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Résumé:

Abstract: This paper provides a new game theoretic model consistent with the premises of
contestable markets. Two firms repeatedly compete for a natural monopoly
position. The limit price of the incumbent is disciplined by a hit and run strategy
of the entrant. In this model, contrarily to the well known Maskin and Tirole
model (1988): i) productive efficiency is encouraged, the more efficient firm gets a
higher rent as an incumbent than the one the less efficient firm would, ii) rent
dissipation does not necessarily prevails, even in the case of equally efficient
firms. This opens the way to a reassessment of the merits of contestable markets.
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1 Introduction!

This paper investigates if and how competition for a natural monopoly position
leads to productive efficiency and price discipline. This subject first appeared in
the limit pricing literature (Gaskins, 1971). Renewed attention occurred with
contestable markets (Baumol, Panzar and Willig, 1982). It is an important
antitrust issue in the cases of concentrated market structures.

Such situations may be modelled as repeated entry games. A proper selection
process has to be introduced to eliminate collusive equilibria and to focus the
attention on the more competitive ones. The main contribution in this area
has been made by Maskin and Tirole (1988), the selection process is based on
a Markov hypothesis.

However, Maskin and Tirole did not explicitly address the productive ef-
ficiency issue, since their paper only concerns equally efficient firms. When
applied to firms with different productive efficiencies, the Markov approach be-
haves strangely (Lahmandi, Ponssard and Sevy, 1996). To see this, observe
that to deter entry a firm has to limit its instantaneous profit and, the less
efficient it is, the more severe the limitation, since this limitation is based on
the profit function of the other firm and not on its own. In a finite horizon
game, if the game is long enough, entry deterrence induces the less efficient firm
to be unprofitable, thus to give up its incumbency position (Gromb, Ponssard
and Sevy, 1997). The Markov approach, because of its circularity in an infinite
horizon, is such that an inefficient firm may remain a permanent incumbent,
and productive efficiency is not encouraged.

This paper proposes a new approach directly based on the premises of con-
testable markets: firms differ in productive efficiencies, there is an incumbent
and the entrant uses a hit and run strategy. It is proved that productive effi-
ciency is encouraged. However, it will also be proved that rent dissipation may
not necessarily prevail, it depends on the economic characteristics of the natural
monopoly situation. A taxonomy is proposed to revisit the merits of contestable
markets in the light of this model .

The paper is organized as follows. Section 2 reviews the Markov approach,
the associated literature and provides the motivation for the new model. The
infinitely repeated entry game under analysis is introduced in section 3. The
subset of perfect Nash equilibria to be selected as its solution is precisely de-
fined in section 4. The main properties of the selected equilibria are studied in
section 5. Section 6 discusses their economic properties. The concluding section
discusses limitations and further research.

1Special thanks are due to Rida Laraki, Robert Wilson, an associate editor and the referees
for significant help in improving the content and presentation of this paper. I am also grateful
to Yves Balasko, Claude Henry, Laurent Linnemer, Michael Riordan, John Sutton, Nicolas
Vieille and audiences of seminars at Core (Louvain), Columbia (New York), Cirano (Montreal),
CMM (Santiago de Chile), Etape (Paris), Roy (Paris), Stanford, Hec Paris, Idei (Toulouse),
IHP (Paris), LSE (London) and SSE (Stockholm) for valuable comments.



2 Review of the literature and motivation

Potential competition is ordinarily analyzed under the following general frame-
work:

- the firms maximize their discounted profit over a long period of time,
possibly infinite;

- time is discrete and divided into stages;

- the economic context is a natural monopoly; within a stage, if more than
one firm are active, i.e. produce, the stage profits of at most one active firm
may be strictly positive due to high fixed costs; in this context, it is enough to
consider competition among two firms;

- competition takes the form of short run commitments; this embeds two
ideas: first, at any point of time, a firm can only commit to a short period and,
second, during that short period, the other firm can react; this also means that
the discount rate between stages is close to zero;

- the two firms may have different characteristics, one being strong and the
other weak, for instance the fixed costs may differ; when firms have identical
characteristics the are said to be symmetric;

- the proposed solution should be a subset of perfect Nash equilibria (which
are expected to be many);

- the solution should be tested with regards to economic properties such as
rent dissipation and selection (productive efficiency).

This general framework involves designing a game form, which depends on
the underlying situation featuring capacity, quantity, price, renewal policy com-
petition ..., and a solution concept that should be general enough to apply to
all relevant game forms.

This section reviews the previous works on this subject, points out the diffi-
culties encountered so far and provides a preview of the results that will follow
in the paper.

The discussion is carried out using an illustrative example. Price is the
decision variable and noted p € [0,1]. The pure monopoly profit is v(p) =
p(1 — p) — f. The fixed cost f is incurred at each stage but only in case the
firm is active on the market. It is not a set up cost incurred once for all at the
beginning of the game. Firms differ only in their fixed cost with f; < fs, so
that firm 1 is more efficient than firm 2.

