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Abstract

Penalization procedures often suffer from their dependence on multiplying factors, whose
optimal values are either unknown or hard to estimate from data. We propose a completely
data-driven calibration algorithm for these parameters in the least-squares regression frame-
work, without assuming a particular shape for the penalty. Our algorithm relies on the
concept of minimal penalty, recently introduced by Birgé and Massart (2007) in the con-
text of penalized least squares for Gaussian homoscedastic regression. On the positive
side, the minimal penalty can be evaluated from the data themselves, leading to a data-
driven estimation of an optimal penalty which can be used in practice; on the negative
side, their approach heavily relies on the homoscedastic Gaussian nature of their stochastic
framework.

The purpose of this paper is twofold: stating a more general heuristics for designing
a data-driven penalty (the slope heuristics) and proving that it works for penalized least-
squares regression with a random design, even for heteroscedastic non-Gaussian data. For
technical reasons, some exact mathematical results will be proved only for regressogram
bin-width selection. This is at least a first step towards further results, since the approach
and the method that we use are indeed general.

Keywords: Data-driven Calibration, Non-parametric Regression, Model Selection by
Penalization, Heteroscedastic Data, Regressogram

1. Introduction

In the last decades, model selection has received much interest, commonly through penal-
ization. In short, penalization chooses the model minimizing the sum of the empirical risk
(how well the algorithm fits the data) and of some measure of complexity of the model
(called penalty); see FPE (Akaike, 1970), AIC (Akaike, 1973), Mallows’ Cp or CL (Mal-
lows, 1973). Many other penalization procedures have been proposed since, among which
Rademacher complexities (Koltchinskii, 2001; Bartlett et al., 2002), local Rademacher com-
plexities (Bartlett et al., 2005; Koltchinskii, 2006), bootstrap penalties (Efron, 1983), re-
sampling and V -fold penalties (Arlot, 2008b,c).

Model selection can target two different goals. On the one hand, a procedure is efficient
(or asymptotically optimal) when its quadratic risk is asymptotically equivalent to the risk
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Arlot and Massart

of the oracle. On the other hand, a procedure is consistent when it chooses the smallest
true model asymptotically with probability one. This paper deals with efficient procedures,
without assuming the existence of a true model.

A huge amount of literature exists about efficiency. First Mallows’ Cp, Akaike’s FPE
and AIC are asymptotically optimal, as proved by Shibata (1981) for Gaussian errors, by
Li (1987) under suitable moment assumptions on the errors, and by Polyak and Tsybakov
(1990) under sharper moment conditions, in the Fourier case. Non-asymptotic oracle in-
equalities (with some leading constant C > 1) have been obtained by Barron et al. (1999)
and by Birgé and Massart (2001) in the Gaussian case, and by Baraud (2000, 2002) under
some moment assumptions on the errors. In the Gaussian case, non-asymptotic oracle in-
equalities with leading constant Cn tending to 1 when n tends to infinity have been obtained
by Birgé and Massart (2007).

However, from the practical point of view, both AIC and Mallows’ Cp still present
serious drawbacks. On the one hand, AIC relies on a strong asymptotic assumption, so
that for small sample sizes, the optimal multiplying factor can be quite different from
one. Therefore, corrected versions of AIC have been proposed (Sugiura, 1978; Hurvich
and Tsai, 1989). On the other hand, the optimal calibration of Mallows’ Cp requires the
knowledge of the noise level σ2, assumed to be constant. When real data are involved,
σ2 has to be estimated separately and independently from any model, which is a difficult
task. Moreover, the best estimator of σ2 (say, with respect to the quadratic error) quite
unlikely leads to the most efficient model selection procedure. Contrary to Mallows’ Cp,
the data-dependent calibration rule defined in this article is not a “plug-in” method; it
focuses directly on efficiency, which can improve significantly the performance of the model
selection procedure.

Existing penalization procedures present similar or stronger drawbacks than AIC and
Mallows’ Cp, often because of a gap between theory and practice. For instance, oracle in-
equalities have only been proved for (global) Rademacher penalties multiplied by a factor
two (Koltchinskii, 2001), while they are used without this factor (Lozano, 2000). As proved
by Arlot (2007, Chapter 9), this factor is necessary in general. Therefore, the optimal cali-
bration of these penalties is really an issue. The calibration problem is even harder for local
Rademacher complexities: theoretical results hold only with large calibration constants,
particularly the multiplying factor, and no optimal values are known. One of the purposes
of this paper is to address the issue of optimizing the multiplying factor for general-shape
penalties.

Few automatic calibration algorithms are available. The most popular ones are certainly
cross-validation methods (Allen, 1974; Stone, 1974), in particular V -fold cross-validation
(Geisser, 1975), because these are general-purpose methods, relying on a widely valid heuris-
tics. However, their computational cost can be high. For instance, V -fold cross-validation
requires the entire model selection procedure to be performed V times for each candidate
value of the constant to be calibrated. For penalties proportional to the dimension of the
models, such as Mallows’ Cp, alternative calibration procedures have been proposed by
George and Foster (2000) and by Shen and Ye (2002).

A completely different approach has been proposed by Birgé and Massart (2007) for
calibrating dimensionality-based penalties. Since this article extends their approach to a
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Data-driven Calibration of Penalties

much wider range of applications, let us briefly recall their main results. In Gaussian
homoscedastic regression with a fixed design, assume that each model is a finite-dimensional
vector space. Consider the penalty pen(m) = KDm, where Dm is the dimension of the
model m and K > 0 is a positive constant, to be calibrated. First, there exists a minimal
constant Kmin, such that the ratio between the quadratic risk of the chosen estimator
and the quadratic risk of the oracle is asymptotically infinite if K < Kmin, and finite if
K > Kmin. Second, when K = K⋆ := 2Kmin, the penalty KDm yields an efficient model
selection procedure. In other words, the optimal penalty is twice the minimal penalty. This
relationship characterizes the “slope heuristics” of Birgé and Massart (2007).

A crucial fact is that the minimal constant Kmin can be estimated from the data, since
large models are selected if and only if K < Kmin. This leads to the following strategy for
choosing K from the data. For every K ≥ 0, let m̂(K) be the model selected by minimizing
the empirical risk penalized by pen(Dm) = KDm. First, compute Kmin such that Dbm(K) is
“huge” for K < Kmin and “reasonably small” when K ≥ Kmin; explicit values for “huge”
and “small” are proposed in Section 3.3. Second, define m̂ := m̂(2Kmin). Such a method
has been successfully applied for multiple change points detection by Lebarbier (2005).

From the theoretical point of view, the issue for understanding and validating this
approach is the existence of a minimal penalty. This question has been addressed for
Gaussian homoscedastic regression with a fixed design by Birgé and Massart (2001, 2007)
when the variance is known, and by Baraud et al. (2007) when the variance is unknown.
Non-Gaussian or heteroscedastic data have never been considered. This article contributes
to fill this gap in the theoretical understanding of penalization procedures.

The calibration algorithm proposed in this article relies on a generalization of Birgé
and Massart’s slope heuristics (Section 2.3). In Section 3, the algorithm is defined in the
least-squares regression framework, for general-shape penalties. The shape of the penalty
itself can be estimated from the data, as explained in Section 3.4.

The theoretical validation of the algorithm is provided in Section 4, from the non-
asymptotic point of view. Non-asymptotic means in particular that the collection of models
is allowed to depend on n: in practice, it is usual to allow the number of explanatory
variables to increase with the number of observations. Considering models with a large
number of parameters (for example of the order of a power of the sample size n) is also
necessary to approximate functions belonging to a general approximation space. Thus,
the non-asymptotic point of view allows us not to assume that the regression function is
described with a small number of parameters.

The existence of minimal penalties for heteroscedatic regression with a random design
(Theorem 2) is proved in Section 4.3. In Section 4.4, by proving that twice the minimal
penalty has some optimality properties (Theorem 3), we extend the so-called slope heuris-
tics to heteroscedatic regression with a random design. Moreover, neither Theorem 2 nor
Theorem 3 assume the data to be Gaussian; only mild moment assumptions are required.

For proving Theorems 2 and 3, each model is assumed to be the vector space of piecewise
constant functions on some partition of the feature space. This is indeed a restriction, but
we conjecture that it is mainly technical, and that the slope heuristics remains valid at
least in the general least-squares regression framework. We provide some evidence for this
by proving two key concentration inequalities without the restriction to piecewise constant
functions. Another argument supporting this conjecture is that recently several simulation
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Arlot and Massart

studies have shown that the slope heuristics can be used in several frameworks: mixture
models (Maugis and Michel, 2008), clustering (Baudry, 2007), spatial statistics (Verzelen,
2008), estimation of oil reserves (Lepez, 2002) and genomics (Villers, 2007). Although the
slope heuristics has not been formally validated in these frameworks, this article is a first
step towards such a validation, by proving that the slope heuristics can be applied whatever
the shape of the ideal penalty.

This paper is organized as follows. The framework and the slope heuristics are described
in Section 2. The resulting algorithm is defined in Section 3. The main theoretical results
are stated in Section 4. All the proofs are given in Appendix A.

2. Framework

In this section, we describe the framework and the general slope heuristics.

2.1 Least-squares regression

Suppose we observe some data (X1, Y1), . . . (Xn, Yn) ∈ X × R, independent with common
distribution P , where the feature space X is typically a compact set of R

d. The goal is to
predict Y given X, where (X,Y ) ∼ P is a new data point independent of (Xi, Yi)1≤i≤n.
Denoting by s the regression function, that is s(x) = E [Y | X = x ] for every x ∈ X , we
can write

Yi = s(Xi) + σ(Xi)ǫi (1)

where σ : X 7→ R is the heteroscedastic noise level and ǫi are i.i.d. centered noise terms,
possibly dependent on Xi, but with mean 0 and variance 1 conditionally to Xi.

The quality of a predictor t : X 7→ Y is measured by the (quadratic) prediction loss

E(X,Y )∼P [γ(t, (X,Y )) ] =: Pγ(t) where γ(t, (x, y)) = (t(x) − y )2

is the least-squares contrast. The minimizer of Pγ(t) over the set of all predictors, called
Bayes predictor, is the regression function s. Therefore, the excess loss is defined as

ℓ (s, t) := Pγ (t) − Pγ (s) = E(X,Y )∼P (t(X) − s(X))2 .

Given a particular set of predictors Sm (called a model), we define the best predictor over
Sm as

sm := arg min
t∈Sm

{Pγ(t)} ,

with its empirical counterpart

ŝm := arg min
t∈Sm

{Pnγ(t)}

(when it exists and is unique), where Pn = n−1
∑n

i=1 δ(Xi,Yi). This estimator is the well-
known empirical risk minimizer, also called least-squares estimator since γ is the least-
squares contrast.

4
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Data-driven Calibration of Penalties

2.2 Ideal model selection

Let us assume that we are given a family of models (Sm)m∈Mn , hence a family of estimators
(ŝm)m∈Mn obtained by empirical risk minimization. The model selection problem consists
in looking for some data-dependent m̂ ∈ Mn such that ℓ (s, ŝ bm ) is as small as possible. For
instance, it would be convenient to prove some oracle inequality of the form

ℓ (s, ŝ bm ) ≤ C inf
m∈Mn

{ℓ (s, ŝm )} +Rn

in expectation or on an event of large probability, with leading constant C close to 1 and
Rn = o(n−1).

