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Introduction

The Lojasiewicz inequality is a powerful tool to analyze convergence of gradient-like methods and related problems. Roughly speaking, this inequality is satisfied by a C 1 function f , if for some θ ∈ [ 1 2 , 1) the quantity |ff (x)| θ ∇f -1 remains bounded away from zero around any (possibly critical) point x. This result is named after S. Lojasiewicz [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF], who was the first to establish its validity for the classes of real-analytic and C 1 subanalytic functions. At the same time, it has been known that the Lojasiewicz inequality would fail for C ∞ functions in general (see the classical example of the function x -→ exp(-1/x 2 ), if x = 0 and 0, if x = 0 around the point x = 0). A generalized form of this inequality has been introduced by K. Kurdyka in [START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF]. In the framework of a C 1 function f defined on a real Hilbert space [H, •, • ], and assuming for simplicity that f = 0 is a critical value, this generalized inequality (that we hereby call the Kurdyka-Lojasiewicz inequality, or in short, the K L-inequality) states that

||∇(ϕ • f )(x)|| ≥ 1, (1) 
for some continuous function ϕ : [0, r) → R, C 1 on (0, r) with ϕ ′ > 0 and all x in [0 < f < r] := {y ∈ H : 0 < f (y) < r}. The class of such functions ϕ will be further denoted by K(0, r), see [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF]. Note that the Lojasiewicz inequality corresponds to the case ϕ(t) = t 1-θ . In finite-dimensional spaces it has been shown in [START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF] that (1) is satisfied by a much larger class of functions, namely, by those that are definable in an o-minimal structure [START_REF] Coste | An Introduction to o-minimal Geometry[END_REF], or even more generally by functions belonging to analytic-geometric categories [START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF]. In the meantime the original Lojasiewicz result was used to derive new results in the asymptotic analysis of nonlinear heat equations [START_REF] Simon | Asymptotics for a class of non-linear evolution equations, with applications to geometric problems[END_REF] and damped wave equations [START_REF] Haraux | A hyperbolic variant of Simon's convergence theorem. Evolution equations and their applications in physical and life sciences[END_REF]. Many results related to partial differential equations followed, see the monograph of Huang [START_REF] Huang | Gradient inequalities. With applications to asymptotic behavior and stability of gradient-like systems[END_REF] for an insight. Other fields of application of (1) are nonconvex optimization and nonsmooth analysis. This was one of the motivations for the nonsmooth K L-inequalities developed in [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF][START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]. Due to its considerable impact on several field of applied mathematics: minimization and algorithms [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF][START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF][START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF][START_REF] Lageman | Convergence of gradient-like dynamical systems and optimization algorithms[END_REF], asymptotic theory of differential inclusions [START_REF] Nistri | On the properties of solutions to a differential inclusion associated with a nonsmooth constrained optimization problem[END_REF], neural networks [START_REF] Forti | Convergence of Neural Networks for Programming Problems via a Nonsmooth Lojasiewicz Inequality[END_REF], complexity theory [START_REF] Nesterov | Cubic regularization of Newton method and its global performance[END_REF] (see [START_REF] Nesterov | Cubic regularization of Newton method and its global performance[END_REF]Definition 3] where functions satisfying a K L-type inequality are called gradient dominated functions), partial differential equations [START_REF] Simon | Asymptotics for a class of non-linear evolution equations, with applications to geometric problems[END_REF][START_REF] Haraux | A hyperbolic variant of Simon's convergence theorem. Evolution equations and their applications in physical and life sciences[END_REF][START_REF] Huang | Gradient inequalities. With applications to asymptotic behavior and stability of gradient-like systems[END_REF], we hereby tackle the problem of characterizing such inequalities in an nonsmooth infinite-dimensional setting and provide further clarification in several application aspects. Our framework is rather broad (infinite dimensions, nonsmooth functions), nevertheless, to the best of our knowledge, most of the present results are also new in a smooth finitedimensional framework: readers who feel unfamiliar with notions of nonsmooth and variational analysis may, at a first stage, consider that all functions involved are differentiable and replace subdifferentials by usual derivatives and subgradient systems by smooth ones.

A first part of this work (Section 2) is devoted to the analysis of metric versions of the K L-inequality. The underlying space H is only assumed to be a complete metric space (without any linear structure), the function f : H → R ∪ {+∞} is lower semicontinuous and possibly real-extended valued and the notion of a gradient is replaced by the variational notion of a strongslope [START_REF] De Giorgi | Problems of evolution in metric spaces and maximal decreasing curve[END_REF][START_REF] Aze | Characterizations of error bounds for lower semicontinuous functions on metric spaces[END_REF]. Indeed, introducing the multivalued mapping F (x) = [f (x), +∞) (whose graph is the epigraph of f ), the K L-inequality [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF] appears to be equivalent to the metric regularity of F : H ⇉ R on an adequate set, where R is endowed with the metric d ϕ (r, s) = |ϕ(r)ϕ(s)|.

This fact is strongly connected to famous classical results in this area (see [START_REF] Dontchev | The radius of metric regularity[END_REF][START_REF] Mordukhovich | Complete characterization of openness, metric regularity and Lipschitzian properties of multifunctions[END_REF][START_REF] Ioffe | Metric regularity and Subdifferential Calculus[END_REF][START_REF] Penot | Metric regularity, openness and Lipschitzian behaviour of multifunctions[END_REF] for example) and in particular to the notion of ρ-metric regularity introduced in [START_REF] Ioffe | Metric regularity and Subdifferential Calculus[END_REF] by A. Ioffe. The particularity of our result is due to the fact that F takes its values in a totally ordered set which is not the case in the general theory. Using results on global error-bounds of Azé-Corvellec [START_REF] Aze | Characterizations of error bounds for lower semicontinuous functions on metric spaces[END_REF] and Zorn's lemma, we establish indeed that some global forms of the K L-inequality and metric regularity are both equivalent to the "Lipschitz continuity" of the sublevel mapping

R ⇉ H r → [f ≤ r] := {x ∈ H : f (x) ≤ r},
where (0, r) ⊂ (0, +∞) is endowed with d ϕ and the collection of subsets of H with the "Hausdorff distance". As it is shown in a section devoted to applications (Section 3.4), this reformulation is particularly adapted for the analysis of proximal methods involving nonconvex criteria: these results are in the line of [START_REF] Combettes | Proximal methods for cohypomonotone operators[END_REF][START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF].

In the second part of this work (Section 3), H is a proper real Hilbert space and f is assumed to be a semiconvex function, i.e. f is the difference of a proper lower semicontinuous convex function and a function proportional to the canonical quadratic form. Although this assumption is not particularly restrictive, it does not aim at full generality. Semiconvexity is used here to provide a convenient framework in which the formulation and the study of subdifferential evolution equations are simple and elegant ( [START_REF] Albano | Singularities of semiconcave functions in Banach spaces[END_REF][START_REF] Degiovanni | Evolution equations with lack of convexity[END_REF]). Using the Fréchet subdifferential (see Definition 8), the corresponding subgradient dynamical system indeed reads ẋ(t) + ∂f (x(t)) ∋ 0, a.e. on (0, +∞),

x(0) ∈ dom f (2) 
where x(•) is an absolutely continuous curve called subgradient curve. Relying on several works [START_REF] Degiovanni | Evolution equations with lack of convexity[END_REF][START_REF] Marcellin | Evolution problems associated with primal lower nice functions[END_REF][START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF], if f is semiconvex, such curves exist and are unique. The asymptotic properties of the semiflow associated to this evolution equation are strongly connected to the K L-inequality. This can be made precise by introducing the following notion: for T ∈ (0, +∞], a piecewise absolutely continuous curve γ : [0, T ) → H (with countable pieces) is called a piecewise subgradient curve if γ is a solution to [START_REF] Albano | Singularities of semiconcave functions in Banach spaces[END_REF] where in addition t → (f • γ)(t) nonincreasing (see Definition 15 for details). Consider all piecewise subgradient curves lying in a "K L-neighborhood", e.g. a slice of level sets. Under a compactness assumption and a condition of Sard type (automatically satisfied in finite dimensions if f belongs to an o-minimal class), their lengths are uniformly bounded if and only if f satisfies the K L-inequality in its nonsmooth form (see [START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF]), that is, for all

x ∈ [0 < f < r], ||∂(ϕ • f )(x)|| -:= inf{||p|| : p ∈ ∂(ϕ • f )} ≥ 1,
where ϕ : (0, r) → R is C 1 function bounded from below such that ϕ ′ > 0 (see [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF]). A byproduct of this result (through not an equivalent statement, as we show in Section 4.3see Remark 37 (c)) is the fact that bounded subgradient curves have finite lengths and hence converge to a generalized critical point. Further characterizations are given involving several aspects among which, an integrability condition in terms of the inverse function of the minimal subgradient norm associated to each level set [f = r] of f, as well as connections to the following talweg selection problem: Find a piecewise absolutely continuous curve θ : (0, r) → H with finite length such that

θ(r) ∈ x ∈ [f = r] : ||∂(ϕ • f )(x)|| -≤ R inf y∈[f =r] ||∂(ϕ • f )(y)|| -, with R > 1.
The curve θ is called a talweg. Early connections between the K L-inequality and this old concept can be found in [START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF], and even more clearly in [START_REF] D'acunto | On Talweg lines of polynomial and analytic functions[END_REF]. Indeed, under mild assumptions the existence of such a selection curve θ characterizes the K L-inequality. The proof relies strongly on the property of the semiflow associated to -∂f . Recent developments of the metric theory of "gradient" curve ( [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]) open the way to a more general approach of these characterizations, and hopefully to new applications in the line of [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] De Giorgi | Problems of evolution in metric spaces and maximal decreasing curve[END_REF].

The analysis of the convex case (that is, f is a convex function) in Section 4, reveals interesting phenomena. In this case, the K L-inequality, whenever true on a slice of level sets, will be true on the whole space H (globalization) and, in addition, the involved function ϕ can be taken to be concave (Theorem 29). This is always the case if a specific growth assumption near the set of minimizers of f is assumed. On the other hand, arbitrary convex functions do not satisfy the K L-inequality: this is a straightforward consequence of a classical counterexample, due to J.-B. Baillon [START_REF] Baillon | Un exemple concernant le comportement asymptotique de la solution du problème du/dt + ∂ϕ(u) ∋ 0[END_REF], of the existence of a convex function f in a Hilbert space, having a subgradient curve which is not strongly converging to 0 ∈ arg min f . However, surprisingly, even smooth finite-dimensional coercive convex functions may fail to satisfy the K L-inequality, and this even in the case that the lengths of their gradient curves are uniformly bounded. Indeed, using the above mentioned characterizations and results from [START_REF] Torralba | Convergence épigraphique et changements d'échelle en analyse variationnelle et optimisation[END_REF], we construct a counterexample of a C 2 convex function whose set of minimizers is compact and has a nonempty interior (Section 4.3).

As another application we consider abstract explicit gradient schemes for convex functions with a Lipschitz continuous gradient. A common belief is that the analysis of gradient curves and their explicit discretization used in numerical optimization are somehow disconnected problems. We hereby show that this is not always the case, by establishing that the piecewise gradient iterations are uniformly bounded if and only if the piecewise subgradient curves are so. This aspect sheds further light on the (theoretical) stability of convex gradient-like methods and the interest of relating the K L-inequality to the asymptotic study of subgradient-type methods.

Notation. (Multivalued mappings) Let X, Y be two metric spaces and F : X ⇉ Y be a multivalued mapping from X to Y. We denote by

Graph F := {(x, y) ∈ X × Y : y ∈ F (x)} (3)
the graph of the multivalued mapping F (subset of X × Y ) and by

dom F := {x ∈ X : ∃y ∈ Y, (x, y) ∈ Graph F } (4) 
its domain (subset of X).

(Single-valued functions) Given a function f : X -→ R ∪ {+∞} we define its epigraph by

epi f := {(x, β) ∈ X × R : f (x) ≤ β}. (5) 
We say that the function f is proper (respectively, lower semicontinuous) if the above set is nonempty (respectively, closed). Let us recall that the domain of the function f is defined by

dom f := {x ∈ X : f (x) < +∞}. (Level sets) Given r 1 ≤ r 2 in [-∞, +∞] we set [r 1 ≤ f ≤ r 2 ] := {x ∈ X : r 1 ≤ f (x) ≤ r 2 }.
When r 1 = r 2 (respectively r 1 = -∞), the above set will be simply denoted by

[f = r 1 ] (respectively [f ≤ r 2 ]).
(Strong slope) Let us recall from [START_REF] De Giorgi | Problems of evolution in metric spaces and maximal decreasing curve[END_REF] (see also [START_REF] Ioffe | Metric regularity and Subdifferential Calculus[END_REF], [START_REF] Aze | Characterizations of error bounds for lower semicontinuous functions on metric spaces[END_REF]) the notion of strong slope defined for every x ∈ dom f as follows:

|∇f |(x) = lim sup y→x (f (x) -f (y)) + d(x, y) , (6) 
where for every a ∈ R we set a

+ = max {a, 0}. If [X, || • ||] is a Banach space with (topological) dual space [X * , || • || * ] and f is a C 1 finite- valued function then |∇f |(x) = ||∇f (x)|| * , for all x in X, where ∇f (•) is the differential map of f . (Hausdorff distance) We define the distance of a point x ∈ X to a subset S of X by dist (x, S) := inf y∈S d(x, y),
where d denotes the distance on X. The Hausdorff distance Dist(S 1 , S 2 ) of two subsets S 1 and S 2 of X is given by Dist(S 1 , S 2 ) := max sup

x∈S 1 dist (x, S 2 ), sup x∈S 2 dist (x, S 1 ) . (7) 
Let us denote by P(X) the collection of all subsets of X. In general Dist(•, •) can take infinite values and does not define a distance on P(X). However if K(X) denotes the collection of nonempty compact subsets of X, then Dist(•, •) defines a proper notion of distance on K(X). In the sequel we deal with multivalued mappings F : X ⇉ Y enjoying the following property

Dist (F (x), F (y)) ≤ k d(x, y)
where k is a positive constant. For simplicity such functions are called Lipschitz continuous, although [P(Y ), Dist ] is not a metric space in general.

(Desingularization functions) Given r ∈ (0, +∞], we set

K(0, r) := φ ∈ C([0, r)) ∩ C 1 (0, r) : φ(0) = 0, and φ ′ (r) > 0, ∀r ∈ (0, r) , (8) 
where C([0, r]) (respectively, C 1 (0, r)) denotes the set of continuous functions on [0, r] (respectively, C 1 functions on (0, r)).

Finally throughout this work, B(x, r) will stand for the usual open ball of center x and radius r > 0 and B(x, r) will denote its closure. If H is a Hilbert space, its inner product will be denoted by •, • and the corresponding norm by || • ||.

K L-inequality is a metric regularity condition

Let X, Y be two complete metric spaces, F : X ⇉ Y a multivalued mapping and (x, ȳ) ∈ Graph F. Let us recall from [28, Definition 1 (loc)] the following definition.

Definition 1 (metric regularity of multifunctions

). Let k ∈ [0, +∞). (i) The multivalued mapping F is called k-metrically regular at (x, ȳ) ∈ Graph F , if there exist ε, δ > 0 such that for all (x, y) ∈ B(x, ε) × B(ȳ, δ) we have dist (x, F -1 (y)) ≤ k dist (y, F (x)). (9) 
(ii) Let V be a nonempty subset of X × Y . The multivalued mapping F is called k-metrically regular on V , if F is metrically regular at (x, ȳ) for every (x, ȳ) ∈ Graph F ∩ V.