Prices are set simultaneously. For a given price p; of firm j the demand
function of firm i is kinked using a positive constant switching cost denoted s.
It is the pure monopoly demand 1 — p; on the range [0,p; — s], it is zero on
the range [p; + s,1] and it decreases linearly on the range [p; — s,p; + s|. It
is easily checked that as long as p; > 3s the best response of firm ¢ is either
pi(p;) = pj — s, in which case it is active, or p;(p;) > p; + s, in which case it
is inactive. It is assumed all along that the condition p; > 3s holds for both
firms on the relevant range of analysis: the fixed costs are relatively high and
the price competition is tough.

Average cost pricing is characterized as the lower respective prices such that
v;(p;) = 0. Theses prices are denoted p{¢ and p3¢. Observe that p¢ < pge.



2.1 Static competition and selection

In a one stage game, any price p; € [p]¢, ps© + s] is such that the best response
of firm 2 is to be inactive so that firm 1 static limit price is p§°+ s. Denote p*?*
this limit price. Similarly denote p5'®* the static limit price of firm2. As long as
p3° < p§* both (pPe*, pa* 4+ ) and (pS®*, py*®* + s) are pure strategy Nash
equilibria.

Eventually, if the difference in efficiency between the two firms is high
enough, p§° > p{° + s. Entry of the less efficient firm is blockaded. Static com-
petition induces a selection process. Suppose it does not. The key question
addressed in this paper concerns the existence and nature of a dynamic selec-
tion process in an infinitely repeated game.

Note that this perspective is different from the dilemma between strategic
entry barrier versus accommodation ordinarily discussed in one shot Stackelberg
games (Dixit, 1980).

2.2 The Maskin and Tirole approach

In their 1988 paper, Maskin and Tirole analyze dynamic competition with large
fixed costs in an infinite horizon. The proposed solution is based on a Markov
approach in which the state variable is the move to which the other player
is currently committed. Though the example discussed in that paper refers to
quantity competition, as mentioned by the authors, the approach applies as well
to the case of price competition. Note also that an alternating move situation
taken from Cyert and DeGroot (1970) is used and not as here a simultaneous
move case. This is a minor detail and what follows certainly does not depend
on this peculiar feature of the game form. More importantly, Maskin and Tirole
only consider the case f; = fo.

Let the discount factor between stages be denoted 4. Let p* be the unique
solution (with p* < 1/2, 1/2 is the unrestricted monopoly price) to the equation

inp
v(p—s) +dv(p)/(1—-6) =0

The Markov equilibrium strategies when § is close to 1 are as follows:

- along the equilibrium path only one firm, say firm i, is active and it selects
p; = p*, it remains active all the time

- the reaction function of the outsider, say firm j # i, is such that if p; > p*
then p; = Min(p* — s,p*) but if p; < p* then p; = p* + s.

This solution has many good economic properties. The exercise of monopoly
power by the incumbent is disciplined by potential competition. The equation
that defines the equilibrium path is easy to interpret: the first term may be seen
as an entry cost that has to be recovered by future streams of revenues as an
active firm, while preventing further re-entry. From an economic standpoint it is
reminiscent of the limit pricing literature (Gaskins, 1971, Kamien and Schwartz,
1971, and Pyatt, 1971). This equation is known as the key recursive equation
of dynamic entry games (Wilson, 1992). Eaton and Lipsey (1980) and Farrell



(1986) had already derived similar equations through intuitive arguments based
on rational expectations. The Markov assumption provides a rigorous game
analysis.

As can be seen from this equation, it must be that v(p*) — 0 as § — 1,
which means that, as the length of the short term commitment decreases, the
instantaneous profit goes to zero. This is the celebrated rent dissipation property
(Fudenberg and Tirole, 1987) which confirms the heuristic stories of Grossman
(1981) and Baumol, Panzar and Willig (1982) on limit properties of contestable
markets.

However, the theory of contestable markets is mostly concerned about pro-
ductive efficiency, i.e. the selection of the most efficient firm through the com-
petitive process. The Markov approach is inadequate to discuss this issue. Lah-
mandi et al. (1996) applied this approach to the case of asymmetric firms. The
equilibrium now depends on the two prices pj and p} (with p; < 1/2) which
solve a system of two equations:

v1(p2 — 8) + dvi(p1)/(1—6) =0
va(p1 — 8) + dv2(p2)/(1 = 6) =0

The Markov equilibrium strategies are as follows:

- along the equilibrium path only one firm, say firm i, is active and it selects
pi = p;, it remains active all the time

- the reaction function of the outsider, say firm j # i, is such that if p; > p}
then p; = Min(p; — s,p}) but if p; < p] then p; = p} + s.