General penalization procedures can be described as follows. Let pen : Mn 7→ R
+ be

some penalty function, possibly data-dependent, and define

m̂ ∈ arg min
m∈Mn

{crit(m)} with crit(m) := Pnγ(ŝm) + pen(m) . (2)

Since the ideal criterion crit(m) is the true prediction error Pγ ( ŝm ), the ideal penalty is

penid(m) := Pγ(ŝm) − Pnγ(ŝm) .

This quantity is unknown because it depends on the true distribution P . A natural idea is
to choose pen(m) as close as possible to penid(m) for every m ∈ Mn. We will show below,
in a general setting, that when pen is a good estimator of the ideal penalty penid, then m̂
satisfies an oracle inequality with leading constant C close to 1.

By definition of m̂,

∀m ∈ Mn, Pnγ(ŝ bm) ≤ Pnγ(ŝm) + pen(m) − pen(m̂) .

For every m ∈ Mn, we define

p1(m) = P (γ(ŝm) − γ(sm) ) p2(m) = Pn (γ(sm) − γ(ŝm)) δ(m) = (Pn − P ) (γ(sm))

so that

penid(m) = p1(m) + p2(m) − δ(m)

and ℓ (s, ŝm ) = Pnγ(ŝm) + p1(m) + p2(m) − δ(m) − Pγ(s) .

Hence, for every m ∈ Mn,

ℓ (s, ŝ bm ) + (pen− penid)(m̂) ≤ ℓ (s, ŝm ) + (pen− penid)(m) . (3)

Therefore, in order to derive an oracle inequality from (3), it is sufficient to show that for
every m ∈ Mn, pen(m) is close to penid(m).

5
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Arlot and Massart

2.3 The slope heuristics

If the penalty is too big, the left-hand side of (3) is larger than ℓ (s, ŝ bm ) so that (3) implies
an oracle inequality, possibly with large leading constant C. On the contrary, if the penalty
is too small, the left-hand side of (3) may become negligible with respect to ℓ (s, ŝ bm )
(which would make C explode) or—worse—may be nonpositive. In the latter case, no
oracle inequality may be derived from (3). We shall see in the following that ℓ (s, ŝ bm ) blows
up if and only if the penalty is smaller than some “minimal penalty”.

Let us consider first the case pen(m) = p2(m) in (2). Then, E [crit(m) ] = E [Pnγ (sm ) ] =
Pγ (sm ), so that m̂ approximately minimizes its bias. Therefore, m̂ is one of the more com-
plex models, and the risk of ŝ bm is large. Let us assume now that pen(m) = Kp2(m). If
0 < K < 1, crit(m) is a decreasing function of the complexity of m, so that m̂ is again one of
the more complex models. On the contrary, if K > 1, crit(m) increases with the complexity
of m (at least for the largest models), so that m̂ has a small or medium complexity. This
argument supports the conjecture that the “minimal amount of penalty” required for the
model selection procedure to work is p2(m).

In many frameworks such as the one of Section 4.1, it turns out that

∀m ∈ Mn, p1(m) ≈ p2(m) .

Hence, the ideal penalty penid(m) ≈ p1(m) + p2(m) is close to 2p2(m). Since p2(m) is a
“minimal penalty”, the optimal penalty is close to twice the minimal penalty:

penid(m) ≈ 2 penmin(m) .

This is the so-called “slope heuristics”, first introduced by Birgé and Massart (2007) in
a Gaussian homoscedastic setting. Note that a formal proof of the validity of the slope
heuristics has only been given for Gaussian homoscedastic least-squares regression with a
fixed design (Birgé and Massart, 2007); up to the best of our knowledge, the present paper
yields the second theoretical result on the slope heuristics.

This heuristics has some applications because the minimal penalty can be estimated
from the data. Indeed, when the penalty smaller than penmin, the selected model m̂ is
among the more complex. On the contrary, when the penalty is larger than penmin, the
complexity of m̂ is much smaller. This leads to the algorithm described in the next section.

3. A data-driven calibration algorithm

Now, a data-driven calibration algorithm for penalization procedures can be defined, gen-
eralizing a method proposed by Birgé and Massart (2007) and implemented by Lebarbier
(2005).

3.1 The general algorithm

Assume that the shape penshape : Mn 7→ R
+ of the ideal penalty is known, from some

prior knowledge or because it had first been estimated, see Section 3.4. Then, the penalty
K⋆ penshape provides an approximately optimal procedure, for some unknown constantK⋆ >

0. The goal is to find some K̂ such that K̂ penshape is approximately optimal.

6
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Data-driven Calibration of Penalties

Let Dm be some known complexity measure of the model m ∈ Mn. Typically, when
the models are finite-dimensional vector spaces, Dm is the dimension of Sm. According to
the “slope heuristics” detailed in Section 2.3, the following algorithm provides an optimal
calibration of the penalty penshape.

Algorithm 1 (Data-driven penalization with slope heuristics)

1. Compute the selected model m̂(K) as a function of K > 0

m̂(K) ∈ arg min
m∈Mn

{
Pnγ(ŝm) +K penshape(m)

}
.

2. Find K̂min > 0 such that Dbm(K) is “huge” for K < K̂min and “reasonably small” for

K > K̂min.

3. Select the model m̂ := m̂
(

2K̂min

)
.

A computationally efficient way to perform the first step of Algorithm 1 is provided in
Section 3.2. The accurate definition of K̂min is discussed in Section 3.3, including explicit
values for “huge” and “reasonably small”). Then, once Pnγ ( ŝm ) and penshape(m) are known
for every m ∈ Mn, the complexity of Algorithm 1 is O(Card(Mn)2) (see Algorithm 2 and
Proposition 1). This can be a decisive advantage compared to cross-validation methods, as
discussed in Section 4.6.

3.2 Computation of (m̂(K) )K≥0

Step 1 of Algorithm 1 requires to compute m̂(K) for every K ∈ (0,+∞). A computationally
efficient way to perform this step is described in this subsection.

We start with some notations:

∀m ∈ Mn, f(m) = Pnγ ( ŝm ) g(m) = penshape(m)

and ∀K ≥ 0, m̂(K) ∈ arg min
m∈Mn

{f(m) +Kg(m)} .

Since the latter definition can be ambiguous, let us choose any total ordering � on Mn

such that g is non-decreasing, which is always possible if Mn is at most countable. Then,
m̂(K) is defined as the smallest element of

E(K) := arg min
m∈Mn

{f(m) +Kg(m)}

for �. The main reason why the whole trajectory (m̂(K))K≥0 can be computed efficiently
is its particular shape.

Indeed, the proof of Proposition 1 shows that K 7→ m̂(K) is piecewise constant, and
non-increasing for �. Then, the whole trajectory (m̂(K))K≥0 can be summarized by

• the number of jumps imax ∈ {0, . . . ,Card(Mn) − 1},

• the location of the jumps: an increasing sequence of nonnegative reals (Ki)0≤i≤imax+1,
with K0 = 0 and Kimax+1 = +∞,
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Arlot and Massart

• a non-increasing sequence of models (mi)0≤i≤imax ,

with ∀i ∈ {0, . . . , imax } , ∀K ∈ [Ki,Ki+1) , m̂(K) = mi .

Algorithm 2 (Step 1 of Algorithm 1) For every m ∈ Mn, define f(m) = Pnγ ( ŝm )
and g(m) = penshape(m). Choose � any total ordering on Mn such that g is non-decreasing.

• Init: K0 := 0, m0 := arg minm∈Mn {f(m)} (when this minimum is attained several
times, m0 is defined as the smallest one with respect to �).

• Step i, i ≥ 1: Let

G(mi−1) := {m ∈ Mn s.t. f(m) > f(mi−1) and g(m) < g(mi−1)} .

If G(mi−1) = ∅, then put Ki = +∞, imax = i− 1 and stop. Otherwise,

Ki := inf

{
f(m) − f(mi−1)

g(mi−1) − g(m)
s.t. m ∈ G(mi−1)

}
(4)

and mi := min
�
Fi with Fi := arg min

m∈G(mi−1)

{
f(m) − f(mi−1)

g(mi−1) − g(m)

}
.

Proposition 1 (Correctness of Algorithm 2) If Mn is finite, Algorithm 2 terminates
and imax ≤ Card(Mn) − 1. With the notations of Algorithm 2, let m̂(K) be the smallest
element of

E(K) := arg min
m∈Mn

{f(m) +Kg(m)} with respect to � .

Then, (Ki)0≤i≤imax+1 is increasing and ∀i ∈ {0, . . . , imax − 1}, ∀K ∈ [Ki,Ki+1), m̂(K) =
mi.

It is proved in Section A.2. In the change-point detection framework, a similar result has
been proved by Lavielle (2005).

Proposition 1 also gives an upper bound on the computational complexity of Algo-
rithm 2; since the complexity of each step is O(CardMn), Algorithm 2 requires less than
O(imax CardMn) ≤ O((CardMn)2) operations. In general, this upper bound is pessimistic
since imax ≪ CardMn.

3.3 Definition of K̂min

Step 2 of Algorithm 1 estimates K̂min such that K̂min penshape is the minimal penalty. The

purpose of this subsection is to define properly K̂min as a function of (m̂(K))K>0.

According to the slope heuristics described in Section 2.3, K̂min corresponds to a “com-
plexity jump”. If K < K̂min, m̂(K) has a large complexity, whereas if K > K̂min, m̂(K) has
a small or medium complexity. Therefore, the two following definitions of K̂min are natural.

LetDthresh be the largest “reasonably small” complexity, meaning the models with larger
complexities should not be selected. When Dm is the dimension of Sm as a vector space,

8
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(a) One clear jump.
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(b) Two jumps, two values for K̂min.

Figure 1: Dbm(K) as a function of K for two different samples. Data are simulated according
to (1) with n = 200, Xi ∼ U([0, 1]), ǫi ∼ N (0, 1), s(x) = sin(πx) and σ ≡ 1.
The models (Sm)m∈Mn are the sets of piecewise constant functions on regular
partitions of [0, 1], with dimensions between 1 and n/(ln(n)). The penalty shape
is penshape(m) = Dm and the dimension threshold is Dthresh = 19 ≈ n/(2 ln(n)).
See experiment S1 by Arlot (2008c, Section 6.1) for details.

Dthresh ∝ n/(ln(n)) or n/(ln(n))2 are natural choices since the dimension of the oracle is
likely to be of order nα for some α ∈ (0, 1). Then, define

K̂min := inf
{
K > 0 s.t. Dbm(K) ≤ Dthresh

}
. (thresh)

With this definition, Algorithm 2 can be stopped as soon as the threshold is reached.

Another idea is that K̂min should match with the largest complexity jump:

K̂min := Kijump
with ijump = arg max

i∈{ 0,...,imax−1}

{
Dmi+1

−Dmi

}
. (max jump)

In order to ensure that there is a clear jump in the sequence (Dmi
)i≥0, it may be useful to

add a few models of large complexity.

As an illustration, we compared the two definitions above (“threshold” and “maximal
jump”) on 1 000 simulated samples. The exact simulation framework is described below
Figure 1. Three cases occured:

1. There is one clear jump. Both definitions give the same value for K̂min. This occured
for about 85% of the samples; an example is given on Figure 1a.