Metric regularity and global error bounds

The following theorem is an essential result: it will show that Kurdyka-Lojasiewicz inequality and metric regularity are equivalent concepts (see Corollary 4 and Remark 5). The equivalence

[(ii)⇔(iii)] is due to Azé-Corvellec (see [6, Theorem 2.1]).
Theorem 2. Let X be a complete metric space, f : X -→ R ∪ {+∞} a proper lower semicontinuous function and r 0 > 0. The following assertions are equivalent:

(i) The multivalued mapping

F : X ⇉ R x -→ [f (x), +∞) is k-metrically regular on [0 < f < r 0 ] × (0, r 0 ) ; (ii) For all r ∈ (0, r 0 ) and x ∈ [0 < f < r 0 ] dist (x, [f ≤ r]) ≤ k (f (x) -r) + ; ( 10 
) (iii) For all x ∈ [0 < f < r 0 ] |∇f |(x) ≥ 1 k .
Proof. The equivalence of (ii) and (iii) follows from [6, Theorem 2.1] and is based on Ekeland variational principle. Definition 1 (metric regularity of multifunctions) yields the following restatement for (i):

(i) 1 For every (x, r) ∈ Graph F with x ∈ [0 < f < r 0 ] and r ∈ (0, r 0 ), there exist ε > 0 and δ > 0 such that

(x, r) ∈ (B(x, ε) ∩ [0 < f < r 0 ]) × [(r -δ, r + δ) ∩ (0, r 0 )] =⇒ dist (x, [f ≤ r]) ≤ k (f (x) -r) + . (11) Clearly (i) ⇒ (i) 1 . Now, in order to prove (i) 1 ⇒ (i), consider (x, r) ∈ Graph F ∩ [0 < f < r 0 ] × (0, r 0 ). Take ε and δ positive given by (i) 1 such that 0 < r -δ < r + 2δ < r 0 , ε ≤ k(r 0 -r -2δ) and f is positive in B(x, ε) (f is lower semicontinuous so [f > 0] is open). For any (x, r) ∈ B(x, ε) × (r -δ, r + δ), we have r ∈ (0, r 0 ) and f (x) > 0. Thus if f (x) < r 0 by (i) 1 we have dist (x, [f ≤ r]) ≤ k(f (x) -r) + = k dist (r, F (x)). If f (x) ≥ r 0 , then dist (x, [f ≤ r]) ≤ dist (x, x) + dist (x, [f ≤ r]) ≤ ε + k (f (x) -r) + ≤ ε + kδ ≤ k(r 0 -r -δ) ≤ k(r 0 -r) ≤ k(f (x) -r) + = k dist (r, F (x)). Thus (i) 1 ⇒ (i).
It is now straightforward to see that (ii) =⇒ (i), thus it remains to prove that (i) 1 =⇒ (ii). To this end, fix any k ′ > k, r 1 ∈ (0, r 0 ) and

x 1 ∈ [f = r 1 ]. We shall prove that dist (x 1 , [f ≤ s]) ≤ k ′ (r 1 -s), for all s ∈ (0, r 1 ]. Claim 1 Let r ∈ (0, r 0 ) and x ∈ [f = r]. Then there exist r -< r and x -∈ [f = r -] such that d(x, x -) ≤ k ′ (r -r -) (12) with dist (x, [f ≤ s]) ≤ k ′ (r -s), for all s ∈ [r -, r]. [Proof of Claim 1. Apply (i) 1 at (x, r) ∈ Graph F to obtain the existence of ρ ∈ (0, r) such that dist (x, [f ≤ s]) ≤ k(r -s) for all s ∈ [ρ, r]. Since k ′ > k there exists x -∈ [f ≤ ρ] satisfying d(x, x -) < k ′ k dist (x, [f ≤ ρ]),
which in view of (11) yields d(x, x -) < k ′ (rρ).

To conclude, set r -= f (x -) ≤ ρ and observe that for any s ∈ [r -, ρ] we have

dist (x, [f ≤ s]) ≤ d(x, x -) ≤ k ′ (r -ρ) ≤ k ′ (r -s) = k ′ (f (x) -s).

This completes the proof of the claim. ♦]

Let A be the set of all families

{(x i , r i )} i∈I ⊂ [f ≤ r 1 ] × R containing (x 1 , r 1 ) such that -(P 1 ) f (x i ) = r i for all i ∈ I and r i = r j , for i = j ; -(P 2 ) If i, j ∈ I and r i < r j then d(x j , x i ) ≤ k ′ (r j -r i ). ;
-(P 3 ) For r * = inf{r i : i ∈ I} and for s ∈ (r * , r 1 ] we have:

dist (x 1 , [f ≤ s]) ≤ k ′ (r 1 -s).
The set A is nonempty (it contains the one-element family {(x 1 , r 1 )}) and can be ordered by the inclusion relation (that is, J 1 J 2 if, and only if, J 1 ⊂ J 2 ). Under this relation A becomes a totally ordered set: every totally ordered chain in A has an upper bound in A (its union). Thus, by Zorn lemma, there exists a maximal element

M = {(x i , r i )} i∈I in A. Claim 2. Any maximal element M = {(x i , r i )} i∈I of A satisfies r * = inf i∈I r i ≤ 0. ( 13 
)
[Proof of the Claim 2. Let us assume, towards a contradiction, that (13) is not true, i.e. r * > 0.

Let us first assume that there exists j ∈ I such that r * = r j . Define r -:= r - j < r j and x - j = x -∈ [f = r -] as specified in Claim 1 and consider the family M 1 = M ∪ {(x -, r -)}. Then M 1 clearly complies with (P 1 ). To see that M 1 satisfies (P 2 ), simply observe that for each

i ∈ I, d(x -, x i ) ≤ d(x -, x j ) + d(x j , x i ) ≤ k ′ (r i -r -).
Let s ∈ [r -, r j ]. By using the properties of the couple (x -, r -), one obtains

dist (x 1 , [f ≤ s]) ≤ dist (x 1 , x j ) + dist (x j , [f ≤ s]) ≤ k ′ (r 1 -r j ) + k ′ (r j -s) ≤ k ′ (r 1 -s).
This means that M 1 ∈ A which is contradicts the maximality of M.

Thus it remains to treat the case when the infimum r * is not attained. Let us take any decreasing sequence {r in } n≥1 , i n ∈ I satisfying r i 1 = r 1 and r in ց r * . For simplicity the sequences {r in } n and {x in } n will be denoted, respectively, by {r n } n and {x n } n . Applying (P 2 ) we obtain

d(x n , x n+m ) ≤ k ′ (r n -r n+m ). ( 14 
)
It follows that {x n } n≥1 is a Cauchy sequence, thus it converges to some x * . Taking the limit as m → +∞ we deduce from (14) that d(x n , x * ) ≤ k ′ (r nr * ), for all n ∈ N * . For any i ∈ I, there exists n such that r n < r i and therefore

dist (x * , x i ) ≤ d(x * , x n ) + d(x n , x i ) ≤ k ′ (r i -r * ) ≤ k ′ (r i -f (x * )), (15) 
where the last inequality follows from the lower semicontinuity of f . Set f (x * ) = ρ * ≤ r * and M 1 = M∪{(x * , ρ * )}. Since the infimum is not attained in inf{r i : i ∈ I} the family M 1 satisfies (P 1 ). Further by using [START_REF] Coste | An Introduction to o-minimal Geometry[END_REF], we see that M 1 complies also with (P 2 ). Take s ∈ [ρ * , r * ]. Since

x * ∈ [f ≤ s], we have dist (x 1 , [f ≤ s]) ≤ dist (x 1 , x * ) ≤ k ′ (r 1 -r * ) ≤ k ′ (r 1 -s).
Hence M 1 belongs to A which contradicts the maximality of M. ♦]

The desired implication follows easily by taking the limit as k ′ goes to k. This completes the proof.

Remark 3 (Sublevel mapping and Lipschitz continuity). It is straightforward to see that statement (ii) above is equivalent to the "Lipschitz continuity" (see [START_REF] Baillon | Un exemple concernant le comportement asymptotique de la solution du problème du/dt + ∂ϕ(u) ∋ 0[END_REF]) of the sublevel set application

(0, r 0 ) ⇉ X r -→ [f ≤ r]
for the Hausdorff "metric" given in [START_REF] Baillon | Un exemple concernant le comportement asymptotique de la solution du problème du/dt + ∂ϕ(u) ∋ 0[END_REF]. Note that F -1 is exactly the sublevel mapping given above, and thus in this context the Lipschitz continuity of F -1 is equivalent to the Aubin property of F -1 , see [START_REF] Dontchev | Aubin criterion for metric regularity[END_REF][START_REF] Ioffe | Metric regularity and Subdifferential Calculus[END_REF].

Metric regularity and K L inequality

As an immediate consequence of Theorem 2 and Remark 3, we have the following result.

Corollary 4 (K L-inequality and sublevel set mapping). Let f : X -→ R ∪ {+∞} be a lower semicontinuous function defined on a complete metric space X and let ϕ ∈ K(0, r 0 ) (see [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF]). The following assertions are equivalent:

(i) the multivalued mapping

X ⇉ R x → [(ϕ • f )(x), +∞) is k-metrically regular on [0 < f < r 0 ] × (0, ϕ(r 0 )) ; (ii) for all r 1 , r 2 ∈ (0, r 0 ) Dist ([f ≤ r 1 ], [f ≤ r 2 ]) ≤ k |ϕ(r 1 ) -ϕ(r 2 )| ; (iii) for all x ∈ [0 < f < r 0 ] |∇(ϕ • f )|(x) ≥ 1 k .
It might be useful to observe the following:

Remark 5 (Change of metric). Let ϕ ∈ K(0, r 0 ) and assume that it can be extended continuously to an increasing function still denoted ϕ : R + → R + . Set d ϕ (r, s) = |ϕ(r)ϕ(s)| for any r, s ∈ R + and assume that R + is endowed with the metric d ϕ . Endowing R + with this new metric, assertions (i), (ii) and (iii) can be reformulated very simply:

(i ') The multivalued mapping

X ⇉ R + x → [f (x), +∞)
is k-metrically regular on [0 < f < r 0 ] × (0, r 0 ).

(ii') The sublevel mapping

R + ∋ r → [f ≤ r],
is k Lipschitz continuous on (0, r 0 ).

(iii') For all x ∈ [0 < f < r 0 ] |∇ ϕ f |(x) ≥ 1 k ,
where |∇ ϕ f | denotes the strong slope of the restricted function f :

[0 < f ] → [R + , d ϕ ].
Given a lower semicontinuous function f : X -→ R ∪ {+∞} we say that f is strongly slope-regular, if for each point x in its domain dom f one has

|∇f |(x) = |∇(-f )|(x). ( 16 
)
Note that all C 1 functions are strongly slope-regular according to the above definition.

Proposition 6 (Level mapping and Lipschitz continuity). Assume f : X → R is continuous and strongly slope-regular. Then any of the assertions (i)-(iii) of Theorem 2 is equivalent to the fact that the level set application

R ⇉ X r → [f = r]
is Lipschitz continuous on (0, r 0 ) with respect to the Hausdorff metric.

Proof. The result follows by applying Theorem 2 twice. (Details are left to the reader.)

Let us finally state the following important corollary.

Corollary 7 (K L-inequality and level set mapping). Let f : X -→ R be a continuous function which is strongly slope-regular on [0 < f < r 0 ] and let ϕ ∈ K(0, r 0 ) (recall ( 8)). Then the following assertions are equivalent:

(i) ϕ • f is k-metrically regular on [0 < f < r 0 ] × (0, ϕ(r 0 )); (ii) for all r 1 , r 2 ∈ (0, r 0 ) Dist ([f = r 1 ], [f = r 2 ]) ≤ k |ϕ(r 1 ) -ϕ(r 2 )|; (iii) for all x ∈ [0 < f < r 0 ] |∇(ϕ • f )|(x) ≥ 1 k .
Proof. It follows easily by combining Theorem 2 with Proposition 6.

K L-inequality in Hilbert spaces

From now on, we shall work on a real Hilbert space [H, •, • ]. Given a vector x in H, the norm of x is defined by ||x|| = x, x while for any subset C of H, we set

||C|| -= dist (0, C) = inf{||x|| : x ∈ C} ∈ R ∪ {+∞}. (17) 
Note that C = ∅ implies ||C|| -= +∞.

Elements of nonsmooth analysis

Let us first recall the notion of Fréchet subdifferential (see [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF][START_REF] Mordukhovich | Variational analysis and generalized differentiation. I. Basic theory[END_REF]).

Definition 8 (Fréchet subdifferential). Let f : H → R ∪ {+∞} be a real-extended-valued function. We say that p ∈ H is a (Fréchet) subgradient of f at x ∈ dom f if lim inf y→x, y =x f (y) -f (x) -p, y -x ||y -x|| ≥ 0.
We denote by ∂f (x) the set of Fréchet subgradients of f at x and set ∂f (x) = ∅ for x / ∈ dom f . Let us now define the notion of critical point in variational analysis.

Definition 9 (critical point/values). (i) A point x 0 ∈ H is called critical for the function f, if 0 ∈ ∂f (x 0 ). (ii) The value r ∈ f (H) is called a critical value, if [f = r] contains at least one critical point.
In this section we shall mainly deal with the class of semiconvex functions. Let us give the corresponding definition. (The reader should be aware that the terminology is not yet completely fixed in this area, so that the notion of semiconvex function may vary slightly from one author to another.) Definition 10 (semiconvexity). A proper lower semicontinuous function f is called semiconvex (or convex up to a square) if for some α > 0 the function

x -→ f (x) + α 2 ||x|| 2
is convex.

Remark 11.

(i) For each x ∈ H, ∂f (x) is a (possibly empty) closed convex subset of H and ∂f (x) is nonempty for x ∈ int dom f.

(ii) It is straightforward from the above definition that the multivalued operator x -→ ∂f (x)+αx is (maximal) monotone (see [START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen[END_REF]Definition 12.5] for the definition).

(iii) For general properties of semiconvex functions, see [START_REF] Albano | Singularities of semiconcave functions in Banach spaces[END_REF]. Let us mention that Definition 10 is equivalent to the fact that

f (y) -f (x) ≥ p, y -x -α||x -y|| 2 , (18) 
for all x, y ∈ H and all p ∈ ∂f (x) (where α > 0). (iii) According to Definition 10, semiconvex functions are contained in several important classes of (nonsmooth) functions, as for instance φ-convex functions ( [START_REF] Degiovanni | Evolution equations with lack of convexity[END_REF]), weakly convex functions ( [START_REF] Aussel | Subsmooth sets: functional characterizations and related concepts[END_REF]) and primal-lower-nice functions ( [START_REF] Marcellin | Evolution problems associated with primal lower nice functions[END_REF]). Although an important part of the forthcoming results is extendable to these more general classes, we shall hereby sacrifice extreme generality in sake of simplicity of presentation.

Given a real-extended-valued function f on H, we define the remoteness (i.e., distance to zero) of its subdifferential ∂f at x ∈ H as follows:

||∂f (x)|| -= inf p∈∂f (x) ||p|| = dist (0, ∂f (x)).
(remoteness)

Remark 12. (minimal norm) (i) If ∂f (x) = ∅, the infimum in the above definition is achieved since ∂f (x) is a nonempty closed convex set. If we define ∂ 0 f (x) as the projection of 0 on the closed convex set ∂f (x) we of course have ||∂f (x)|| -= ||∂ 0 f (x)||. ( 19 
)
Some properties of H ∋ x → ||∂f (x)|| -are given in Section 5 (Annex).

(ii) If f is a semiconvex function, then ||∂f (x)|| -coincides with the notion of strong slope |∇f |(x) introduced in (6), see Lemma 42 (Annex).

Subgradient curves: basic properties

Let f : H → R ∪ {+∞} be a proper lower semicontinuous semiconvex function. The purpose of this subsection is to recall the main properties of the trajectories (subgradient curves) of the corresponding differential inclusion:

   χx (t) ∈ -∂f (χ x (t))
a.e. on (0, +∞),

χ x (0) = x ∈ dom f.
The following statement aggregates useful results concerning existence and uniqueness of solutions. These results are essentially known even for a more general class of functions (see [34, Theorem 2.1, Proposition 2.14, Theorem 3.3] for instance for the class of primal-lower-nice functions). It should also be noticed that the integration of measurable curves of the form R ∋ t → γ(t) ∈ H relies on Bochner integration/measurability theory (basic properties can be found in [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]).

Theorem 13 (subgradient curves). For every x ∈ dom f there exists a unique absolutely continuous curve (called trajectory or subgradient curve)

χ x : [0, +∞) → H that satisfies    χx (t) ∈ -∂f (χ x (t))
a.e. on (0, +∞),

χ x (0) = x ∈ dom f. ( 20 
)
Moreover the trajectory satisfies:

(i) χ x (t) ∈ dom ∂f for all t ∈ (0, +∞).