In other words, the solution is almost not affected by the introduction of
efficiency differences among the two firms. Surprisingly, rent dissipation still
prevails as § — 1. But the most striking feature of this approach is that the less
efficient firm may indefinitely remain as a permanent incumbent and that, for §
close to 1, its incumbency rent is greater than the one of the more efficient one.
This is easy to prove analytically. Using the system of equations that defines p}
and p3 one gets:

§(v2(p3) — v1(p1)) = (1 = 6)(vi(p3 — 5) — va2(p] — 3))

= (1=0)((pz —p1)(1 +2s — (p5 +p1)) + f2 — f1)

which is strictly positive since p3 > p} (because for § close to 1, p! is close
to p?°¢ and p$g® > p§°) and pf < 1/2.

This result can be illustrated numerically:

s=.02and § =.9 efficient firm 7 =1 inefficient firm 7 =2

fi 15 152
pee 184 187
piax .207 .204
P 185 189
v; (p}) .001 .002

This result is in contradiction with economic intuition: if the more efficient
firm cannot obtain the incumbency position from the competitive process, it
should at least be able to profitably buy it from the less efficient firm.



It is also in contradiction with a finite horizon approach. In Gromb et al.
(1997), it is proved that, however small the difference in efficiency, as long as the
discount factor is close to 1, selection always prevails in a long enough game.
Indeed, the entry preventing strategy of the less efficient firm is recursively
determined by the cumulative profit the more efficient firm would make as an
incumbent. The cumulative profit of the less efficient firm eventually decreases
below zero. At that stage, the less efficient firm is blokaded from entry as in
section 2.1.

The Markov assumption creates a circularity in the infinite horizon game
which is not consistent with a finite horizon approach.

2.3 The approach followed in this paper

The key idea is to assume that the less efficient firm may not be able to deter
entry for ever. It plays an explicit hit and run strategy. This can be illustrated
through the same numerical example, except that the discount factor is taken
as § = 1 to make things more readable.

The proposed equilibrium is detailed in the following table

s=.02and § =1 i1=1 =2
time dependance stationary t=4 t=23 t=2 t=1 t=0
p! .193 .204 .195 .186 178 170
v; (ph) L0057 .010 .005 .000 -.006 -.011
vj(pt — s) -.009 .000 -.0057 -.0114 -.0171
Si=H(va(ph)) .010 .015 .015 .009 -.002

The more efficient firm (firm 1) uses the stationary strategy p; = .193. If
that firm were to set a slightly higher price, say p}, the less efficient firm (firm
2) would ”hit”, i.e. move in setting its price at p} — s and then ”run” for four
stages setting its price successively at .178, .186, .195 and finally at .204 (its
static limit price). Since p} > .193 it must be that va(p} — s) > —.009, but
Yi=1(v2(ph)) = .009, this hit and run strategy is profitable.

Now, once the less efficient strategy starts running, the best response of the
more efficient firm is to wait until it goes away. Indeed, along the path, for all
t, one gets vi(ph — s) = —(4 — t)v1(.193) = —.0057(4 — t). Moreover, firm 1
knows that firm 2 is running away along a four stage path since firm 2 cannot
profitably deter entry along a 5 stage path (Xi=3(v2(ph)) = —.002).

This paper establishes the basic properties of this equilibrium and explores
its most direct economic properties. It will be proved that either selection
prevails or, if it does not, that the more efficient firm can profitably buy the
incumbency position from the less efficient one. An interesting taxonomy of
natural monopoly situations will emerge.



3 The repeated entry game I')_

The game I'?_ involves two players, player 1 and player 2. T'_ is the infinite rep-
etition of a stage game G. The players only use pure strategies. They maximize
the sum of their discounted payoffs using § as the discount factor (0 < § < 1).
The attention is focused on § close to one.

3.1 The stage game G

Let ¢ € {1,2} be anyone of the two players and j € {1,2},j # i be the other
one.

A strategy for player i in G is a real number x; € I; where I; =] — 00, a;]
with a; to be defined later on. The profit functions are denoted 7;(z;, z;).

Assumption 1 (natural monopoly): It is assumed that m; be increasing in
z; and that if 7; > 0 then m; < 0.

If 7j (@i, ;) = 0 and if for all 2 > z;, m;(zi,2}) = 0 player j is said not to
be active. Otherwise player j is said to be active.

For any z; define mj‘ (x;) as the minimal z; for which player j is not active
that is:

xj(ml) = Min{z; |for all ac; > xj,ﬂj(:ci,x;-) =0}
Denote v;(x;) the pure monopoly profit function for player i. It writes:
vi(es) = mi(ws, x5 (25))

The move associated to average cost pricing is denoted z{¢. It is such that
V; (ZL‘,) =0.
For any z; define x (z;) as the best entry move of player j that is:

z; (2;) = Arg{Maxzj<w;r(zi)7rj(xi, z;)}
Denote Cj(z;) the entry cost function for player j. It writes:
Cj(z;) = —mj(zi, z; (i)

The one stage limit strategy is denoted z***. It is such that C;(z;) = 0.