2. There are several jumps corresponding to close values of K. Definitions (thresh) and

(max jump) give slightly different values for K̂min, but the selected models m̂
(

2K̂min

)

are equal. This occured for about 8.5% of the samples.
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Arlot and Massart

3. There are several jumps corresponding to distant values of K. Definitions (thresh) and

(max jump) strongly disagree, giving different selected models m̂
(

2K̂min

)
at final.

This occured for about 6.5% of the samples; an example is given on Figure 1b.

The only problematic case is the third one, in which an arbitrary choice has to be made
between definitions (thresh) and (max jump).

With the same simulated data, we have compared the prediction errors of the two
methods by estimating the constant Cor that would appear in some oracle inequality,

Cor :=
E [ℓ (s, ŝ bm ) ]

E [ infm∈Mn {ℓ (s, ŝm )} ]
.

With definition (thresh) Cor ≈ 1.88; with definition (max jump) Cor ≈ 2.01. For both
methods, the standard error of the estimation is 0.04. As a comparison, Mallows’ Cp with
a classical estimator of the variance σ2 has an estimated performance Cor ≈ 1.93 on the
same data.

The overall conclusion of this simulation experiment is that Algorithm 1 can be com-
petitive with Mallows’ Cp in a framework where Mallows’ Cp is known to be optimal.

Definition (thresh) for K̂min seems slightly more efficient than (max jump), but without
convincing evidence. Indeed, both definitions depend on some arbitrary choices: the value
of the threshold Dthresh in (thresh), the maximal complexity among the collection of models
(Sm)m∈Mn in (max jump). When n is small, say n = 200, choosing Dthresh is tricky since
n/(2 ln(n)) and

√
n are quite close. Then, the difference between (thresh) and (max jump)

is likely to come mainly from the particular choice Dthresh = 19 than from basic differences
between the two definitions.

In order to estimate K̂min as automatically as possible, we suggest to combine the two
definitions; when the selected models m̂(2K̂min) differ, send a warning to the final user
advising him to look at the curve K 7→ Dbm(K) himself; otherwise, remain confident in the

automatic choice of m̂(2K̂min).

3.4 Penalty shape

For using Algorithm 1 in practice, it is necessary to know a priori, or at least to estimate,
the optimal shape penshape of the penalty. Let us explain how this can be achieved in
different frameworks.

The first example that comes to mind is penshape(m) = Dm. It is valid for homoscedastic
least-squares regression on linear models, as shown by several papers mentioned in Section 1.
Indeed, when Card(Mn) is smaller than some power of n, Mallows’ Cp penalty—defined
by pen(m) = 2E

[
σ2(X)

]
n−1Dm —is well known to be asymptotically optimal. For larger

collections Mn, more elaborate results (Birgé and Massart, 2001, 2007) have shown that a
penalty proportional to ln(n)E

[
σ2(X)

]
n−1Dm and depending on the size of Mn is asymp-

totically optimal.

Algorithm 1 then provides an alternative to plugging an estimator of E
[
σ2(X)

]
into

the above penalties. Let us detail two main advantages of our approach. First, we avoid the
difficult task of estimating E

[
σ2(X)

]
without knowing in advance some model to which the
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Data-driven Calibration of Penalties

true regression function belongs. Algorithm 1 provides a model-free estimation of the factor

multiplying the penalty. Second, the estimator σ̂2 of E
[
σ2(X)

]
with the smallest quadratic

risk is certainly far from being the optimal one for model selection. For instance, under-
estimating the multiplicative factor is well-known to lead to poor performances, whereas
overestimating the multiplicative factor does not increase much the prediction error in gen-
eral. Then, a good estimator of E

[
σ2(X)

]
for model selection should overestimate it with a

probability larger than 1/2. Algorithm 1 satisfies this property automatically because K̂min

so that the selected model cannot be too large.
In short, Algorithm 1 with penshape(m) = Dm is quite different from a simple plug-in

version of Mallows’ Cp. It leads to a really data-dependent penalty, which may perform
better in practice than the best deterministic penalty K⋆Dm.

In a more general framework, Algorithm 1 allows to choose a different shape of penalty
penshape. For instance, in the heteroscedastic least-squares regression framework of Sec-
tion 2.1, the optimal penalty is no longer proportional to the dimension Dm of the models.
This can be shown from computations made by (Arlot, 2008c, Proposition 1) when Sm is
assumed to be the vector space of piecewise constant functions on a partition (Iλ )λ∈Λm

of
X :

E [penid(m) ] = E [ (P − Pn)γ ( ŝm ) ] ≈ 2

n

∑

λ∈Λm

E
[
σ(X)2

∣∣ X ∈ Iλ
]
. (5)

An exact result has been proved by Arlot (2008c, Proposition 1). Moreover, Arlot (2008a)
gave an example of model selection problem in which no penalty proportional to Dm can
be asymptotically optimal.

A first way to estimate the shape of the penalty is simply to use (5) to compute penshape,
when both the distribution of X and the shape of the noise level σ are known. In practice,
one has seldom such a prior knowledge.

We suggest in this situation to use resampling penalties (Efron, 1983; Arlot, 2008c), or
V -fold penalties (Arlot, 2008b) which have much smaller computational costs. Up to a mul-
tiplicative factor (automatically estimated by Algorithm 1), these penalties should estimate
correctly E [penid(m) ] in any framework. In particular, resampling and V -fold penalties
are asymptotically optimal in the heteroscedastic least-squares regression framework (Ar-
lot, 2008b,c).

3.5 The general prediction framework

Section 2 and definition of Algorithm 1 have restricted ourselves to the least-squares regres-
sion framework. Actually, this is not necessary at all to make Algorithm 1 well-defined, so
that it can naturally be extended to the general prediction framework. More precisely, the
(Xi, Yi) can be assumed to belong to X×Y for some general Y, and γ : S×(X×Y) 7→ [0;+∞)
any contrast function. In particular, Y = {0, 1} leads to the binary classification problem,
for which a natural contrast function is the 0–1 loss γ(t; (x, y)) = 1t(x)6=y. In this case,
the shape of the penalty penshape can for instance be estimated with the global or local
Rademacher complexities mentioned in Section 1.

However, a natural question is whether the slope heuristics of Section 2.3, upon which
Algorithm 1 relies, can be extended to the general framework. Several concentration results
used to prove the validity of the slope heuristics in the least-squares regression framework in
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Arlot and Massart

this article are valid in a general setting including binary classification. Even if the factor 2
coming from the closeness of E [p1 ] and E [p2 ] (see Section 2.3) may not be universally valid,
we conjecture that Algorithm 1 can be used in other settings than least-squares regression.
Moreover, as already mentioned at the end of Section 1, empirical studies have shown that
Algorithm 1 can be successfully applied to several problems, with different shapes for the
penalty. To our knowledge, to give a formal proof of this fact remains an interesting open
problem.

4. Theoretical results

Algorithm 1 mainly relies on the “slope heuristics”, developed in Section 2.2. The goal of
this section is to provide a theoretical justification of this heuristics.

It is split into two main results. First, Theorem 2 provides lower bounds on Dbm and the
risk of ŝ bm when the penalty is smaller than penmin(m) := E [p2(m) ]. Second, Theorem 3 is
an oracle inequality with leading constant almost one when pen(m) ≈ 2E [p2(m) ], relying
on (3) and the comparison p1 ≈ p2.

In order to prove both theorems, two probabilistic results are necessary. First, p1, p2 and
δ concentrate around their expectations; for p2 and δ, it is proved in a general framework in
Appendix A.6. Second, E [p1(m) ] ≈ E [p2(m) ] for every m ∈ Mn. The latter point is quite
hard to prove in general, so that we must make an assumption on the models. Therefore,
in this section, we restrict ourselves to the regressogram case, assuming that for every
m ∈ Mn, Sm is the set of piecewise constant functions on some fixed partition (Iλ )λ∈Λm

of X . This framework is described precisely in the next subsection. Although we do not
consider regressograms as a final goal, the theoretical results proved for regressograms help
to understand better how to use Algorithm 1 in practice.

4.1 Regressograms

Let Sm be the the set of piecewise constant functions on some partition (Iλ)λ∈Λm
of X .

The empirical risk minimizer ŝm on Sm is called a regressogram. Sm is a vector space of
dimension Dm = Card(Λm), spanned by the family (1Iλ

)λ∈Λm
. Since this basis is orthogonal

in L2(µ) for any probability measure µ on X , computations are quite easy. In particular,
we have:

sm =
∑

λ∈Λm

βλ1Iλ
and ŝm =

∑

λ∈Λm

β̂λ1Iλ
,

where

βλ := EP [Y | X ∈ Iλ ] β̂λ :=
1

np̂λ

∑

Xi∈Iλ

Yi p̂λ := Pn(X ∈ Iλ) .

Note that ŝm is uniquely defined if and only if each Iλ contains at least one of the Xi.
Otherwise, ŝm is not uniquely defined and we consider that the model m cannot be chosen.

12
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Data-driven Calibration of Penalties

4.2 Main assumptions

In this section, we make the following assumptions. First, each model Sm is a set of piecewise
constants functions on some fixed partition (Iλ)λ∈Λm

of X. Second, the family (Sm)m∈Mn

satisfies:

(P1) Polynomial complexity of Mn: Card(Mn) ≤ cMnαM .

(P2) Richness of Mn: ∃m0 ∈ Mn s.t. Dm0
∈ [

√
n, crich

√
n ].

Assumption (P1) is quite classical for proving the asymptotic optimality of a model selection
procedure; it is for instance implicitly assumed by Li (1987) in the homoscedastic fixed-
design case. Assumption (P2) is merely technical and can be changed if necessary; it only
ensures that (Sm)m∈Mn does not contain only models which are either too small or too
large.

For any penalty function pen : Mn 7→ R
+, we define the following model selection

procedure:
m̂ ∈ arg min

m∈Mn, minλ∈Λm{ bpλ }>0
{Pnγ(ŝm) + pen(m)} . (6)

Moreover, the data (Xi, Yi)1≤i≤n are assumed to be i.i.d. and to satisfy:

(Ab) The data are bounded: ‖Yi‖∞ ≤ A <∞.

(An) Uniform lower-bound on the noise level: σ(Xi) ≥ σmin > 0 a.s.

(Apu) The bias decreases as a power of Dm: there exist some β+, C+ > 0 such that

ℓ (s, sm ) ≤ C+D
−β+
m .

(ArX

ℓ ) Lower regularity of the partitions for L(X): Dm minλ∈Λm
{P (X ∈ Iλ )} ≥ cXr,ℓ.

Further comments are made in Sections 4.3 and 4.4 about these assumptions, in particular
about their possible weakening.

4.3 Minimal penalties

Our first result concerns the existence of a minimal penalty. In this subsection, (P2) is
replaced by the following strongest assumption:

(P2+) ∃c0, crich > 0 s.t. ∀l ∈ [
√
n, c0n/(crich ln(n)) ], ∃m ∈ Mn s.t. Dm ∈ [ l, crichl ].

The reason why (P2) is not sufficient to prove Theorem 2 below is that at least one model
of dimension of order n/ ln(n) should belong to the family (Sm )m∈Mn

; otherwise, it may
not be possible to prove that such models are selected by penalization procedures beyond
the minimal penalty.

