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Abstract

We present a study on buckling of colloidal particles, including ex-
perimental, theoretical and numerical developments. Oil-�lled thin shells
prepared by emulsion templating show buckling in mixtures of water and
ethanol, due to dissolution of the core in the external medium. This leads
to conformations with a single depression, either axisymmetric or polygo-
nal depending on the geometrical features of the shells. These conforma-
tions could be theoretically and/or numerically reproduced in a model of
homogeneous spherical thin shells with bending and stretching elasticity,
submitted to an isotropic external pressure.

Pacs : 46.70.De (Static buckling and instability), 82.70.Dd (Colloids), 89.75.Kd
(Patterns)

1 Introduction

Anisotropic colloidal particles made using spheres have been the subject of var-
ious studies in recent years. These types of colloids can be obtained in very
di�erent ways, for example either by deformation of spherical particles[1, 2, 3],
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or by forming clusters of them[4, 5, 6, 7]. Such objects are good candidates to
generate anisotropic colloidal crystals. Photonic bandgap (PBG) calculations
showed that such crystals should improve the expected performances (larger
bandgap, more convenient wavelengths)[4, 8, 9]. Colloids with a hollow interior
(spherical shells) are particularly interesting also for their mechanical properties,
which make them potentially important for a variety of applications, such as
drug delivery, catalysis and biotechnology, and when �lled with gas as contrast
agents for ultrasound or echographic imaging. Due to the relevant engineer-
ing situations as well as the biomechanics, the problem of the deformation of a
spherical shell under external constraints has been recently investigated, both
experimentally and numerically[12, 13, 14, 15, 16, 17, 18].

In this study, we present anisotropic colloids obtained by buckling of spheri-
cal shells. The buckling was induced by dissolving or evaporating the solvent
enclosed in the slightly porous shells. This causes a stress comparable to an
isotropic pressure on a spherical airproof shell[19]. After postbuckling, the col-
loidal shells show bowl-like conformations, either with axisymmetric or polyg-
onal symmetry. We observed them using both transmission optical microscopy
and transmission electron microscopy (TEM), and compared them with con�g-
urations obtained from Surface Evolver simulations, using a model of homoge-
neous elastic (bending and in-plane stretching) spherical shells submitted to an
isotropic external pressure.

2 Buckling under evaporation and in solution

2.1 Methods

Spherical colloidal shells were prepared following previous work by Zoldesi and
co-authors[20, 21]. They strongly mixed dimethyldiethoxysilane (DMDES) and
an aqueous solution of ammonia (NH3), providing a very monodisperse and
stable oil-in-water emulsion with droplets of micrometric size. The oil con-
sists of low molecular polydimethylsiloxane (PDMS) oligomers. By adding
tetraethoxysilane (TEOS), a solid shell forms at the surface of the droplets,
consisting mainly of PDMS with average oligomer length 4, crossed-linked with
hydrolyzed TEOS units. Since shown in ref [21], the shells are porous and then
allow small molecules to pass through. As the low molecular PDMS can be
dissolved in ethanol [22], adding ethanol (an equal volume in the present study)
to such an aqueous suspension of shells �lled with oil, leads to dissolution of the
encapsulated oil into the external medium. For thick enough shells ("capsules"
and spheres in the nomenclature of ref [21], i.e. shell thickness over 100 nm),
this leads to a suspension of solvent-�lled spherical particles. These particles
are then sedimented by centrifugation and redispersed in ethanol. They may be
dried afterwards and observed by electron microscopy, exhibiting shape modi-
�cations (�buckling under evaporation�) or not [20, 21], depending on the ratio
of their shell thickness to radius [19].
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Figure 1: Typical transmission optical microscopy images of particles from a
suspension of colloidal spheres �lled with oil, in a mixture of water and ethanol.
Three di�erent objects are displayed under three di�erent views; they all show
the same co�ee-bean buckled shape, with an elongated depression. Scale bar 4
µm.

Thinner shells, however, will already buckle in solution when ethanol is added.
Thin shells consist of much larger PDMS oil droplets coated with a very thin
solid organosilica layer. They were prepared using the same procedure as de-
scribed in ref.[20] for �microballoon� particles. In order to obtain bigger parti-
cles, we increased the concentration of DMDES and ammonia up to 5% v/v, and
the droplets were allowed to grow for three days before the encapsulation step.
This resulted in somewhat more polydisperse particles with diameters between
3 and 6 µm. Since this small polydispersity prevented from determining the
shell thickness through static light scattering, a range of 5-20 nm was proposed
[20] by considering that all the TEOS forms a dense silica shell.