(ii) For all t > 0, the right derivative χx (t + ) of χ x is well defined and equal to

χx (t + ) = -∂ 0 f (χ x (t)).
In particular χx (t) = -∂ 0 f (χ x (t)), for almost all t.

(iii) The mapping t → ||∂f (χ x (t))|| -is right-continuous at each t ∈ (0, +∞).

(iv) The function t -→ f (χ x (t)) is nonincreasing and continuous on [0, +∞). Moreover, for all t, τ ∈ [0, +∞) with t ≤ τ , we have

f (χ x (t)) -f (χ x (τ )) ≥ τ t || χx (u)|| 2 du ,
and equality holds if t > 0.

(v) The function t -→ f (χ x (t)) is Lipschitz continuous on [η, +∞) for any η > 0. Moreover d dt f (χ x (t)) = -|| χx (t)|| 2 a.e on (η, +∞).
Proof. The only assertion that does not appear explicitly in [START_REF] Marcellin | Evolution problems associated with primal lower nice functions[END_REF] is the continuity of the function f • χ x at t = 0 when x ∈ dom f dom ∂f , but this is an easy consequence of the fact that f is lower semicontinuous, χ x is (absolutely) continuous and f • χ x is decreasing. For the rest of the assertions we refer to [START_REF] Marcellin | Evolution problems associated with primal lower nice functions[END_REF].

The following result asserts that the semiflow mapping associated with the differential inclusion [START_REF] Dontchev | Aubin criterion for metric regularity[END_REF] is continuous. This type of result can be established by standard techniques and therefore is essentially known (see [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF][START_REF] Marcellin | Evolution problems associated with primal lower nice functions[END_REF] for example). We give here an outline of proof (in case that f is semiconvex) for the reader's convenience.

Theorem 14 (continuity of the semiflow). For any semiconvex function f the semiflow mapping

R + × dom f → H (t, x) → χ x (t) is (norm) continuous on each subset of the form [0, T ] × (B(0, R) ∩ [f ≤ r])
where T, R > 0 and r ∈ R.

Proof. Let us fix x, y ∈ dom f and T > 0. Then for almost all t ∈ [0, T ], there exist p(χ x (t)) ∈ ∂f (χ x (t)) and q(χ y (t)) ∈ ∂f (χ y (t)) such that

d dt ||χ x (t) -χ y (t)|| 2 = 2 χ x (t) -χ y (t), χx (t) -χy (t) = -2 χ x (t) -χ y (t), p(χ x (t)) -q(χ y (t)) .
It follows by ( 18) that

d dt ||χ x (t) -χ y (t)|| 2 ≤ 2α||χ x (t) -χ y (t)|| 2 ,
which implies (using Grönwall's lemma) that for all 0 ≤ t ≤ T we have

||χ x (t) -χ y (t)|| 2 ≤ exp(2αT )||x -y|| 2 . ( 21 
)
For any 0 ≤ t ≤ s ≤ T, using Cauchy-Schwartz inequality and Theorem 13 we deduce that

||χ x (s) -χ x (t)|| ≤ s t || χx (τ )||dτ ≤ √ s -t t s || χx (τ )|| 2 dτ ≤ √ s -t f (x). (22) 
The result follows by combining ( 21) and [START_REF] Evans | Motion of level sets by mean curvature. III[END_REF].

Let us introduce the notions of a piecewise absolutely continuous curve and of a piecewise subgradient curve. This latter notion, due to its robustness, will play a central role in our study. [START_REF] Dontchev | Aubin criterion for metric regularity[END_REF] if there exists a countable partition of [0, T ] into (nontrivial) intervals I k such that:

(Piecewise subgradient curve) Let T ∈ (0, +∞]. A curve γ : [0, T ) → H is called a piecewise subgradient curve for
-the restriction γ| I k of γ to each interval I k is a subgradient curve ; -for each disjoint pair of intervals I k , I l , the intervals f (γ(I k )) and f (γ(I l )) have at most one point in common.

Note that piecewise subgradient curves are piecewise absolutely continuous. Observe also that subgradient curves satisfy the above definition in a trivial way.

Characterizations of the K L-inequality

In this section we state and prove one of the main results of this work. Let f : H → R ∪ {+∞} and x ∈ [f = 0] be a critical point. Throughout this section the following assumptions will be used:

-There exist r, ǭ > 0 such that

x ∈ B(x, ǭ) ∩ [0 < f ≤ r] =⇒ 0 / ∈ ∂f (x) (0 is a locally upper isolated critical value). ( 23 
) -There exist r, ǭ > 0 such that B(x, ǭ) ∩ [f ≤ r] is (norm) compact (local sublevel compactness). (24) 
Remark 16.

(i) The first condition can be seen as a Sard-type condition.

(ii) Assumption ( 24) is always satisfied in finite-dimensional spaces, but is also satisfied in several interesting cases involving infinite-dimensional spaces. Here are two elementary examples.

(ii) 1 The (convex) function f : ℓ 2 (N) → R defined by

f (x) = n≥1 n 2 x 2 i
has compact lower level sets.

(ii) 2 Let g : R → R ∪ {+∞} be a proper lower semicontinuous semiconvex function and let Φ : L 2 (Ω) → R ∪ {+∞} be as follows ( [START_REF] Brézis | Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to nonlinear functional analysis[END_REF])

Φ(x) = 1 2 Ω ||∇x|| 2 + Ω g(x) if x ∈ H 1 (Ω) +∞ otherwise.
The above function is a lower semicontinuous semiconvex function and the sets of the form

[Φ ≤ r] ∩ B(x, R) are relatively compact in L 2 (Ω) (use the compact embedding theorem of H 1 (Ω) ֒→ L 2 (Ω)).
As shown in Theorem 18, Kurdyka-Lojasiewicz inequality can be characterized in terms of boundedness of the length of "worst (piecewise absolutely continuous) curves", that is those defined by the points of less steepest descent.

Definition 17 (Talweg/Valley). Let x ∈ [f = 0] be a critical point of f and assume that [START_REF] Fenchel | Convex Cones, Sets and Functions[END_REF] holds for some r, ǭ > 0. Let D be any closed bounded set that contains

B(x, ǭ) ∩ [0 < f ≤ r]. For any R > 1 the R-valley V R (•) of f around x is defined as follows: V R (r) = x ∈ [f = r] ∩ D : ||∂f (x)|| -≤ R inf y∈[f =r]∩D ||∂f (y)|| -, for all r ∈ (0, r]. (25) 
A selection θ : (0, r] → H of V R , i.e. a curve such that θ(r) ∈ V R (r), ∀r ∈ (0, r], is called an R-talweg or simply a talweg.

We are ready to state the main result of this work.

Theorem 18 (Subgradient inequality -local characterization). Let f : H → R ∪ {+∞} be a lower semicontinuous semiconvex function and x ∈ [f = 0] be a critical point. Assume that there exist ǭ, r > 0 such that (23) and (24) hold. Then, the following statements are equivalent:

(i) [Kurdyka-Lojasiewicz inequality] There exist r 0 ∈ (0, r), ǫ ∈ (0, ǭ) and ϕ ∈ K(0, r 0 ) such that ||∂(ϕ • f )(x)|| -≥ 1, for all x ∈ B(x, ǫ) ∩ [0 < f ≤ r 0 ]. ( 26 
)
(ii) [Length boundedness of subgradient curves] There exist r 0 ∈ (0, r), ǫ ∈ (0, ǭ) and a strictly increasing continuous function σ : [0, r 0 ] → [0, +∞) with σ(0) = 0 such that for all subgradient curves χ x of (20

) satisfying χ x ([0, T )) ⊂ B(x, ǫ) ∩ [0 < f ≤ r 0 ] (T ∈ (0, +∞]) we have T 0 || χx (t)||dt ≤ σ(f (x)) -σ(f (χ x (T ))).
(iii) [Piecewise subgradient curves have finite length] There exist r 0 ∈ (0, r), ǫ ∈ (0, ǭ) and M > 0 such that for all piecewise subgradient curves γ : [0, T ) → H of (20

) satisfying γ([0, T )) ⊂ B(x, ǫ) ∩ [0 < f ≤ r 0 ] (T ∈ (0, +∞]) we have length[γ] := T 0 || γ(τ )||dτ < M.
(iv) [Talwegs of finite length] For every R > 1, there exist r 0 ∈ (0, r), ǫ ∈ (0, ǭ), a closed bounded subset D containing B(x, ǫ) ∩ [0 < f ≤ r 0 ] and a piecewise absolutely continuous curve θ : (0, r 0 ] → H of finite length which is a selection of the valley V R (r), that is,

θ(r) ∈ V R (r)
, for all r ∈ (0, r 0 ].

(v) [Integrability condition]

There exist r 0 ∈ (0, r) and ǫ ∈ (0, ǭ) such that the function

u(r) = 1 inf x∈ B(x,ǫ)∩[f =r] ||∂f (x)|| - , r ∈ (0, r 0 ]
is finite-valued and belongs to L 1 (0, r 0 ).

Remark 19.

(i) As it appears clearly in the proof, statement (iv) can be replaced by (iv ′ ) "There exist R > 1, r 0 ∈ (0, r), ǫ ∈ (0, ǭ), a closed bounded subset D containing B(x, ǫ) ∩ [0 < f ≤ r 0 ] and a piecewise absolutely continuous curve θ : (0, r 0 ] → H of finite length which is a selection of the valley V R (r), that is, θ(r) ∈ V R (r), for all r ∈ (0, r 0 ] ′′ .

(ii) The compactness assumption ( 24) is only used in the proofs of (iii) ⇒ (ii) and (ii) ⇒ (iv).

Hence if this assumption is removed, we still have:

(iv) =⇒ (iv ′ ) =⇒ (v) ⇐⇒ (i) =⇒ (ii) =⇒ (iii).
(iii) Note that (i) implies condition [START_REF] Fenchel | Convex Cones, Sets and Functions[END_REF]. This follows immediately from the chain rule (see Annex, Lemma 43).

Proof of Theorem 18. [(i)⇒(ii)] Let ǫ, r 0 , ϕ be as in (i) such that (26) holds. Let further χ x be a subgradient curve of (20

) for x ∈ [0 < f ≤ r 0 ] and assume that χ x ([0, T )) ⊂ B(x, ǫ) ∩ [0 < f ≤ r 0 ] for some T > 0.
Let us first assume that x ∈ dom ∂f . Since ϕ is C 1 on (0, r 0 ), by Theorem 13(v) and Lemma 43 (Annex) we deduce that the curve t → ϕ(f (χ x (t)) is absolutely continuous with derivative

d dt (ϕ • f • χ x )(t) = -ϕ ′ (f (χ x (t))|| χx (t)|| 2 a.e. on (0, T ).
Integrating both terms on the interval (0, T ) and recalling [START_REF] Haraux | A hyperbolic variant of Simon's convergence theorem. Evolution equations and their applications in physical and life sciences[END_REF],

χ x (0) = x we get ϕ(f (x)) -ϕ(f (χ x (T ))) = - T 0 d dt (ϕ • f • χ x )(t)dt = T 0 ϕ ′ (f (χ x (t))|| χx (t)|| 2 dt ≥ T 0 || χx (t)||dt.
Thus (ii) holds true for σ := ϕ and for all subgradient curves starting from points in dom ∂f.

Let now x ∈ dom f dom ∂f and fix any δ ∈ (0, T ). Since χ x ([δ, T ]) ⊂ dom ∂f we deduce from the above that

T δ || χx (t)||dt ≤ σ(f (χ x (δ)) -σ(f (χ x (T ))).
Thus the result follows by taking δ ց 0 + and using the continuity of the mapping t -→ f (χ x (t)) at 0 (Theorem 13(ii)).

[(ii)⇒(iii)] Let γ be a piecewise subgradient curve as in (iii) and let I k be the associated partition of [0, T ] (cf. Definition 15). Let {a k } and {b k } be two sequences of real numbers such that int

I k = (a k , b k ). Since the restriction γ| I k of γ onto I k is a subgradient curve, applying (ii) on (a k , b k ) we get length [γ| I k ] ≤ σ(f (γ(a k ))) -σ(f (γ(b k ))).
Let m be an integer and I k 1 , . . . , I km a finite subfamily of the partition. We may assume that these intervals are ordered as follows 0

≤ a k 1 ≤ b k 1 ≤ • • • ≤ a km ≤ b km . Hence m 1 [σ(f (γ(a k i ))) -σ(f (γ(b k i )))] ≤ σ(f (γ(a k 1 ))) ≤ σ(r 0 ).
Thus the family {σ(f (γ(a k )))σ(f (γ(b k )))} is summable, hence using the definition of Bochner integral (see [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF])

length [γ] = k∈N length [γ| I k ] ≤ σ(r 0 ).
[(iii)⇒(ii)] Let ǫ, r 0 be as in (iii), pick any 0 ≤ r ′ < r ≤ r 0 and denote by Γ r ′ ,r the (nonempty) set of piecewise subgradient curves γ : [0, T ) → H (where T ∈ (0, +∞]) such that

γ([0, T )) ⊂ B(x, ǫ) ∩ [r ′ < f ≤ r].
Note that, by Theorem 13(iv) and Proposition 41(iii), T = +∞ is possible only when r ′ = 0. Set further ψ(r ′ , r) := sup γ∈Γ r ′ ,r length[γ] and σ(r) := ψ(0, r).

Note that (iii) guarantees that ψ and σ have finite values. We can easily deduce from Definition 15 that ψ(0, r ′ ) + ψ(r ′ , r) = ψ(0, r).

Thus for each

x ∈ B(x, ǫ) ∩ [0 < f ≤ r 0 ] and T > 0 such that χ x ([0, T ]) ⊂ B(x, ǫ) ∩ [0 < f ≤ r 0 ], we have T 0 || χx (τ )||dτ + σ(f (χ x (T )) ≤ σ(f (x)). ( 28 
)
Since the function σ is nonnegative and increasing it can be extended continuously at 0 by setting σ(0) = lim t↓0 σ(t) ≥ 0. Since the property (28) remains valid if we replace σ(•) by σ(•)σ(0), there is no loss of generality to assume σ(0) = 0.

To conclude it suffices to establish the continuity of σ on (0, r 0 ]. Fix r in (0, r 0 ) and take a subgradient curve χ :

[0, T ) → H satisfying χ([0, T )) ⊂ B(x, ǫ) ∩ [f ≤ r 0 ], where T ∈ (0, +∞].
Set f (χ(0)) = r and lim t→T f (χ(t)) = r ′ and assume that r ≤ r ′ ≤ r ≤ r 0 .

From Theorem 13(iv) and Proposition 41(iii) (Annex), we deduce that T < +∞ so that

χ([0, T ]) ⊂ B(x, ǫ) ∩ [r ′ ≤ f ≤ r].
Using assumption (23) together with Theorem 13 (i),(v), we deduce that the absolutely continuous function f

• χ : [0, T ] → [r ′ , r] is invertible and d dρ [f • χ] -1 (ρ) = -1 || χ([f • χ] -1 (ρ)|| 2 ≥ -1 inf x∈ B(x,ǫ)∩[r≤f ≤r 0 ] ||∂f (x)|| 2 - := -K, (29) 
for almost all ρ ∈ (r, r ′ ). By Proposition 41(iii) (Annex) we get that K < +∞ and therefore the function

ρ -→ [f • χ] -1 (ρ) is Lipschitz continuous with constant K on [r ′ , r].
Using the Cauchy-Schwarz inequality and Theorem 13(iv) we obtain

length [χ] = T 0 || χ|| ≤ √ T T 0 || χ|| 2 = [f • χ] -1 (r) -[f • χ] -1 (r ′ ) T 0 || χ|| 2 ≤ K(r -r ′ ) √ r -r ′ = √ K(r -r ′ ).
This last inequality implies that each piecewise subgradient curve γ :

[0, T ) → H such that γ([0, T )) ⊂ B(x, ǫ) ∩ [r ′ ≤ f ≤ r] satisfies length [γ] ≤ √ K(r -r ′ ),
thus using [START_REF] Huang | Gradient inequalities. With applications to asymptotic behavior and stability of gradient-like systems[END_REF] we obtain σ(r)σ(r ′ ) ≤ √ K(rr ′ ), which yields the continuity of σ.