Theorem 2 Suppose all the assumptions of Section 4.2 are satisfied. Let K ∈ [0; 1), L > 0,
and assume that an event of probability at least 1 − Ln−2 exists on which

∀m ∈ Mn, 0 ≤ pen(m) ≤ KE [Pn (γ(sm) − γ(ŝm) ) ] . (7)
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Arlot and Massart

Then, there exist two positive constants K1, K2 such that, with probability at least 1 −
K1n

−2,
Dbm ≥ K2n ln(n)−1 ,

where m̂ is defined by (6). On the same event,

ℓ (s, ŝ bm ) ≥ ln(n) inf
m∈Mn

{ℓ (s, ŝm )} . (8)

The constants K1 and K2 may depend on K, L and constants in (P1), (P2+), (Ab),
(An), (Apu) and (ArX

ℓ ), but do not depend on n.

This theorem thus validates the first part of the heuristics of Section 2.3, proving that
a minimal amount of penalization is required; when the penalty is smaller, the selected
dimension Dbm and the quadratic risk of the final estimator ℓ (s, ŝ bm ) blow up. This coupling
is quite interesting, since the dimension Dbm is known in practice, contrary to ℓ (s, ŝ bm ). It
is then possible to detect from the data whether the penalty is too small, as proposed in
Algorithm 1.

The main interest of this result is its combination with Theorem 3 below. Neverthe-
less Theorem 2 is also interesting by itself for understanding the theoretical properties of
penalization procedures. Indeed, it generalizes the results of Birgé and Massart (2007) on
the existence of minimal penalties to heteroscedastic regression with a random design, even
if we have to restrict to regressograms. Moreover, we have a general formulation for the
minimal penalty

penmin(m) := E [Pn (γ(sm) − γ(ŝm) ) ] = E [p2(m) ] ,

which can be used in frameworks situations where it is not proportional to the dimension
Dm of the models (see Section 3.4 and references therein).

In addition, assumptions (Ab) and (An) on the data are much weaker than the Gaussian
homoscedastic assumption. They are also much more realistic, and moreover can be strongly
relaxed. Roughly speaking, boundedness of data can be replaced by conditions on moments
of the noise, and the uniform lower bound σmin is no longer necessary when σ satisfies some
mild regularity assumptions. We refer to Arlot (2008c, Section 4.3) for detailed statements
of these assumptions, and explanations on how to adapt proofs to these situations.

Finally, let us comment on conditions (Apu) and (ArX

ℓ ). The upper bound (Apu) on
the bias occurs in the most reasonable situations, for instance when X ⊂ R

k is bounded, the
partition (Iλ )λ∈Λm

is regular and the regression function s is α-Hölderian for some α > 0
(β+ depending on α and k). It ensures that medium and large models have a significantly
smaller bias than smaller ones; otherwise, the selected dimension would be allowed to be
too small with significant probability. On the other hand, (ArX

ℓ ) is satisfied at least for
“almost regular” partitions (Iλ )λ∈Λm

, when X has a lower bounded density w.r.t. the

Lebesgue measure on X ⊂ R
k.

Theorem 2 is stated with a general formulation of (Apu) and (ArX

ℓ ), instead of assuming
for instance that s is α-Hölderian and X has a lower bounded density w.r.t Leb, in order to
point out the generality of the “minimal penalization” phenomenon. It occurs as soon as
the models are not too much pathological. In particular, we do not make any assumption
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Data-driven Calibration of Penalties

on the distribution of X itself, but only that the models are not too badly chosen according
to this distribution. Such a condition can be checked in practice if some prior knowledge
on L(X) is available; if part of the data are unlabeled—a usual case—, classical density
estimation procedures can be applied for estimating L(X) from unlabeled data (Devroye
and Lugosi, 2001).

4.4 Optimal penalties

Algorithm 1 relies on a link between the minimal penalty pointed out by Theorem 2 and
some optimal penalty. The following result is a formal proof of this link in the framework
we consider: penalties close to twice the minimal penalty satisfy an oracle inequality with
leading constant approximately equal to one.

Theorem 3 Suppose all the assumptions of Section 4.2 are satisfied together with

(Ap) The bias decreases like a power of Dm: there exist β− ≥ β+ > 0 and C+, C− > 0 such
that

C−D
−β−

m ≤ ℓ (s, sm ) ≤ C+D
−β+
m .

Let δ ∈ (0, 1), L > 0, and assume that an event of probability at least 1 − Ln−2 exists on
which for every m ∈ Mn,

(2 − δ)E [Pn (γ(sm) − γ(ŝm) ) ] ≤ pen(m) ≤ (2 + δ)E [Pn (γ(sm) − γ(ŝm)) ] . (9)

Then, for every 0 < η < min {β+; 1} /2, there exist a constant K3 and a sequence ǫn
tending to zero at infinity such that, with probability at least 1 −K3n

−2,

Dbm ≤ n1−η

and ℓ (s, ŝ bm ) ≤
(

1 + δ

1 − δ
+ ǫn

)
inf

m∈Mn

{ℓ (s, ŝm )} , (10)

where m̂ is defined by (6). Moreover, we have the oracle inequality

E [ℓ (s, ŝ bm ) ] ≤
(

1 + δ

1 − δ
+ ǫn

)
E

[
inf

m∈Mn

{ℓ (s, ŝm )}
]

+
A2K3

n2
.

The constant K3 may depend on L, δ, η and the constants in (P1), (P2), (Ab), (An),
(Ap) and (ArX

ℓ ), but not on n. The term ǫn is smaller than ln(n)−1/5; it can be made
smaller than n−δ for any δ ∈ (0; δ0(β−, β+)) at the price of enlarging K3.

This theorem shows that twice the minimal penalty penmin pointed out by Theorem 2
satisfies an oracle inequality with leading constant almost one. In other words, the slope
heuristics of Section 2.3 is valid. The consequences of the combination of Theorems 2 and 3
are detailed in Section 4.5.

The oracle inequality (10) remains valid when the penalty is only close to twice the
minimal one. In particular, the shape of the penalty can be estimated by resampling as
suggested in Section 3.4.
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Arlot and Massart

Actually, Theorem 3 above is a corollary of a more general result stated in Appendix A.3,
Theorem 5. If

pen(m) ≈ KE [Pn (γ(sm) − γ(ŝm)) ] (11)

instead of (9), under the same assumptions, an oracle inequality with leading constant
C(K) + ǫn instead of 1 + ǫn holds with large probability. The constant C(K) is equal to
(K − 1)−1 when K ∈ (1, 2] and to C(K) = K − 1 when K > 2. Therefore, for every K > 1,
the penalty defined by (11) is efficient up to a multiplicative constant. This result is new
in the heteroscedastic framework.

Let us comment the additional assumption (Ap), that is the lower bound on the bias.
Assuming ℓ (s, sm ) > 0 for every m ∈ Mn is classical for proving the asymptotic optimality
of Mallows’ Cp (Shibata, 1981; Li, 1987; Birgé and Massart, 2007). (Ap) has been made
by Stone (1985) and Burman (2002) in the density estimation framework, for the same
technical reasons as ours. Assumption (Ap) is satisfied in several frameworks, such as
the following: (Iλ)λ∈Λm

is “regular”, X has a lower-bounded density w.r.t. the Lebesgue
measure on X ⊂ R

k, and s is non-constant and α-hölderian (w.r.t. ‖·‖∞), with

β1 = k−1 + α−1 − (k − 1)k−1α−1 and β2 = 2αk−1 .

We refer to Arlot (2007, Section 8.10) for a complete proof.

When the lower bound in (Ap) is no longer assumed, (10) holds with two modifications
in its right-hand side (for details, see Arlot, 2008c, Remark 9): the inf is restricted to
models of dimension larger than ln(n)γ1 , and there is a remainder term ln(n)γ2n−1, where
γ1, γ2 > 0 are numerical constants. This is equivalent to (10), unless there is a model of
small dimension with a small bias. The lower bound in (Ap) ensures that it cannot happen.
Note that if there is a small model close to s, it is hopeless to obtain an oracle inequality with
a penalty which estimates penid, simply because deviations of penid around its expectation
would be much larger than the excess loss of the oracle. In such a situation, BIC-like
methods are more appropriate; for instance, Csiszár (2002) and Csiszár and Shields (2000)
showed that BIC penalties are minimal penalties for estimating the order of a Markov chain.

4.5 Main theoretical and practical consequences

The slope heuristics and the correctness of Algorithm 1 follow from the combination of
Theorems 2 and 3.

4.5.1 Optimal and minimal penalties

For the sake of simplicity, let us consider the penalty KE [p2(m) ] with any K > 0; any
penalty close to this one satisfies similar properties. At first reading, one can think of the
homoscedastic case where E [p2(m) ] ≈ σ2Dmn

−1; one of the novelties of our results is that
the general picture is quite similar.

According to Theorem 3, the penalization procedure associated with KE [p2(m) ] satis-
fies an oracle inequality with leading constant Cn(K) as soon as K > 1, and Cn(2) ≈ 1.
Moreover, results proved by Arlot (2008b) imply that Cn(K) ≥ C(K) > 1 as soon as K is
not close to 2. Therefore, K = 2 is the optimal multiplying factor in front of E [p2(m) ].
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Data-driven Calibration of Penalties

When K < 1, Theorem 2 shows that no oracle inequality can hold with leading constant
Cn(K) < ln(n). Since Cn(K) ≤ (K−1)−1 < ln(n) as soon as K > 1+ln(n)−1, K = 1 is the
minimal multiplying factor in front of E [p2(m) ]. More generally, penmin(m) := E [p2(m) ]
is proved to be a minimal penalty.

In short, Theorems 2 and 3 prove the slope heuristics described in Section 2.3:

“optimal” penalty ≈ 2 × “minimal” penalty .

Birgé and Massart (2007) have proved the validity of the slope heuristics in the Gaus-
sian homoscedastic framework. This paper extends their result to a non-Gaussian and
heteroscedastic setting.

4.5.2 Dimension jump

In addition, Theorems 2 and 3 prove the existence of a crucial phenomenon: there ex-
ists a “dimension jump”—complexity jump in the general framework—around the minimal
penalty. Let us consider again the penalty KE [p2(m) ]. As in Algorithm 1, let us define

m̂(K) ∈ arg min
m∈Mn

{Pnγ ( ŝm ) +KE [p2(m) ]} .

A careful look at the proofs of Theorems 2 and 3 shows that there exist constants K4,K5 > 0
and an event of probability 1 −K4n

−2 on which

∀0 < K < 1 − 1

ln(n)
, Dbm(K) ≥

K5n

(ln(n))2
and ∀K > 1 +

1

ln(n)
, Dbm(K) ≤ n1−η . (12)

Therefore, the dimension Dbm(K) of the selected model jumps around the minimal value
K = 1, from values of order n(ln(n))−2 to n1−η.

Let us know explain why Algorithm 1 is correct, assuming that penshape(m) is close

to E [p2(m) ]. With definition (thresh) of K̂min and a threshold Dthresh ∝ n(ln(n))−3, (12)
ensures that

1 − 1

ln(n)
≤ K̂min ≤ 1 +

1

ln(n)

with a large probability. Then, according to Theorem 3, the output of Algorithm 1 satisfies
an oracle inequality with leading constant Cn tending to one as n tends to infinity.

