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olloids through non-trivialbu
kling.C. Quilliet1,2, C. Zoldesi2, C. Riera3, A. van Blaaderen2, A. Imhof26th February 2008
1 Laboratoire de Spe
trométrie Physique, CNRS UMR 5588 & UniversitéJoseph Fourier, 140 avenue de la Physique, 38402 Saint-Martin d'Hères Cedex,Fran
e
2Soft Condensed Matter, Debye Institute, Fa
ulty of S
ien
e, Utre
htUniversity, Prin
etonplein 5, 3584 CC Utre
ht, The Netherlands
3DEAS, Harvard University, 29, Oxford Street Cambridge MA 02138, USAAbstra
tWe present a study on bu
kling of 
olloidal parti
les, in
luding ex-perimental, theoreti
al and numeri
al developments. Oil-�lled thin shellsprepared by emulsion templating show bu
kling in mixtures of water andethanol, due to dissolution of the 
ore in the external medium. This leadsto 
onformations with a single depression, either axisymmetri
 or polygo-nal depending on the geometri
al features of the shells. These 
onforma-tions 
ould be theoreti
ally and/or numeri
ally reprodu
ed in a model ofhomogeneous spheri
al thin shells with bending and stret
hing elasti
ity,submitted to an isotropi
 external pressure.Pa
s : 46.70.De (Stati
 bu
kling and instability), 82.70.Dd (Colloids), 89.75.Kd(Patterns)1 Introdu
tionAnisotropi
 
olloidal parti
les made using spheres have been the subje
t of var-ious studies in re
ent years. These types of 
olloids 
an be obtained in verydi�erent ways, for example either by deformation of spheri
al parti
les[1, 2, 3℄,1



or by forming 
lusters of them[4, 5, 6, 7℄. Su
h obje
ts are good 
andidates togenerate anisotropi
 
olloidal 
rystals. Photoni
 bandgap (PBG) 
al
ulationsshowed that su
h 
rystals should improve the expe
ted performan
es (largerbandgap, more 
onvenient wavelengths)[4, 8, 9℄. Colloids with a hollow interior(spheri
al shells) are parti
ularly interesting also for their me
hani
al properties,whi
h make them potentially important for a variety of appli
ations, su
h asdrug delivery, 
atalysis and biote
hnology, and when �lled with gas as 
ontrastagents for ultrasound or e
hographi
 imaging. Due to the relevant engineer-ing situations as well as the biome
hani
s, the problem of the deformation of aspheri
al shell under external 
onstraints has been re
ently investigated, bothexperimentally and numeri
ally[12, 13, 14, 15, 16, 17, 18℄.In this study, we present anisotropi
 
olloids obtained by bu
kling of spheri-
al shells. The bu
kling was indu
ed by dissolving or evaporating the solventen
losed in the slightly porous shells. This 
auses a stress 
omparable to anisotropi
 pressure on a spheri
al airproof shell[19℄. After postbu
kling, the 
ol-loidal shells show bowl-like 
onformations, either with axisymmetri
 or polyg-onal symmetry. We observed them using both transmission opti
al mi
ros
opyand transmission ele
tron mi
ros
opy (TEM), and 
ompared them with 
on�g-urations obtained from Surfa
e Evolver simulations, using a model of homoge-neous elasti
 (bending and in-plane stret
hing) spheri
al shells submitted to anisotropi
 external pressure.2 Bu
kling under evaporation and in solution2.1 MethodsSpheri
al 
olloidal shells were prepared following previous work by Zoldesi and
o-authors[20, 21℄. They strongly mixed dimethyldiethoxysilane (DMDES) andan aqueous solution of ammonia (NH3), providing a very monodisperse andstable oil-in-water emulsion with droplets of mi
rometri
 size. The oil 
on-sists of low mole
ular polydimethylsiloxane (PDMS) oligomers. By addingtetraethoxysilane (TEOS), a solid shell forms at the surfa
e of the droplets,
onsisting mainly of PDMS with average oligomer length 4, 
rossed-linked withhydrolyzed TEOS units. Sin
e shown in ref [21℄, the shells are porous and thenallow small mole
ules to pass through. As the low mole
ular PDMS 
an bedissolved in ethanol [22℄, adding ethanol (an equal volume in the present study)to su
h an aqueous suspension of shells �lled with oil, leads to dissolution of theen
apsulated oil into the external medium. For thi
k enough shells ("
apsules"and spheres in the nomen
lature of ref [21℄, i.e. shell thi
kness over 100 nm),this leads to a suspension of solvent-�lled spheri
al parti
les. These parti
lesare then sedimented by 
entrifugation and redispersed in ethanol. They may bedried afterwards and observed by ele
tron mi
ros
opy, exhibiting shape modi-�
ations (�bu
kling under evaporation�) or not [20, 21℄, depending on the ratioof their shell thi
kness to radius [19℄. 2



