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Anisotropi olloids through non-trivialbukling.C. Quilliet1,2, C. Zoldesi2, C. Riera3, A. van Blaaderen2, A. Imhof26th February 2008
1 Laboratoire de Spetrométrie Physique, CNRS UMR 5588 & UniversitéJoseph Fourier, 140 avenue de la Physique, 38402 Saint-Martin d'Hères Cedex,Frane
2Soft Condensed Matter, Debye Institute, Faulty of Siene, UtrehtUniversity, Prinetonplein 5, 3584 CC Utreht, The Netherlands
3DEAS, Harvard University, 29, Oxford Street Cambridge MA 02138, USAAbstratWe present a study on bukling of olloidal partiles, inluding ex-perimental, theoretial and numerial developments. Oil-�lled thin shellsprepared by emulsion templating show bukling in mixtures of water andethanol, due to dissolution of the ore in the external medium. This leadsto onformations with a single depression, either axisymmetri or polygo-nal depending on the geometrial features of the shells. These onforma-tions ould be theoretially and/or numerially reprodued in a model ofhomogeneous spherial thin shells with bending and strething elastiity,submitted to an isotropi external pressure.Pas : 46.70.De (Stati bukling and instability), 82.70.Dd (Colloids), 89.75.Kd(Patterns)1 IntrodutionAnisotropi olloidal partiles made using spheres have been the subjet of var-ious studies in reent years. These types of olloids an be obtained in verydi�erent ways, for example either by deformation of spherial partiles[1, 2, 3℄,1



or by forming lusters of them[4, 5, 6, 7℄. Suh objets are good andidates togenerate anisotropi olloidal rystals. Photoni bandgap (PBG) alulationsshowed that suh rystals should improve the expeted performanes (largerbandgap, more onvenient wavelengths)[4, 8, 9℄. Colloids with a hollow interior(spherial shells) are partiularly interesting also for their mehanial properties,whih make them potentially important for a variety of appliations, suh asdrug delivery, atalysis and biotehnology, and when �lled with gas as ontrastagents for ultrasound or ehographi imaging. Due to the relevant engineer-ing situations as well as the biomehanis, the problem of the deformation of aspherial shell under external onstraints has been reently investigated, bothexperimentally and numerially[12, 13, 14, 15, 16, 17, 18℄.In this study, we present anisotropi olloids obtained by bukling of spheri-al shells. The bukling was indued by dissolving or evaporating the solventenlosed in the slightly porous shells. This auses a stress omparable to anisotropi pressure on a spherial airproof shell[19℄. After postbukling, the ol-loidal shells show bowl-like onformations, either with axisymmetri or polyg-onal symmetry. We observed them using both transmission optial mirosopyand transmission eletron mirosopy (TEM), and ompared them with on�g-urations obtained from Surfae Evolver simulations, using a model of homoge-neous elasti (bending and in-plane strething) spherial shells submitted to anisotropi external pressure.2 Bukling under evaporation and in solution2.1 MethodsSpherial olloidal shells were prepared following previous work by Zoldesi ando-authors[20, 21℄. They strongly mixed dimethyldiethoxysilane (DMDES) andan aqueous solution of ammonia (NH3), providing a very monodisperse andstable oil-in-water emulsion with droplets of mirometri size. The oil on-sists of low moleular polydimethylsiloxane (PDMS) oligomers. By addingtetraethoxysilane (TEOS), a solid shell forms at the surfae of the droplets,onsisting mainly of PDMS with average oligomer length 4, rossed-linked withhydrolyzed TEOS units. Sine shown in ref [21℄, the shells are porous and thenallow small moleules to pass through. As the low moleular PDMS an bedissolved in ethanol [22℄, adding ethanol (an equal volume in the present study)to suh an aqueous suspension of shells �lled with oil, leads to dissolution of theenapsulated oil into the external medium. For thik enough shells ("apsules"and spheres in the nomenlature of ref [21℄, i.e. shell thikness over 100 nm),this leads to a suspension of solvent-�lled spherial partiles. These partilesare then sedimented by entrifugation and redispersed in ethanol. They may bedried afterwards and observed by eletron mirosopy, exhibiting shape modi-�ations (�bukling under evaporation�) or not [20, 21℄, depending on the ratioof their shell thikness to radius [19℄. 2