4.6 Comparison with data-splitting methods

Tuning parameters are often chosen by cross-validation or by another data-splitting method,
which suffer from some drawbacks compared to Algorithm 1.

First, V -fold cross-validation, leave-p-out and repeated learning-testing methods require
a larger computation time. Indeed, they need to perform the empirical risk minimization
process for each model several times, whereas Algorithm 1 only needs to perform it once.

Second, V -fold cross-validation is asymptotically suboptimal when V is fixed, as shown
by (Arlot, 2008b, Theorem 1). The same suboptimality result is valid for the hold-out, when
the size of the training set is not asymptotically equivalent to the sample size n. On the
contrary, Theorems 2 and 3 prove that Algorithm 1 is asymptotically optimal in a framework
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including the one used by (Arlot, 2008b, Theorem 1) for proving the suboptimality of V -fold
cross-validation. Hence, the quadratic risk of Algorithm 1 should be smaller, within a factor
κ > 1.

Third, hold-out with a training set of size nt ∼ n, for instance nt = n − √
n or nt =

n(1 − ln(n)−1), is known to be unstable. The final output m̂ strongly depends on the
choice of a particular split of the data. According to the simulation study of Section 3.3,
Algorithm 1 is far more stable.

To conclude, compared to data splitting methods, Algorithm 1 is either faster to com-
pute, more efficient in terms of quadratic risk, or more stable. Then, Algorithm 1 should
be preferred each time it can be used. Another approach is to use aggregation techniques,
instead of selecting one model. As shown by several results (see for instance Tsybakov,
2004; Lecué, 2007), aggregating estimators built upon a training simple of size nt ∼ n can
have an optimal quadratic risk. Moreover, aggregation requires approximately the same
computation time as Algorithm 1, and is much more stable than the hold-out. Hence, it
can be an alternative to model selection with Algorithm 1.

5. Conclusion

This paper provides mathematical evidence that the method introduced by Birgé and Mas-
sart (2007) for designing data-driven penalties remains efficient in a non-Gaussian frame-
work. The purpose of this conclusion is to relate the slope heuristics developed in Section 2
to the well known Mallows’ Cp and Akaike’s criteria and to the unbiased estimation of the
risk principle.

Let us come come back to Gaussian model selection in order to explain how to guess
what is the right penalty from the data themselves. Let γn be some empirical criterion
(for instance the least-squares criterion as in this paper, or the log-likelihood criterion),
(Sm )m∈Mn

be a collection of models and for every m ∈ Mn sm be some minimizer of
t 7→ E [γn (t) ] over Sm (assuming that such a point exists). Minimizing some penalized
criterion

γn ( ŝm ) + pen(m)

over Mn amounts to minimize

b̂m − v̂m + pen(m) ,

where ∀m ∈ Mn, b̂m = γn (sm ) − γn (s) and v̂m = γn (sm ) − γn ( ŝm ) .

The point is that b̂m is an unbiased estimator of the bias term ℓ (s, sm ). Having concentra-
tion arguments in mind, minimizing b̂m − v̂m + pen(m) can be conjectured approximately
equivalent to minimize

ℓ (s, sm ) − E [ v̂m ] + pen(m) .

Since the purpose of model selection is to minimize the risk E [ℓ (s, ŝm ) ], an ideal penalty
would be

pen(m) = E [ v̂m ] + E [ℓ (sm, ŝm ) ] .

In Gaussian least-squares regression with a fixed design, the models Sm are linear and
E [ v̂m ] = E [ℓ (sm, ŝm ) ] is explicitly computable if the noise level is constant and known;
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Data-driven Calibration of Penalties

this leads to Mallows’ Cp penalty. When γn is the log-likelihood,

E [ v̂m ] ≈ E [ℓ (sm, ŝm ) ] ≈ Dm

2n

asymptotically, where Dm stands for the number of parameters defining model Sm; this
leads to Akaike’s Information Criterion (AIC). Therefore, both Mallows’ Cp and Akaike’s
criterion are based on the unbiased (or asymptotically unbiased) risk estimation principle.

This paper goes further in this direction, using that E [ v̂m ] ≈ E [ℓ (sm, ŝm ) ] remains
a valid approximation in a non-asymptotic framework. Then, a good penalty becomes
2E [ v̂m ] or 2v̂m, having in mind concentration arguments. Since v̂m is the minimal penalty,
this explains the slope heuristics (Birgé and Massart, 2007) and connects it to Mallows’ Cp

and Akaike’s heuristics.

The second main idea developed in this paper is that the minimal penalty can be es-
timated from the data; Algorithm 1 uses the jump of complexity which occurs around the
minimal penalty, as shown in Sections 3.3 and 4.5.2. Another way to estimate the minimal
penalty when it is (at least approximately) of the form αDm is to estimate α by the slope of
the graph of γn ( ŝm ) for large enough values of Dm; this method can be extended to other
shapes of penalties, simply by replacing Dm by some (known!) function f (Dm ).

The slope heuristics can even be combined with resampling ideas, by taking a function
f built from a randomized empirical criterion. As shown by Arlot (2008a), this approach
is much more efficient than the rougher choice f (Dm ) = Dm for heteroscedastic regression
frameworks. The question of the optimality of the slope heuristics in general remains an
open problem; nevertheless, we believe that this heuristics can be useful in practice, and
that proving its efficiency in this paper helps to understand it better.

Let us finally mention that contrary to Birgé and Massart (2007), we assume in this
paper that the collection of models Mn is “small”, that is Card(Mn) grows at most like a
power of n. For several problems, such that complete variable selection, larger collections
of models have to be considered; then, it is known from the homoscedastic case that the
minimal penalty is much larger than E [p2(m) ]. Nevertheless, Émilie Lebarbier has used the

slope heuristics with f (Dm ) = Dm

(
2.5 + ln

(
n

Dm

))
for multiple change-points detection

from n noisy data, using the results by Birgé and Massart (2007) in the Gaussian case.

Let us now explain how we expect to generalize the slope heuristics to the non-Gaussian
heteroscedastic case when Mn is large. First, group the models according to some complex-
ity index Cm such as their dimensions Dm; for C ∈

{
1, . . . , nk

}
, define S̃C =

⋃
Cm=C Sm.

Then, replace the model selection problem with the family (Sm)m∈Mn by a “complexity

selection problem”, that is model selection with the family
(
S̃C

)
1≤C≤nk

. We conjecture

that this grouping of the models is sufficient to take into account the richness of Mn for
the optimal calibration of the penalty. A theoretical justification of this point could rely on
the extension of our results to any kind of model, since S̃C is not a vector space in general.
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Appendix A. Proofs

This appendix is devoted to the proofs of the results stated in the paper. Proposition 1 is
proved in Section A.2; Theorem 3 is proved in Sections A.3 and A.4; Theorem 2 is proved
in Section A.5; the remaining sections are devoted to probabilistic results used in the main
proofs and technical proofs.

A.1 Conventions and notations

In the rest of the paper, L denotes a universal constant, not necessarily the same at each
occurrence. When L is not universal, but depends on p1, . . . , pk, it is written Lp1,...,pk

.
Similarly, L(SH2) (resp. L(SH5)) denotes a constant allowed to depend on the parameters
of the assumptions made in Theorem 2 (resp. Theorem 5), including (P1) and (P2). We
also make use of the following notations:

• ∀a, b ∈ R, a∧b is the minimum of a and b, a∨b is the maximum of a and b, a+ = a∨0
is the positive part of a and a− = a ∧ 0 is its negative part.

• ∀Iλ ⊂ X , pλ := P (X ∈ Iλ) and σ2
λ := E

[
(Y − sm(X) )2

∣∣∣ X ∈ Iλ

]
.

• Since E [p1(m) ] is not well-defined (because of the event {minλ∈Λm
{ p̂λ } = 0}), we

have to take the following convention

p1(m) = p̃1(m) :=
∑

λ∈Λm s.t. bpλ>0

pλ

(
βλ − β̂λ

)2
+

∑

λ∈Λm s.t. bpλ=0

pλσ
2
λ .

Remark that p1(m) = p̃1(m) when minλ∈Λm
{ p̂λ } > 0), so that this convention has

no consequences on the final results (Theorems 2 and 5).

A.2 Proof of Proposition 1

First, since Mn is finite, the infimum in (4) is attained as soon as G(mi−1) 6= ∅, so that mi

is well defined for every i ≤ imax. Moreover, by construction, g(mi) decreases with i, so that
all the mi ∈ Mn are different; hence, Algorithm 2 terminates and imax + 1 ≤ Card(Mn).
We now prove by induction the following property for every i ∈ {0, . . . , imax }:

Pi : Ki < Ki+1 and ∀K ∈ [Ki,Ki+1), m̂(K) = mi .

Notice also that Ki can always be defined by (4) with the convention inf ∅ = +∞.

P0 holds true

By definition of K1, it is clear that K1 > 0 (it may be equal to +∞ if G(m0) = ∅). For
K = K0 = 0, the definition of m0 is the one of m̂(0), so that m̂(K) = m0. For K ∈ (0,K1),
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Data-driven Calibration of Penalties

Lemma 4 shows that either m̂(K) = m̂(0) = m0 or m̂(K) ∈ G(0). In the latter case, by
definition of K1,

f(m̂(K)) − f(m0)

g(m0) − g(m̂(K))
≥ K1 > K

hence

f(m̂(K)) +Kg(m̂(K)) > f(m0) +Kg(m0)

which is contradictory with the definition of m̂(K). Therefore, P0 holds true.

Pi ⇒ Pi+1 for every i ∈ {0, . . . , imax − 1}
Assume that Pi holds true. First, we have to prove thatKi+2 > Ki+1. SinceKimax+1 = +∞,
this is clear if i = imax − 1. Otherwise, Ki+2 < +∞ and mi+2 exists. Then, by definition of
mi+2 and Ki+2 (resp. mi+1 and Ki+1), we have

f(mi+2) − f(mi+1) = Ki+2(g(mi+1) − g(mi+2)) (13)

f(mi+1) − f(mi) = Ki+1(g(mi) − g(mi+1)) . (14)

Moreover, mi+2 ∈ G(mi+1) ⊂ G(mi), and mi+2 ≺ mi+1 (because g is non-decreasing).
Using again the definition of Ki+1, we have

f(mi+2) − f(mi) > Ki+1(g(mi) − g(mi+2)) (15)

(otherwise, we would havemi+2 ∈ Fi+1 andmi+2 ≺ mi+1, which is not possible). Combining
the difference of (15) and (14) with (13), we have

Ki+2(g(mi+1) − g(mi+2)) > Ki+1(g(mi+1) − g(mi+2)) ,

hence Ki+2 > Ki+1, since g(mi+1) > g(mi+2).

Second, we prove that m̂(Ki+1) = mi+1. From Pi, we know that for every m ∈ Mn, for
every K ∈ [Ki,Ki+1), f(mi) +Kg(mi) ≤ f(m) +Kg(m). Taking the limit when K tends
to Ki+1, it follows that mi ∈ E(Ki+1). By (14), we then have mi+1 ∈ E(Ki+1). On the
other hand, if m ∈ E(Ki+1), Lemma 4 shows that either f(m) = f(mi) and g(m) = g(mi)
or m ∈ G(mi). In the first case, mi+1 ≺ m (because g is non-decreasing). In the second
one, m ∈ Fi+1, so mi+1 � m. Since m̂(Ki+1) is the smallest element of E(Ki+1), we have
proved that mi+1 = m̂(Ki+1).