The functions a:j'() and z; (.) are assumed to be well defined and strictly
increasing.

Assumption 2 (Nash equilibria of G): Any pair of strategies (z;, xj (z:))
such that z%¢ < z; < z["®* is a Nash equilibria of the game G.

This implies that, for ¢ € {1,2}, z¢¢ < ">,

Assumption 3 (monotonicity of the payoff functions on the range of anal-
ysis): The functions v;(.) are strictly increasing and the functions C;(.) are
strictly decreasing.

This assumption simplifies the analysis in the sense that border conditions
need not be considered.



Assumption 4 (technical assumption): For mathematical convenience it
will be further assumed that the functions v; and C; have derivatives and that
these derivatives are uniformly bounded away from zero and from infinity.

The intervals I; may now be precisely defined as I; =] — oo,w?'(:c;nax)].
Note that assumption 3 implies that z; (z22X) is lower than the unrestricted
monopoly price of player i.

These assumptions generalize the simultaneous price competition model used
in Ponssard (1991) and the one used in section 2 to cases such that s > p;/3. In
particular it may be that the best entry move generates an unprofitable duopoly
situation rather than a monopoly one .

4 The selected set of perfect equilibria

The game I‘go is a standard repeated game, the folk theorem applies and its
set of perfect Nash equilibria is extremely large. The selection process intro-
duced in section 2 is now used to focus on competitive equilibria reminiscent of
contestable markets.

The two players are arbitrarily distinguished as a long term player, denoted
as player L, and a short term player, denoted as player S. At this point no
assumption is made regarding the relative efficiency of the two players.

Given an integer n, when they exist, define the real number y;, € I, and the
sequence (y%)i=0 in I that solve the following system to be denoted ®% :

fort € {0,1,2..n} Cr(v%) =vr(yr)d(1 — 6" %)/(1-6) (1)
Cs(yr) = Ti=T6'vs(ys) (2)
w() >0 (3)
fort € {1,2..n} LIPS “tug(ys) >0 (4)
SHZh6 vs(ys) < 0 (5)
The fact that the functions C;(.) be strictly decreasing ensures the following
lemma.

Lemma 1 If it exists, the sequence (y5)i=0 is strictly increasing in t.

Let H be the set of strategy pairs in G defined as

H ={(yr,z&(yr)), (5, 2F ()=}

To simplify notations, a pair h of H is identified by its first element that is,
the active player and his move. Then

H = {yr, (ys)i=1}-

The selection process will basically define two equilibrium paths which con-
sist of sequences (h* )’,j:j” of pairs in H. On the one hand, an equilibrium path

in which the long term player uses the stationary strategy yr so that h* =y,



for all k. On the other hand, an equilibrium path in which the short term player
uses a hit and run strategy (y%)i=7 so that h* = y& for all k = 1 to k = n and
h¥ =y, for all k > n. The is made precise by the following definition.

Definition 2 The selection process defines the paths in the game TS, which

consists of sequences (h’“)’,j:j>o in H such that for any pair h equal to some h*,

if ht = hF+1, the pair ht is such that:

ifh=yL
if T =yr for allzs > xf(y) ht=yL
forallzs < 2%(yr) hT =yl
if xs=xk(yL) forallzp >yr ht =yt
for all zr, <y, ht =y
ifrr #yr and zs # z§ (yr) ht =yp
if h=ys
if zs = yk for allzp, >z} (yy) forallt <n ht =yttt
ift=mn ht =yr
for all z1, < =7 (y%) ht =yr
ifer, = xf(yy)  for all zs > b ht =yr
for all zs < yk forallt <n ht =yt
ift=n ht =yr
if zs # vk and z1, # =7 (y) forallt <n bt =yhtt
ift=mn ht =yr

The sequences selected by this process may start with any pair in H but
observe that h* = y, for all k > n, player L is active indefinitely. For ¢ € {1,..n}
denote H the sequence which starts with = y% and Hp, the sequence in which
h¥ =y, for all k. After at most n stages, how the game started is irrelevant,
for all h', A1t™ = g

Suppose the selected sequence is Hy,. If player L is too "greedy ”(zr > yr)
or if player S is too "tough” (zs < z%(yz)) player S becomes the active player
at the next stage that is, h**1 = y} and the game goes on as in H}.

The is also true on the initial part of any path HY, interchanging the roles
of the players with the game going on as in H,.

Denote by Vi,(.) and Vg(.) the respective discounted payoffs of the two play-
ers as a function of the selected path. It is easily seen that:

VL(Hr) = vi(yr)/(1—9)
for t € {1,2..n} Vy(HE) ="V, (HL)

VS(HL) - 0 2 ’ /
for t € {1,2..n} Vg(HL) = SL=08""tug(yh)

Conditions (3) and (4) of ®} ensures that these payoffs are non negative.