Figure 1: Typi
al transmission opti
al mi
ros
opy images of parti
les from asuspension of 
olloidal spheres �lled with oil, in a mixture of water and ethanol.Three di�erent obje
ts are displayed under three di�erent views; they all showthe same 
o�ee-bean bu
kled shape, with an elongated depression. S
ale bar 4
µm.Thinner shells, however, will already bu
kle in solution when ethanol is added.Thin shells 
onsist of mu
h larger PDMS oil droplets 
oated with a very thinsolid organosili
a layer. They were prepared using the same pro
edure as de-s
ribed in ref.[20℄ for �mi
roballoon� parti
les. In order to obtain bigger parti-
les, we in
reased the 
on
entration of DMDES and ammonia up to 5% v/v, andthe droplets were allowed to grow for three days before the en
apsulation step.This resulted in somewhat more polydisperse parti
les with diameters between3 and 6 µm. Sin
e this small polydispersity prevented from determining theshell thi
kness through stati
 light s
attering, a range of 5-20 nm was proposed[20℄ by 
onsidering that all the TEOS forms a dense sili
a shell.2.2 Experimental results.In order to resolve the post-bu
kling stru
ture by transmission opti
al mi-
ros
opy, we used bat
hes of larger parti
ules with radii R between 2 and 3
µm. On
e bu
kled in solution through addition of ethanol as des
ribed in theprevious se
tion, these parti
les hold a single depression with signi�
ant vol-ume 
ompared to that of the initial sphere. Furthermore, in some 
ases thedepression is not axisymmetri
 anymore. In one bat
h (�g. 1), we did ob-serve apparently identi
al obje
ts, all with an elongated depression that givesthe whole obje
t a 
o�ee-bean shape. This type of 
onformations was reportedin literature for red blood 
ells [24℄ and for polystyrene shells previously �lledwith organi
 
ompounds and evaporated in air [25, 26℄, and was reprodu
ed bynumeri
al simulations[23℄.In other 
ases, the depression presented a polygonal aspe
t due to regularly3



Figure 2: Spheri
al shells bu
kled in solution, showing 4 to 8 wrinkles (a-e).Ea
h sub-�gure shows di�erent transmission opti
al mi
ros
opy views of thesame obje
t. S
ale bar 5µm, ex
ept sub�gure 
: 2µm.spa
ed radial wrinkles, in a number varying from 4 to at least 8 (�g. 2), 7-8being the upper limit that we 
ould still distinguish and 
ount for these shellsizes with opti
al mi
ros
opy.The obtention of su
h stru
tures in solution from syntheti
 
