} .

(26)

Define the oracle model m⋆ ∈ arg min { l(s, ŝm)}. We prove below that for any c > 0 and
α > (1 − β2 )+ /2, if n ≥ L(SH1),c,α, then, on Ωn:

ln(n)7 ≤ Dm̂ ≤ n1/2+α ≤ cn ln(n)−1(27)

ln(n)7 ≤ Dm⋆ ≤ n1/2+α ≤ cn ln(n)−1 .(28)

The result follows since L(SH1) ln(n)−1/4 ≤ ǫn = ln(n)−1/5 for n ≥ L(SH1). We finally remove

the condition n ≥ n0 = L(SH1) by choosing K1 = L(SH1) such that K1n
−2
0 ≥ 1.

Proof of (27). By definition, m̂ minimizes crit(m) over Mn. It thus also minimizes

crit′(m) = crit(m) − Pnγ(s) = l(s, sm) − p2(m) + δ(m) + pen(m)

over Mn.
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1. Lower bound on crit′(m) for small models: let m ∈ Mn such that Dm < ( ln(n))7. We then
have

l(s, sm) ≥ C−
b ( ln(n) )−7β1 from (Ap)

pen(m) ≥ 0

p2(m) ≤ L(SH1)

√
ln(n)

n
+ L(SH1)

Dm

n
≤ L(SH1)

√
ln(n)

n
from (32)

and from (31) (in Prop. 3),

δ(m) ≥ −LA

√
l(s, sm) ln(n)

n
+ LA

ln(n)

n
≥ −LA

√
ln(n)

n
.

We then have
crit′(m) ≥ L(SH1) ( ln(n))−Lβ1 .

2. Lower bound for large models: let m ∈ Mn such that Dm ≥ n1/2+α. From (22) and (32)
(in Prop. 4),

pen(m) − p2(m) ≥ (c2 − 1) E [p2(m) ] − LA

√
ln(n)

n

≥ (c2 − 1)σ2
minDm

n
− LA

√
ln(n)

n

and from (29),

δ(m) ≥ −L(SH1)

√
ln(n)

n
.

Hence, if Dm ≥ n1/2+α and n ≥ L(SH1),α

crit′(m) ≥ pen(m) + δ(m) − p2(m) ≥ L(SH1),αn
−1/2+α .

3. There exists a better model for crit(m): from (P2), there exists m0 ∈ Mn such that√
n ≤ Dm0 ≤ crich

√
n. If moreover n ≥ Lcrich,α, then

ln(n)7 ≤ √
n ≤ Dm0 ≤ crich

√
n ≤ n1/2+α .

By (39) in Lemma 7, An(m0) ≥ 1 with probability at least 1 − Ln−2.
Using (Ap),

l(s, sm0) ≤ C+
b c

β2

richn
−β2/2
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so that, when n ≥ L(SH1),

crit′(m0) ≤ l(s, sm0) +
∣∣∣δ(m)

∣∣∣+ pen(m)

≤ L(SH1)

(
n−β2/2 + n−1/2

)
.

If n ≥ L(SH1),α, this upper bound is smaller than the previous lower bounds for small and
large models.

Proof of (28). Recall that m⋆ minimizes l(s, ŝm) = l(s, sm) + p1(m) over m ∈ Mn, with the
convention l(s, ŝm) = ∞ if An(m) = 0.

1. Lower bound on l(s, ŝm) for small models: let m ∈ Mn such that Dm < ( ln(n))7. From
(Ap), we have

l(s, ŝm) ≥ l(s, sm) ≥ C−
b ( ln(n) )−7β1 .

2. Lower bound on l(s, ŝm) for large models: let m ∈ Mn such that Dm > n1/2+α. From (37),
for n ≥ L(SH1),α,

p̃1(m) ≥




1

2 + (γ + 1)
(
cXr,ℓ

)−1
ln(n)

− L(SH1),α

n1/4


E [ p̃2(m) ]

so that l(s, ŝm) ≥ p̃1(m) ≥ L(SH1),αn
−1/2+α .