Last, we have to prove that m̂(K) = mi+1 for every K ∈ (K1,K2). From the last
statement of Lemma 4, we have either m̂(K) = m̂(K1) or m̂(K1) ∈ G(m̂(K)). In the latter
case (which is only possible if Ki+2 <∞), by definition of Ki+2,

f(m̂(K)) − f(mi+1)

g(mi+1) − g(m̂(K))
≥ Ki+2 > K

so that

f(m̂(K)) +Kg(m̂(K)) > f(mi+1) +Kg(mi+1)

which is contradictory with the definition of m̂(K).
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Arlot and Massart

Lemma 4 With the notations of Proposition 1 and its proof, if 0 ≤ K < K ′, m ∈ E(K)
and m′ ∈ E(K ′), then one of the two following statements holds true:

(a) f(m) = f(m′) and g(m) = g(m′).

(b) f(m) < f(m′) and g(m) > g(m′).

In particular, either m̂(K) = m̂(K ′) or m̂(K ′) ∈ G(m̂(K)).

Proof By definition of E(K) and E(K ′),

f(m) +Kg(m) ≤ f(m′) +Kg(m′) (16)

f(m′) +K ′g(m′) ≤ f(m) +K ′g(m) . (17)

Summing (16) and (17) gives (K ′ −K)g(m′) ≤ (K ′ −K)g(m) so that

g(m′) ≤ g(m) . (18)

Since K ≥ 0, (16) and (18) give f(m) +Kg(m) ≤ f(m′) +Kg(m), that is

f(m) ≤ f(m′) . (19)

Moreover, (19) and (17) imply g(m) = g(m′), hence f(m′) ≤ f(m), that is f(m) = f(m′)
by (19). Similarly, (16) and (18) show that f(m) = f(m′) imply g(m) = g(m′). In both
cases, (a) is satisfied. Otherwise, f(m) < f(m′) and g(m) > g(m′), that is the (b) statement.

The last statement follows by taking m = m̂(K) and m′ = m̂(K ′), because g is non-
decreasing, so that the minimum of g in E(K) is attained by m̂(K).

A.3 A general oracle inequality

First of all, let us state a general theorem, from which Theorem 3 is an obvious corollary.

Theorem 5 Suppose all the assumptions of Section 4.2 are satisfied together with

(Ap) The bias decreases like a power of Dm: there exist β− ≥ β+ > 0 and C+, C− > 0 such
that

C−D
−β−

m ≤ ℓ (s, sm ) ≤ C+D
−β+
m .

Let L, ξ, c1, C1, C2 ≥ 0, c2 > 1 and assume that an event of probability at least 1−Ln−2

exists on which, for every m ∈ Mn such that Dm ≥ ln(n)ξ,

E [c1P (γ(ŝm) − γ(sm)) + c2Pn (γ(sm) − γ(ŝm)) ]

≤ pen(m) ≤ E [C1P (γ(ŝm) − γ(sm)) + C2Pn (γ(sm) − γ(ŝm)) ] .
(20)

Then, for every 0 < η < min {β+; 1} /2, there exist a constant K3 and a sequence ǫn
tending to zero at infinity such that, with probability at least 1 −K3n

−2,

Dbm ≤ n1−η

and ℓ (s, ŝ bm ) ≤
[

1 + (C1 + C2 − 2)+
(c1 + c2 − 1) ∧ 1

+ ǫn

]
inf

m∈Mn

{ℓ (s, ŝm )} (21)
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Data-driven Calibration of Penalties

where m̂ is defined by (6). Moreover, we have the oracle inequality

E [ℓ (s, ŝ bm ) ] ≤
[

1 + (C1 + C2 − 2)+
(c1 + c2 − 1) ∧ 1

+ ǫn

]
E

[
inf

m∈Mn

{ℓ (s, ŝm )}
]

+
A2K3

n2
. (22)

The constant K3 may depend on L, η, ξ, c1, c2, C1, C2 and constants in (P1), (P2),
(Ab), (An), (Ap) and (ArX

ℓ ), but not on n. The term ǫn is smaller than ln(n)−1/5; it can
be made smaller than n−δ for any δ ∈ (0; δ0(β−, β+)) at the price of enlarging K3.

The particular form of condition (20) on the penalty is motivated by the fact that the
ideal shape of penalty E [penid(m) ] (or equivalently E [2p2(m) ]) is unknown in general.
Then, it has to be estimated from the data, for instance by resampling. Under the as-
sumptions of Theorem 5, Arlot (2008b,c) has proved that resampling and V -fold penalties
satisfy condition (20) with constants c1 + c2 = 2− δn, C1 +C2 = 2 + δn (for some absolute
sequence δn tending to zero at infinity), and some numerical constant ξ > 0. Then, Theo-
rem 5 shows that such a penalization procedure satisfies an oracle inequality with leading
constant tending to 1 asymptotically.

The rationale behind Theorem 5 is that if pen(m) is close to c1p1(m) + c2p2(m), then
crit(m) ≈ ℓ (s, sm ) + c1p1(m) + (c2 − 1)p2(m). When c1 = c2 = 1, this is exactly the ideal
criterion ℓ (s, ŝm ). When c1 + c2 = 2 with c1 ≥ 0 and c2 > 1, we obtain the same result
because p1(m) and p2(m) are quite close, at least when Dm is large enough. The closeness
between p1 and p2 is the keystone of the slope heuristics. Notice that if maxm∈Mn Dm ≤
K ′

3(ln(n))−1n (for some constant K ′
3 depending only on the assumptions of Theorem 3, as

K3), one can replace the condition c2 > 1 by c1 + c2 > 1 and c1, c2 ≥ 0 .

A.4 Proof of Theorem 5

This proof is similar to the one of Arlot (2008c, Theorem 1). We give it for the sake of
completeness.

From (3), we have for each m ∈ Mn such that An(m) := minλ∈Λm
{np̂λ } > 0

ℓ (s, ŝ bm ) −
(
pen′

id(m̂) − pen(m̂)
)
≤ ℓ (s, ŝm ) +

(
pen(m) − pen′

id(m)
)
. (23)

with pen′
id(m) := p1(m) + p2(m) − δ(m) = pen(m) + (P − Pn)γ(s) and δ(m) := (Pn −

P )(γ (sm ) − γ (s)). It is sufficient to control pen− pen′
id for every m ∈ Mn.

We will thus use the concentration inequalities of Section A.6 with x = γ ln(n) and
γ = 2 + αM. Define Bn(m) = minλ∈Λm

{npλ }, and Ωn the event on which

• for every m ∈ Mn, (20) holds

• for every m ∈ Mn such that Bn(m) ≥ 1, (29) and (30) hold:

p̃1(m) ≥ E [ p̃1(m) ] − L(SH5)

[
ln(n)2√
Dm

+ e−LBn(m)

]
E [p2(m) ]

p̃1(m) ≤ E [ p̃1(m) ] + L(SH5)

[
ln(n)2√
Dm

+
√
Dme

−LBn(m)

]
E [p2(m) ]
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Arlot and Massart

• for every m ∈ Mn such that Bn(m) > 0, (31), (28) and 26 hold:

p̃1(m) ≥
(

1

2 + (γ + 1)Bn(m)−1 ln(n)
− L(SH5) ln(n)2√

Dm

)
E [p2(m) ]

|p2(m) − E [p2(m) ]| ≤
L(SH5) ln(n)√

Dm
[ℓ (s, sm ) + E [p2(m) ] ]

∣∣δ(m)
∣∣ ≤ ℓ (s, sm )√

Dm
+ L(SH5)

ln(n)√
Dm

E [p2(m) ]

From Proposition 11 (for p̃1), Proposition 10 (for p2) and Proposition 8 (for δ(m)),

P (Ωn ) ≥ 1 − L
∑

m∈Mn

n−2−αM ≥ 1 − LcMn
−2 .

For every m ∈ Mn such that Dm ≤ LcX
r,ℓ
n ln(n)−1, (ArX

ℓ ) implies that Bn(m) ≥
L−1 ln(n) ≥ 1. As a consequence, on Ωn, if ln(n)7 ≤ Dm ≤ LcX

r,ℓ
n ln(n)−1:

max
{
|p̃1(m) − E [ p̃1(m) ]| , |p2(m) − E [p2(m) ]| ,

∣∣δ(m)
∣∣} ≤

L(SH5)E [ℓ (s, sm ) + p2(m) ]

ln(n)

Using (32) (in Proposition 12) and the fact that Bn(m) ≥ L−1 ln(n),

(c1 + c2)
(

1 − δ̃n

)

2
≤ E [pen(m) ] ≤

(C1 + C2)
(

1 + δ̃n

)

2
E [ p̃1(m) + p2(m) ]

with 0 ≤ δ̃n ≤ L ln(n)−1/4. We deduce: if n ≥ L(SH5), for every m ∈ Mn such that
ln(n)7 ≤ Dm ≤ LcX

r,ℓ
n ln(n)−1, on Ωn,

[
(c1 + c2 − 2)− −

L(SH5)

ln(n)1/4

]
p1(m) ≤ (pen− pen′

id)(m)

≤
[
(C1 + C2 − 2)+ +

L(SH5)

ln(n)1/4

]
p1(m) .

We need to assume that n is large enough in order to upper bound E [p2(m) ] in terms of
p1(m), since we only have

p1(m) ≥
[
1 −

L(SH5)

ln(n)1/4

]

+

E [p2(m) ]

in general. Combined with (23), this gives: if n ≥ L(SH5),

ℓ (s, ŝ bm )1ln(n)5≤D bm≤L
cX
r,ℓ

n ln(n)−1 ≤
[

1 + (C1 + C2 − 2)+
(c1 + c2 − 1) ∧ 1

+
L(SH5)

ln(n)1/4

]

× inf
m∈Mn s.t. ln(n)7≤Dm≤L

αM,cX
r,ℓ

n ln(n)−1
{ℓ (s, ŝm )} .

We now use Lemmas 6 and 7 below to control on Ωn the dimensions of the selected
model m̂ and the oracle model m⋆ ∈ arg minm∈Mn {ℓ (s, ŝm )}.

The result follows since L(SH5) ln(n)−1/4 ≤ ǫn = ln(n)−1/5 for n ≥ L(SH5). We finally

remove the condition n ≥ n0 = L(SH5) by choosing K3 = L(SH5) such that K3n
−2
0 ≥ 1.
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Data-driven Calibration of Penalties

Classical oracle inequality Since (21) holds true on Ωn,

E [ℓ (s, ŝ bm ) ] = E [ℓ (s, ŝ bm )1Ωn ] + E
[
ℓ (s, ŝ bm )1Ωc

n

]

≤ [2η − 1 + ǫn ] E

[
inf

m∈Mn

{ℓ (s, ŝm )}
]

+A2K3P (Ωc
n )

which proves (22).

Lemma 6 (Control on the dimension of the selected model) Let c > 0 and α >
(1 − β+ )+ /2. Then, if n ≥ L(SH5),c,α, on the event Ωn defined in the proof of Theorem 5,

ln(n)7 ≤ Dbm ≤ n1/2+α ≤ cn ln(n)−1 .