[(ii)⇒(iv)] Let us assume that (ii) holds true for ǫ and r 0 . In a first step we establish the existence of a closed bounded subset

D of [0 < f ≤ r 0 ] satisfying x ∈ D, t ≥ 0, f (χ x (t)) > 0 ⇒ χ x (t) ∈ D. (30) 
Let r 0 ≥ r 1 > 0 be such that σ(r 1 ) < ǫ/3 and let us set

D := {y ∈ B(x, ǫ) ∩ [0 < f ≤ r 1 ] : ∃x ∈ B(x, ǫ/3) ∩ [0 < f ≤ r 1 ], ∃t ≥ 0 such that χ x (t) = y}.
Let us first show that D enjoys property [START_REF] Lageman | Convergence of gradient-like dynamical systems and optimization algorithms[END_REF]. It suffices to establish that

x ∈ B(x, ǫ/3) ∩ [0 < f ≤ r 1 ], t ≥ 0, f (χ x (t)) > 0 ⇒ χ x (t) ∈ D.
To this end, fix

x ∈ B(x, ǫ/3) ∩ [0 < f ≤ r 1 ]
. By continuity of the flow, we observe that χ x (t) ∈ B(x, ǫ) for small t > 0 and for all t ≥ 0 such that χ

x ([0, t]) ⊂ B(x, ǫ) with f (χ x (t)) > 0, assumption (ii) yields ||χ x (t) -x|| ≤ ||χ x (t) -x|| + ||x -x|| ≤ t 0 || χx (τ )||dτ + ǫ/3 ≤ σ(r 1 ) + ǫ/3 ≤ 2ǫ/3. ( 31 
)
Thus D satisfies (30) and B(x

, ǫ/3) ∩ [f ≤ r 1 ] ⊂ D. Let us now prove that D is (relatively) closed in [0 < f ≤ r 1 ]. Let y k ∈ D be a sequence converging to y such that f (y) ∈ (0, r 1 ]. Then there exist sequences {x n } n ⊂ B(x, ǫ/3) ∩ [0 < f ≤ r 1 ] and {t n } n ⊂ R + such that χ xn (t n ) = y n .
Since f is lower semicontinuous, there exists n 0 ∈ N and η > 0 such that f (y n ) > η for all n ≥ n 0 . By Theorem 13(ii),(iv), [START_REF] Fenchel | Convex Cones, Sets and Functions[END_REF] and Proposition 41(iii) (Annex), we obtain for all n ≥ n 0

0 < t n inf z∈[η≤f ≤r 1 ]∩ B(x,ǫ) ||∂f (z)|| 2 -≤ tn 0 || χxn (t)|| 2 dt ≤ f (x n ) ≤ r 1 .
The above inequality shows that the sequence {t n } n is bounded. Using a standard compactness argument we therefore deduce that, up to an extraction, x n → x and t n → t for some x ∈ B(x, ǫ/3) ∩ [f ≤ r 1 ] and t ∈ R + . Theorem 14 (continuity of the semiflow) implies that y = χ x( t) and consequently that f (x) ≥ f (y) > 0, yielding that y ∈ D. This shows that D is (relatively) closed in [0 < f ≤ r 0 ]. Now we build a piecewise absolute continuous curve in the valley. According to the notation of Proposition 41 (Annex) we set

s D (r) := inf{||∂f (x)|| -: x ∈ D ∩ [f = r]}, so that for any R > 1 the R-valley around x (cf. Definition 17) is given by V R (r) := {x ∈ [f = r] ∩ D : ||∂f (x)|| -≤ R s D (r)}. If B(x, ǫ/3) ∩ [f = r] = ∅ for all 0 < r ≤ r 1 ,
there is nothing to prove. Otherwise, there exists 0 < r 2 ≤ r 1 and x 2 ∈ B(x, ǫ/3) ∩ [f = r 2 ] ⊂ D. From Theorem 13 and Proposition 41(iii) (Annex), we deduce that χ

x 2 (t) ∈ [f = f (χ x 2 (t))] ∩ D ∩ dom ∂f for all t ≥ 0 such that [f • χ x 2 ](t) > 0 and that the inverse function [f • χ x 2 ] -1 (•)
is defined on an interval containing (0, r 2 ). In other words the set [f = r] ∩ D ∩ dom ∂f is nonempty for each r ∈ (0, r 2 ), which in turn implies that the valley is nonempty for small positive values of r, i.e. V R (r) = ∅ for all r ∈ (0, r 2 ). With no loss of generality we assume that V R (r 2 ) = ∅.

Let further R ′ ∈ (1, R) and x ∈ [f = r 2 ] ∩ D be such that ||∂f (x)|| -≤ R ′ s D (r 2 ) (therefore, in particular, x ∈ V R (r 2 )). Take ρ ∈ (R ′ , R).
Since the mapping t -→ ||∂f (χ x (t)|| -is rightcontinuous (cf. Theorem 13(iii)), there exists t 0 > 0 such that ||∂f (χ x (t)|| -< ρs D (r 2 ) for all t ∈ (0, t 0 ). On the other hand t -→ s D (f (χ x (t)) is lower semicontinuous (cf. Proposition 41-Annex), hence there exists t 1 ∈ (0, t 0 ) such that R s D (f (χ x (t)) > ρ s D (r 2 ), for all t ∈ (0, t 2 ). Using the continuity of the mapping χ x (•) and the stability property [START_REF] Lageman | Convergence of gradient-like dynamical systems and optimization algorithms[END_REF], we obtain the existence of t 2 > 0 such that

χ x (t) ∈ V R (f (x(t)) for all t ∈ [0, t 2 ). ( 32 
)
By using arguments similar to those of [(iii)⇒(ii)] we define the following absolutely continuous curve:

(f • χ x (t 2 ), r 2 ] ∋ r -→ θ(r) = χ x ([f • χ x ] -1 (r)) ∈ D ∩ [f = r].
By Proposition 46 based on Zorn's Lemma (see Annex), we obtain a piecewise subgradient curve that we still denote by θ, defined on (0, r 2 ], satisfying θ(r) ∈ V R (r) for all r ∈ (0,

r 2 ]. Assumption (iii) now yields length [θ] < M < +∞,
completing the proof of the assertion.

[(iv)⇒(v)] Fix R > 1 and let ǫ, r 0 and θ : (0, r 0 ] → H be as in (iv). Applying Lemma 43 (Annex), we get

d dr (f • θ)(r) = 1 = θ(r), p(r)
a.e on (0, r 0 ], for all p(r) ∈ ∂f (θ(r)).

Using the Cauchy-Schwartz inequality together with the fact that

D ∩[f = r] ⊃ B(x, ǫ)∩[f = r], we obtain R || θ(r)|| ≥ u(r) = 1 inf x∈ B(x,ǫ)∩[f =r] ||∂f (x)|| - ,
for almost all r ∈ (0, r 0 ]. Since θ has finite length we deduce that u ∈ L 1 ((0, r 0 ).

[(v)⇒(i)] Let ǫ, r 0 and u be as in (v). From Proposition 41 (Annex) we deduce that u is finite-valued and upper semicontinuous. Applying Lemma 44 (Annex) we obtain a continuous function ū : (0, r 0 ] → (0, +∞) such that ū(r) ≥ u(r) for all r ∈ (0, r 0 ]. We set

ϕ(r) = r 0 ū(s)ds. It is directly seen that ϕ(0) = 0, ϕ ∈ C([0, r]) ∩ C 1 (0, r 0 ) and ϕ ′ (r) > 0 for all r ∈ (0, r 0 ). Let x ∈ B(x, ǫ)∩[f = r] and q ∈ ∂(ϕ•f )(x).
From Lemma 43 (Annex) we deduce p := q ϕ ′ (r) ∈ ∂f (x), and therefore

||q|| = ϕ ′ (r) || q ϕ ′ (r) || ≥ u(r) ||p|| ≥ 1.
The proof is complete.

Under a stronger compactness assumption Theorem 18 can be reformulated as follows.

Theorem 20 (Subgradient inequality -global characterization). Let f : H → R∪{+∞} be a lower semicontinuous semiconvex function. Assume that there exists r 0 > 0 such that

[f ≤ r 0 ] is compact and 0 / ∈ ∂f (x), ∀x ∈ [0 < f < r 0 ].
Then the following propositions are equivalent (i) [Kurdyka-Lojasiewicz inequality] There exists a ϕ ∈ K(0, r 0 ) such that

||∂(ϕ • f )(x)|| -≥ 1, for all x ∈ [0 < f < r 0 ].

(ii) [Length boundedness of subgradient curves]

There exists an increasing continuous function σ : [0, r 0 ) → [0, +∞) with σ(0) = 0 such that for all subgradient curves χ x (•) (where

x ∈ [0 < f < r 0 ]) we have T 0 || χx (t)|| dt ≤ σ(f (x)) -σ(f (χ x (T ))), whenever f (χ x (T )) > 0.
(iii) [Piecewise subgradient curves have bounded length] There exists M > 0 such that for all piecewise subgradient curves γ

: [0, T ) → H such that γ([0, T )) ⊂ [0 < f < r 0 ] we have length[γ] < M.
(iv) [Talwegs of finite length] For all R > 1, there exists a piecewise absolutely continuous curve (with countable pieces) θ : (0, r 0 ) → R n with finite length such that

θ(r) ∈ x ∈ [f = r] : ||∂f (x)|| -≤ R inf y∈[f =r]
||∂f (y)|| -, for all r ∈ (0, r 0 ).

(v) [Integrability condition]

The function u : (0, r 0 ) → [0, +∞] defined by

u(r) = 1 inf x∈[f =r] ||∂f (x)|| - , r ∈ (0, r 0 )
is finite-valued and belongs to L 1 (0, r 0 ).

(vi) [Lipschitz continuity of the sublevel mapping]

There exists ϕ ∈ K(0, r 0 ) such that

Dist([f ≤ r], [f ≤ s]) ≤ |ϕ(r) -ϕ(s)| for all r, s ∈ (0, r 0 ).
Proof The proof is similar to the proof of Theorem 18 and will be omitted. The equivalence between (i) and (vi) is a consequence of Corollary 4.

Application: convergence of the proximal algorithm

In this subsection we assume that the function f : H → R ∪ {+∞} is semiconvex (cf. Definition 10). Let us recall the definition of the proximal mapping (see [START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen[END_REF]Definition 1.22], for example).

Definition 21 (proximal mapping). Let λ ∈ (0, α -1 ). Then the proximal mapping prox λ :

H → H is defined by prox λ (x) := argmin f (y) + 1 2λ ||y -x|| 2 , ∀x ∈ H.
Remark 22. The fact that prox λ is well-defined and single-valued is a consequence of the semiconvex assumption: indeed this assumption implies that the auxiliary function appearing in the aforementioned definition is strictly convex and coercive (see [START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen[END_REF], [START_REF] Combettes | Proximal methods for cohypomonotone operators[END_REF] for instance).

Lemma 23 (Subgradient inequality and proximal mapping). Assume that f :

H → R ∪ {+∞} is a semiconvex function that satisfies (i) of Theorem 20. Let x ∈ [0 < f < r 0 ] be such that f (prox λ x) > 0. Then ||prox λ x -x|| ≤ ϕ(f (x)) -ϕ(f (prox λ x)). (33) 
Proof. Set x + = prox λ (x), r = f (x), and r + = f (x + ). It follows from the definition of x + that 0 < r + ≤ r < r 0 . In particular, for every u ∈ [f ≤ r + ] we have

||x + -x|| 2 ≤ ||u -x|| 2 + 2λ[f (u) -r + ] ≤ ||u -x|| 2 .
Therefore by Corollary 4 (Lipschitz continuity of the sublevel mapping) we obtain

||x + -x|| = dist (x, [f ≤ r + ]) ≤ Dist ([f ≤ r], [f ≤ r + ]) ≤ ϕ(r) -ϕ(r + ).
The proof is complete.

The above result has an important impact in the asymptotic analysis of the proximal algorithm (see forthcoming Theorem 24). Let us first recall that, given a sequence of positive parameters {λ k } ⊂ (0, α -1 ) and x ∈ H the proximal algorithm is defined as follows:

Y k+1 x = prox λ k Y k x , Y 0 x = x,
or in other words

{Y k+1 x } = argmin f (u) + 1 2λ k ||u -Y k x || 2 , Y 0 x = x.
If we assume in addition that inf f > -∞, then for any initial point x the sequence {f (Y k x )} is decreasing and converges to a real number L x .

Theorem 24 (strong convergence of the proximal algorithm). Let f : H → R ∪ {+∞} be a semiconvex function which is bounded from below. Let x ∈ dom f, {λ k } ⊂ (0, α -1 ) and

L x := lim k→∞ f (Y k
x ) and assume that there exists

k 0 ≥ 0 and ϕ ∈ K(0, f (Y k 0 x ) -L x ) such that ||∂(ϕ • [f (•) -L x ])(x)|| -≥ 1, for all x ∈ [L x < f ≤ f (Y k 0 x )]. ( 34 
)
Then the sequence {Y k x } converges strongly to Y ∞ x and

||Y ∞ x -Y k x || ≤ ϕ(f (Y k x ) -L x ), for all k ≥ k 0 . ( 35 
)
Proof Since the sequence {Y k x } k≥k 0 evolves in L x ≤ f < f (Y k 0 x ), Lemma 23 applies. This yields

q k=p ||Y k+1 x -Y k x || ≤ ϕ(f (Y q+1 x ) -L x ) -ϕ(f (Y p x ) -L x ),
for all integers k 0 ≤ p ≤ q. This implies that Y k x converges strongly to Y ∞ x and that inequality (35) holds.

Remark 25 (Step-size). "Surprisingly" enough the step-size sequence {λ k } does not appear explicitly in the estimate [START_REF] Mordukhovich | Complete characterization of openness, metric regularity and Lipschitzian properties of multifunctions[END_REF], but it is instead hidden in the sequence of values {f (Y k x )}. In practice the choice of the step-size parameters λ k is however crucial to obtain the convergence of {f (Y k )} to a critical value; standard choices are for example sequences satisfying

λ k = +∞ or λ k ∈ [η, α -1
) for all k ≥ 0 where η ∈ (0, α -1 ), see [START_REF] Combettes | Proximal methods for cohypomonotone operators[END_REF] for more details.

Convexity and K L-inequality

In this section, we assume that f : H → R ∪ {+∞} is a lower semicontinuous proper convex function such that inf f > -∞. Changing f in finf f , we may assume that inf f = 0. Let us also denote the set of minimizers of f by

C := argmin f = [f = 0].
When C is nonempty, we may assume with no loss of generality that 0 ∈ C.

In this convex setting Theorem 13 can be considerably reinforced; related results are gathered in Section 4.1. We also recall well-known facts ensuring that subgradient curves have finite length and provide a new result in that direction (see Theorem 28). In Section 4.2, we give some conditions which ensure that f satisfies the K L-inequality and we show that the conclusions of Theorem 20 can somehow be globalized. In section 4.3 we build a counterexample of a C 2 convex function in R 2 which does not satisfy the K L-inequality. This counterexample also reveals that the uniform boundedness of the lengths of subgradient curves is a strictly weaker condition than condition (iii) of Theorem 18, which justifies further the introduction of piecewise subgradient curves.

Lengths of subgradient curves for convex functions

The following lemma gathers well known complements to Theorem 13 when f is convex.

Lemma 26. Let f : H → R ∪ {+∞} be a lower semicontinuous proper convex function such that 0 ∈ C = [f = 0]. Let x 0 ∈ dom f. (i) If a ∈ C, then d dt ||χ x 0 (t) -a|| 2 ≤ -2f (χ x 0 (t)
) ≤ 0 a.e on (0, +∞).

and therefore t → ||χ x 0 (t) -a|| is nonincreasing.

(ii) The function t → f (χ x 0 (t)) is nonincreasing and converges to 0 = min f as t → +∞.

(iii) The function t ∈ [0, +∞) -→ ||∂f (χ x 0 (t)|| -is nonincreasing.

(iv) The function t → f (χ x 0 (t)) is convex and belongs to L 1 ([0, +∞)): for all T > 0,

T 0 f (χ x 0 (t))dt = 1 2 ||x 0 || 2 - 1 2 ||χ x 0 (T )|| 2 ≤ 1 2 ||x 0 || 2 . ( 36 
) (v) For all T > 0, T 0 || χx 0 (t)||dt ≤ +∞ 0 f (χ x 0 (t))dt 1/2 (log T ) 1/2 . ( 37 
)
Proof. The proofs of these classical properties can be found in [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF][START_REF] Bruck | Asymptotic convergence of nonlinear contraction semigroups in Hilbert space[END_REF].