3. There exists a better model for l(s, ŝm): let m0 ∈ Mn be as in the proof of (27) and assume
that n ≥ Lcrich,α. Then,

p1(m0) ≤ L(SH1)E [p2(m) ] ≤ L(SH1)n
−1/2

and the arguments of the previous proof show that

l(s, ŝm0) ≤ L(SH1)

(
n−β2/2 + n−1/2

)

which is smaller than the previous upper bounds for n ≥ L(SH1),α.

Classical oracle inequality. Let Ωn be the event on which (23) holds true. Then,

E
[
l(s, ŝm̂)

]
= E

[
l(s, ŝm̂)1Ωn

]
+ E

[
l(s, ŝm̂)1Ωc

n

]

≤ [2η − 1 + ǫn ] E

[
inf

m∈Mn

{ l(s, ŝm)}
]

+A2K1P (Ωc
n )

which proves (24).
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B.4. Proof of Thm. 2. Similarly to the proof of Thm. 3, we consider the event Ω′
n, of

probability at least 1 − LcMn
−2, on which:

• for every m ∈ Mn, (11) (for pen), (37) (for p̃1), (32)–(33) (for p2, with x = γ ln(n) and
θ =

√
ln(n)/n) and (29)–(31) (for δ, with x = γ ln(n) and η =

√
ln(n)/n) hold true.

• for every m ∈ Mn such that Bn(m) ≥ 1, (35) and (36) hold (for p̃1).

Lower bound on Dm̂. By definition, m̂ minimizes

crit′(m) = crit(m) − Pnγ(s) = l(s, sm) − p2(m) + δ(m) + pen(m)

over m ∈ Mn such that An(m) ≥ 1. As in the proof of Thm. 3, we define c = LcX
r,ℓ
> 0 such

that for every model of dimension Dm ≤ cn ln(n)−1, Bn(m) ≥ L−1 ln(n) ≥ 1. Let d < 1 to be
chosen later.

1. Lower bound on crit′(m) for “small” models: assume that m ∈ Mn and Dm ≤ dcn ln(n)−1.
Then, l(s, sm) + pen(m) ≥ 0 and from (29),

δ(m) ≥ −LA

√
ln(n)

n
.

If Dm ≥ ln(n)4, (33) implies that

p2(m) ≤
(

1 +
L(SH2)

ln(n)

)
E [p2(m) ] ≤ L(SH2)Dm

n
≤ cdL(SH2)

ln(n)
.

On the other hand, if Dm < ln(n)4, (32) implies that

p2(m) ≤ L(SH2)

√
ln(n)

n
.

We then have
crit′(m) ≥ −dL(SH2) ( ln(n))−1 .

2. There exists a better model for crit(m): let m1 ∈ Mn such that

ln(n)4 ≤ cdn

crich ln(n)
≤ Dm1 ≤ cn

ln(n)
≤ n .

From (P2), this is possible as soon as n ≥ Lcrich,c,d. By (39) in Lemma 7, An(m0) ≥ 1 with
probability at least 1 − Ln−2.
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We then have

l(s, sm1) ≤ L(SH2),c ln(n)β2n−β2 by (Ap)

p2(m1) ≤
(

1 +
L(SH2)

ln(n)

)
E [p2(m1) ] by (33)

pen(m1) ≤ C2E [p2(m1) ] by (11)

∣∣∣δ(m1)
∣∣∣ ≤ LA

√
ln(n)

n
by (29)

so that

crit′(m1) ≤ L(SH2),c ln(n)β2n−β2 +

(
C2 − 1 − L(SH2)

ln(n)

)
E [p2(m1) ] + LA

√
ln(n)

n

≤ (C2 − 1)σ2
minc

2 ln(n)

if n ≥ L(SH2),c.
We now choose d such that the constant dL(SH2) appearing in the lower bound on crit′(m)
for “small” models is smaller than (1−C2)σ

2
minc/2, i.e. d ≤ L(SH2),c. Then, we assume that

n ≥ n0 = L(SH2),c,d = L(SH2). Finally, we remove this condition as before by enlarging
K2.