Lemma 7 (Control on the dimension of the oracle model) Define the oracle model
m⋆ ∈ arg minm∈Mn {ℓ (s, ŝm )}. Let c > 0 and α > (1 − β+ )+ /2. Then, if n ≥ L(SH5),c,α,
on the event Ωn defined in the proof of Theorem 5,

ln(n)7 ≤ Dm⋆ ≤ n1/2+α ≤ cn ln(n)−1 .

Proof of Lemma 6 By definition, m̂ minimizes crit(m) over Mn. It thus also minimizes

crit′(m) = crit(m) − Pnγ(s) = ℓ (s, sm ) − p2(m) + δ(m) + pen(m)

over Mn.

1. Lower bound on crit′(m) for small models: let m ∈ Mn such that Dm < ( ln(n))7.
We then have

ℓ (s, sm ) ≥ C− ( ln(n))−7β− from (Ap)

pen(m) ≥ 0

p2(m) ≤ L(SH5)

√
ln(n)

n
+ L(SH5)

Dm

n
≤ L(SH5)

√
ln(n)

n
from (27)

and from (26) (in Proposition 8),

δ(m) ≥ −LA

√
ℓ (s, sm ) ln(n)

n
+ LA

ln(n)

n
≥ −LA

√
ln(n)

n
.

We then have
crit′(m) ≥ L(SH5) ( ln(n) )−Lβ− .

2. Lower bound for large models: let m ∈ Mn such that Dm ≥ n1/2+α. From (20) and
(27) (in Proposition 10),

pen(m) − p2(m) ≥ (c2 − 1) E [p2(m) ] − LA

√
ln(n)

n

≥ (c2 − 1)σ2
minDm

n
− LA

√
ln(n)

n
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Arlot and Massart

and from (24),

δ(m) ≥ −L(SH5)

√
ln(n)

n
.

Hence, if Dm ≥ n1/2+α and n ≥ L(SH5),α

crit′(m) ≥ pen(m) + δ(m) − p2(m) ≥ L(SH5),αn
−1/2+α .

3. There exists a better model for crit(m): from (P2), there exists m0 ∈ Mn such that√
n ≤ Dm0

≤ crich
√
n. If moreover n ≥ Lcrich,α, then

ln(n)7 ≤ √
n ≤ Dm0

≤ crich
√
n ≤ n1/2+α .

By (33) in Lemma 13, An(m0) ≥ 1 with probability at least 1 − Ln−2.
Using (Ap),

ℓ (s, sm0
) ≤ C+c

β+

richn
−β+/2

so that, when n ≥ L(SH5),

crit′(m0) ≤ ℓ (s, sm0
) +

∣∣δ(m)
∣∣+ pen(m)

≤ L(SH5)

(
n−β+/2 + n−1/2

)
.

If n ≥ L(SH5),α, this upper bound is smaller than the previous lower bounds for small
and large models.

Proof of Lemma 7 Recall that m⋆ minimizes ℓ (s, ŝm ) = ℓ (s, sm )+p1(m) over m ∈ Mn,
with the convention ℓ (s, ŝm ) = ∞ if An(m) = 0.

1. Lower bound on ℓ (s, ŝm ) for small models: let m ∈ Mn such that Dm < ( ln(n))7.
From (Ap), we have

ℓ (s, ŝm ) ≥ ℓ (s, sm ) ≥ C− ( ln(n))−7β− .

2. Lower bound on ℓ (s, ŝm ) for large models: let m ∈ Mn such that Dm > n1/2+α.
From (31), for n ≥ L(SH5),α,

p̃1(m) ≥




1

2 + (γ + 1)
(
cXr,ℓ

)−1
ln(n)

−
L(SH5),α

n1/4


E [ p̃2(m) ]

so that ℓ (s, ŝm ) ≥ p̃1(m) ≥ L(SH5),αn
−1/2+α .

3. There exists a better model for ℓ (s, ŝm ): let m0 ∈ Mn be as in the proof of Lemma 6
and assume that n ≥ Lcrich,α. Then,

p1(m0) ≤ L(SH5)E [p2(m) ] ≤ L(SH5)n
−1/2

and the arguments of the previous proof show that

ℓ (s, ŝm0
) ≤ L(SH5)

(
n−β+/2 + n−1/2

)

which is smaller than the previous upper bounds for n ≥ L(SH5),α.
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Data-driven Calibration of Penalties

A.5 Proof of Theorem 2

Similarly to the proof of Theorem 5, we consider the event Ω′
n, of probability at least

1 − LcMn
−2, on which:

• for every m ∈ Mn, (7) (for pen), (31) (for p̃1), (27)–(28) (for p2, with x = γ ln(n) and
θ =

√
ln(n)/n) and (24)–(26) (for δ, with x = γ ln(n) and η =

√
ln(n)/n) hold true.

• for every m ∈ Mn such that Bn(m) ≥ 1, (29) and (30) hold (for p̃1).

Lower bound on Dbm By definition, m̂ minimizes

crit′(m) = crit(m) − Pnγ(s) = ℓ (s, sm ) − p2(m) + δ(m) + pen(m)

over m ∈ Mn such that An(m) ≥ 1. As in the proof of Theorem 5, we define c = LcX
r,ℓ
> 0

such that for every model of dimension Dm ≤ cn ln(n)−1, Bn(m) ≥ L−1 ln(n) ≥ 1. Let
c′ = min(c, c0) and d ∈ (0, 1) a constant to be chosen later.

1. Lower bound on crit′(m) for “small” models: assume that m ∈ Mn and Dm ≤
dc′n ln(n)−1. Then, ℓ (s, sm ) + pen(m) ≥ 0 and from (24),

δ(m) ≥ −LA

√
ln(n)

n
.

If Dm ≥ ln(n)4, (28) implies that

p2(m) ≤
(

1 +
L(SH2)

ln(n)

)
E [p2(m) ] ≤

L(SH2)Dm

n
≤
c′dL(SH2)

ln(n)
.

On the other hand, if Dm < ln(n)4, (27) implies that

p2(m) ≤ L(SH2)

√
ln(n)

n
.

We then have
crit′(m) ≥ −dL(SH2) ( ln(n) )−1 .

2. There exists a better model for crit(m): let m1 ∈ Mn such that

ln(n)4 ≤ c′dn

crich ln(n)
≤ Dm1

≤ c′n

ln(n)
≤ n .

From (P2+), this is possible as soon as n ≥ Lcrich,c′,d. By (33) in Lemma 13, An(m0) ≥
1 with probability at least 1 − Ln−2.
We then have

ℓ (s, sm1
) ≤ L(SH2),c′ ln(n)β+n−β+ by (Ap)

p2(m1) ≥
(

1 −
L(SH2)

ln(n)

)
E [p2(m1) ] by (28)

pen(m1) ≤ KE [p2(m1) ] by (7)

∣∣δ(m1)
∣∣ ≤ LA

√
ln(n)

n
by (24)

27

ha
l-0

02
43

11
6,

 v
er

si
on

 4
 - 

17
 D

ec
 2

00
8



Arlot and Massart

so that

crit′(m1) ≤ L(SH2),c′ ln(n)β+n−β+ +

(
K − 1 +

L(SH2)

ln(n)

)
E [p2(m1) ] + LA

√
ln(n)

n

≤
(K − 1 + L(SH2)(ln(n))−1)σ2

minc
′

2 ln(n)

if n ≥ L(SH2),c′ .

We now choose d such that the constant dL(SH2) appearing in the lower bound on
crit′(m) for “small” models is smaller than (1 −K − L(SH2)(ln(n))−1)σ2

minc
′/2, that

is d ≤ L(SH2),c′ . Then, we assume that n ≥ n0 = L(SH2),c′,d = L(SH2). Finally, we
remove this condition as before by enlarging K1.

Risk of Dbm The proof of (8) is quite similar to the one of Lemma 7. First, for every
model m ∈ Mn such that An(m) ≥ 1 and Dm ≥ K2n ln(n)−1, we have

ℓ (s, ŝm ) ≥ p̃1(m) ≥ L(SH2)K2 ln(n)−2 by (31) .

Then, the model m0 ∈ Mn defined previously satisfies An(m) ≥ 1, and

ℓ (s, ŝm0
) ≤ L(SH2)

(
n−β+/2 + n−1/2

)
.

If n ≥ L(SH2), the ratio between these two bounds is larger than ln(n), so that (8) holds.

A.6 Concentration inequalities used in the main proofs

In this section, we no longer assume that each model is the set of piecewise constant functions
on some partition of X . First, we control δ(m) with general models and bounded data.

Proposition 8 Assume that ‖Y ‖∞ ≤ A < ∞. Then for all x ≥ 0, on an event of proba-
bility at least 1 − 2e−x:

∀η > 0,
∣∣δ(m)

∣∣ ≤ ηℓ (s, sm ) +

(
4

η
+

8

3

)
A2x

n
. (24)

If moreover

Q(p)
m :=

nE [p2(m) ]

Dm
> 0 , (25)

on the same event,

∣∣δ(m)
∣∣ ≤ ℓ (s, sm )√

Dm
+

20

3

A2

Q
(p)
m

E[p2(m)]√
Dm

x . (26)

Remark 9 (Regressogram case) If Sm is the set of piecewise constant functions on
some partition (Iλ )λ∈Λm

of X ,

Q(p)
m =

1

Dm

∑

λ∈Λm

σ2
λ ≥ (σmin )2 > 0 .
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Data-driven Calibration of Penalties

Then, we derive a concentration inequality for p2(m) in the regressogram case from a
general result by Boucheron and Massart (2008).

Proposition 10 Let Sm be the model of piecewise constant functions associated with the
partition (Iλ )λ∈Λm

. Assume that ‖Y ‖∞ ≤ A and define p2(m) = Pn (γ(sm) − γ(ŝm)).
Then, for every x ≥ 0, there exists an event of probability at least 1− e1−x on which for

every θ ∈ (0; 1),

|p2(m) − E [p2(m) ]| ≤ L

[
θℓ (s, sm ) +

A2
√
Dm

√
x

n
+
A2x

θn

]
(27)

for some absolute constant L. If moreover σ(X) ≥ σmin > 0 a.s., we have on the same
event:

|p2(m) − E [p2(m) ]| ≤ L√
Dm

[
ℓ (s, sm ) +

A2
E [p2(m) ]

σ2
min

(√
x+ x

)]
. (28)

Finally, we recall a concentration inequality for p1(m) proved by (Arlot, 2008b, Propo-
sition 9). Its proof is particular to the regressogram case.

Proposition 11 (Proposition 9, Arlot (2008b)) Let γ > 0 and Sm be the model of
piecewise constant functions associated with the partition (Iλ )λ∈Λm

. Assume that ‖Y ‖∞ ≤
A < ∞, σ(X) ≥ σmin > 0 a.s. and minλ∈Λm

{npλ } ≥ Bn > 0. Then, if Bn ≥ 1, on an
event of probability at least 1 − Ln−γ,

p̃1(m) ≥ E [ p̃1(m) ] − LA,σmin,γ

[
ln(n)2√
Dm

+ e−LBn

]
E [p2(m) ] (29)

p̃1(m) ≤ E [ p̃1(m) ] + LA,σmin,γ

[
ln(n)2√
Dm

+
√
Dme

−LBn

]
E [p2(m) ] . (30)

If we only have a lower bound Bn > 0, then, with probability at least 1 − Ln−γ,

p̃1(m) ≥
(

1

2 + (γ + 1)B−1
n ln(n)

− LA,σmin,γ ln(n)2√
Dm

)
E [p2(m) ] . (31)

A.7 Additional results needed

A crucial result in the proofs of Theorems 5 and 2 is that p1(m) and p2(m) are close in
expectation; the following proposition was proved by Arlot (2008b, Lemma 7).