olloids is a totalnovelty. Besides, shapes with a depression presenting a 3-fold symmetry werepreviously observed in red blood 
ells[24, 23, 25℄ or in dried polymer parti
les[25, 26℄ but we 
ould not �nd in the literature observations 
on
erning a highernumber of wrinkles, on any system. To our knowledge, theoreti
al predi
tionsleading to su
h wrinkles do not exist either, ex
ept when generated by a pointload[27℄ whi
h is not the 
ase here.It is interesting to �nd out whether some shell heterogeneity has to be invokedto explain su
h a non-symmetry, or if a model of elasti
 homogeneous spheri
alshells is su�
ient to re
over these nontrivial shapes. In this purpose, we inter-ested in a model of thin spheri
al shells with bending and 2D stret
h elasti
ity,that we derived both analiti
ally and numeri
ally. Su
h an approa
h was likelyto give hints on features hardly a

essible by experiments, su
h as, here, shellthi
kness, or the su

essive steps that lead to the �nal (and observable) shapeadopted by the shells.3 Theoreti
al part: thin plate elasti
ityThe elasti
 energy stored in the deformation of a thin sheet of an isotropi
 andhomogeneous material may be split into a bending and a stret
hing part [28℄,and both 
an be written in terms of surfa
e elasti
ity:
F =

∫

shell surface

(
1

2
κ (c − c0)

2
+

1

2
ǫijKijklǫkl)dS (1)where κ is the bending 
onstant, c0 the spontaneous 
urvature of the shell(whi
h is zero for an unstress �at sheet, but 1/R for a spheri
al shell without4




onstraints) [29℄, and ǫij and Kijkl respe
tively the two-dimensional strain andelasti
ity tensors. The nonzero terms of the two-dimensional elasti
ity tensorare Kxxxx = Kyyyy = A
1−ν2 , Kxxyy = Kyyxx = νA

1−ν2 and Kxyxy = Kyxyx = A
1+ν(with A the equivalent two-dimensional Young modulus and ν the equiva-lent two-dimensional Poisson ratio)[30℄. The stret
h elasti
ity term 
an thusbe rewritten as A

2(1+ν)

[Tr(ǫ2) + ν(Trǫ)2
1−ν

]. We ignored the gaussian 
urvatureterm[33℄ sin
e, a

ording to the Gauss-Bonnet theorem, its integral dependsonly on the topology for a 
losed surfa
e.The link between these two-dimensional elasti
 parameters and the three-dimensionalfeatures (sheet thi
kness d, Young modulusE and Poisson ratio σ of the bulkmaterial) is obtained by 
onsidering zero stress on the two boundary surfa
es(�free plates�)[30℄:
κ =

Ed3

12(1 − σ2)
(2)

A =
1 + 2σ

(1 + σ)2
Ed

ν =
σ

1 + σIt is worthwhile to noti
e that, as the three-dimensional Poisson ratio σ has amaximum value of 0,5 (in
ompressible materials), the two-dimensional Poissonratio ν of su
h free plates 
annot over
ome 1/3. This point was negle
tedin previous work [31℄, and 
an be
ome of some importan
e if one wants tomake a link between the parameters 
hoosen for simulation and the geometri
alproperties of the shells.As the surfa
e integral s
ales like R2, the dimensionless Föppl-von Karmannumber γ = AR2

κ is likely to drive the su

ession of 
on�gurations resultingfrom the balan
e between bending and stret
hing. In this model of thin shell ofelasti
 isotropi
 material, we then expe
t:
γ = 12(1 −

2σ2

1 + σ
)

(

R

d

)2

= 12(1 −
2ν2

1 − ν
)

(

R

d

)2 (3)It is interesting to note that this model predi
ts 
onformations to be independentof E, and �nally depends only on the relative thi
kness d/R and the Poisson ra-tio. This latter point is always a stumbling blo
k in this �eld, sin
e experimentalPoisson ratio are always tri
kier to get than Young moduli.In su
h a model, we 
an 
al
ulate the elasti
 energy of an initially unstrainedspheri
al surfa
e whi
h inner volume de
reases by ∆V its initial value V , in two5




onformations: when the sphere remains spheri
al, and following referen
e [32℄when an axisymmetri
 depression is 
reated by inverting a spheri
al 
ap:
Usphere = 4πR2

×
A

9(1 − ν)