Risk of Dm̂. The proof of (13) is quite similar to the one of (28). First, for every model m ∈ Mn

such that An(m) ≥ 1 and Dm ≥ K3n ln(n)−1, we have

l(s, ŝm) ≥ p̃1(m) ≥ L(SH2)K3 ln(n)−2 by (37) .

Then, the model m0 ∈ Mn defined previously satisfies An(m) ≥ 1, and

l(s, ŝm0) ≤ L(SH2)

(
n−β2/2 + n−1/2

)
.

If n ≥ L(SH2), the ratio between these two bounds is larger than ln(n), so that (13) holds.

B.5. Concentration inequalities used in the main proofs. We do not always assume
in this section that models are made of histograms, but only that they are bounded by some
finite A. First, we can control δ(m) with general models and bounded data.

Proposition 3. Assume that ‖Y ‖∞ ≤ A <∞. Then for all x ≥ 0, on an event of probability
at least 1 − 2e−x:

(29) ∀η > 0,
∣∣∣δ(m)

∣∣∣ ≤ ηl(s, sm) +

(
4

η
+

8

3

)
A2x

n
.
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If moreover

(30) Q(p)
m :=

nE [p2(m) ]

Dm
> 0 ,

on the same event,

∣∣∣δ(m)
∣∣∣ ≤ l(s, sm)√

Dm
+

20

3

A2

Q
(p)
m

E[p2(m)]√
Dm

x .(31)

Remark 1. In the histogram case,

Q(p)
m =

1

Dm

∑

λ∈Λm

[
(σr

λ )2 +
(
σd

λ

)2
]
≥ (σmin )2 > 0 .

Then, we derive a concentration inequality for p2(m) in the histogram case from a general
result of [BM04] (Thm. 2.2 in a preliminary version).

Proposition 4. Let Sm be the model of histograms associated with the partition (Iλ )λ∈Λm
.

Assume that ‖Y ‖∞ ≤ A and define p2(m) = Pn (γ(sm) − γ(ŝm) ).
Then, for every x ≥ 0, there exists an event of probability at least 1− e1−x on which for every

θ ∈ (0; 1),

(32) |p2(m) − E [p2(m) ]| ≤ C

[
θl(s, sm) +

A2
√
Dm

√
x

n
+
A2x

θn

]

for some absolute constant C. If moreover σ(X) ≥ σmin > 0 a.s., we have on the same event:

(33) |p2(m) − E [p2(m) ]| ≤ C√
Dm

[
l(s, sm) +

A2
E [p2(m) ]

σ2
min

(√
x+ x

)
]
.

Finally, we recall a concentration inequality for p1(m) that comes from [Arl07]. Its proof is
particular to the histogram case. Moreover, since E [p1 ] is not well-defined (because of the event
{minλ∈Λm

{ p̂λ } = 0}), we have to take the following convention

(34) p1(m) = p̃1(m) =
∑

λ∈Λm s.t. p̂λ>0

pλ

(
βλ − β̂λ

)2
) +

∑

λ∈Λm s.t. p̂λ=0

pλ

(
(σr

λ)2 +
(
σd

λ

)2
)

.