Proposition 12 (Lemma 7, Arlot (2008b)) Let Sm be a model of piecewise constant
functions adapted to some partition (Iλ )λ∈Λm

. Assume that minλ∈Λm
{npλ } ≥ B > 0.

Then,

(
1 − e−B

)2
E [p2(m) ] ≤ E [ p̃1(m) ]

≤
[
2 ∧

(
1 + 5.1 ×B−1/4

)
+ (B ∨ 1) e−(B∨1 )

]
E [p2(m) ] .

(32)

Finally, we need the following technical lemma in the proof of the main theorems.
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Arlot and Massart

Lemma 13 Let (pλ)λ∈Λm
be non-negative real numbers of sum 1, (np̂λ)λ∈Λm

a multinomial
vector of parameters (n; (pλ)λ∈Λm

). Then, for all γ > 0,

min
λ∈Λm

{np̂λ } ≥ minλ∈Λm
{npλ}

2
− 2(γ + 1) ln(n) (33)

with probability at least 1 − 2n−γ.

Proof By Bernstein inequality (Massart, 2007, Proposition 2.9), for all λ ∈ Λm,

P

(
np̂λ ≥ (1 − θ)npλ −

√
2npx− x

3

)
≥ 1 − e−x .

Take x = (γ + 1) ln(n) above, and remark that
√

2npx ≤ np
2 + x. The union bound gives

the result since Card(Λm) ≤ n.

A.8 Proof of Proposition 8

Since ‖Y ‖∞ ≤ A, we have ‖s‖∞ ≤ A and ‖sm‖∞ ≤ A. In fact, everything happens as if
Sm ∪ {s} was bounded by A in L∞.

We have

δ(m) =
1

n

n∑

i=1

(γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi)) − E [γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi))])

and assumptions of Bernstein inequality (Massart, 2007, Proposition 2.9) are fulfilled with

c =
8A2

3n
and v =

8A2ℓ (s, sm )

n

since

‖γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi)) − E [γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi))]‖∞ ≤ 8A2

and

var (γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi))) ≤ E

[
(γ(sm, (Xi, Yi)) − γ(s, (Xi, Yi)))

2
]

≤ 8A2ℓ (s, sm )

because ‖sm − s‖∞ ≤ 2A and

(γ(t, ·) − γ(s, ·))2 = (t(X) − s(X))2 (2(Y − s(X)) − t(X) + s(X))2

and E
[
(Y − s(X))2

∣∣ X] ≤ (2A)2

4
= A .

We obtain that, with probability at least 1 − 2e−x,

∣∣δ(m)
∣∣ ≤

√
2vx+ c =

√
16A2ℓ (s, sm )x

n
+

8A2x

3n

and (24) follows since 2
√
ab ≤ aη + bη−1 for all η > 0. Taking η = D

−1/2
m ≤ 1 and using

Q
(p)
m defined by (25), we deduce (26).

30

ha
l-0

02
43

11
6,

 v
er

si
on

 4
 - 

17
 D

ec
 2

00
8



Data-driven Calibration of Penalties

A.9 Proof of Proposition 10

We apply here a result by Boucheron and Massart (2008, Theorem 2.2 in a preliminary
version), in which it is only assumed that γ takes its values in [0; 1]. This is satisfied when
‖Y ‖∞ ≤ A = 1/2. When A 6= 1/2, we apply this result to (2A)−1Y and recover the general
result by homogeneity.

First, we recall this result in the bounded least-squares regression framework. For every
t : X 7→ R and ǫ > 0, we define

d2(s, t) = 2ℓ (s, t) and w(ǫ) =
√

2ǫ .

Let φm belong to the class of nondecreasing and continuous functions f : R
+ 7→ R

+ such
that x 7→ f(x)/x is nonincreasing on (0;+∞) and f(1) ≥ 1. Assume that for every u ∈ Sm

and σ > 0 such that φm(σ) ≤ √
nσ2,

√
nE

[
sup

t∈Sm, d(u,t)≤σ
|γn(u) − γn(t)|

]
≤ φm(σ) . (34)

Let ε⋆,m be the unique positive solution of the equation
√
nε2⋆,m = φm(w(ε⋆,m)) .

Then, there exists some absolute constant L such that for every real number q ≥ 2 one has

‖p2(m) − E[p2(m)]‖q ≤ L√
n

[√
2q
(√

ℓ (s, sm ) ∨ ε⋆,m

)
+ q

2√
n

]
. (35)

Using now that Sm is the set of piecewise constant functions on some partition (Iλ )λ∈Λm

of X , we can take
φm(σ) = 3

√
2
√
Dm × σ in (34). (36)

The proof of this statement is made below. Then, ε⋆,m = 6
√
Dmn

−1/2.
Combining (35) with the classical link between moments and concentration (see for

instance Arlot, 2007, Lemma 8.9), the first result follows. The second result is obtained by

taking θ = D
−1/2
m , as in Proposition 8.

Proof of (36) Let u ∈ Sm and d(u, t) =
√

2 ‖u(X) − t(X)‖2 for every t : X 7→ R. Define
ψ : R

+ 7→ R
+ by

ψ(σ) = E

[
sup

d(u,t)≤σ, t∈Sm

|(Pn − P )(γ(u, ·) − γ(t, ·))|
]
.

We are looking for some nondecreasing and continuous function φm : R
+ 7→ R

+ such that
φm(x)/x is nonincreasing, φm(1) ≥ 1 and for every u ∈ Sm,

∀σ > 0 such that φm(σ) ≤ √
nσ2 , φm(σ) ≥ √

nψ(σ) .

We first look at a general upperbound on ψ.

Assume that u = sm. If this is not the case, the triangular inequality shows that
ψgeneral u ≤ 2ψu=sm. Let us write

t =
∑

λ∈Λm

tλ1Iλ
u = sm =

∑

λ∈Λm

βλ1Iλ
.
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Arlot and Massart

Computation of P (γ(t, ·) − γ(sm, ·)) for some general t ∈ Sm:

P (γ(t, ·) − γ(sm, ·)) = E
[
(t(X) − Y )2 − (sm(X) − Y )2

]

= E
[
(t(X) − sm(X))2

]
+ 2E [(t(X) − sm(X))(sm(X) − s(X))]

= E
[
(t(X) − sm(X))2

]

=
∑

λ∈Λm

pλ(tλ − βλ)2

since for every λ ∈ Λm, E [s(X) | X ∈ Iλ ] = βλ.

Computation of Pn(γ(t, ·) − γ(sm, ·)) for some general t ∈ Sm: with ηi = Yi − sm(Xi),
we have

Pn(γ(t, ·) − γ(sm, ·)) =
1

n

n∑

i=1

[
(t(Xi) − Yi)

2 − (u(Xi) − Yi)
2
]

=
1

n

n∑

i=1

(t(Xi) − u(Xi))
2 − 2

n

n∑

i=1

[(t(Xi) − u(Xi))ηi]

=
1

n

n∑

i=1

∑

λ∈Λm

(tλ − uλ)21Xi∈Iλ
− 2

n

n∑

i=1

∑

λ∈Λm

(tλ − uλ)1Xi∈Iλ
ηi .

Back to (Pn − P ) We sum the two inequalities above and use the triangular inequality:

|(Pn − P )(γ(t, ·) − γ(u, ·))| ≤

∣∣∣∣∣∣
1

n

n∑

i=1

∑

λ∈Λm

(tλ − uλ)2(1Xi∈Iλ
− pλ)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
2

n

n∑

i=1

∑

λ∈Λm

(tλ − uλ)1Xi∈Iλ
ηi

∣∣∣∣∣∣

≤ 2A

n

∑

λ∈Λm

[
(
√
pλ |tλ − uλ|)

|∑n
i=1(1Xi∈Iλ

− pλ)|√
pλ

]

+
2

n

∑

λ∈Λm

[
(
√
pλ |tλ − uλ|)

|∑n
i=1 1Xi∈Iλ

ηi|√
pλ

]

since |tλ − uλ| ≤ 2A for every t ∈ Sm.
We now assume that d(u, t) ≤ σ for some σ > 0, that is

d(u, t)2 = 2
∑

λ∈Λm

pλ(tλ − uλ)2 ≤ σ2 .

From Cauchy-Schwarz inequality, we obtain for every t ∈ Sm such that d(u, t) ≤ σ

|(Pn − P )(γ(t, ·) − γ(u, ·))| ≤ 2Aσ√
2n

√√√√∑

λ∈Λm

(
∑n

i=1(1Xi∈Iλ
− pλ))2

pλ

+

√
2σ

n

√√√√∑

λ∈Λm

(
∑n

i=1 1Xi∈Iλ
ηi)

2

pλ
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Data-driven Calibration of Penalties

Back to ψ The upper bound above does not depend on t, so that the left-hand side
of the inequality can be replaced by a supremum over {t ∈ Sm s.t. d(u, t) ≤ σ }. Taking
expectations and using Jensen’s inequality (

√· being concave), we obtain an upper bound
on ψ:

ψ(σ) ≤ 2Aσ√
2n

√√√√∑

λ∈Λm

E

[
(
∑n

i=1(1Xi∈Iλ
− pλ))2

pλ

]
+

√
2σ

n

√√√√∑

λ∈Λm

E

[
(
∑n

i=1 1Xi∈Iλ
ηi)

2

pλ

]

(37)

For every λ ∈ Λm, we have

E

(
n∑

i=1

(1Xi∈Iλ
− pλ)

)2

=
n∑

i=1

E (1Xi∈Iλ
− pλ )2 = npλ (1 − pλ ) (38)

which simplifies the first term. For the second term, notice that

∀i 6= j, E
[
1Xi∈Iλ

1Xj∈Iλ
ηiηj

]
= E [1Xi∈Iλ

ηi ] E
[
1Xj∈Iλ

ηj

]

and ∀i, E [1Xi∈Iλ
ηi ] = E [1Xi∈Iλ

E [ηi | 1Xi∈Iλ
] ] = 0

since ηi is centered conditionally to 1Xi∈Iλ
. Then,

E

(
n∑

i=1

1Xi∈Iλ
ηi

)2

=
n∑

i=1

E
[
1Xi∈Iλ

η2
i

]
≤ npλ ‖η‖2

∞ ≤ npλ(2A)2 . (39)

Combining (37) with (38) and (39), we deduce that

ψ(σ) ≤ 2Aσ√
2
√
n

√
Dm − 1 +

2
√

2Aσ√
n

√
Dm ≤ 3A

√
2

√
Dm√
n

× σ .

As already noticed, we have to multiply this bound by 2 so that it is valid for every u ∈ Sm

and not only u = sm.

The resulting upper bound (multiplied by
√
n) has all the desired properties for φm

since 6A
√

2
√
Dm = 3

√
2Dm ≥ 1. The result follows.
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