Lemma 3 Any strategy pair generated by the selection process is a perfect Nash
equilibrium of T'9_.



Proof. Consider a path HY with h! = y&, Vi (HE) = 6"V, (HL) and
Vs(HE) = 3.2 6" tos(yf)-

Consider a deviation from player L. If z;, > x (y%) he would get 7z, (v, 21 )+
SVL(HE™) = 046V, (HE™) = Vi, (HE). Iz, < xf (y5) he would get 7, (v, z1)+
0V (Hp). Start with ¢ < m, one may write:

6VL(Hp) =évr(yr)/(1—6)
=8(1+..+6" 46t Dur(yr)
=0(1 = 6" vr(yr)/(1 = 8) + 6" Flur(yr) /(1 - 9)

Using condition (1) of ®} and the explicit expression of Vi,(HY), it follows
that 6Vi(Hr) = Cr(yh) + Vi(HY). Since z, < zf(y%) player L is active
and his payoff is less or equal to the one associated to his best entry move so
that 71 (ys, 21) < mL(ys, 27 (¥5)) = —CL(ys). Hence 71 (ys, o) + 0VL(HL) <
Vi(Hy).

£ = n, since mp(yBer) < mo(yh ey (uE) = —Coly) = 0, one gets
ﬂL(yg,xL) + 5VL(HL) S VL(Hg) = 5VL(HL)

Consider a deviation from player S. If 25 > y% he would get 75(zs,z} (y5))+
§Vs(Hy) = ms(zs, x} (y4)) +0. It should be that this is less than Vs (HY). This
is certainly true if 75(zs, 2} (y4)) < 0. Otherwise, by assumption 2, y% is a best
response to 2} (y%) in G, so that 0 < ms(zs, 27 (v)) < ms(vh, 2} (v5))- Since
Vi (HE) > 0 and since the sequence (yg)ﬁjzf is strictly increasing this implies
ms(es,a] (4)) < Vi (H).

If 5 < y% , with the notational convention Vs(Ha™') = Vs(H) = 0, he
would get ms(zs, 2} (y4)) + 6Vs(HE™) = vs(zs) + 6Vs(HE™). Since vg(.) is
strictly increasing, vs(zs) + dVs(H5™) < vs(yh) + Vs (HE™) = Vs(HY).

Similar arguments hold with the other paths. m

An equilibrium obtained through the selected process is denoted a SPE(n)
which stands for a ”selected perfect equilibrium for a given n”.

5 The main properties of the selected set of per-
fect equilibria and a further refinement

Some preliminary comments are in order.

Our attention is focused on the case § close to 1. It will be convenient to
work on the system ®7 which is the limit of ®§ as § goes to 1. It is easily seen
that the system ®7 is

fort € {0,1,2..n} —Cr(yy)+(n—t)vr(y)=0 (1)
—Cs(yr) + iZTvs(ys) =0 (2)
vr(yr) =0 (3
fort € {1,2..n}  XL=lvg(ys) >0 (4"
Xy =gvs(ys) <0 (5

It may be useful to develop some intuition about the solution of system @7 to
follow the mathematical construction. Start with some zr, so that vr(xz) > 0.



Condition (1’) generates a strictly increasing sequence (z%)!=7 backwards from
an initial 2% = z'T**. The expression X!=Fvg(z%) is bell shaped and there is a
t' = t* such that condition (2’) almost holds (the value of n has to be scaled
down to n —t*). A small change in zy, results in a big change in X!{=Tvg(z%) so
that condition (2’) may be fixed. Condition (4’) will hold by construction but
condition (5’) may not. If it does, theorem 4 below proves that the solution is
unique. If it does not, ®7 has no solution. In this construction, the smaller
v, (yL), the closer yr to ¢, the larger the value of n and the greater Cs(yy).
This gives theorem 5. If ®7 has a solution whatever the value of n, as n goes to
infinity, the limit of vz, (yr) goes to zero. Suppose this is the case and suppose
that Cr(z) = 1 — x, then y5™ — y& = vy (yr) so that conditions (4’) and (5’)
may be seen as f;ygg vs(x)dzr and f;’f vs(z)dz and so y% and y} converges to

x* solution of fml vg(z)dzr = 0. This condition is restated in general terms in
theorem 6.

A technical difficulty arises regarding the fact that the limit solution of ®}
may not be the solution of ®7. Theorem 4 proves that if ®7 has a solution it is
necessarily unique. The same arguments would apply to ®§ when § is close to
1. Because ®} is continuous in , its unique solution when J goes to 1 converges
to the unique solution of ®7. The properties of the solution of ®7 may then be
used to infer the properties of the solution of ®}.

To avoid ambiguity, the respective solutions of ®3 and ®7, when they exist,
are denoted as yr(n,d) and (y4(n,d))!=p, on the one hand, and yr(n) and
(y4(n))i=y, on the other hand.