Remark that p1(m) = p̃1(m) when minλ∈Λm
{ p̂λ } > 0), so that this convention has no conse-

quences on the final results (Thm. 3 and 2).
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Proposition 5 (Prop. 5.8, [Arl07]). Let γ > 0 and Sm be the model of histograms asso-
ciated with the partition (Iλ )λ∈Λm

. Assume that ‖Y ‖∞ ≤ A < ∞, σ(X) ≥ σmin > 0 a.s. and
minλ∈Λm

{npλ} ≥ Bn > 0. Then, if Bn ≥ 1, on an event of probability at least 1 − Ln−γ,

p̃1(m) ≥ E [ p̃1(m) ] − LA,σmin,γ

[
ln(n)2√
Dm

+ e−LBn

]
E [p2(m) ](35)

p̃1(m) ≤ E [ p̃1(m) ] + LA,σmin,γ

[
ln(n)2√
Dm

+
√
Dme

−LBn

]
E [p2(m) ] .(36)

If we only have a lower bound Bn > 0, then, with probability at least 1 − Ln−γ,

(37) p̃1(m) ≥
(

1

2 + (γ + 1)B−1
n ln(n)

− LA,σmin,γ ln(n)2√
Dm

)
E [p2(m) ] .

Proof. We changed a little the assumptions of the original proposition. The result still holds
since P ℓ

m(q) ≤ 4A2σ−2
min (with the notations of [Arl07]).

B.6. Additional results needed. A crucial result in the proofs of Thm. 3 and 2 is that
p1(m) and p2(m) are close in expectation. This comes from [Arl07] (Sect. 5.7.2).

Proposition 6 (Lemma 5.6, [Arl07]). Let Sm be a model of histograms adapted to some
partition (Iλ )λ∈Λm

. Assume that minλ∈Λm
{npλ } ≥ B > 0. Then,

(
1 − e−B

)2
E [p2(m) ] ≤ E [ p̃1(m) ]

≤
[
2 ∧

(
1 + 5.1 ×B−1/4

)
+ (B ∨ 1) e−(B∨1 )

]
E [p2(m) ] .

(38)

Finally, we need the following technical lemma in the proof of the main theorems.

Lemma 7. Let (pλ)λ∈Λm
be non-negative real numbers of sum 1, (np̂λ)λ∈Λm

a multinomial
vector of parameters (n; (pλ)λ∈Λm

). Then, for all γ > 0,

(39) min
λ∈Λm

{np̂λ } ≥ minλ∈Λm
{npλ }

2
− 2(γ + 1) ln(n)

with probability at least 1 − 2n−γ.

proof of lemma 7. By Bernstein inequality ([Mas07], Prop. 2.9), for all λ ∈ Λm,

P

(
np̂λ ≥ (1 − θ)npλ −

√
2npx− x

3

)
≥ 1 − e−x .

Take x = (γ + 1) ln(n) above, and remark that
√

2npx ≤ np
2 + x. The union bound gives the

result since Card(Λm) ≤ n.
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B.7. Proof of Prop. 3. Since ‖Y ‖∞ ≤ A, we have ‖s‖∞ ≤ A and ‖sm‖∞ ≤ A. In fact,
everything happens as if Sm ∪ {s} was bounded by A in L∞.

We have

δ(m) =
1

n

n∑

i=1

(γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi)) − E [γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi))])

and assumptions of Bernstein inequality ([Mas07], Prop. 2.9) are fulfilled with

c =
8A2

3n
and v =

8A2l(s, sm)

n

since

‖γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi)) − E [γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi))]‖∞ ≤ 8A2

and

var (γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi))) ≤ E

[
(γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi)))

2
]

≤ 8A2l(s, sm)(40)

because ‖sm − s‖∞ ≤ 2A and

(γ(t, ·) − γ(s, ·))2 = (t(X) − s(X))2 (2(Y − s(X)) − t(X) + s(X))2

and E

[
(Y − s(X))2

∣∣∣ X] ≤ (2A)2

4
= A .

We obtain that, with probability at least 1 − 2e−x,

∣∣∣δ(m)
∣∣∣ ≤

√
2vx+ c =

√
16A2l(s, sm)x

n
+

8A2x

3n

and (29) follows since 2
√
ab ≤ aη + bη−1 for all η > 0. Taking η = D

−1/2
m ≤ 1 and using Q

(p)
m

defined by (30), we deduce (31).