(

∆V

V

)2 (4)
Uaxisym = π

AR2

γ

(

d

R

)

−

1

2



sin α

(

tan α −

(

d

R

)1/2
)2

+ 4

(

d

R

)1/2

(1 − cosα)



(5)where d
R 
an be expressed as a fun
tion of γ and ν through equation 3. Param-eter α is the half-angle of the revolution 
one apexed at the sphere 
enter, andin whi
h the axisymmetri
 depression ins
ribes. This half-angle relates to therelative volume variation through:

∆V

V
=

1

2
(1 − cosα)2(2 + cosα) (6)In the limit of very thin shells and small volume variations, one 
an show that

Uaxisym ≈
π

121/4
AR2γ−

3

4

[

1 −
2ν2

1 − ν

]

−

1

4

α3Or, as a fun
tion of the relative volume variation:
Uaxisym ≈

4

3

π

21/4
AR2γ−

3

4

[

1 −
2ν2

1 − ν

]

−

1

4
(

∆V

V

)3/4In this limit, Usphere = Uaxisym would then happen for relative volume varia-tions:
∆V

V
∝ γ−

3

5 (7)whi
h provides a s
aling law for the �sphere towards 
apsule� bu
kling.These theoreti
al 
al
ulations will be 
ompared to simulation results in para-graph 4.4.4 Simulations4.1 Modus operandiThe simulated 
on�gurations presented hereafter were obtained using the freesoftware Surfa
e Evolver [34℄, in whi
h the elasti
 energy given by equation6



(1) is minimized in the spa
e of 
onformations. The stret
h energy term isin fa
t 
al
ulated using the Cau
hy-Green strain tensor, whi
h is a

urate fordes
ribing deformations of larger amplitude. The minimization was performedby alternating gradient, 
onjugate gradient and hessian methods. Sto
hasti
itywas introdu
ed by jiggling the position of the verti
es at the beginning of ea
hminimization (i.e. at ea
h volume step when the volume is de
reased by steps).We tested that the number of verti
es is high enough to avoid an in�uen
e ofthe mesh on the 
onformations. Furthermore, we 
he
ked that the symmetry ofthe mesh has no in�uen
e on the position of the wrinkles, by using an isotropi
randomized mesh. Su
h an approa
h was initiated by Tsapis et al [31℄.We explored a dis
rete range of γ, and restri
ted our simulations to the 
ase ofan in
ompressible material, i.e. ν = 1/3 (σ = 1/2).Given these elasti
 parameters, a �rst set of minimization was performed throughstepwise de
rease of the inner volume of an initially spheri
al surfa
e, and stressfree (i.e. c0 = 1/R), with a minimization at ea
h volume step. This leads to
oarsely isotropi
 stru
tures with depressions regularly disposed on the surfa
e,su
h as in referen
e [31℄ or on �gure 3-a. The number of depressions is found toin
rease with γ.Di�erent shapes of mu
h lower energy (for the same elasti
 parameters) 
ould beobtained through more sophisti
ated minimizations. This was done by reversiblya
ting on the spontaneous 
urvature c0 of the shells. Sin
e the shells are formedby templating on the oil droplets, one 
an assume that they are unstrained intheir initial state and c0 is expe
ted to be c0 = 1/R. But when c0 is 
hangedto zero , 
onformations qualitatively di�erent from potatoes 
ould be rea
hed:one obtains �
apsules� with a single axisymmetri
 depression. Minimizing againwith c0 ba
k to 1/R preserves this 
apsule 
onformation, with an energy lowerthan the potato shape, as exampli�ed on �gure 3-b. Temporarily imposing azero spontaneous 
urvature is likely to lower the energy barrier for the mergingof two di�erent depressions at the surfa
e of the sphere, sin
e merging happensthrough �attening of the high positive 
urvature ridge that separates the twodepressions. This tri
k apparently helps to get out of some lo
al minimas inwhi
h the simulated 
onformations are easily quen
hed, as it is quite usual inbu
kling problems.In the following, su
h a zero 
urvature 
y
le was systemati
ally performed atea
h volume step.4.2 ResultsWe performed simulations of an elasti
 
losed surfa
e, initially spheri
al andunstrained, whi
h inner volume is de
reased by volume steps dV = 0, 0190×V0,
V0 being the volume of the initial sphere. In all the experiments, V0 and κ werekept un
hanged (respe
tively equal to 5.268 and 2) and γ was varied from 271to 29160 by 
hanging A from 464 to 50000.7