Theorem 4 ®7 admits at most one solution for large enough n.
Proof of this theorem is in the appendix.

Theorem 5 If there exists a solution respectively in @5 and in ®F with m > n
then yr,(m,d) < yr(n,d).

Proof. Suppose yr(m,d) > yr(n,d) then vi(yr(m,d)) > vr(yr(n,d)).
Since Cy, is strictly decreasing this implies for all ¢ € {0,1,2...n}:

yg ' (m,8) <y5~'(n,9)
so that
S tug (Y3t (m, ) < BEE0 6" g (y2 T (n, 6)).

For t € {n +1,..m} we still have y5'*(m,d) < y%(n,d) and, because of (5)
we also certainly have vg(y2(n,d)) < 0 then

SiZm-10" " us(yg T (m, 0)) < 208" us (yg ! (m, ).

Then

SiZmo10™ T s (yg T (m, 6)) < BZRo" fus(yg ' (n, ).

10



By construction the left hand side should be greater or equal to zero while
the right hand side should be strictly negative thus a contradiction. =

Theorem 6 If§ < 1,3ns such that Vn > ns the system @ has no solution. If
0 =1 and if the system ®7 has a solution for all values of n then:

Tim v (yz(n)) =0,

lim Sfvs(yb(n)) = Cs(af),
. 1 T
i ys(n) = a7,
in which x* is uniquely defined as:

max

s dC
/ vs(m)d—;(m)d:c =0.

Proof of this theorem is in the appendix.

Theorem 7 If there is a solution in ®F for arbitrarily large values of n it is
necessary that:
vg(z*) + Cs(2§°) < 0.
If
vs(z*) + Cs(27°) <0
there is a solution in ®F for arbitrarily large values of n.

Proof. Consider the first part. Using (5’), for all n we have vs(y%(n)) +
Cs(yr(n)) < 0 so that at the limit we certainly have vg(z*) 4+ Cs(z°) < 0.

As for the second part, theorem 5 proves in fact that in the construction
of theorem 3 for n large enough g% converges to z* as g, goes to z%°. Since
vg(z*) + Cs(2§°) < 0 it must be that (5’) will be satisfied and a solution is
obtained. m

Theorem 8 Suppose vs(z*) + Cs(z§°) < 0, then lims_,1 vL(yr(ns,d)) = 0.

Proof. Since vs(z*)+Cs(z%) < 0, ®} has a solution for arbitrarily large n,
this proves that lims_,1 ns = co. But lim,,—, o vz (yr(n)) = 0. Since lims_,1 ng =
oo, whatever n the solutions of ®7 and of ®§ exist and can be made arbitrarily
close so that lims_q vr,(yr(ns,d) =0. m

Definition 9 The selection process is further refined so that the solution of
T, is taken as the SPE (ns) in which ns in the mazimal n for which ®7 has a
solution.

The motivation to select this SPE(ns) among the other SPE(n)’s comes
from theorem 5, which may be interpreted in two ways. Compare the strategies
in SPE(ns) and in any SPE(n). Firstly, player S maximizes his total rent over
his incumbency time (Ei:i?vg(yg(n))) Secondly, the long term incumbent L
deters the most aggressive entry from player S. In the concluding section this
particular selection is further discussed. The economic properties of SPE(ns)
when § goes to 1 are discussed in the next section. In particular, it is important
to give an economic content to theorem 8.
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6 Economic properties of the solution

The exploration proceeds in two steps. Firstly, a complete study of the spe-
cial case in which the functions v and C are linear, which is easy because the
solution may be derived analytically. Secondly, a discussion of these results in
relationship with the literature on contestable markets.

6.1 A benchmark: the linear case

A simple linear model may be seen as a first cut in future work:

vi(z1) = Az Ci(z2) =1 — 29
’Uz(il,'z) = 2o —Af Cz(iﬂl) = 1+Af—.’l,‘1

In this setting, firm 1 is more efficient than firm 2 if and only if firm Af > 0.
Average cost pricing and static limit moves are respectively:

2= 0
pe = 14 Af
x§¢ = Af/A
ppx— ]

To satisfy assumption 3 it must be that:
—1<Af<A

This game may be played either with player L as firm 1 or as firm 2. In both
cases the system ®7 may be solved analytically. Index by 1 or 2 its solution.

Proposition 10 In the linear case, the selected equilibrium is such that:
with firm 1 as player L and firm 2 as player S

fAf < -1 entry of firm 1 is blockaded
if—1<Af<(A—1)/2 yi1 = a8° =0
if A=1)/2<Af<X yr1 =1 — A+ 2Af
if A<Af yp1 =P =1+ Af
with firm 2 as player L and firm 1 as player S
fAf < —1 Y2 = x5 =1
if =1 < Af <A1 —=X)/(1+A\?) yr1 =1 - A1+ Af)
if M1=X)/(1+X2) <Af <) yre = 3¢ = Af/A
if A<Af entry of firm 2 is blockaded

Proof. Consider the first part.