B.8. Proof of Prop. 4. We apply here a result from [BM04] (Thm. 2.2 in a preliminary
version), in which it is only assumed that γ takes its values in [0; 1]. This is satisfied when
‖Y ‖∞ ≤ A = 1/2. When A 6= 1/2, we apply this result to (2A)−1Y and recover the general
result by homogeneity.

First, we recall this result in the bounded least-square regression framework. For every t :
X 7→ R and ǫ > 0, we define

d2(s, t) = 2l(s, t) and w(ǫ) =
√

2ǫ .
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Let φm belong to the class of nondecreasing and continuous functions f : R
+ 7→ R

+ such that
x 7→ f(x)/x is nonincreasing on (0;+∞) and f(1) ≥ 1. Assume that for every u ∈ Sm and σ > 0
such that φm(σ) ≤ √

nσ2,

(41)
√
nE

[
sup

t∈Sm, d(u,t)≤σ
|γn(u) − γn(t)|

]
≤ φm(σ) .

Let ε⋆,m be the unique positive solution of the equation

√
nε2⋆,m = φm(w(ε⋆,m)) .

Then, there exists some absolute constant C such that for every real number q ≥ 2 one has

(42) ‖p2(m) − E[p2(m)]‖q ≤ C√
n

[√
2q

(√
l(s, sm) ∨ ε⋆,m

)
+ q

2√
n

]
.

For every model Sm of histograms, of dimension Dm as a vector space, we can take

(43) φm(σ) = 3
√

2
√
Dm × σ in (41).

The proof of this statement is made below. Then, ε⋆,m = 6
√
Dmn

−1/2.
Combining (42) with the classical link between moments and concentration (for instance

Lemma 8.9 of [Arl07]), the first result follows. The second result is obtained by taking θ = D
−1/2
m ,

as in Prop. 3.

proof of (43). Let u ∈ Sm and d(u, t) =
√

2 ‖u(X) − t(X)‖2 for every t : X 7→ R. Define
ψ : R

+ 7→ R
+ by

ψ(σ) = E

[
sup

d(u,t)≤σ, t∈Sm

|(Pn − P )(γ(u, ·) − γ(t, ·))|
]
.

We are looking for some nondecreasing and continuous function φm : R
+ 7→ R

+ such that
φm(x)/x is nonincreasing, φm(1) ≥ 1 and for every u ∈ Sm,

∀σ > 0 such that φm(σ) ≤ √
nσ2 , φm(σ) ≥ √

nψ(σ) .

We first look at a general upperbound on ψ.

Assume that u = sm. If this is not the case, the triangular inequality shows that ψgeneral u ≤
2ψu=sm . Let us write

t =
∑

λ∈Λm

tλ1Iλ
u = sm =

∑

λ∈Λm

βλ1Iλ
.
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Computation of P (γ(t, ·) − γ(sm, ·)). for some general t ∈ Sm:

P (γ(t, ·) − γ(sm, ·)) = E

[
(t(X) − Y )2 − (sm(X) − Y )2

]

= E

[
(t(X) − sm(X))2

]
+ 2E [(t(X) − sm(X))(sm(X) − s(X))]

= E

[
(t(X) − sm(X))2

]

=
∑

λ∈Λm

pλ(tλ − βλ)2

since for every λ ∈ Λm, E [s(X) | X ∈ Iλ ] = βλ.

Computation of Pn(γ(t, ·)− γ(sm, ·)). for some general t ∈ Sm: with ηi = Yi − sm(Xi), we have

P (γ(t, ·) − γ(sm, ·)) =
1

n

n∑

i=1

[
(t(Xi) − Yi)

2 − (u(Xi) − Yi)
2
]

=
1

n

n∑

i=1

(t(Xi) − u(Xi))
2 − 2

n

n∑

i=1

[(t(Xi) − u(Xi))ηi]

=
1

n

n∑

i=1

∑

λ∈Λm

(tλ − uλ)21Xi∈Iλ
− 2

n

n∑

i=1

∑

λ∈Λm

(tλ − uλ)1Xi∈Iλ
ηi .