R. Bruck established in [START_REF] Bruck | Asymptotic convergence of nonlinear contraction semigroups in Hilbert space[END_REF] that subgradient trajectories of convex functions are always weakly converging to a minimizer in C = argmin f whenever the latter is nonempty. However, as shown later on by J.-B. Baillon [START_REF] Baillon | Un exemple concernant le comportement asymptotique de la solution du problème du/dt + ∂ϕ(u) ∋ 0[END_REF], strong convergence does not hold in general.

To the best of our knowledge, the problem of the characterization of length boundedness of subgradient curves for convex functions is still open (see [11, Open problems, p.167]). In the present framework, the following result of H. Brézis [START_REF] Brézis | Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to nonlinear functional analysis[END_REF][START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] is of particular interest.

Theorem 27 (Uniform boundedness of trajectory lengths [START_REF] Brézis | Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to nonlinear functional analysis[END_REF]). Let f : H → R ∪ {+∞} be a lower semicontinuous proper convex function such that 0 ∈ C = argmin f = [f = 0]. We assume that C has nonempty interior. Then, for all x 0 ∈ dom f, χ x 0 (•) has finite length. More precisely, if B(0, ρ) ⊂ C, we have, for all T ≥ 0,

T 0 || χx 0 (t))||dt ≤ 1 2ρ (||x 0 || 2 -||χ x 0 (T )|| 2 ).
Proof. We assume that B(0, ρ) ⊂ C for some ρ > 0 and consider x 0 ∈ dom f \C (otherwise there is nothing to prove). Let t ≥ 0 such that χ x 0 (t) / ∈ C and χx 0 (t) exists. By convexity, we get -(χ x 0 (t)-ρu), χx 0 (t) ≥ f (χ x 0 (t))f (ρu) > 0 for all u in the unit sphere of H. As a consequenceχ x 0 (t), χx 0 (t) > ρ|| χx 0 (t)||. Therefore

T 0 || χx 0 (t)||dt ≤ 1 2ρ (||x 0 || 2 -||χ x 0 (T )|| 2
). The following result is an extension of Theorem 27 under the assumption that the vector subspace span(C) generated by C, has codimension 1 in H. We denote by ri(C) the relative interior of C in span(C).

Theorem 28. Let f : H → R ∪ {+∞} be a lower semicontinuous proper convex function such that 0 ∈ C = argmin f = [f = 0]. Assume that C generates a subspace of codimension 1 and that the relative interior ri(C) of C in span(C) is not empty. If x 0 ∈ dom f is such that χ x 0 (t) converges (strongly) to a ∈ ri(C) as t → +∞, then length [χ x 0 ] < +∞.

Proof. Let us denote by a the limit point of χ(t) := χ x 0 (t) as t goes to infinity. By assumption a belongs to ri(C), so that there exists δ > 0 such that B(a, δ) ∩ span(C) ⊂ C. Let T > 0 be such that χ(t) ∈ B(a, δ) for all t ≥ T . Write span(C) = {x ∈ H : x, x * = 0} with x * ∈ H. We claim that the function [T, +∞) ∋ t → h(t) = x * , χ(t) has a constant sign. Let us argue by contradiction and assume that there exist T < t 1 < t 2 such that h(t 1 ) < 0 < h(t 2 ). Hence there exists t 3 ∈ (t 1 , t 2 ) such that h(t 3 ) = 0. Since χ(t) ∈ B(a, δ), this implies χ(t 3 ) ∈ C and thus by the uniqueness theorem for subgradient curves (Theorem 13), we have χ(t) = χ(t 3 ) for all t ≥ t 3 which is a contradiction. Note also that if h(t 0 ) = 0 for some t 0 ≥ T , then χ has finite length. Indeed applying once more Theorem 13, we deduce that χ(t) = χ(t 0 ) for all t ≥ t 0 , hence

+∞ 0 || χ|| = t 0 0 || χ|| ≤ √ t 0 t 0 0 || χ|| 2 < +∞.
Assume that h is positive (the case h negative can be treated similarly) and define the following function

f (x) =    0 if x, x * < 0 and x ∈ B(a, δ) f (x) if x, x * ≥ 0 and x ∈ B(a, δ) +∞ otherwise.
One can easily check that f is proper, lower semicontinuous, convex and that argmin f has non empty interior. Note also that ∂ f (x) = ∂f (x) for all x ∈ B(a, δ) such that x, x * > 0. The conclusion follows from the previous result and the fact that χ(t)+∂ f (χ(t)) ∋ 0 a.e. on (T, +∞).

K L-inequality for convex functions

The following result shows that if f is convex, then the function ϕ of Theorem 18(i) can be assumed to be concave and defined on [0, ∞).

Theorem 29 (Subgradient inequality -convex case). Let f : H → R ∪ {+∞} be a lower semicontinuous proper convex function which is bounded from below (recall that inf f = 0). The following statements are equivalent:

(i) There exist r 0 > 0 and ϕ ∈ K(0, r 0 ) such that

||∂(ϕ • f )(x)|| -≥ 1, for all x ∈ [0 < f ≤ r 0 ].
(ii) There exists a concave function ψ ∈ K(0, ∞) such that

||∂(ψ • f )(x)|| -≥ 1, for all x / ∈ [f = 0]. (38) 
Proof. The implication (ii)=⇒(i) is obvious. To prove (i)=⇒(ii) let us first establish that the function r ∈ (0, +∞)

-→ u(r) = 1 inf x∈[f =r] ||∂f (x)|| -
is finite-valued and nonincreasing. Let 0 < r 2 < r 1 and let us show that u(r 2 ) ≥ u(r 1 ). To this end we may assume with no loss of generality that u(r 1 ) > 0 (and therefore that [f = r 1 ]∩dom ∂f is nonempty). Take ǫ > 0 and let x 1 ∈ [f = r 1 ] and p 1 ∈ ∂f (x 1 ) such that u(r) ≤ 1 ||p 1 || + ǫ. Since the continuous function t → f (χ x 1 (t)) tends to inff = 0 as t goes to infinity (see [START_REF] Lemaire | An Asymptotical Variational Principle Associated with the Steepest Descent Method for a Convex Function[END_REF] for instance), there exists t 2 > 0 such that f (χ x 1 (t 2 )) = r 2 . From Lemma 26 (iii), we obtain

1 ||∂f (χ x 1 (t 2 )|| - ≥ 1 ||p 1 || ≥ u(r 1 ) -ǫ,
which yields u(r 2 ) ≥ u(r 1 ). By (i) the function u is finite-valued on (0, r 0 ), thus, since u is nonincreasing, it is also finite-valued on (0, +∞). It is easy to see that [(i)⇒(v)] of Theorem 18 holds without the compactness assumption (24) (see Remark 19). It follows that u ∈ L 1 (0, r 0 ) and by Lemma 44 (Annex) that there exists a decreasing continuous function ũ ∈ L 1 (0, r 0 ) such that ũ ≥ u. Reproducing the proof of (v) ⇒ (i) of Theorem 18 we obtain a strictly increasing, concave, C 1 function ψ(r) := r 0 ũ(s)ds for which [START_REF] Nistri | On the properties of solutions to a differential inclusion associated with a nonsmooth constrained optimization problem[END_REF] holds for all x ∈ [0 < f < r 0 ]. Fix r ∈ (0, r 0 ) and take ψ as above. Applying [START_REF] Nistri | On the properties of solutions to a differential inclusion associated with a nonsmooth constrained optimization problem[END_REF] and using the fact that u(r) is decreasing we obtain

1 ≤ ψ ′ (r)u(r) -1 ≤ ψ ′ (r)u(r) -1 ≤ ψ ′ (r)||p||,
for all p ∈ ∂f (x), x ∈ [r ≤ f ] and r ∈ (r, +∞) such that u(r) > 0. This shows that the function Ψ : R + → R + defined by

Ψ(r) := ψ(r) if r ≤ r, ψ(r) + ψ ′ (r)(r -r) otherwise.
satisfies the required properties.

A natural question arises: when does a convex function f satisfy the K L-inequality? In finitedimensions a quick positive answer can be given whenever f belongs to an o-minimal structure (convexity then becomes superflous). The following result gives an alternative criterion when f is not extremely "flat" around its set of minimizers. More precisely, we assume the following growth condition: 

        
) 39 
Theorem 30 (growth assumptions and Kurdyka-Lojasiewicz inequality). Let f : H → R ∪ {+∞} be a lower semicontinuous proper convex function satisfying [START_REF] Penot | Metric regularity, openness and Lipschitzian behaviour of multifunctions[END_REF] and let us assume 0 ∈ C := argmin f . Then the K L-inequality holds, i.e.

||∂(ϕ • f )(x)|| -≥ 1, for all x ∈ S \ argmin f, with ϕ(r) = r 0 m -1 (s) s ds.
Proof. Let x ∈ S ∩ dom ∂f and a be the projection of x onto the convex subset C = argmin f . Using the convex inequality we have

f (x) -f (a) ≤ ∂ 0 f (x), x -a ≤ dist (0, ∂f (x)) dist (x, C) ≤ dist (0, ∂f (x)) m -1 (f (x) -f (a)).
Using the chain rule (see Lemma 43) an the fact that f (a) = 0, we obtain dist (0, ∂(ϕ•f )(x)) ≥ 1 where ϕ is as above (note that ϕ ∈ K(0, ρ)).

Remark 31. Assume that H is finite-dimensional, and let S be a compact convex subset of H which satisfies S ∩ C = ∅. Then there exists a convex continuous increasing function m : R + → R + with m(0) = 0 such that f (x) ≥ m(dist(x, C)) for all x ∈ S.

[Sketch of the proof . With no loss of generality we assume that 0 ∈ S ∩ C. Using the Moreau-Yosida regularization (see [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] for instance), we obtain the existence of a finite-valued convex continuous function g : H → R such that f ≥ g and argmin f = argmin g. Set α = max{dist (x, C) : x ∈ S} and m 0 (s) = min{g(x) : x ∈ S, dist (x, C) ≥ s} ∈ R + for all s ∈ [0, α]. Let 0 ≤ s 1 < s 2 ≤ α, and let x 2 ∈ S be such that dist (x 2 , C) ≥ s 2 and 0 < g(x 2 ) = m(s 2 ). Using the convexity of g and the fact that 0 ∈ argmin g ∩ S, we see that there exists λ ∈ (0, 1) such that g(λx 2 ) < g(x 2 ), λx 2 ∈ S (recall that S is convex and contains 0), and dist (λx Therefore any convex function which is minorized by the function x → exp(-1/dist(x, C) α ) in some neighborhood of C = argmin f satisfies the K L-inequality.

A smooth convex counterexample to the K L-inequality

In this section we construct a C 2 convex function on R 2 with compact level sets that fails to satisfy the K L-inequality. This counterexample is constructed as follows:

-we first note that any sequence of sublevel sets of a convex function that satisfies the K L-inequality must comply with a specific property ;

-we build a sequence T k of nested convex sets for which this property fails ; -we show that there exists a smooth convex function which admits T k as sublevel sets.

The last part relies on the use of support functions and on a result of Torralba [START_REF] Torralba | Convergence épigraphique et changements d'échelle en analyse variationnelle et optimisation[END_REF]. For any closed convex subset T of R n , we define its support function by σ T (x * ) = sup x∈T x, x * for all x * ∈ R n . Let f : R n → R be a convex function and x * ∈ R n . Fenchel has observed, see [START_REF] Fenchel | Convex Cones, Sets and Functions[END_REF], that the function λ → σ [f ≤λ] (x * ) is concave and nondecreasing. The following result asserts that this fact provides somehow a sufficient condition to rebuild a convex function starting from a countable family of nested convex sets.

Theorem 33 (Convex functions with prescribed level sets [START_REF] Torralba | Convergence épigraphique et changements d'échelle en analyse variationnelle et optimisation[END_REF]). Let {T k } be a nonincreasing sequence of convex compact subsets of R n such that int T k ⊃ T k+1 for all k ≥ 0. For every k > 0 we set:

K k = max ||x * ||=1 σ T k-1 (x * ) -σ T k (x * ) σ T k (x * ) -σ T k+1 (x * ) ∈ (0, +∞).
Then for every strictly decreasing sequence {λ k }, starting from λ 0 > 0 and satisfying

0 < K k (λ k -λ k+1 ) ≤ λ k-1 -λ k , for each k > 0,
there exists a continuous convex function f such that

T k = [f ≤ λ k ],
for every k ∈ N and being maximal with this property.

Remark 34.

(i) If {λ k } is as in the above theorem and x * ∈ R n \{0}, we have

λ k -λ k+1 ≤ λ 0 -λ 1 σ T 0 (x * ) -σ T 1 (x * ) (σ T k (x * ) -σ T k+1 (x * )).
Since the sum (σ T k (x * )σ T k+1 (x * )) converges, so does the sum (λ kλ k+1 ), yielding the existence of the limit lim λ k . Since f is the greatest function admitting {T k } as prescribed sublevel sets, we obtain min f = lim λ k .

(ii

) Let k ≥ 0 and λ ∈ [λ k+1 , λ k ]. The function f satisfies further [f ≤ λ] = λ -λ k+1 λ k -λ k+1 T k + λ k -λ λ k -λ k+1 T k+1 , (40) 
see [START_REF] Torralba | Convergence épigraphique et changements d'échelle en analyse variationnelle et optimisation[END_REF]Remark 5.9].

The following lemma provides a decreasing sequence of convex compact subsets in R 2 which can not be a sequence of prescribed sublevel sets of a function satisfying the K L-inequality (see the conclusion part at the end of the proof of Theorem 36). Proof. We proceed by constructing the boundaries ∂T k of T k for each integer k. Let C 2,3 denote the circle of radius 1 and let us define recursively a sequence of closed convex curves C n,m for n ≥ 3 and 1 ≤ m ≤ n + 1; we assume that C n-1,n is the circle of radius R n > 0. Let {µ n } be a sequence in (0, 1) that will be chosen later in order to satisfy (iii). Then, for 1 ≤ m ≤ n, let us define C n,m to be the union of the segments:

-µ m n R n exp(2iπ( j n )), µ m n R n exp(2iπ( j+1 n ))
for 0 ≤ j ≤ m -1 (here i stands for the imaginary unit) and the circle-arc:

-µ m n R n exp(iθ) for 2π m n ≤ θ ≤ 2π.
In other words, C n,m consists of the first m edges of a regular convex n-gonon inscribed in a circle of radius µ m n R n and a circle-arc of the same radius to close the curve. We then set

R n+1 = µ n+1 n R n cos( π n )
and define C n,n+1 to be the circle of radius R n+1 . Figure 1 illustrates the curves C 4,5 and C 5,m for m = 1, . . . , 6. Ordering {(n, m) : n ≥ 3, 1 ≤ m ≤ n + 1} lexicographically we define succesively the convex subset T k to be the convex envelope of the set C n,m . By construction (i) and (ii) are satisfied. Item (iii) holds if lim R n > 0 which is equivalent to the fact that the infinite product Π +∞ n=3 µ n+1 n cos(π/n) does not converge to 0. This can be achieved by taking µ n = 1 -1/n 3 . Let r > 0 be the limit of {R n }. The intersection of the convex sets T n is the disk of radius r.

Take n ≥ 3. Considering the middle of the segment

µ n R n , µ n R n exp( 2iπ n ) in C n,1 and the point R n exp( iπ n ) ∈ C n-1,n , we obtain Dist(C n,1 , C n-1,n ) = R n (1 -µ n cos(π/n)). If 2 ≤ m ≤ n, considering the middle of µ m n R n exp( 2iπ(m -1) n , µ m n R n exp( 2iπm n ) in C n,m and the point µ m-1 n R n exp( iπ(2m-1) n ) ∈ C n,m-1 , we get Dist(C n,m , C n,m-1 ) = µ m-1 n R n (1 -µ n cos(π/n)). Finally considering the points µ n n R n ∈ C n,n and µ n+1 n cos(π/n)R n ∈ C n,n+1 , we obtain Dist(C n,n , C n,n+1 ) = µ n n R n (1 -µ n cos(π/n)). Thus Dist(C n,1 , C n-1,n ) + n+1 m=2 Dist(C n,m , C n,m-1 ) = n+1 m=1 µ m-1 n R n (1 -µ n cos π n ) ∼ nr π 2 2n 2 = π 2 r 2n .
Hence (iv) holds.