By construction ;}nax vs(z) %L (z)dz = ff}nax vo(2) %L (z)d = le (Azo —
Af)dz. Tt follows that * = 2Af/\ — 1.

To obtain rent dissipation, it must be that vg(z*) + Cs(z$°) = va(x*) +
Ca(z§¢) < 0. That is, Af < (A —1)/2.

If there is no rent dissipation, using (1’) one gets y% = 1—(n—t)Ayr, so that
Y=ty = n— Ayrn(n—1)/2. Condition (2°) writes —Cs(yr) + Xi=Tvs(yh) =0
which gives —(1 —yr) — Af —nAf + An — N2ypn(n—1)/2 =0.
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The maximal duration ns when § — 1 is obtained using (5’). Denote ny =
lims_,1 ns. Assuming away integer problems, n; solves Efzglvs(yg) = 0. But
Y=g (yh) = —(n+ DAf + A(n+ 1) — X2yrn(n +1)/2, so that n; = 2(\ —
Af)/)\QyL

Substituting n by 2(A — Af)/A2yr, in the expression of yr, gets y;, =1 — A+
2Af.

Hint : first use the fact that X!=vg(y%) = 0 to eliminate Af in

—(1—yr)— Af =nAf+AIn—Nyn(n—1)/2=0

to get 1 + X = yr(1 + A?n) and then substitute n by 2(A — Af)/A\yr.

The proof of the second part is obtained through similar calculations

Corollary 11 The incumbency rents increases as the difference in efficiency
between the two firms increases.

]

Proof. A diagram may to used to visualize this result (see figure 1). It
depicts yr1 and yro as a function of Af. The respective average costs are also
drawn so that the incumbency rent may be read graphically as A(yr; — 2%°).
The diagram is drawn for A = 1/2. The incumbency rents are of course identical
for Af = 0. Then A(yr1 — x§) is seen to increase with Af while A(yr2 — 25°)
is seen to decrease. Note also the continuity of ¥z, and yrs as entry becomes
blockaded. It is easily seen that this remains true for all values of A\. m

ftbpFU327.25pt245.9375pt0pt The incumbency rents in the linear caseFigure

The impact of productive efficiency can be analyzed. Start with A = 1,
yr2(—Af) = yr1(Af) = 2Af. An innovation that gives a competitive advantage
in average cost of Af generates an instantaneous rent not of Af but of 2A f!
The factor 2 may be seen as a ”Shumpeterian multiplier”. This multiplier varies
with A, for instance it increases as the switching cost increases (to increase s
amounts to decrease A). This is to be contrasted with the MT approach in
which there is no rent what ever the competitive advantage.

A taxonomy of natural monopoly situations is introduced to discuss further
how productive efficiency works in this model.

Definition 12 A natural monopoly is said to be a situation of:

e under-competition if a less efficient incumbent can deter entry forever and
make stationary positive profits;

e selection if a less efficient incumbent is not able to deter entry forever and
make stationary positive profits, but a more efficient incumbent may;

e excess-competition if a more efficient incumbent were to choose to deter
entry forever, it would have to dissipate all of its profits.

These results of proposition 10 may be combined to depict the taxonomy in

a single diagram (figure 2).
ftbpFU363.375pt273pt0ptThe taxonomy of natural monopolyFigure 2
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6.2 Discussion

As will be shown shortly, examples such as the one introduced in section 2 are
suggestive of A < 1. It corresponds to tough price competition.

To be a little bit more general than in section 2, let R(p) be the revenue
function with R’ > 0 (at least in the relevant range for p) and R” < 0.The fixed
cost is denoted f. The symmetric entry game is thus defined with:

v(p) = R(p) — f
Clp)=—(R(p—s)— 1)

Proposition 13 In the simple price competition game, there is no rent dissi-
pation if the switching cost s is small enough but there is as the switching cost
s goes to zero.

Proof. For small s, we certainly have p™?* close to p*¢. Linear approx-

imations of the v and C functions may be used. According to proposition
10 the ratio v(p™@*)/C(p*©) relative to 1 characterizes the situation. Write
v(p™*)/C(p*) = —(v(P™™) —v(p*®)/ (P™** — p*°))/(C(p*°) — C(p™*))/ (p* —
p™*)) so that v(p™*)/C(p*°) is close to —v'(p*®)/C"(p**) = R'(p**)/ R’ (p** —
€)<lsince R <0. m

To obtain illustrations suggestive of A > 1, entry should not be so tough, it
should generate an (unprofitable) duopoly at that stage. The Eaton and Lipsey
model of durable capital as an entry barrier (1980) provides such an illustration
(see Gromb et al., 1997, section 4.3 for more details).