Figure 1: Typial transmission optial mirosopy images of partiles from asuspension of olloidal spheres �lled with oil, in a mixture of water and ethanol.Three di�erent objets are displayed under three di�erent views; they all showthe same o�ee-bean bukled shape, with an elongated depression. Sale bar 4
µm.Thinner shells, however, will already bukle in solution when ethanol is added.Thin shells onsist of muh larger PDMS oil droplets oated with a very thinsolid organosilia layer. They were prepared using the same proedure as de-sribed in ref.[20℄ for �miroballoon� partiles. In order to obtain bigger parti-les, we inreased the onentration of DMDES and ammonia up to 5% v/v, andthe droplets were allowed to grow for three days before the enapsulation step.This resulted in somewhat more polydisperse partiles with diameters between3 and 6 µm. Sine this small polydispersity prevented from determining theshell thikness through stati light sattering, a range of 5-20 nm was proposed[20℄ by onsidering that all the TEOS forms a dense silia shell.2.2 Experimental results.In order to resolve the post-bukling struture by transmission optial mi-rosopy, we used bathes of larger partiules with radii R between 2 and 3
µm. One bukled in solution through addition of ethanol as desribed in theprevious setion, these partiles hold a single depression with signi�ant vol-ume ompared to that of the initial sphere. Furthermore, in some ases thedepression is not axisymmetri anymore. In one bath (�g. 1), we did ob-serve apparently idential objets, all with an elongated depression that givesthe whole objet a o�ee-bean shape. This type of onformations was reportedin literature for red blood ells [24℄ and for polystyrene shells previously �lledwith organi ompounds and evaporated in air [25, 26℄, and was reprodued bynumerial simulations[23℄.In other ases, the depression presented a polygonal aspet due to regularly3



Figure 2: Spherial shells bukled in solution, showing 4 to 8 wrinkles (a-e).Eah sub-�gure shows di�erent transmission optial mirosopy views of thesame objet. Sale bar 5µm, exept sub�gure : 2µm.spaed radial wrinkles, in a number varying from 4 to at least 8 (�g. 2), 7-8being the upper limit that we ould still distinguish and ount for these shellsizes with optial mirosopy.The obtention of suh strutures in solution from syntheti olloids is a totalnovelty. Besides, shapes with a depression presenting a 3-fold symmetry werepreviously observed in red blood ells[24, 23, 25℄ or in dried polymer partiles[25, 26℄ but we ould not �nd in the literature observations onerning a highernumber of wrinkles, on any system. To our knowledge, theoretial preditionsleading to suh wrinkles do not exist either, exept when generated by a pointload[27℄ whih is not the ase here.It is interesting to �nd out whether some shell heterogeneity has to be invokedto explain suh a non-symmetry, or if a model of elasti homogeneous spherialshells is su�ient to reover these nontrivial shapes. In this purpose, we inter-ested in a model of thin spherial shells with bending and 2D streth elastiity,that we derived both analitially and numerially. Suh an approah was likelyto give hints on features hardly aessible by experiments, suh as, here, shellthikness, or the suessive steps that lead to the �nal (and observable) shapeadopted by the shells.3 Theoretial part: thin plate elastiityThe elasti energy stored in the deformation of a thin sheet of an isotropi andhomogeneous material may be split into a bending and a strething part [28℄,and both an be written in terms of surfae elastiity:
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ǫijKijklǫkl)dS (1)where κ is the bending onstant, c0 the spontaneous urvature of the shell(whih is zero for an unstress �at sheet, but 1/R for a spherial shell without4



onstraints) [29℄, and ǫij and Kijkl respetively the two-dimensional strain andelastiity tensors. The nonzero terms of the two-dimensional elastiity tensorare Kxxxx = Kyyyy = A
1−ν2 , Kxxyy = Kyyxx = νA

1−ν2 and Kxyxy = Kyxyx = A
1+ν(with A the equivalent two-dimensional Young modulus and ν the equiva-lent two-dimensional Poisson ratio)[30℄. The streth elastiity term an thusbe rewritten as A

2(1+ν)