Figure 3: Conformations numeri
ally obtained with Surfa
e Evolver for γ=743,
ν=0.333 (whi
h 
orresponds to a shell of relative thi
kness d/R=0,116 of anin
ompressible material with σ=0,5),∆V

V =0.171, c0 = 1/R, 3594 verti
es. Left:simulation performed by dire
tly minimizing at c0 = 1/R for ea
h de
reasingvolume step: N=17 depressions. Right : simulation performed �rst with c0 = 0,then c0 = 1/R. The elasti
 energy is 3.10 times larger for the �potato� (left)than for the 
apsule (right).Simulations are stopped when the surfa
e interpenetrates, whi
h happens forinner volumes of the order 7-11% the initial volume V0.Up to A=1000, i.e. γ=583, the volume de
rease 
auses a bu
kling toward the�
apsule� 
onformation, i.e. with a single axisymmetri
 depression, until thesurfa
e interpenetrates.From A=1600, i.e. γ=933, axisymmetri
 
apsules undergo a se
ond transitionwhen the volume goes on de
reasing, toward a non-axisymmetri
 
onformation.The onset of this se
ond transition is harder to dete
t sin
e the depression,ex
ept for the highest values of γ, slowly evolves toward a polygonal shape, andthen the 
orners of the polygon turns into wrinkles (limits of the depression
on
ave between the api
es). Quantitative data 
on
erning bu
kling thresholdswill nevertheless be given in the paragraph 4.4. We 
ould this way obtain su
hwrinkled bowls with 5 wrinkles or more. Some trials with re-in
reasing volumefrom a wrinkled state also provided 
onformations with 3 and 4 wrinkles.More quantitatively, �gure 4 provides the number W of wrinkles observedthroughout a stepwise volume de
rease for simulations with di�erent γ val-ues. One 
an noti
e that there is some �u
tuation on W , of one, or even two,units. In fa
t, performing de
reasing volume simulations with the same param-eters does not always lead to the same number of wrinkles. We 
ould get inthese situations an order of magnitude for the energy di�eren
e between two
lose 
onformation (i.e. W = ±1): it 
an be as small as a few tens of per-
ent. The energy of a 
onformation is not stri
ly determining its o

uren
e: thepath followed in the spa
e of 
onformations has some importan
e. This is whywe restri
ted most of our study to a sequen
e of minimization that is likely toreprodu
e the experimental situation, i.e. de
reasing the volume step by step.Figure 4 shows a weak tenden
y for the number of wrinkles W to in
rease with8



Figure 4: Typi
al evolution of the number W of wrinkles hold by the singledepression after se
ondary bu
kling (simulations performed for 4 values of γ,
ν=0.333).

Figure 5: Number W of wrinkles hold by the single depression after se
ondarybu
kling, averaged between ∆V
V = 0.53 and ∆V

V = 0.76, as a fun
tion of thedimensionless Föppl-von Karman number γ = AR2

κ .the relative volume variation ∆V
V on
e the bu
kling has o

ured, in the sameway that what was observed in ma
ros
opi
 indentation experiments[27℄.More obvious is the variation of W with γ. In order to pre
ise a variation ofa few units on a dis
rete quantity, we averaged W on a range of ∆V

V wherethe 
onformation holds wrinkles for all the values of γ, i.e. ∆V
V between 0.53and 0.76 (�gure 5). This put into eviden
e an in
rease of W with in
reasing γ.Wrinkles being more numerous with de
reasing d