For θ ∈ R/2πZ, set n(θ) = (cos θ, sin θ) and τ (θ) = (-sin θ, cos θ). We say that a closed C 2 curve C in R 2 is convex if its curvature has constant sign. If moreover the curvature never vanishes, then there exists a C 1 parametrization c : R/2πZ → C of C, called parametrization of C by its normal, such that the unit tangent vector at c(θ) is τ (θ). In this case n(θ) is the outward normal to the convex envelope of C at c(θ). Moreover, c is C ∞ , whenever C is so. In this case, we denote by ρ c (θ) the curvature radius of c at c(θ) and we have

ċ(θ) = ρ c (θ)τ (θ).
Let us denote by T the convex envelope of C. Using the fact that n defines the outward normals to T , we get

c(θ), n(θ) = max x∈T x, n(θ) = σ T (n(θ)), ∀θ ∈ R/2πZ.

Theorem 36 (convex counterexample).

There exists a C 2 convex function f : R 2 → R such that min f = 0 which does not satisfy the K L-inequality and whose set of minimizers is compact with nonempty interior. More precisely, for each r > 0 and for each desingularization function

ϕ ∈ K(0, r) we have inf { ∇(ϕ • f )(x) : x ∈ [0 < f < r]} = 0.
Remark 37.

(i) It can be seen from the forthcoming proof that argmin f is the closed disk centered at 0 of radius r, and that f is actually C ∞ on the complement of the circle of radius r.

(ii) The fact that f is C 2 shows that K L-inequality is not related to the smoothness of f . Besides, it seems clear from the proof that a C k (k arbitrary) counterexample could be obtained.

(iii) Since argmin f has nonempty interior, Theorem 27 shows that the lengths of subgradient curves are uniformly bounded. Using the notation and the results of Theorem 20, we see that the function f shows that the uniform boundedness of the lengths of the subgradient curves (starting from a given level set [f = r 0 ]) does not yield the uniform boundedness of the lengths of the piecewise subgradient curves γ lying in [min f < f < r 0 ]}.

Proof of Theorem 36. Let M, N be topological finite-dimensional manifolds. In this proof, a mapping F :

M → N is said to be proper if for each compact subset K of N , F -1 (K) is a compact subset of M .
Smoothing the sequence T k . Let us consider a sequence of convex compact sets {T k } as in Lemma 35. Set C k = ∂T k and consider a positive sequence ǫ k such that

ǫ k < +∞ with ǫ k + ǫ k+1 < Dist(T k , T k+1 ) = Dist(C k , C k+1 ) for each integer k. The ǫ k -neighborhood of C k can be seen to be disjoint from the ǫ k ′ -neighborhood of C k ′ whenever k = k ′ . We can deform C k into a C ∞ convex closed curve C k whose curvature never vanishes, lying in the ǫ k -neighborhood of C k .
This smooth deformation can be achieved by letting C k evolve under the mean-curvature flow during a very short time, see [START_REF] Evans | Motion of level sets by mean curvature. III[END_REF] for the smoothing aspects and [START_REF] Gage | The heat equation shrinking convex plane curves[END_REF][START_REF] Zhu | Lectures on mean curvature flows[END_REF] for the positive curvature results. We set T k to be the closed convex envelope of C k . This process yields a decreasing sequence of compact convex sets { T k }, that satisfies the conditions of Lemma 35. We note that the circle of radius 1 has non-zero curvature and we set

C 0 = C 0 . Since Dist( T k , T k+1 ) ≥ Dist(T k , T k+1 ) -(ǫ k + ǫ k+1 ) and
ǫ k < +∞, condition (iv) holds. With no loss of generality we may therefore assume that for each k ≥ 0 the curve ∂T k is smooth and can be parametrized by its normal. Let K k be as in Theorem 33, let λ 0 and λ 1 be such that λ 0 > λ 1 . We define λ k recursively by

K k (λ k -λ k+1 ) = 1 2 (λ k-1 -λ k ). (41) 
Because of ( 41), Theorem 33 yields a continuous convex function f :

T 0 → R such that T k = [f ≤ λ k ].
Since f is the greatest function with this property, we deduce that min f = lim λ k and argmin f = ∩ k∈N T k .

Smoothing the function f on R n \ argmin f . We can easily extend f outside T 0 into a smooth convex function. Let us examine the restriction of f to T 0 . Since ∂T k can be parametrized by its normal, we denote by c k : R/2πZ → R 2 this parametrization. Let us fix k ∈ N. Let θ be in R/2πZ. Using Remark 34 (b), we obtain max

x∈[f ≤λ] x, n(θ) = λ -λ k+1 λ k -λ k+1 max x∈T k x, n(θ) + λ k -λ λ k -λ k+1 max x∈T k+1 x, n(θ) = λ -λ k+1 λ k -λ k+1 c k (θ), n(θ) + λ k -λ λ k -λ k+1 c k+1 (θ), n(θ) = λ -λ k+1 λ k -λ k+1 c k (θ) + λ k -λ λ k -λ k+1 c k+1 (θ), n (θ) . 
Using (40) once more we obtain

λ -λ k+1 λ k -λ k+1 c k (θ) + λ k -λ λ k -λ k+1 c k+1 (θ) ∈ [f ≤ λ]. (42) 
Since the above maximum is achieved in

[f = λ], it follows that f λ -λ k+1 λ k -λ k+1 c k (θ) + λ k -λ λ k -λ k+1 c k+1 (θ) = λ. (43) 
Let us define

G : R × R/2πZ → R 2 by G(λ, θ) = λ -λ k+1 λ k -λ k+1 c k (θ) + λ k -λ λ k -λ k+1 c k+1 (θ). The map G is clearly C ∞ . Since ∂G ∂λ = c k (θ)-c k+1 (θ) λ k -λ k+1 , we have ∂G ∂λ , n(θ) = c k (θ) -c k+1 (θ) λ k -λ k+1 , n(θ) = c k (θ), n(θ) -c k+1 (θ), n(θ) λ k -λ k+1 = max x∈T k x, n(θ) -max x∈T k+1 x, n(θ) λ k -λ k+1 > 0.
On the other hand

∂G ∂θ = λ -λ k+1 λ k -λ k+1 ρ c k (θ) + λ k -λ λ k -λ k+1 ρ c k+1 (θ) τ (θ). (44) Since ρ c k > 0 and ρ c k+1 > 0, G is a local diffeomorphism on (λ k+1 -δ, λ k + δ) × R/2πZ
for any δ > 0 sufficiently small. In view of (42), we have [START_REF] Lee | Introduction to smooth manifolds[END_REF]Proposition 2.19]). By [START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen[END_REF], this implies that the restriction of

G(λ, θ) ∈ [λ k+1 ≤ f ≤ λ k ] for λ k+1 ≤ λ ≤ λ k and G(λ, θ) ∈ [λ k+1 < f < λ k ] for λ k+1 < λ < λ k . Since the map G : [λ k+1 , λ k ] × R/2πZ → [λ k+1 ≤ f ≤ λ k ] defined by G(λ, θ) = G(λ, θ) is proper, G is a covering map from [λ k+1 , λ k ] × R/2πZ to [λ k+1 ≤ f ≤ λ k ]. The set [λ k+1 ≤ f ≤ λ k ] is connected, thus G is onto. Using (42) and G(λ k , θ) = c k (θ), one sees that (λ k , θ) is the only antecedent of c k (θ) by G and, since [λ k+1 , λ k ] × R/2πZ is connected, G is injective. Thus G is a C ∞ diffeomorphism (see
f to [λ k+1 ≤ f ≤ λ k ] is C ∞ . Using (42), we know that the level line [f = λ] (for λ k+1 ≤ λ ≤ λ k ) is parametrized by G(λ, θ) for θ ∈ R/2πZ; if c λ denotes this parametrization, then c k = c λ k . Besides, by (44) 
, c λ is a parametrization by the normal and ρ c λ is a convex combination of ρ c k and ρ c k+1 , hence ρ c λ > 0.

Let us compute ∇f at c λ (θ). Equation ( 42) yields 1 = ∇f (G(λ, θ)), ∂G ∂λ (λ, θ) . Besides we also know that the normal to [f = λ] at c λ (θ) is n(θ). Since the gradient ∇f (G(λ, θ)) and the normal n(θ) are linearly dependent, we obtain

∇f (c λ (θ)) = λ k -λ k+1 c λ k (θ) -c λ k+1 (θ), n(θ) n(θ). (45) 
Note that this expression does not depend on λ

∈ [λ k+1 -λ k ].
Before going further let us observe/recall two facts.

-First using the aforementioned result of Fenchel [START_REF] Fenchel | Convex Cones, Sets and Functions[END_REF], we deduce from the convexity of f that the function

λ → c λ (θ), n(θ) = σ [f ≤λ] (n(θ)) is concave and increasing. (46) 
-Let λ and λ ′ be such that λ k+1 ≤ λ ≤ λ ′ ≤ λ k . We have :

c λ (θ) = λ -λ k+1 λ ′ -λ k+1 c λ ′ (θ) + λ ′ -λ λ ′ -λ k+1 c λ k+1 (θ), (47) 
c λ ′ (θ) = λ ′ -λ λ k -λ c λ k (θ) + λ k -λ ′ λ k -λ c λ (θ). ( 48 
) (Smoothing f around [f = λ k ].)
We have seen that the function f is C ∞ on the complement of the union of the level lines [f = λ k ] for k ∈ N. In order to go further we need to modify

f around each [f = λ k ].
Consider a positive sequence {ǫ k } such that i ǫ i < +∞ and

ǫ k + ǫ k+1 < Dist(T k , T k+1 ) = Dist([f = λ k ], [f = λ k+1 ]
) for each integer k. Let us assume that there exists a sequence f k : R 2 → R of convex functions such that:

P1 f 0 = f ; P2 f k = f k-1 outside an ǫ k -neighborhood of [f = λ k ] ; P3 f k is C ∞ in [f > λ k+1 ] ; P4 ∇f k is bounded in [f ≤ λ k ] by the maximum of ∇f in [λ k ≤ f ≤ λ k-1 ].
Let us choose k ≥ 1 and λ, λ ′ such that λ k+1 ≤ λ ≤ λ k ≤ λ ′ ≤ λ k-1 . Then by [START_REF] Torralba | Convergence épigraphique et changements d'échelle en analyse variationnelle et optimisation[END_REF] and (45) we have:

∇f (c λ (θ)) = λ k -λ k+1 c λ k (θ) -c λ k+1 (θ), n(θ) ≤ 1 2 λ k-1 -λ k c λ k-1 (θ) -c λ k (θ), n(θ) = 1 2 ∇f (c λ ′ (θ) .
Hence max

[λ k+1 ≤f ≤λ k ] ∇f ≤ 1 2 max [λ k ≤f ≤λ k-1 ] ∇f . ( 49 
)
Combining with (P4), the above implies that the sequence (f k ) k∈N is uniformly Lipschitz continuous. Applying Ascoli compactness theorem we obtain that f k converge to a continuous function f which is convex. From (P2) and (P3), we obtain successively that f has the same set of minimizers as

f , f is C ∞ outside argmin f , [ f = λ k ] is in the ǫ k -neighborhood of [f = λ k ].
Moreover (49) and (P4) imply that ∇ f (x) goes to zero as x approaches argmin f , hence f is globally C 1 . Note also, that the sequence of level sets [ f ≤ λ k ] satisfies the hypothesis (iv) of Lemma 35. As shown in the conclusion, f provides a C 1 counterexample to the K L-inequality.

Let us define such a sequence {f k } by induction. Assume that f k-1 is defined. In order to construct f k , it suffices to proceed in the

ǫ k -neighborhood of [f = λ k ]. Let ǫ > 0 such that [λ k -2ǫ ≤ f ≤ λ k + 2ǫ] is in the ǫ k -neighborhood of [f = λ k ]. Let us consider a C ∞ function µ -: [-2ǫ, 2ǫ] → R which satisfies the following properties: 1. µ -is nonincreasing, 2. µ ′′ -≥ 0, 3. µ -(λ) = -λ/ǫ on [-2ǫ, -ǫ/2], 4. µ -(λ) = 0 on [ǫ/2, 2ǫ].
Let us then define µ + (λ) := λ/ǫ + µ -(λ) and µ 0 = 1 -(µ -+ µ + ). The function µ + satisfies

1 ′ . µ + is nondecreasing, 2 ′ . µ ′′ + = µ ′′ -≥ 0, 3 ′ . µ + (λ) = 0 on [-2ǫ, -ǫ/2], 4 ′ . µ + (λ) = λ/ǫ on [ǫ/2, 2ǫ]. Set c -= c λ k -ǫ , c 0 = c λ k , c + = c λ k +ǫ and M -(θ) = c -(θ), n(θ) = max x∈[f ≤λ k -ǫ]
x, n(θ) ,

M 0 (θ) = c 0 (θ), n(θ) = max x∈[f ≤λ k ]
x, n(θ) ,

M + (θ) = c + (θ), n(θ) = max x∈[f ≤λ k +ǫ]
x, n(θ) .

For (λ, θ) ∈ [-2ǫ, 2ǫ] × R/2πZ, we define:

H(λ, θ) = µ -(λ)c -(θ) + µ 0 (λ)c 0 (θ) + µ + (λ)c + (θ).
Then H is a C ∞ map and for any λ ∈ [-ǫ, ǫ], we have µ -(λ), µ 0 (λ) and

µ + (λ) in [0, 1]. Since H(λ, θ) is a convex combination of points in [f ≤ λ k + ǫ], we deduce H(λ, θ) ∈ [f ≤ λ k + ǫ] and H(λ, θ) ∈ [f < λ k + ǫ] whenever λ < ǫ and µ + (λ) < 1. Since H(λ, θ), n(θ) = µ -(λ)M -(θ) + µ 0 (λ)M 0 (θ) + µ + (λ)M + (θ) ≥ M -(θ), we get H(λ, θ) ∈ [f ≥ λ k -ǫ], and H(λ, θ) ∈ [f > λ k -ǫ] whenever λ > ǫ, µ -(λ) < 1. It follows that ∂H ∂λ = µ ′ -(λ)c -(θ) + µ ′ 0 (λ)c 0 (θ) + µ ′ + (λ)c + (θ). Since µ ′ 0 = -µ ′ --µ ′ + , items 1 and 1 ′ entail ∂H ∂λ , n(θ) = µ ′ + (λ) c + (θ) -c 0 (θ), n(θ) -µ ′ -(λ) c 0 (θ) -c -(θ), n(θ) = µ ′ + (λ)(M + (θ) -M 0 (θ)) -µ ′ -(λ)(M 0 (θ) -M -(θ)) > 0.
On the other hand

∂H ∂θ = µ -(λ)ρ c -(θ) + µ 0 (λ)ρ c 0 (θ) + µ + (λ)ρ c + (θ) τ (θ), ( 50 
) so that ∂H ∂θ , n(θ) = 0 and ∂H ∂θ , τ (θ) > 0 for λ ∈] -ǫ ′ , ǫ ′ [ with ǫ ′ > ǫ. Thus H is a local diffeomorphism on ] -ǫ ′ , ǫ ′ [×R/2πZ. The map H : [-ǫ, ǫ] × R/2πZ → [λ k -ǫ ≤ f ≤ λ k + ǫ] defined by H(λ, θ) = H(λ, θ) is proper, therefore H is a covering map from [-ǫ, ǫ] × R/2πZ to [λ k -ǫ ≤ f ≤ λ k + ǫ]. Since [λ k -ǫ ≤ f ≤ λ k + ǫ] is connected, H is onto. Besides, since c + (θ) ∈ [f = λ + ǫ], (ǫ, θ) is the only antecedent of c + (θ) by H, H is injective by connectedness of [-ǫ, ǫ] × R/2πZ. H is therefore a C ∞ diffeomorphism from [-ǫ, ǫ] × R/2πZ into [λ k -ǫ ≤ f ≤ λ k + ǫ].
We then define

f k to be f k-1 outside of [λ k -ǫ ≤ f ≤ λ k + ǫ] and by f k (H(λ, θ)) = λ k + λ in [λ k -ǫ ≤ f ≤ λ k + ǫ]. When λ ∈ [λ k -ǫ, λ k -ǫ/2], Properties 3, 3 ′ and equation (47) yield H(λ -λ k , θ) = - λ -λ k ǫ c -(θ) + (1 + λ -λ k ǫ )c 0 (θ) = λ k -λ λ k -(λ k -ǫ) c -(θ) + λ -(λ -ǫ) λ k -(λ k -ǫ) c 0 (θ) = c λ (θ).
Thus

f k = f = f k-1 in [λ k -ǫ ≤ f ≤ λ k -ǫ/2
] and for similar reasons

f k = f k-1 in [λ k + ǫ/2 ≤ f ≤ λ k + ǫ]. The "gluing" of f k-1 and f k is therefore C ∞ along [f = λ k -ǫ] and [f = λ k + ǫ]. Hence, f k satisfies (P3). Let us compute ∇f k in [λ k -ǫ ≤ f ≤ λ k + ǫ]. By definition of f k , 1 = ∇f k (H(λ, θ)), ∂H ∂λ .
Besides H(λ-λ k , θ) is a parametrization of the level line [f k = λ] by its normal (see (50)), hence ∇f k (H(λ, θ)) = αn(θ) with α > 0. Using both formulae, we finally get

∇f k (H(λ, θ)) = 1 µ ′ + (λ) c + (θ) -c 0 (θ), n(θ) -µ ′ -(λ) c 0 (θ) -c -(θ), n(θ) n(θ).
From the definition of µ

+ , µ ′ + (λ) -µ ′ -(λ) = 1/ǫ. Besides, for λ ∈ [-ǫ, -ǫ/2] we have ǫ c 0 (θ) -c -(θ), n(θ) = ∇f (c λ+λ k (θ)) , while for λ ∈ [ǫ/2, ǫ] we get ǫ c + (θ) -c 0 (θ), n(θ) = ∇f (c λ+λ k (θ)) .
Hence by (46):

∇f k (H(λ, θ)) ≤ ∇f (c λ k +ǫ (θ)) .
(P4) is therefore satisfied.