2.2 Experimental results.

In order to resolve the post-buckling structure by transmission optical mi-
croscopy, we used batches of larger particules with radii R between 2 and 3
µm. Once buckled in solution through addition of ethanol as described in the
previous section, these particles hold a single depression with signi�cant vol-
ume compared to that of the initial sphere. Furthermore, in some cases the
depression is not axisymmetric anymore. In one batch (�g. 1), we did ob-
serve apparently identical objects, all with an elongated depression that gives
the whole object a co�ee-bean shape. This type of conformations was reported
in literature for red blood cells [24] and for polystyrene shells previously �lled
with organic compounds and evaporated in air [25, 26], and was reproduced by
numerical simulations[23].

In other cases, the depression presented a polygonal aspect due to regularly

3



Figure 2: Spherical shells buckled in solution, showing 4 to 8 wrinkles (a-e).
Each sub-�gure shows di�erent transmission optical microscopy views of the
same object. Scale bar 5µm, except sub�gure c: 2µm.

spaced radial wrinkles, in a number varying from 4 to at least 8 (�g. 2), 7-8
being the upper limit that we could still distinguish and count for these shell
sizes with optical microscopy.

The obtention of such structures in solution from synthetic colloids is a total
novelty. Besides, shapes with a depression presenting a 3-fold symmetry were
previously observed in red blood cells[24, 23, 25] or in dried polymer particles
[25, 26] but we could not �nd in the literature observations concerning a higher
number of wrinkles, on any system. To our knowledge, theoretical predictions
leading to such wrinkles do not exist either, except when generated by a point
load[27] which is not the case here.

It is interesting to �nd out whether some shell heterogeneity has to be invoked
to explain such a non-symmetry, or if a model of elastic homogeneous spherical
shells is su�cient to recover these nontrivial shapes. In this purpose, we inter-
ested in a model of thin spherical shells with bending and 2D stretch elasticity,
that we derived both analitically and numerically. Such an approach was likely
to give hints on features hardly accessible by experiments, such as, here, shell
thickness, or the successive steps that lead to the �nal (and observable) shape
adopted by the shells.

3 Theoretical part: thin plate elasticity

The elastic energy stored in the deformation of a thin sheet of an isotropic and
homogeneous material may be split into a bending and a stretching part [28],
and both can be written in terms of surface elasticity:

F =
∫

shell surface

(
1
2
κ (c− c0)

2 +
1
2
εijKijklεkl)dS (1)

where κ is the bending constant, c0 the spontaneous curvature of the shell
(which is zero for an unstress �at sheet, but 1/R for a spherical shell without

4



constraints) [29], and εij and Kijkl respectively the two-dimensional strain and
elasticity tensors. The nonzero terms of the two-dimensional elasticity tensor
are Kxxxx = Kyyyy = A

1−ν2 , Kxxyy = Kyyxx = νA
1−ν2 and Kxyxy = Kyxyx = A

1+ν
(with A the equivalent two-dimensional Young modulus and ν the equiva-
lent two-dimensional Poisson ratio)[30]. The stretch elasticity term can thus

be rewritten as A
2(1+ν)

[
Tr(ε2) + ν(Trε)2

1−ν

]
. We ignored the gaussian curvature

term[33] since, according to the Gauss-Bonnet theorem, its integral depends
only on the topology for a closed surface.

The link between these two-dimensional elastic parameters and the three-dimensional
features (sheet thickness d, Young modulusE and Poisson ratio σ of the bulk
material) is obtained by considering zero stress on the two boundary surfaces
(�free plates�)[30]:

κ =
Ed3

12(1− σ2)
(2)

A =
1 + 2σ

(1 + σ)2
Ed

ν =
σ

1 + σ

It is worthwhile to notice that, as the three-dimensional Poisson ratio σ has a
maximum value of 0,5 (incompressible materials), the two-dimensional Poisson
ratio ν of such free plates cannot overcome 1/3. This point was neglected
in previous work [31], and can become of some importance if one wants to
make a link between the parameters choosen for simulation and the geometrical
properties of the shells.