R goes in the sense of intuition:a thinner plate folds more easily, and hen
e makes more folding patterns.4.3 Comparison between simulations and experimentsThe inner volume of the 
onformations exposed in �gure 2 is not easy to deter-mine pre
isely. Nevertheless, an important experimental remark is that bu
kling9



Figure 6: Three di�erent views of a bu
kled spheri
al shell labelled with RITC,in 
onfo
al �uores
en
e mi
ros
opy (left) and in transmission mi
ros
opy (right).The shell is 
learly self-
onta
ting at its 
onvexe part.
Figure 7: (a) Capsule obtained from evaporation in air of a spheri
al shell ofmean radius 870 nm, shell thi
kness 150 nm (TEM image). (b) Simulationobtained for γ=338 and ν=0.333 (hen
e equivalent to d

R = 0.154), ∆V
V =0.816,3594 verti
es. (
) Simulation: γ=2333 and ν=0.333 (equivalent to d

R = 0.0586),
∆V
V =0.854, 3594 verti
es. This 
onformation is to be 
ompared with �gure 2
(d) Simulation:γ=20995 and ν=0.333(equivalent to d

R = 0.0195), ∆V
V =0.854,3594 verti
es. This 
onformation is to be 
ompared with �gure 2e.deformations never relaxed ba
k toward the initial spheri
al shape after 
om-plete evaporation or 
omplete dissolution of the inner oil, yet it means thatthe last water/air or oil/water interfa
es, that were pulling the shell inwards,have disappeared. It is then likely that the shrinking brings opposite surfa
es
lose enough to one another to be sensible to Van der Waals attra
tion, whi
hwould stabilize the 
onformation against elasti
 
onstraints after vanishing ofthe 
apillary for
es. This hypothesis, of initially opposite parts of the shells that
onta
t in the 
onformations experimentally obtained, seems to be 
on�rmedby 
onfo
al pi
tures of bu
kled shells (�gure 6).In order to 
ompare the shapes obtained through simulations (with de
reasingvolume) with the experimental ones, we thus fo
used on the shapes obtainedjust before self-
onta
t.Figures 7-a and 7-b shows that we 
ould a

urately reprodu
e the shape ofaxisymmetri
 
apsules. In the simulation displayed here, we took γ=_271 and

ν=0.333, whi
h 
orresponds to d/R=0,172.For wrinkled bowls (examples displayed on �gures 7-
 and 7-d), the 
onfor-mations obtained just before interpenetration are also very similar to shapesobserved experimentally (�g. 2-
 and 2-e). Like in the experiments, wrinkles10



Figure 8: (a) Shell en
losing oil, evaporated in air (d/R ≈ 0.012). Transmissionopti
al mi
ros
opy, size 17 µm × µm. (b) Simulation obtained forγ=2916 and
ν=0.333 (equivalent to d

R=0.064), by in
reasing the volume from∆V
V =0.474 to

∆V
V =0.209, 3659 verti
es.do appear for thinner shells. However, the parameters for whi
h simulationsprovide wrinkles seem to indi
ate that the relative thi
kness of the shells is oneorder of magnitude higher than what was expe
ted (√ 12