The last assertion we need to establish is the convexity of f k . By construction, it suffices to prove that the Hessian

Q f k of f is nonnegative in [λ k -ǫ ≤ f ≤ λ k + ǫ]. Let us denote by Q H the Hessian of H (observe that Q H takes its values in R 2 ). For -ǫ ≤ λ ≤ ǫ, we have λ + λ k = f k (H(λ, θ)), thus 0 = Q f k (H(λ, θ))(DH(λ, θ)(•), DH(λ, θ)(•)) + ∇f k (H(λ, θ)), Q H (λ, θ)(•, •)
where DH denotes the differential map of H. To prove that Q f k is nonnegative, it suffices to prove that ∇f k (H(λ, θ)), Q H (λ, θ)(•, •) ≤ 0. We have

∂ 2 H ∂λ 2 = µ ′′ -(λ)c -(θ) + µ ′′ 0 (λ)c 0 (θ) + µ ′′ + (λ)c + (θ) = µ ′′ -(λ)(c -(θ) -c 0 (θ)) + µ ′′ + (λ)(c + (θ) -c 0 (θ)) = µ ′′ + (λ) (c + (θ) -c 0 (θ)) -(c 0 (θ) -c -(θ)) ,
where the last equality is due to item 2 ′ . On the other hand

∇f k (H(λ, θ)), ∂ 2 H ∂λ 2 = µ ′′ + (λ) ∇f k (H(λ, θ) c + (θ) -c 0 (θ), n(θ) -c 0 (θ) -c -(θ), n(θ)
which is nonpositive because of (46). Besides we have

∂ 2 H ∂λ∂θ = µ ′ -(λ)ρ c -(λ) + µ ′ 0 (λ)ρ c 0 (λ) + µ ′ + (λ)ρ c + (λ) τ (θ), thus ∇f k (H(λ, θ)), ∂ 2 H ∂λ∂θ = 0. Finally ∂ 2 H ∂θ 2 = µ -(λ)ρ c -(θ) + µ 0 (λ)ρ c 0 (θ) + µ + (λ)ρ c + (θ) (-n(θ)) + • • • τ (θ),
hence the quantity

∇f k (H(λ, θ)), ∂ 2 H ∂θ 2 = -µ -(λ)ρ c -(θ) + µ 0 (λ)ρ c 0 (θ) + µ + (λ)ρ c + (θ) ∇f k (H(λ, θ))
is negative since all the µ and ρ are nonnegative. Hence Q f k is nonnegative and the function f k is convex.

C 2 smoothing. For λ ∈ (min f , λ 0 ], define h(λ) = (λ -min f )(1 + max [λ≤ f ≤λ 0 ] Q f ) -1 . Since f is C ∞ in [min f < f ],
h is a continuous, positive, increasing function. Then there exists ψ ∈ C ∞ (R, R + ) which vanishes on (-∞, min f ], increases on (0, +∞) and for λ ∈ (min f , λ 0 ], 0 < ψ(λ) ≤ h(λ) (see Lemma 45). Let g be the primitive of ψ with g(min f ) = 0. The function g is a strictly increasing convex C ∞ -function on [min f , +∞). The function f = g • f is therefore a C 1 convex function. Moreover f is C ∞ at each point outside the boundary of argmin f . For x ∈ argmin f , we have

∇ f (x + h) -∇ f (x) h = g ′ ( f (x + h))∇ f (x + h) h = g ′ ( f (x) + o( h ))o(1) h = o( h ) h = o(1).
Thus Q f (x) = 0. On the other hand

Q f (x + h) ≤ g ′ ( f (x + h)) Q f (x + h) + g ′′ ( f (x + h)) ∇ f (x + h) 2 ≤ h( f (x + h)) Q f (x + h) + o(1) ≤ (f (x + h) -f (x)) + o(1) = o(1).
Thus Q f is continuous at x and thus f is C 2 .

Conclusion.

Let us prove finally that f does not satisfy the K L-inequality. Towards a contradiction, let us assume that there exist R > inf f = min f , a continuous function ϕ : [min f , R) → R + which satisfies ϕ(min f ) = 0, ϕ is C 1 on (min f , R) with ϕ ′ > 0, such that we have

∇(ϕ • f )(x) ≥ 1, ∀x ∈ [min f < f < R]. Applying Theorem 20 [(i)⇔(vi)], we obtain Dist([ f ≤ g(λ k )], [ f ≤ g(λ k+1 )]) ≤ ϕ(g(λ k )) -ϕ(g(λ k+1 )).
and, as a consequence,

+∞ k=0 Dist([ f ≤ λ k ], [ f ≤ λ k+1 ]) = +∞ k=0 Dist([ f ≤ g(λ k )], [ f ≤ g(λ k+1 )]) ≤ ϕ(g(λ 0
)). This contradicts the fact that Dist(T k , T k+1 ) = +∞.

Asymptotic equivalence for discrete and continuous dynamics

In this part we assume that f : H → R is a C 1,1 convex function, that is, continuously differentiable with gradient ∇f Lipschitz continuous. Let L be a Lipschitz constant of ∇f . Fix β > 0 and x ∈ R n and consider any sequence

{Y k x } satisfying    β ||∇f (Y k x )|| ||Y k+1 x -Y k x || ≤ f (Y k x ) -f (Y k+1 x ), k = 1, 2, . . . Y 0 x = x (51) 
This condition has been considered in [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF] for nonconvex functions defined in finite-dimensional spaces. It is easily seen that ( 51) is a descent sequence, that is,

f (Y k x ) ≥ f (Y k+1 x
), which implies in particular that {f (Y k x )} converges as k goes to infinity. Condition (51) is fulfilled by several explicit gradient-like methods, including trust region methods, line-search gradient methods and some Riemannian variants; see [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF] for examples and references.

The following theorem establishes connections between length boundedness properties of continuous gradient methods and length boundedness of discrete gradient iterations.

Theorem 38 (discrete vs continuous). Let f be a C 1,1 convex function with compact sublevel sets such that min f = 0. Let us denote by L a Lipschitz constant of ∇f . Then the following statements are equivalent: (i) [Kurdyka-Lojasiewicz inequality] There exist r 0 > 0 and ϕ ∈ K(0, r 0 ) such that

||∇(ϕ • f )(x)|| ≥ 1, for all x ∈ [0 < f ≤ r 0 ]. (52) 
(ii) [Length boundedness of piecewise gradient iterates] For all β > 0 and all R > 0, there exists L(β) > 0 such that for any sequence of gradient iterates of the form

Y 0 x 0 , Y 1 x 0 , . . . , Y k 0 x 0 , Y 0 x 1 , . . . Y k 1 x 1 , . . . with f (x 0 ) < R, f (Y 0 x i+1 ) = f (x i+1 ) ≤ f (Y k i x i ) and {Y j x i : j = 0, . . . , k i } satisfying (51) for all i ∈ N we have +∞ i=0 k i l=0 ||Y l+1 x i -Y l x i || ≤ L(β).
(iii) [Length boundedness of piecewise gradient curves] For every R > 0 there exists L > 0 such that length (γ) ≤ L, for all piecewise subgradient curves γ : [0, +∞) → H with f (γ(0)) < R.

Proof. Let us first prove that (i)⇒(ii). By Theorem 29[(i)⇒(ii)] (subgradient inequalityconvex case) we may assume that ϕ is concave, defined on (0, +∞) and ( 52) holds for all x ∈ [0 < f ]. We now proceed in the spirit of [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF]. Let β > 0, x ∈ [0 < f ] and let Y 0 x , . . . , Y k x be a (finite) sequence of gradient-type iterations that satisfies (51). For simplicity we set Y j x = Y j for all j ∈ {0, . . . , k}, so that

f (Y j ) -f (Y j+1 ) ≥ β ||∇f (Y j )|| ||Y j+1 -Y j ||.
Multiplying both parts with ϕ ′ (f (Y j )) and applying (i) we get

ϕ ′ (f (Y j ))[f (Y j ) -f (Y j+1 )] ≥ β ||Y j+1 -Y j ||. Since ϕ is concave we have ϕ(f (Y j+1 )) ≤ ϕ(f (Y j )) + ϕ ′ (f (Y j )) [f (Y j+1 ) -f (Y j )],
and therefore

ϕ(f (Y j )) -ϕ(f (Y j+1 )) ≥ β ||Y j+1 -Y j ||.
Adding the above inequalities for j = 0, . . . , k we obtain

ϕ(f (Y 0 )) -ϕ(f (Y k )) ≥ β k j=0 ||Y j+1 -Y j ||. (53) 
Let us now consider a sequence of the form {Y 0

x 0 , Y 1 x 0 , . . . , Y k 0 x 0 , Y 0 x 1 , . . . Y k 1
x 1 , . . .} as in (ii). Then applying (53) to each subsequence {Y j x i , j = 0, . . . , k i } we deduce

+∞ i=0 k i l=0 ||Y l+1 x i -Y l x i || < 1 β ϕ(f (Y 0 x 0 )) ≤ 1 β ϕ(R),
which proves the assertion. The equivalence (i)⇐⇒(iii) follows from Theorem 18 and Theorem 29. To complete the proof it suffices to establish that (ii) implies the assertion (iv) of Theorem 18 (valley selection of finite length) (in fact we prove (iv') with R = 2). So let us assume that (ii) holds and let r 0 > m. We aim to construct a piecewise absolutely continuous curve θ : (0, r 0 ] → R n of finite length that satisfies

θ(r) ∈ V 2 (r) := x ∈ [f = r] : ||∇f (x)|| ≤ 2 inf y∈[f =r] ||∇f (y)|| , ∀r ∈ (0, r 0 ].
We shall use the explicit gradient method described in Subsection 5.2. Let

x 0 ∈ V 2 (r 0 ) be such that ||∇f (x 0 )|| ≤ 3 2 inf y∈f -1 (r 0 ) ||∇f (y)||, and consider the C 1 curve [0, 1 3L ) ∋ t -→ x 0 (t) := x 0 -t∇f (x 0 ). Set t 0 = sup A 0 where A 0 := t ∈ (0, 1 3L ) : f • x 0 strictly decreasing on [0, t], x 0 (τ ) ∈ V 2 (f (x 0 (τ )) for τ ∈ [0, t]. . Clearly A 0 is nonempty and 0 < t 0 ≤ (3L) -1 . Set r 1 = f (x 0 (t 0 )) < r 0 and take x 1 ∈ V 2 (r 1 ) such that ||∇f (x 1 )|| ≤ 3 2 inf y∈[f =r 1 ] ||∇f (y)||.
Proceeding by induction we obtain a sequence {(t k , r k , x k )} where

{r k } ⊂ [0, r 0 ] is strictly decreasing, x n (t) := x n -t∇f (x n ) with f (x n ) = r n and ||∇f (x n )|| ≤ 3 2 inf y∈[f =rn] ||∇f (y)||.
Let us denote by r ∞ the limit of {r k } and let us assume, towards a contradiction, that r ∞ > 0. Set s(r) := inf

x∈f -1 (r) ||∂f (x)|| -and s ∞ = lim inf n→∞ s(r n ) = lim n→∞ s(r n )
(note that convexity of f guarantees that s(r 1 ) ≤ s(r 2 ) whenever r 1 ≤ r 2 ) and observe that r ∞ > 0 implies that s ∞ > 0 (use the compactness of the sublevel set

[f ≤ r 0 ]). Let n 0 ∈ N be such that s(r n ) ≤ 5 4 s ∞ for all n ≥ n 0 . For n ≥ n 0 and t ∈ [0, t n ), Proposition 48 (Annex) yields ||∇f (x n (t))|| ≤ (Lt + 1) ||∇f (x n )||, which implies ||∇f (x n (t))|| ≤ (Lt + 1) ||∇f (x n )|| ≤ 3 2 (Lt + 1)s(r n ) ≤ 15 8 (Lt + 1)s ∞ .
Similarly we can estimate the rate of decrease of f (x n (t)). Since

d dt f (x n (t)) = -∇f (x n ), ∇f (x n (t)) , the condition d dt f (x n (t)) < 0 is satisfied whenever ||∇f (x n )|| 2 > ||∇f (x n )|| ||∇f (x n (t)) -∇f (x n )|| But since ∇f is Lipschitz continuous, ∇f (x n (t))-∇f (x n ) ≤ Lt ∇f (x n ) . Thus the condition is satisfied if ∇f (x n ) 2 > Lt ∇f (x n ) 2
This last inequality is equivalent to t < L -1 , which implies in particular that for all n ∈ N such that s(r n ) ≤ 5 4 s ∞ , we have

t n ≥ (15L) -1 .
In this case Proposition 48 (Annex) yields

f (x n (t n )) ≤ f (x n ) + ( Lt 2 n 2 -t n )||∇f (x n )|| 2 ≤ r n + 9 4 ( Lt 2 n 2 -t n )s(r n ) 2 ≤ r n + 9 4 ( Lt 2 n 2 -t n )( 5 4 s ∞ ) 2 .
Thus in order to have f (x n (t)) < r ∞ , it suffices to require

t n - Lt 2 n 2 > 64 225 r n -r ∞ s ∞ 2 .
Using the fact that (3L) -1 ≥ t n ≥ (15L) -1 , we see that

t n - Lt 2 n 2 ≥ (15L) -1 -(18L) -1 = (90L) -1 .
Since (r ∞r n )/s ∞ tends to zero, we have that f (x n (t n )) < r ∞ for n sufficiently large, which is a contradiction.

We thus conclude that {r k } → r ∞ = 0 and (0, r 0 ] = ∪ n (r n+1 , r n ]. We define θ : (0, r 0 ] → H as follows: θ(r) := x n ([f • x n ] -1 (r)) whenever r ∈ (r n+1 , r n ]. Clearly θ defines a piecewise absolutely continuous curve. To see that θ has finite length it suffices to observe that the sequence {x n } n is a sequence of gradient iterates that satisfies (51). Using Remark 49 and the fact that the step-sizes in the construction of the x n 's do not exceed (3L) -1 we infer that

5 6 ||x n+1 -x n || ||∇f (x n )|| ≤ f (x n ) -f (x n+1 ).
Hence the curve θ has a finite length. This completes the proof.