Back to (Pn − P ). We sum the two inequalities above and use the triangular inequality:

|(Pn − P )(γ(t, ·) − γ(u, ·))| ≤
∣∣∣∣∣∣
1

n

n∑

i=1

∑

λ∈Λm

(tλ − uλ)2(1Xi∈Iλ
− pλ)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
2

n

n∑

i=1

∑

λ∈Λm

(tλ − uλ)1Xi∈Iλ
ηi

∣∣∣∣∣∣

≤ 2A

n

∑

λ∈Λm

[
(
√
pλ |tλ − uλ|)

|∑n
i=1(1Xi∈Iλ

− pλ)|√
pλ

]

+
2

n

∑

λ∈Λm

[
(
√
pλ |tλ − uλ|)

|∑n
i=1 1Xi∈Iλ

ηi|√
pλ

]

since |tλ − uλ| ≤ 2A for every t ∈ Sm.
We now assume that d(u, t) ≤ σ for some σ > 0, i.e.

d(u, t)2 = 2
∑

λ∈Λm

pλ(tλ − uλ)2 ≤ σ2 .
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From Cauchy-Schwarz inequality, we obtain for every t ∈ Sm such that d(u, t) ≤ σ

|(Pn − P )(γ(t, ·) − γ(u, ·))| ≤ 2Aσ√
2n

√√√√ ∑

λ∈Λm

(
∑n

i=1(1Xi∈Iλ
− pλ))2

pλ

+

√
2σ

n

√√√√ ∑

λ∈Λm

(
∑n

i=1 1Xi∈Iλ
ηi)

2

pλ

Back to ψ. The upper bound above does not depend on t, so that the left-hand side of the
inequality can be replaced by a supremum over {t ∈ Sm s.t. d(u, t) ≤ σ}. Taking expectations
and using Jensen’s inequality (

√· being concave), we obtain an upper bound on ψ:

ψ(σ) ≤ 2Aσ√
2n

√√√√ ∑

λ∈Λm

E

[
(
∑n

i=1(1Xi∈Iλ
− pλ))2

pλ

]

+

√
2σ

n

√√√√ ∑

λ∈Λm

E

[
(
∑n

i=1 1Xi∈Iλ
ηi)

2

pλ

](44)

For every λ ∈ Λm, we have

(45) E

(
n∑

i=1

(1Xi∈Iλ
− pλ)

)2

=
n∑

i=1

E (1Xi∈Iλ
− pλ )2 = npλ (1 − pλ )

which simplifies the first term. For the second term, notice that

∀i 6= j, E

[1Xi∈Iλ
1Xj∈Iλ

ηiηj

]
= E [1Xi∈Iλ

ηi ] E
[1Xj∈Iλ

ηj

]

and ∀i, E [1Xi∈Iλ
ηi ] = E [1Xi∈Iλ

E [ηi | 1Xi∈Iλ
] ] = 0

since ηi is centered conditionally to 1Xi∈Iλ
. Then,

(46) E

(
n∑

i=1

1Xi∈Iλ
ηi

)2

=
n∑

i=1

E

[1Xi∈Iλ
η2

i

]
≤ npλ ‖η‖2

∞ ≤ npλ(2A)2 .

Combining (44) with (45) and (46), we deduce that

ψ(σ) ≤ 2Aσ√
2
√
n

√
Dm − 1 +

2
√

2Aσ√
n

√
Dm

≤ 3A
√

2

√
Dm√
n

× σ .

As already noticed, we have to multiply this bound by 2 so that it is valid for every u ∈ Sm and
not only u = sm.

The resulting upper bound (multiplied by
√
n) has all the desired properties for φm since

6A
√

2
√
Dm = 3

√
2Dm ≥ 1. The result follows.
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