γ

(

1 −
2ν2

1−ν

)=0.02 to0.08 to be 
ompared to d
R=0.002 to 0.008). A possible explanation for this dis-
repan
y lies in the shell porosity: this would be 
ompatible with a low volumefra
tion of sili
a in the shell, and then a shell thi
kness more important thanwhat had been previously 
al
ulated.Other experimental stru
tures 
ould also be reprodu
ed by simulations, su
h asthe one displayed on �gure 8a. This latter was obtained through evaporation inair of a shell still 
ontaining some of its inner oil (note: in this 
ase the al
oolwas added in the aqueous solution later that usual, whi
h probably allowedpolymerization of longer 
hains [21℄ that 
annot be dissolved by ethanol [35℄).Here the inner volume obviously does not 
orrespond to shell self -
onta
t. Insu
h a pro
essus, a shrinkage of the shell itself when the water a
hieves itsevaporation 
an be invoked to explain a behaviour 
omparable to a volumein
rease, su
h as in the simulation of �gure 8. The 
onformation, in this 
ase,is stabilized by oil-air interfa
es.All these results show that there is no need invoking shell heterogeneity toexplain the shapes experimentally observed: bending and in-plane stret
hingelasti
ity su�
es. Next se
tion provides more quantitative insights on the sim-ulation of elasti
 bu
kling.4.4 Quantitative 
omparison between simulations and elas-ti
 theoreti
al 
al
ulations.The software Surfa
e Evolver used to perform simulations provide the elasti
energy of ea
h 
onformation. For the two 
onformations �sphere� and �axisym-metri
 depression�, we 
ompared this elasti
 energy with the theoreti
al expres-11



Figure 9: Elasti
 energy of a shrinking shell. Bla
k squares: result of Sur-fa
e Evolver simulations, with γ=2916 (volume of the initial sphere: V0=5.268(R=1.08), κ=2, A=5000) and ν=0.333. Continuous line: elasti
 energy of ashrinking spheri
al shell, a

ording to equation 4 with same parameters. Inter-rupted line: elasti
 energy of a 
apsule (deformation with a single axisymmetri
depression) a

ording to equation 5, with same parameters.sions Usphere (equation 4) and Uaxisym (equations 5 and 6). The numeri
al dataare very well �tted by the theory, as shown on �gure 9. One sees that this �rstbu
kling from a spheri
al shape to a 
onformation with a single axisymmetri
depression o

urs with some hysteresis, i.e. for volume variations higher thanthe one 
orresponding to Usphere = Uaxisym.Figure 10 presents the bu
kling o

uren
es as a fun
tion of γ. The �rst bu
klingis determined without ambiguity, as it is obvious from �gure 9. The o

uren
eof the se
ond bu
kling, from an axisymmetri
 
apsule to a �wrinkled bowl�
onformation, is less easy to dete
t sin
e it 
orresponds neither to a dis
ontinuitynor a singularity in energy. We dete
ted in fa
t two 
ara
teristi
 values for ∆V
V ,by visual observation of the 
onformations: the �rst one 
orresponds to the lossof the axisymmetry, when the rim of the depression be
omes polygonal. Thenthe api
es of the polygon be
omes sharper (they tend to form the extremityof a d -
one [27, 40℄), and the inner part of the rim be
omes 
onvex betweentwo su

essive api
es: at this point we 
onsider that the 
onformation holdswrinkles, and this se
ond �threshold� is re
orded. Figure 10 shows that bothvalues are quite 
lose and present the same power-law in γ−1. Extrapolationinter
epts with ∆V

V =1 value γc=850, whi
h is 
onsistent with our simulationsshowing that se
ondary bu
kling appears for γ between 583 and 933.The �rst bu
kling (sphere toward axisymmetri
 
apsule) happens for thresholdsvalues of the relative volume variation that happen to vary in power-law with12



Figure 10: Primary bu
kling (bla
k squares) from sphere to 
apsule: relativevolume at whi
h the axisymmetri
 depression appears in the simulations, fordi�erent γ. Interpolating straight line : ∆V
V = 2.8 γ−0.55 . Se
ondary bu
kling:polygonization of the 
ir
ular rim (bla
k upwards pointing triangles) and ap-parition of wrinkles (gray downwards pointing triangles). Interpolating straightline: ∆V