Remark 39.

The assumption that f is convex has been used to apply Theorem 29 (cf. concavity of ϕ which seems to be crucial for the proof of implication (i)⇒(ii)) and to assert that f (Y k 0 ) → inf f . These are the reasons for which Theorem 38 is not stated for general semiconvex functions (in a local version). It would therefore be interesting to figure out under which type of conditions (other than convexity or o-minimality of f ) the function ϕ of (52) can be taken concave.

Annex

In this Annex section we give several technical results which are needed in the text.

Technical results

Proposition 40 (closed graph of the subdifferential). Let f : H → R ∪ {+∞} be a lower semicontinuous semiconvex function. Let {x k } and {p k } be two sequences in H such that p k ∈ ∂f (x k ), x k converges strongly to x and p k converges weakly to p. Then as k → +∞ we obtain

f (x k ) → f (x) p ∈ ∂f (x)
Proof. This is a standard property. For a proof (in the more general setting of primer-lowernice functions) we refer the reader to [START_REF] Marcellin | Evolution problems associated with primal lower nice functions[END_REF]. The proof of (i) and (iii) involve similar arguments.

Lemma 42 (strong slope). Let f be a proper lower semicontinuous semiconvex function.

Then for all x in H ||∂f (x)|| -= |∇f |(x).

Proof. Let x ∈ H and p = ∂ 0 f (x) the projection of 0 on ∂f (x). By [START_REF] De Giorgi | Problems of evolution in metric spaces and maximal decreasing curve[END_REF], for any y ∈ H, we have Taking the limsup as t ↓ 0 and using the continuity of the semiflow and Theorem 13(ii),(iii) we obtain the desired result. (ii) Let γ : (0, 1) → H be a C 1 curve. For all t ∈ (0, 1), we have

∂(f • γ)(t) ⊃ { γ(t), p(t) : p(t) ∈ ∂f (γ(t))}.
Proof For the proof see [START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen[END_REF] for example.

Lemma 44 (continuous integrable majorant). Let u : (0, r 0 ] → R + be an upper semicontinuous function such that u ∈ L 1 (0, r 0 ). Then there exists a continuous function w : (0, r 0 ] → R + such that w ≥ u and w ∈ L 1 (0, r 0 ). If moreover u is assumed to be nonincreasing, w can be chosen to be decreasing.

Proof With no loss of generality we assume r 0 = 1. Replacing if necessary u(•) by the function u(•) + 1 we may also assume that u ≥ 1. Let a k > 0 be a strictly decreasing sequence such that a 0 = 1 and (0, 1] = ∪ k∈N [a k+1 , a k ]. Let us assume that there exists a sequence of continuous functions w k : [a k+1 , a k ] → R such that w k ≥ u on [a k+1 , a k ] and a k a k+1 w k ≤ a k a k+1 u + 1 (k+1) 2 . To establish the existence of w, we proceed by induction on k. Fix k ≥ 1 and assume that w is defined on [a k , 1] with w ≥ u, w continuous and

1 a k w ≤ 1 a k u + k i=1 2 i 2 .
There is no loss of generality to assume w k (a k ) ≤ w(a k ) (the case w k (a k ) > w(a k ) can be treated analogously). Let us define 0 < ǫ k = w k (a k )(a ka k+1 ) (k + 1) 2 w(a k ) max [a k+1 ,a k ] w k < a ka k+1 , and let us consider the functions

λ k : [a k -ǫ k , a k ] → [1, w(a k ) w k (a k ) ]
defined by

λ k (r) = 1 ǫ k (a k -r) + (r -(a k -ǫ k )) w(a k ) w k (a k ) .
The function w can be now extended to [a k+1 , 1] by setting

w(r) =    w k (r), if r ∈ [a k+1 , a k -ǫ k ), λ k (r)w k (r), if r ∈ [a k -ǫ k , a k ] w(r), if r ∈ (a k , 1].
It is easily seen that the function w is continuous (by definition of λ k ), it satisfies w ≥ u on [a k+1 , a k ] (thus on (a k+1 , 1]) and moreover

1 a k+1 w = a k -ǫ k a k+1 w k + a k a k -ǫ k λ k w k + 1 a k w ≤ a k a k+1 u + 1 (k + 1) 2 + ǫ k w(a k ) w k (a k ) max [a k+1 ,a k ] w k + 1 a k u + k i=1 2 i 2 ., ≤ 1 a k+1 u + 2 (k + 1) 2 + k i=1 2 i 2 .
This proves the existence of a continuous function w that satisfies the required properties.

To complete the proof it suffices to prove the existence of such a sequence {w k }. To this end, fix k ∈ N * and set

u ǫ (r) = sup ρ∈[a k+1 ,a k ] {u(ρ) - ||r -ρ|| 2 2ǫ }.
It is easily seen that u ǫ is continuous, u(r) ≤ u ǫ (r) ≤ max ρ∈[a k+1 ,a k ] u := M k < +∞ and lim ǫ→0 u ǫ (r) = u(r) for all r ∈ [a k+1 , a k ] (see [START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen[END_REF], for example). Note that the upper semicontinuity of u on the compact set [a k+1 , a k ] guarantees that M k is finite. Applying the Lebesgue domination convergence theorem we conclude that u ǫ converges to u in the norm topology of L 1 (a k+1 , a k ). Thus there exists ǫ 0 > 0 such that

[a k+1 ,a k ] u ǫ 0 ≤ [a k+1 ,a k ] u + 1 (k + 1) 2 .
Thus the function w k := u ǫ 0 satisfies the requirements stated above. This completes the proof of the first part of the statement. The case where u is assumed decreasing, can be treated with similar (and occasionally simpler) arguments.

Lemma 45. Let h ∈ C 0 ((0, r 0 ], R * + ) be an increasing function, then there exists a function ψ ∈ C ∞ (R, R + ) such that ψ = 0 on R -, 0 < ψ(s) ≤ h(s) for all s ∈ (0, r 0 ), and ψ is increasing on (0, r 0 ).

Proof. Let us extend the definition of h by 0 on R -and h(r 0 ) for s > r 0 . Consider φ ∈ C ∞ (R, R + ) with [0, 1] as support and R φ = 1. Then we define ψ by ψ = φ * h; i.e. ψ(s) = This equivalence relation defines a partition of D into equivalence classes. By the axiom of choice we can pick one and only one element in each equivalence class and this defines a nonempty subset D ′ of D. By construction we have I α = ∪ (l,j)∈D ′ M l,j and M l,j ∩ M l ′ ,j ′ = ∅ for each (l, j) = (l ′ , j ′ ) in D ′ . Besides since each M l,j (for (l, j) ∈ D ′ ) has a nonempty interior, we see that D ′ is a countable set. This shows that (α, {M l,j , (l, j) ∈ D ′ }) is in Ω with in addition α ≥ α l for all l ∈ L. Applying Zorn's lemma to Ω, we obtain the existence of a maximal element (θ : I θ → R n , {I θ,j , j ∈ J θ }). Arguing by contradiction, we see immediately that I θ = (0, r 0 ].

Explicit gradient method

We recall the following useful result Lemma 47 (Descent lemma). Let f be a C 1,1 function (that is, ∇f is L-Lipschitz continuous). Then

f (y) ≤ f (x) + ∇f (x), y -x + L 2 ||y -x|| 2 .
Proof Set x(t) = x + t(yx) and notice that f (y)f (x) = The assertion follows easily.

Given x ∈ H, let us consider the following recursion rule

x + := X(t, x) = x -t∇f (x), t > 0.

(56)

Choosing a starting point x 0 in H, and λ k > 0 a sequence of step size, the explicit gradient method writes x k+1 = X(λ k , x k ).

A part of the convergence analysis of this method (and some of its variants) is based on the following elementary results.

Proposition 48. Let f be a C 1,1 function, x ∈ H, t ∈ [0, 2L -1 ) and x + be given by (56). Then Proof Assertion (i) follows directly from Lemma 47 while assertion (ii) is a consequence of the fact that ∇f is Lipschitz continuous on [x, x(t)] of constant L.

Remark 49. Condition (51) of Section 4.4 corresponds of course to the inequality (i) above.

-------------

Definition 15 .

 15 Let a, b ∈ [-∞, +∞] with a < b. (Piecewise absolutely continuous curve) A curve γ : (a, b) → H is said to be piecewise absolutely continuous if there exists a countable partition of (a, b) into intervals I k such that the restriction of γ to each I k is absolutely continuous. (Length of a curve) Let γ : (a, b) → H be a piecewise absolutely continuous curve. The length of γ is defined by length [γ] :=b a || γ(t)|| dt.

0 m - 1

 01   There exists m : [0, +∞) → [0, +∞) and S ⊂ H such that m is continuous, increasing, m(0) = 0, f ≥ m(dist(•, C)) on S ∩ dom f and ρ (r) r dr < +∞ (for some ρ > 0).(

2 , C) ≥ s 1 .

 21 This shows that the function m 0 is finite-valued increasing on [0, α] and satisfies m 0 (dist (x, C)) ≤ g(x) ≤ f (x) for any x ∈ S. Applying Lemma 45 (Annex) to m 0 , we obtain a smooth increasing finite-valued function m such that 0 < m(s) ≤ m 0 (s) for s ∈ [0, α] with m(0) = 0. The conclusion follows by extending m to an increasing continuous function on R + .] Example 32. Take 0 < α < 1. If m(r) = exp(-1/r α ) and m(0) = 0, then for 0 ≤ s ≤ ρ < 1 we have m -1 (s) = 1/(-logs) 1/α and ρ 0 m -1 (s) s ds < +∞.

Lemma 35 .

 35 There exists a decreasing sequence of compact subsets {T k } k in R 2 such that: (i) T 0 is the unit disk D := B(0, 1) ; (ii) T k+1 ⊂ int T k for every k ∈ N ; (iii) k∈N T k is the disk D r := B(0, r) for some r > 0 ; (iv) +∞ k=0 Dist(T k , T k+1 ) = +∞.

C 5, 6 C 4 , 5 C 5 , 1 Figure 1 :

 645511 Figure 1: The curves C 4,5 , C 5,1 to C 5,6

Proposition 41 (

 41 slope functions and semicontinuity). Let f : H → R ∪ {+∞} be a lower semicontinuous semiconvex function. (i) The extended-real-valued functionH ∋ x -→ ||∂f (x)|| -:= inf p∈∂f (x) ||p|| (slope at x) is lower semicontinuous. (ii) Take r 0 ∈ R and let D be a nonempty compact subset of [f ≤ r 0 ]. Then the function (-∞, r 0 ] ∋ r -→ s D (r) := inf x∈[f =r]∩D ||∂f (x)|| - (minimal slope of the r level-line)is lower semicontinuous.(iii) Assume that (23) and (24) hold for some r, ǭ > 0. If 0 < r 1 ≤ r 2 ≤ r, then there exists η r 1 ,r 2 > 0 such thatinf x∈[r 1 ≤f ≤r 2 ]∩ B(r,ǭ) ||∂f (x)|| -≥ η r 1 ,r 2 > 0.Proof. (ii) Take r ∈ (-∞, r 0 ] and let {r k } ⊂ (-∞, r 0 ] be a sequence such that r k → r and lim inf k s D (r k ) < +∞. Fix η > 0 and let (x k , p k ) ∈ graph ∂f be such that f(x k ) = r k , p k ∈ ∂f (x k ) and ||p k || < s D (r k )η.Using a standard compactness argument together with the fact that lim inf k s D (r k ) < +∞ we can assume, with no loss of generality, that x k converges (strongly) to x ∈ D and that p k converges weakly to p. Using Proposition 40, we obtain that (x, p) ∈ graph ∂f and f (x) = r. The conclusion follows from the (weak) lower semicontinuity of the norm. Indeed lim inf k→+∞ s D (r k )η ≥ lim inf k→+∞ ||p k || ≥ ||p|| ≥ s D (r).

  (f (x)f (y)) + ||y -x|| ≤ (-p, yx ||y -x|| + α||y -x|| 2 ) + ≤ (||p|| + α||y -x|| 2 ) + . By taking the limsup as y → x, we get |∇f |(x) ≤ ||p|| = ||∂f (x)|| -. To prove the opposite inequality, we consider the subgradient trajectory χ x . If x is a critical point of f, then 0 = ||∂f (x)|| -≥ |∇f |(x).Otherwise, χ x (t) = x for all t > 0. By Theorem 13(iv), we have(f (x)f (χ x (t))) + ||xχ x (t)|| ≥ 1 ||xχ x (t)|| t 0 ||∂f (χ x (τ ))|| 2 -dτ.

Lemma 43 (

 43 chain rules). Let f : H → R ∪ {+∞} be a extended-real-valued function. (i) Let ϕ : (0, 1) → R be a C 1 function. Then ∂(ϕ of )(x) = ϕ ′ (f (x))∂f (x), for all x ∈ [0 < f < 1].

1 0

 1 (t))dt = ∇f (x), yx + ∇f (x(t)) -∇f (x), yx dt.

(i) ( 1 -

 1 Lt 2 ) ||x + -x|| ||∇f (x)|| ≤ f (x)f (x + ) ; (ii) ||∇f (x + )|| ≤ (Lt + 1) ||∇f (x)||.

(Lt + 1)s ∞ ≤ 2s ∞ ⇐⇒ 0 ≤ t ≤ (15L) -1 .(54)

R φ(t)h(st)dt. It is then straightforward to verify that ψ satisfies the expected properties.
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Proposition 46 (Piecewise absolutely continuous selections). Let r 0 > 0 and V : (0, r 0 ] ⇉ H be a set-valued mapping with nonempty values. Assume that for each r ∈ (0, r 0 ] there exists ǫ r ∈ (0, r) and an absolutely continuous curve θ r : (rǫ r , r] → H such that θ r (s) ∈ V(s) for all s in (rǫ r , r].

Then there exist a countable partition {I n } n∈N of (0, r 0 ] into intervals I n of nonempty interior and a selection θ : (0, r 0 ] → R n of V such that θ is absolutely continuous on each I n .

Proof. Let Ω be the set of couples (α : I α ⊂ (0, r 0 ] → R n , {I α,j } j∈Jα ) where {I α,j } j∈Jα is a countable partition of I α into (disjoint) intervals I α,j , j ∈ J α with nonempty interior such that:

We define a partial order on Ω by

Note that (Ω, ) is nonempty partially ordered. Let us check that each totally ordered subset of Ω has an upper bound in Ω. To this end, let 

Observe that I α = ∪ (l,j)∈D M l,j and that each M l,j is an interval with nonempty interior.

Let us prove that for all (l, j), (l ′ , j ′ ) ∈ D, we have either M l ′ ,j ′ = M l,j or M l ′ ,j ′ ∩ M l,j = ∅. In order to establish this result, let us beforehand show that for all (l, j), (l ′ , j ′ ) in D such that I l,j ∩ I l ′ ,j ′ = ∅, we have M l,j = M l ′ ,j ′ . Indeed, since ω is totally ordered, we have for instance I l ′ ,j ′ ⊂ I l,j and so M l,j ⊂ M l ′ ,j ′ . Conversely, take (m, k) ∈ D such that I m,k ⊃ I l ′ ,j ′ . Since I m,k ∩ I l,j = ∅, we have either I m,k ⊂ I l,j or I m,k ⊃ I l,j , in any case we see (cf. definition (55)) that I m,k ⊂ M l,j and thus M l ′ ,j ′ ⊂ M l,j .

If M l,j ∩M l ′ ,j ′ = ∅, take r in the intersection, and observe that by definition there exist (m, k) and (m ′ , k ′ ) in D such that I m,k ⊃ I l,j with r ∈ I m,k and I m ′ ,k ′ ⊃ I l ′ ,j ′ with r ∈ I m ′ ,k ′ . Using the previous remark, we obtain that M m,k = M l,j and M m ′ ,k ′ = M l ′ ,j ′ . But since I m,k ∩ I m ′ ,k ′ = ∅, we also have M m,k = M m ′ ,k ′ and thus M l,j = M l ′ ,j ′ .

Let us define an equivalence relation ≃ on D by (l, j) ≃ (l ′ , j ′ ) ⇔ M l,j = M l ′ ,j ′ .