[Tr(ǫ2) + ν(Trǫ)2
1−ν

]. We ignored the gaussian urvatureterm[33℄ sine, aording to the Gauss-Bonnet theorem, its integral dependsonly on the topology for a losed surfae.The link between these two-dimensional elasti parameters and the three-dimensionalfeatures (sheet thikness d, Young modulusE and Poisson ratio σ of the bulkmaterial) is obtained by onsidering zero stress on the two boundary surfaes(�free plates�)[30℄:
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1 + σIt is worthwhile to notie that, as the three-dimensional Poisson ratio σ has amaximum value of 0,5 (inompressible materials), the two-dimensional Poissonratio ν of suh free plates annot overome 1/3. This point was negletedin previous work [31℄, and an beome of some importane if one wants tomake a link between the parameters hoosen for simulation and the geometrialproperties of the shells.As the surfae integral sales like R2, the dimensionless Föppl-von Karmannumber γ = AR2

κ is likely to drive the suession of on�gurations resultingfrom the balane between bending and strething. In this model of thin shell ofelasti isotropi material, we then expet:
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)2 (3)It is interesting to note that this model predits onformations to be independentof E, and �nally depends only on the relative thikness d/R and the Poisson ra-tio. This latter point is always a stumbling blok in this �eld, sine experimentalPoisson ratio are always trikier to get than Young moduli.In suh a model, we an alulate the elasti energy of an initially unstrainedspherial surfae whih inner volume dereases by ∆V its initial value V , in two5



onformations: when the sphere remains spherial, and following referene [32℄when an axisymmetri depression is reated by inverting a spherial ap:
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(5)where d
R an be expressed as a funtion of γ and ν through equation 3. Param-eter α is the half-angle of the revolution one apexed at the sphere enter, andin whih the axisymmetri depression insribes. This half-angle relates to therelative volume variation through:
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(1 − cosα)2(2 + cosα) (6)In the limit of very thin shells and small volume variations, one an show that
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)3/4In this limit, Usphere = Uaxisym would then happen for relative volume varia-tions:
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5 (7)whih provides a saling law for the �sphere towards apsule� bukling.These theoretial alulations will be ompared to simulation results in para-graph 4.4.4 Simulations4.1 Modus operandiThe simulated on�gurations presented hereafter were obtained using the freesoftware Surfae Evolver [34℄, in whih the elasti energy given by equation6



(1) is minimized in the spae of onformations. The streth energy term isin fat alulated using the Cauhy-Green strain tensor, whih is aurate fordesribing deformations of larger amplitude. The minimization was performedby alternating gradient, onjugate gradient and hessian methods. Stohastiitywas introdued by jiggling the position of the verties at the beginning of eahminimization (i.e. at eah volume step when the volume is dereased by steps).We tested that the number of verties is high enough to avoid an in�uene ofthe mesh on the onformations. Furthermore, we heked that the symmetry ofthe mesh has no in�uene on the position of the wrinkles, by using an isotropirandomized mesh. Suh an approah was initiated by Tsapis et al [31℄.We explored a disrete range of γ, and restrited our simulations to the ase ofan inompressible material, i.e. ν = 1/3 (σ = 1/2).Given these elasti parameters, a �rst set of minimization was performed throughstepwise derease of the inner volume of an initially spherial surfae, and stressfree (i.e. c0 = 1/R), with a minimization at eah volume step. This leads tooarsely isotropi strutures with depressions regularly disposed on the surfae,suh as in referene [31℄ or on �gure 3-a. The number of depressions is found toinrease with γ.Di�erent shapes of muh lower energy (for the same elasti parameters) ould beobtained through more sophistiated minimizations. This was done by reversiblyating on the spontaneous urvature c0 of the shells. Sine the shells are formedby templating on the oil droplets, one an assume that they are unstrained intheir initial state and c0 is expeted to be c0 = 1/R. But when c0 is hangedto zero , onformations qualitatively di�erent from potatoes ould be reahed:one obtains �apsules� with a single axisymmetri depression. Minimizing againwith c0 bak to 1/R preserves this apsule onformation, with an energy lowerthan the potato shape, as exampli�ed on �gure 3-b. Temporarily imposing azero spontaneous urvature is likely to lower the energy barrier for the mergingof two di�erent depressions at the surfae of the sphere, sine merging happensthrough �attening of the high positive urvature ridge that separates the twodepressions. This trik apparently helps to get out of some loal minimas inwhih the simulated onformations are easily quenhed, as it is quite usual inbukling problems.In the following, suh a zero urvature yle was systematially performed ateah volume step.4.2 ResultsWe performed simulations of an elasti losed surfae, initially spherial andunstrained, whih inner volume is dereased by volume steps dV = 0, 0190×V0,
V0 being the volume of the initial sphere. In all the experiments, V0 and κ werekept unhanged (respetively equal to 5.268 and 2) and γ was varied from 271to 29160 by hanging A from 464 to 50000.7