As the surface integral scales like R2, the dimensionless Föppl-von Karman

number γ = AR2

κ is likely to drive the succession of con�gurations resulting
from the balance between bending and stretching. In this model of thin shell of
elastic isotropic material, we then expect:

γ = 12(1− 2σ2

1 + σ
)
(

R

d

)2

= 12(1− 2ν2

1− ν
)
(

R

d

)2

(3)

It is interesting to note that this model predicts conformations to be independent
of E, and �nally depends only on the relative thickness d/R and the Poisson ra-
tio. This latter point is always a stumbling block in this �eld, since experimental
Poisson ratio are always trickier to get than Young moduli.

In such a model, we can calculate the elastic energy of an initially unstrained
spherical surface which inner volume decreases by ∆V its initial value V , in two

5



conformations: when the sphere remains spherical, and following reference [32]
when an axisymmetric depression is created by inverting a spherical cap:

Usphere = 4πR2 × A

9(1− ν)

(
∆V

V

)2

(4)

Uaxisym = π
AR2

γ

(
d

R

)− 1
2

sinα

(
tanα−

(
d

R

)1/2
)2

+ 4
(

d

R

)1/2

(1− cos α)


(5)

where d
R can be expressed as a function of γ and ν through equation 3. Param-

eter α is the half-angle of the revolution cone apexed at the sphere center, and
in which the axisymmetric depression inscribes. This half-angle relates to the
relative volume variation through:

∆V

V
=

1
2
(1− cos α)2(2 + cos α) (6)

In the limit of very thin shells and small volume variations, one can show that

Uaxisym ≈ π

121/4
AR2γ−

3
4

[
1− 2ν2

1− ν

]− 1
4

α3

Or, as a function of the relative volume variation:

Uaxisym ≈ 4
3

π

21/4
AR2γ−

3
4

[
1− 2ν2

1− ν

]− 1
4
(

∆V

V

)3/4

In this limit, Usphere = Uaxisym would then happen for relative volume varia-
tions:

∆V

V
∝ γ−

3
5 (7)

which provides a scaling law for the �sphere towards capsule� buckling.

These theoretical calculations will be compared to simulation results in para-
graph 4.4.

4 Simulations

4.1 Modus operandi

The simulated con�gurations presented hereafter were obtained using the free
software Surface Evolver [34], in which the elastic energy given by equation
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(1) is minimized in the space of conformations. The stretch energy term is
in fact calculated using the Cauchy-Green strain tensor, which is accurate for
describing deformations of larger amplitude. The minimization was performed
by alternating gradient, conjugate gradient and hessian methods. Stochasticity
was introduced by jiggling the position of the vertices at the beginning of each
minimization (i.e. at each volume step when the volume is decreased by steps).
We tested that the number of vertices is high enough to avoid an in�uence of
the mesh on the conformations. Furthermore, we checked that the symmetry of
the mesh has no in�uence on the position of the wrinkles, by using an isotropic
randomized mesh. Such an approach was initiated by Tsapis et al [31].

We explored a discrete range of γ, and restricted our simulations to the case of
an incompressible material, i.e. ν = 1/3 (σ = 1/2).

Given these elastic parameters, a �rst set of minimization was performed through
stepwise decrease of the inner volume of an initially spherical surface, and stress
free (i.e. c0 = 1/R), with a minimization at each volume step. This leads to
coarsely isotropic structures with depressions regularly disposed on the surface,
such as in reference [31] or on �gure 3-a. The number of depressions is found to
increase with γ.

Di�erent shapes of much lower energy (for the same elastic parameters) could be
obtained through more sophisticated minimizations. This was done by reversibly
acting on the spontaneous curvature c0 of the shells. Since the shells are formed
by templating on the oil droplets, one can assume that they are unstrained in
their initial state and c0 is expected to be c0 = 1/R. But when c0 is changed
to zero , conformations qualitatively di�erent from potatoes could be reached:
one obtains �capsules� with a single axisymmetric depression. Minimizing again
with c0 back to 1/R preserves this capsule conformation, with an energy lower
than the potato shape, as exampli�ed on �gure 3-b. Temporarily imposing a
zero spontaneous curvature is likely to lower the energy barrier for the merging
of two di�erent depressions at the surface of the sphere, since merging happens
through �attening of the high positive curvature ridge that separates the two
depressions. This trick apparently helps to get out of some local minimas in
which the simulated conformations are easily quenched, as it is quite usual in
buckling problems.

In the following, such a zero curvature cycle was systematically performed at
each volume step.