V = 850 γ−1.the Föppl-von Karman parameter: ∆V
V ∝ γ−0.55. Despite the slight hysteresisin the primary bu
kling, this exponent is very 
lose to the −0.6 theoreti
allyproposed in equation 7.5 Dis
ussion.Experimental and numeri
al results showed that wrinkled bowls are preferen-tially observed when a very thin spheri
al shells lowers its volume. This 
on-formation is quite di�erent from the stru
tures (typi
ally dis
o
ytes or stoma-to
ytes) usually obtained for vesi
les, where the in-plane elasti
ity is liquid-like(related parameter: 2D 
ompressibility). Wrinkles signs the 2D-solid nature ofthe shells, sin
e it is needed to a

omodate the surfa
e of up to one hemispherewithin the other hemisphere, without an ex
essive 
ost in stret
h energy.It is interesting to note that a stru
ture presenting 3 wrinkles had been obtainedby Lim et al.[23℄ in simulations of red blood 
ells where the elasti
 propertiesof respe
tively the 
ytoskeleton and an homogeneous asymmetri
al phospho-lipid bilayer were in
luded in a similar numeri
al model with elasti
 bending,spontaneous 
urvature and stret
hing[37℄. But the bending/stret
hing ratio inthese biologi
al obje
ts where bending and stret
hing have di�erent origin washigher than the range of similar values for a thin shell of isotropi
 material. Thisprobably prevented these authors from obtaining shapes with more wrinkles.Besides, the simulations presented here do not ne
essarily provide the energiesof lowest 
on�guration. As an example, we 
ould, by following another path13



Figure 11: Simulation with γ=15163, ν=0.333 and ∆V
V =0.645. Su
h unusual
onformation 
an be obtained from a 
apsule at lower γ; its energy is 1.42 timeslower than the 
on�guration with wrinkles (W=7) obtained through progressivevolume de
rease for similar parameters.in the phase diagram of elasti
 and geometri
 parameters, obtain a totally new
onformation of mu
h lower energy than the wrinkled bowls (�gure 11). But this
onformation very likely 
orresponds to an energy trough too narrow to havebeen en
ountered in our experimental situation. Anyway, we are not lookingfor equilibrium 
on�gurations: we are trying to understand what really happenswhen a 
olloidal shell shrinks. It is well-known that many bu
kling 
onforma-tions 
an be quen
hed in non-absolute energy minima. Our study, putting intoeviden
e qualitative as well as quantitative 
onvergen
es between experiments,theory and simulations, strongly suggests that our simulations with a progressivede
rease of the inner volume 
an reprodu
e the path followed by the bu
kling ofreal shells. The shapes observed are 
ompatible both with self-
onta
t, whi
hwould explain their stabilization, and with shell homogeneity. Besides, the 
on-formation (and furthermore the number of wrinkles) gives an indi
ation on theshell relative thi
kness range.Stru
tures 
omparable to wrinkled bowls have already been observed experimen-tally on millimetri
 half-spheres submitted to a lo
alized[27℄ or a planar[38℄ load,or numeri
ally obtained by simulation of a sphere adhering on a �at surfa
e[39℄,but here we did put in eviden
e that su
h stru
tures 
an be obtained with anisotropi
 
onstraint.6 Con
lusionNon-trivial shapes were obtained by evaporating or dissolving the solvent en-
losed in porous 
olloidal shells.We have shown that the deformations of su
h obje
ts are 
onsistent with amodel of homogeneous thin spheri
al shells with bending and in-plane stret
h-ing elasti
ity submitted to an isotropi
 external pressure. The numeri
al sim-ulations showed that a primary bu
kling leading to 
apsules (holding a singleaxisymmetri
 depression) 
an be followed by a se
ondary bu
kling where thedepression wrinkles. This happens for de
reasing volume variations when therelative thi
kness of the shell is redu
ed, and the number of wrinkles 
on
omi-tantly in
reases. Simulations and experiments qualitatively and quantitatively
on�rm ea
h other. 14



These new results suggest that evaporation or dissolution of inner solvent is apromising way to obtain, from a monodisperse enough population of 
olloids,a monodisperse suspension of anisotropi
 obje
ts with geometri
 parameterstunable through the 
hara
teristi
s of the initial spheri
al shell.A
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