Figure 3: Conformations numerially obtained with Surfae Evolver for γ=743,
ν=0.333 (whih orresponds to a shell of relative thikness d/R=0,116 of aninompressible material with σ=0,5),∆V

V =0.171, c0 = 1/R, 3594 verties. Left:simulation performed by diretly minimizing at c0 = 1/R for eah dereasingvolume step: N=17 depressions. Right : simulation performed �rst with c0 = 0,then c0 = 1/R. The elasti energy is 3.10 times larger for the �potato� (left)than for the apsule (right).Simulations are stopped when the surfae interpenetrates, whih happens forinner volumes of the order 7-11% the initial volume V0.Up to A=1000, i.e. γ=583, the volume derease auses a bukling toward the�apsule� onformation, i.e. with a single axisymmetri depression, until thesurfae interpenetrates.From A=1600, i.e. γ=933, axisymmetri apsules undergo a seond transitionwhen the volume goes on dereasing, toward a non-axisymmetri onformation.The onset of this seond transition is harder to detet sine the depression,exept for the highest values of γ, slowly evolves toward a polygonal shape, andthen the orners of the polygon turns into wrinkles (limits of the depressiononave between the apies). Quantitative data onerning bukling thresholdswill nevertheless be given in the paragraph 4.4. We ould this way obtain suhwrinkled bowls with 5 wrinkles or more. Some trials with re-inreasing volumefrom a wrinkled state also provided onformations with 3 and 4 wrinkles.More quantitatively, �gure 4 provides the number W of wrinkles observedthroughout a stepwise volume derease for simulations with di�erent γ val-ues. One an notie that there is some �utuation on W , of one, or even two,units. In fat, performing dereasing volume simulations with the same param-eters does not always lead to the same number of wrinkles. We ould get inthese situations an order of magnitude for the energy di�erene between twolose onformation (i.e. W = ±1): it an be as small as a few tens of per-ent. The energy of a onformation is not strily determining its ourene: thepath followed in the spae of onformations has some importane. This is whywe restrited most of our study to a sequene of minimization that is likely toreprodue the experimental situation, i.e. dereasing the volume step by step.Figure 4 shows a weak tendeny for the number of wrinkles W to inrease with8



Figure 4: Typial evolution of the number W of wrinkles hold by the singledepression after seondary bukling (simulations performed for 4 values of γ,
ν=0.333).

Figure 5: Number W of wrinkles hold by the single depression after seondarybukling, averaged between ∆V
V = 0.53 and ∆V

V = 0.76, as a funtion of thedimensionless Föppl-von Karman number γ = AR2

κ .the relative volume variation ∆V
V one the bukling has oured, in the sameway that what was observed in marosopi indentation experiments[27℄.More obvious is the variation of W with γ. In order to preise a variation ofa few units on a disrete quantity, we averaged W on a range of ∆V

V wherethe onformation holds wrinkles for all the values of γ, i.e. ∆V
V between 0.53and 0.76 (�gure 5). This put into evidene an inrease of W with inreasing γ.Wrinkles being more numerous with dereasing d

R goes in the sense of intuition:a thinner plate folds more easily, and hene makes more folding patterns.4.3 Comparison between simulations and experimentsThe inner volume of the onformations exposed in �gure 2 is not easy to deter-mine preisely. Nevertheless, an important experimental remark is that bukling9



Figure 6: Three di�erent views of a bukled spherial shell labelled with RITC,in onfoal �uoresene mirosopy (left) and in transmission mirosopy (right).The shell is learly self-ontating at its onvexe part.
Figure 7: (a) Capsule obtained from evaporation in air of a spherial shell ofmean radius 870 nm, shell thikness 150 nm (TEM image). (b) Simulationobtained for γ=338 and ν=0.333 (hene equivalent to d

R = 0.154), ∆V
V =0.816,3594 verties. () Simulation: γ=2333 and ν=0.333 (equivalent to d

R = 0.0586),
∆V
V =0.854, 3594 verties. This onformation is to be ompared with �gure 2(d) Simulation:γ=20995 and ν=0.333(equivalent to d