4.2 Results

We performed simulations of an elastic closed surface, initially spherical and
unstrained, which inner volume is decreased by volume steps dV = 0, 0190×V0,
V0 being the volume of the initial sphere. In all the experiments, V0 and κ were
kept unchanged (respectively equal to 5.268 and 2) and γ was varied from 271
to 29160 by changing A from 464 to 50000.
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Figure 3: Conformations numerically obtained with Surface Evolver for γ=743,
ν=0.333 (which corresponds to a shell of relative thickness d/R=0,116 of an
incompressible material with σ=0,5),∆V

V =0.171, c0 = 1/R, 3594 vertices. Left:
simulation performed by directly minimizing at c0 = 1/R for each decreasing
volume step: N=17 depressions. Right : simulation performed �rst with c0 = 0,
then c0 = 1/R. The elastic energy is 3.10 times larger for the �potato� (left)
than for the capsule (right).

Simulations are stopped when the surface interpenetrates, which happens for
inner volumes of the order 7-11% the initial volume V0.

Up to A=1000, i.e. γ=583, the volume decrease causes a buckling toward the
�capsule� conformation, i.e. with a single axisymmetric depression, until the
surface interpenetrates.

From A=1600, i.e. γ=933, axisymmetric capsules undergo a second transition
when the volume goes on decreasing, toward a non-axisymmetric conformation.
The onset of this second transition is harder to detect since the depression,
except for the highest values of γ, slowly evolves toward a polygonal shape, and
then the corners of the polygon turns into wrinkles (limits of the depression
concave between the apices). Quantitative data concerning buckling thresholds
will nevertheless be given in the paragraph 4.4. We could this way obtain such
wrinkled bowls with 5 wrinkles or more. Some trials with re-increasing volume
from a wrinkled state also provided conformations with 3 and 4 wrinkles.

More quantitatively, �gure 4 provides the number W of wrinkles observed
throughout a stepwise volume decrease for simulations with di�erent γ val-
ues. One can notice that there is some �uctuation on W , of one, or even two,
units. In fact, performing decreasing volume simulations with the same param-
eters does not always lead to the same number of wrinkles. We could get in
these situations an order of magnitude for the energy di�erence between two
close conformation (i.e. W = ±1): it can be as small as a few tens of per-
cent. The energy of a conformation is not stricly determining its occurence: the
path followed in the space of conformations has some importance. This is why
we restricted most of our study to a sequence of minimization that is likely to
reproduce the experimental situation, i.e. decreasing the volume step by step.

Figure 4 shows a weak tendency for the number of wrinkles W to increase with
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Figure 4: Typical evolution of the number W of wrinkles hold by the single
depression after secondary buckling (simulations performed for 4 values of γ,
ν=0.333).

Figure 5: Number W of wrinkles hold by the single depression after secondary
buckling, averaged between ∆V

V = 0.53 and ∆V
V = 0.76, as a function of the

dimensionless Föppl-von Karman number γ = AR2

κ .

the relative volume variation ∆V
V once the buckling has occured, in the same

way that what was observed in macroscopic indentation experiments[27].

More obvious is the variation of W with γ. In order to precise a variation of
a few units on a discrete quantity, we averaged W on a range of ∆V

V where

the conformation holds wrinkles for all the values of γ, i.e. ∆V
V between 0.53

and 0.76 (�gure 5). This put into evidence an increase of W with increasing γ.
Wrinkles being more numerous with decreasing d

R goes in the sense of intuition:
a thinner plate folds more easily, and hence makes more folding patterns.

4.3 Comparison between simulations and experiments

The inner volume of the conformations exposed in �gure 2 is not easy to deter-
mine precisely. Nevertheless, an important experimental remark is that buckling
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Figure 6: Three di�erent views of a buckled spherical shell labelled with RITC,
in confocal �uorescence microscopy (left) and in transmission microscopy (right).
The shell is clearly self-contacting at its convexe part.

deformations never relaxed back toward the initial spherical shape after com-
plete evaporation or complete dissolution of the inner oil, yet it means that
the last water/air or oil/water interfaces, that were pulling the shell inwards,
have disappeared. It is then likely that the shrinking brings opposite surfaces
close enough to one another to be sensible to Van der Waals attraction, which
would stabilize the conformation against elastic constraints after vanishing of
the capillary forces. This hypothesis, of initially opposite parts of the shells that
contact in the conformations experimentally obtained, seems to be con�rmed
by confocal pictures of buckled shells (�gure 6).

In order to compare the shapes obtained through simulations (with decreasing
volume) with the experimental ones, we thus focused on the shapes obtained
just before self-contact.