R = 0.0195), ∆V
V =0.854,3594 verties. This onformation is to be ompared with �gure 2e.deformations never relaxed bak toward the initial spherial shape after om-plete evaporation or omplete dissolution of the inner oil, yet it means thatthe last water/air or oil/water interfaes, that were pulling the shell inwards,have disappeared. It is then likely that the shrinking brings opposite surfaeslose enough to one another to be sensible to Van der Waals attration, whihwould stabilize the onformation against elasti onstraints after vanishing ofthe apillary fores. This hypothesis, of initially opposite parts of the shells thatontat in the onformations experimentally obtained, seems to be on�rmedby onfoal pitures of bukled shells (�gure 6).In order to ompare the shapes obtained through simulations (with dereasingvolume) with the experimental ones, we thus foused on the shapes obtainedjust before self-ontat.Figures 7-a and 7-b shows that we ould aurately reprodue the shape ofaxisymmetri apsules. In the simulation displayed here, we took γ=_271 and

ν=0.333, whih orresponds to d/R=0,172.For wrinkled bowls (examples displayed on �gures 7- and 7-d), the onfor-mations obtained just before interpenetration are also very similar to shapesobserved experimentally (�g. 2- and 2-e). Like in the experiments, wrinkles10



Figure 8: (a) Shell enlosing oil, evaporated in air (d/R ≈ 0.012). Transmissionoptial mirosopy, size 17 µm × µm. (b) Simulation obtained forγ=2916 and
ν=0.333 (equivalent to d

R=0.064), by inreasing the volume from∆V
V =0.474 to

∆V
V =0.209, 3659 verties.do appear for thinner shells. However, the parameters for whih simulationsprovide wrinkles seem to indiate that the relative thikness of the shells is oneorder of magnitude higher than what was expeted (√ 12

γ

(

1 −
2ν2

1−ν

)=0.02 to0.08 to be ompared to d
R=0.002 to 0.008). A possible explanation for this dis-repany lies in the shell porosity: this would be ompatible with a low volumefration of silia in the shell, and then a shell thikness more important thanwhat had been previously alulated.Other experimental strutures ould also be reprodued by simulations, suh asthe one displayed on �gure 8a. This latter was obtained through evaporation inair of a shell still ontaining some of its inner oil (note: in this ase the aloolwas added in the aqueous solution later that usual, whih probably allowedpolymerization of longer hains [21℄ that annot be dissolved by ethanol [35℄).Here the inner volume obviously does not orrespond to shell self -ontat. Insuh a proessus, a shrinkage of the shell itself when the water ahieves itsevaporation an be invoked to explain a behaviour omparable to a volumeinrease, suh as in the simulation of �gure 8. The onformation, in this ase,is stabilized by oil-air interfaes.All these results show that there is no need invoking shell heterogeneity toexplain the shapes experimentally observed: bending and in-plane strethingelastiity su�es. Next setion provides more quantitative insights on the sim-ulation of elasti bukling.4.4 Quantitative omparison between simulations and elas-ti theoretial alulations.The software Surfae Evolver used to perform simulations provide the elastienergy of eah onformation. For the two onformations �sphere� and �axisym-metri depression�, we ompared this elasti energy with the theoretial expres-11



Figure 9: Elasti energy of a shrinking shell. Blak squares: result of Sur-fae Evolver simulations, with γ=2916 (volume of the initial sphere: V0=5.268(R=1.08), κ=2, A=5000) and ν=0.333. Continuous line: elasti energy of ashrinking spherial shell, aording to equation 4 with same parameters. Inter-rupted line: elasti energy of a apsule (deformation with a single axisymmetridepression) aording to equation 5, with same parameters.sions Usphere (equation 4) and Uaxisym (equations 5 and 6). The numerial dataare very well �tted by the theory, as shown on �gure 9. One sees that this �rstbukling from a spherial shape to a onformation with a single axisymmetridepression ours with some hysteresis, i.e. for volume variations higher thanthe one orresponding to Usphere = Uaxisym.Figure 10 presents the bukling ourenes as a funtion of γ. The �rst buklingis determined without ambiguity, as it is obvious from �gure 9. The oureneof the seond bukling, from an axisymmetri apsule to a �wrinkled bowl�onformation, is less easy to detet sine it orresponds neither to a disontinuitynor a singularity in energy. We deteted in fat two arateristi values for ∆V
V ,by visual observation of the onformations: the �rst one orresponds to the lossof the axisymmetry, when the rim of the depression beomes polygonal. Thenthe apies of the polygon beomes sharper (they tend to form the extremityof a d -one [27, 40℄), and the inner part of the rim beomes onvex betweentwo suessive apies: at this point we onsider that the onformation holdswrinkles, and this seond �threshold� is reorded. Figure 10 shows that bothvalues are quite lose and present the same power-law in γ−1. Extrapolationinterepts with ∆V

V =1 value γc=850, whih is onsistent with our simulationsshowing that seondary bukling appears for γ between 583 and 933.The �rst bukling (sphere toward axisymmetri apsule) happens for thresholdsvalues of the relative volume variation that happen to vary in power-law with12



Figure 10: Primary bukling (blak squares) from sphere to apsule: relativevolume at whih the axisymmetri depression appears in the simulations, fordi�erent γ. Interpolating straight line : ∆V
V = 2.8 γ−0.55 . Seondary bukling:polygonization of the irular rim (blak upwards pointing triangles) and ap-parition of wrinkles (gray downwards pointing triangles). Interpolating straightline: ∆V

V = 850 γ−1.the Föppl-von Karman parameter: ∆V
V ∝ γ−0.55. Despite the slight hysteresisin the primary bukling, this exponent is very lose to the −0.6 theoretiallyproposed in equation 7.5 Disussion.Experimental and numerial results showed that wrinkled bowls are preferen-tially observed when a very thin spherial shells lowers its volume. This on-formation is quite di�erent from the strutures (typially disoytes or stoma-toytes) usually obtained for vesiles, where the in-plane elastiity is liquid-like(related parameter: 2D ompressibility). Wrinkles signs the 2D-solid nature ofthe shells, sine it is needed to aomodate the surfae of up to one hemispherewithin the other hemisphere, without an exessive ost in streth energy.It is interesting to note that a struture presenting 3 wrinkles had been obtainedby Lim et al.[23℄ in simulations of red blood ells where the elasti propertiesof respetively the ytoskeleton and an homogeneous asymmetrial phospho-lipid bilayer were inluded in a similar numerial model with elasti bending,spontaneous urvature and strething[37℄. But the bending/strething ratio inthese biologial objets where bending and strething have di�erent origin washigher than the range of similar values for a thin shell of isotropi material. Thisprobably prevented these authors from obtaining shapes with more wrinkles.Besides, the simulations presented here do not neessarily provide the energiesof lowest on�guration. As an example, we ould, by following another path13



Figure 11: Simulation with γ=15163, ν=0.333 and ∆V
V =0.645. Suh unusualonformation an be obtained from a apsule at lower γ; its energy is 1.42 timeslower than the on�guration with wrinkles (W=7) obtained through progressivevolume derease for similar parameters.in the phase diagram of elasti and geometri parameters, obtain a totally newonformation of muh lower energy than the wrinkled bowls (�gure 11). But thisonformation very likely orresponds to an energy trough too narrow to havebeen enountered in our experimental situation. Anyway, we are not lookingfor equilibrium on�gurations: we are trying to understand what really happenswhen a olloidal shell shrinks. It is well-known that many bukling onforma-tions an be quenhed in non-absolute energy minima. Our study, putting intoevidene qualitative as well as quantitative onvergenes between experiments,theory and simulations, strongly suggests that our simulations with a progressivederease of the inner volume an reprodue the path followed by the bukling ofreal shells. The shapes observed are ompatible both with self-ontat, whihwould explain their stabilization, and with shell homogeneity. Besides, the on-formation (and furthermore the number of wrinkles) gives an indiation on theshell relative thikness range.Strutures omparable to wrinkled bowls have already been observed experimen-tally on millimetri half-spheres submitted to a loalized[27℄ or a planar[38℄ load,or numerially obtained by simulation of a sphere adhering on a �at surfae[39℄,but here we did put in evidene that suh strutures an be obtained with anisotropi onstraint.6 ConlusionNon-trivial shapes were obtained by evaporating or dissolving the solvent en-losed in porous olloidal shells.We have shown that the deformations of suh objets are onsistent with amodel of homogeneous thin spherial shells with bending and in-plane streth-ing elastiity submitted to an isotropi external pressure. The numerial sim-ulations showed that a primary bukling leading to apsules (holding a singleaxisymmetri depression) an be followed by a seondary bukling where thedepression wrinkles. This happens for dereasing volume variations when therelative thikness of the shell is redued, and the number of wrinkles onomi-tantly inreases. Simulations and experiments qualitatively and quantitativelyon�rm eah other. 14
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