Figures 7-a and 7-b shows that we could accurately reproduce the shape of
axisymmetric capsules. In the simulation displayed here, we took γ=271 and
ν=0.333, which corresponds to d/R=0,172.

For wrinkled bowls (examples displayed on �gures 7-c and 7-d), the confor-
mations obtained just before interpenetration are also very similar to shapes
observed experimentally (�g. 2-c and 2-e). Like in the experiments, wrinkles
do appear for thinner shells. However, the parameters for which simulations
provide wrinkles seem to indicate that the relative thickness of the shells is one

order of magnitude higher than what was expected (

√
12
γ

(
1− 2ν2

1−ν

)
=0.02 to

0.08 to be compared to d
R=0.002 to 0.008). A possible explanation for this dis-

crepancy lies in the shell porosity: this would be compatible with a low volume
fraction of silica in the shell, and then a shell thickness more important than
what had been previously calculated.
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Figure 7: (a) Capsule obtained from evaporation in air of a spherical shell of
mean radius 870 nm, shell thickness 150 nm (TEM image). (b) Simulation
obtained for γ=271 and ν=0.333 (hence equivalent to d

R = 0.172), ∆V
V =0.816,

3594 vertices. (c) Simulation: γ=2333 and ν=0.333 (equivalent to d
R = 0.0586),

∆V
V =0.854, 3594 vertices. This conformation is to be compared with �gure 2c

(d) Simulation:γ=20995 and ν=0.333(equivalent to d
R = 0.0195), ∆V

V =0.854,
3594 vertices. This conformation is to be compared with �gure 2e.

Figure 8: (a) Shell enclosing oil, evaporated in air (d/R ≈ 0.012). Transmission
optical microscopy, size 17 µm × µm. (b) Simulation obtained forγ=2916 and
ν=0.333 (equivalent to d

R=0.064), by increasing the volume from∆V
V =0.474 to

∆V
V =0.209, 3659 vertices.
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Other experimental structures could also be reproduced by simulations, such as
the one displayed on �gure 8a. This latter was obtained through evaporation in
air of a shell still containing some of its inner oil (note: in this case the alcool
was added in the aqueous solution later that usual, which probably allowed
polymerization of longer chains [21] that cannot be dissolved by ethanol [35]).
Here the inner volume obviously does not correspond to shell self -contact. In
such a processus, a shrinkage of the shell itself when the water achieves its
evaporation can be invoked to explain a behaviour comparable to a volume
increase, such as in the simulation of �gure 8. The conformation, in this case,
is stabilized by oil-air interfaces.

All these results show that there is no need invoking shell heterogeneity to
explain the shapes experimentally observed: bending and in-plane stretching
elasticity su�ces. Next section provides more quantitative insights on the sim-
ulation of elastic buckling.

4.4 Quantitative comparison between simulations and elas-

tic theoretical calculations.

The software Surface Evolver used to perform simulations provide the elastic
energy of each conformation. For the two conformations �sphere� and �axisym-
metric depression�, we compared this elastic energy with the theoretical expres-
sions Usphere (equation 4) and Uaxisym (equations 5 and 6). The numerical data
are very well �tted by the theory, as shown on �gure 9. One sees that this �rst
buckling from a spherical shape to a conformation with a single axisymmetric
depression occurs with some hysteresis, i.e. for volume variations higher than
the one corresponding to Usphere = Uaxisym.

Figure 10 presents the buckling occurences as a function of γ. The �rst buckling
is determined without ambiguity, as it is obvious from �gure 9. The occurence
of the second buckling, from an axisymmetric capsule to a �wrinkled bowl�
conformation, is less easy to detect since it corresponds neither to a discontinuity
nor a singularity in energy. We detected in fact two caracteristic values for ∆V

V ,
by visual observation of the conformations: the �rst one corresponds to the loss
of the axisymmetry, when the rim of the depression becomes polygonal. Then
the apices of the polygon becomes sharper (they tend to form the extremity
of a d -cone [27, 40]), and the inner part of the rim becomes convex between
two successive apices: at this point we consider that the conformation holds
wrinkles, and this second �threshold� is recorded. Figure 10 shows that both
values are quite close and present the same power-law in γ−1. Extrapolation
intercepts with ∆V

V =1 value γc=850, which is consistent with our simulations
showing that secondary buckling appears for γ between 583 and 933.

The �rst buckling (sphere toward axisymmetric capsule) happens for thresholds
values of the relative volume variation that happen to vary in power-law with
the Föppl-von Karman parameter: ∆V

V ∝ γ−0.55. Despite the slight hysteresis
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Figure 9: Elastic energy of a shrinking shell. Black squares: result of Sur-
face Evolver simulations, with γ=2916 (volume of the initial sphere: V0=5.268
(R=1.08), κ=2, A=5000) and ν=0.333. Continuous line: elastic energy of a
shrinking spherical shell, according to equation 4 with same parameters. Inter-
rupted line: elastic energy of a capsule (deformation with a single axisymmetric
depression) according to equation 5, with same parameters.

Figure 10: Primary buckling (black squares) from sphere to capsule: relative
volume at which the axisymmetric depression appears in the simulations, for
di�erent γ. Interpolating straight line : ∆V

V = 2.8 γ−0.55 . Secondary buckling:
polygonization of the circular rim (black upwards pointing triangles) and ap-
parition of wrinkles (gray downwards pointing triangles). Interpolating straight
line: ∆V

V = 850 γ−1.
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in the primary buckling, this exponent is very close to the −0.6 theoretically
proposed in equation 7.

5 Discussion.

Experimental and numerical results showed that wrinkled bowls are preferen-
tially observed when a very thin spherical shells lowers its volume. This con-
formation is quite di�erent from the structures (typically discocytes or stoma-
tocytes) usually obtained for vesicles, where the in-plane elasticity is liquid-like
(related parameter: 2D compressibility). Wrinkles signs the 2D-solid nature of
the shells, since it is needed to accomodate the surface of up to one hemisphere
within the other hemisphere, without an excessive cost in stretch energy.

It is interesting to note that a structure presenting 3 wrinkles had been obtained
by Lim et al.[23] in simulations of red blood cells where the elastic properties
of respectively the cytoskeleton and an homogeneous asymmetrical phospho-
lipid bilayer were included in a similar numerical model with elastic bending,
spontaneous curvature and stretching[37]. But the bending/stretching ratio in
these biological objects where bending and stretching have di�erent origin was
higher than the range of similar values for a thin shell of isotropic material. This
probably prevented these authors from obtaining shapes with more wrinkles.

Besides, the simulations presented here do not necessarily provide the energies
of lowest con�guration. As an example, we could, by following another path
in the phase diagram of elastic and geometric parameters, obtain a totally new
conformation of much lower energy than the wrinkled bowls (�gure 11). But this
conformation very likely corresponds to an energy trough too narrow to have
been encountered in our experimental situation. Anyway, we are not looking
for equilibrium con�gurations: we are trying to understand what really happens
when a colloidal shell shrinks. It is well-known that many buckling conforma-
tions can be quenched in non-absolute energy minima. Our study, putting into
evidence qualitative as well as quantitative convergences between experiments,
theory and simulations, strongly suggests that our simulations with a progressive
decrease of the inner volume can reproduce the path followed by the buckling of
real shells. The shapes observed are compatible both with self-contact, which
would explain their stabilization, and with shell homogeneity. Besides, the con-
formation (and furthermore the number of wrinkles) gives an indication on the
shell relative thickness range.

Structures comparable to wrinkled bowls have already been observed experimen-
tally on millimetric half-spheres submitted to a localized[27] or a planar[38] load,
or numerically obtained by simulation of a sphere adhering on a �at surface[39],
but here we did put in evidence that such structures can be obtained with an
isotropic constraint.
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Figure 11: Simulation with γ=15163, ν=0.333 and ∆V
V =0.645. Such unusual

conformation can be obtained from a capsule at lower γ; its energy is 1.42 times
lower than the con�guration with wrinkles (W=7) obtained through progressive
volume decrease for similar parameters.

6 Conclusion

Non-trivial shapes were obtained by evaporating or dissolving the solvent en-
closed in porous colloidal shells.

We have shown that the deformations of such objects are consistent with a
model of homogeneous thin spherical shells with bending and in-plane stretch-
ing elasticity submitted to an isotropic external pressure. The numerical sim-
ulations showed that a primary buckling leading to capsules (holding a single
axisymmetric depression) can be followed by a secondary buckling where the
depression wrinkles. This happens for decreasing volume variations when the
relative thickness of the shell is reduced, and the number of wrinkles concomi-
tantly increases. Simulations and experiments qualitatively and quantitatively
con�rm each other.

These new results suggest that evaporation or dissolution of inner solvent is a
promising way to obtain, from a monodisperse enough population of colloids,
a monodisperse suspension of anisotropic objects with geometric parameters
tunable through the characteristics of the initial spherical shell.
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