With these illustrations in mind, come back to the literature on contestable
markets. The standard game theoretic idea models contestable markets through
short term commitments. Rent dissipation prevails as the discount factor goes
to 1 (section 2.2). With this new approach it is not enough, it must be that
the switching cost, which provides an incumbency advantage, also goes to zero.
This view is in line with Weizman (1983): if contestable markets mean average
cost pricing, at the limit case, they correspond to a frictionless situation.

But this model also allows a discussion which is in line with critics according
to whom the intensity of competition in case of entry should play a role in the
argument. This point is seen as crucial by Dasgupta and Stiglitz (1986), its
impact has been formalized in a two stage game in Henry (1988), Sutton (p.
35, 1991) provided ample empirical evidence that ”a very sharp fall in price
suffices to deter entry and maintain a monopoly outcome”. This corresponds
to the fact that it makes a clear difference whether A < 1 or A > 1. In the first
case, competition is tough and there is no rent dissipation, in the second case,
competition is soft and rent dissipation prevails.

Consider now the productive efficiency issue. In this model, productive
efficiency is favored either directly through selection or at least through the
fact that, if the less efficient firm may remain as a permanent incumbent, its
incumbency rent is lower than the one of the more efficient one. The competitive
process works well for large differences in efficiency. Otherwise, in the zone
of undercompetition, firms should be encouraged to trade assets rather than
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engaged into price competition. In the zone excess competition, firms should
only invest on significant breakthroughs.

It seems worthwhile to carry on this discussion, not through the simple linear
case, but through a direct analysis of more substantial economic models. This
will be done in a companion paper.

7 Concluding comments

The approach proposed in this paper requires some further theoretical work. In
this last section some open questions are pointed out.

Question 1: The results should be extended to other game forms. The
extension to the Stackelberg model with endogenous leadership introduced in
Gromb, Ponssard and Sevy (1997) is straightforward, the interested reader will
note that assumption 2 in this model and assumption D in GPS may be dropped,
as long as for i € {1,2}, 22¢ < 2"®* is preserved to make the game interesting.
The extension to the alternate move model used by Maskin and Tirole (1988)
requires more work.

Question 2: A more formal selection process would certainly be helpful. A
starting point may be in extending the forward induction approach introduced
in Ponssard (1991) to the case of infinitely repeated games.

Question 3: The fact that a player plays a stationary strategy when he
is active gives him a tremendous advantage. This explains why a weak player
may stay as a permanent incumbent with the MT approach. This advantage
is not completely wiped out in our approach (player L enjoys it). It would be
interesting to define an approach in which it is. An approach which might be
worth investigating would be one in which there is a preliminary stage where
each player decides how long he could stay, say n; for player 1 and no for player
2. The choices n; and ng are then revealed and a repeated game I'21'"2 is played
in which each player can only use SPFE strategies according to the number of
stages announced at the preliminary stage. It is suspected that the equivalent
of theorem 6 holds (i.e., given n; the best response n;(n;) is the highest n; for
which the entry game I'*"2 has an equilibrium). If this were indeed the case,
the taxonomy of competitive situations introduced in section 6 would lie on a
stronger ground namely:

- selection: only the strong player would select to stay infinitely (the limit
equilibria in I'2"2 with respect to large values of (nj,ns) would have n} =
00, n4 < 0o, where player 1 is the strong player) ;

- under-competition: either player could select to stay infinitely but if one
does, the other would not wish to, the preliminary game would be similar to
a battle of the sexes game (there would be two limit equilibria T'""2 with
n} = oo,ny < oo and nf < co,ny =00 ) ;

- excess-competition: either player would select to stay infinitely whatever
the other one does, the preliminary game would be similar to a prisoner dilemma
game (formally T"1"2 would have no limit equilibrium with respect to large
values of (n1,n2), the best response nj(ns2) being oo and vice versa, while both
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equilibrium payoffs in a game I'"2>"2 would decrease as (n1,n2) increases).
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9 Appendix : Proofs

Proof. ? (Theorem 4) The proof runs as follows. Firstly prove that conditions
(1’-2’-3’-4’) of @7 have a unique solution. Secondly, check whether condition
(57) is satisfied: if it is, the unique solution of ®7 is obtained; if it is not, T
has no solution.

To prove the first part, for all zy, € [2%¢, 2'7*¥], define the function W (zL) =
Cs(zr) — X7vg(zY) in which the sequence (z%) is derived from z, through (1’)
that is,

—Cr(zy) + (n — t)vr(xr) =0 for t €{0,1,2..n}

then, show that W (zr) is negative (step 1) then positive (step 2) and that its
derivative is strictly positive (step 3) so that there is a unique solution to the
equation W(zr) = 0.

Step 1: if zf, = 2% then W (z1) <0

In that case z = C;*(0) for all ¢ so that W (2$°) = Cs (24°) — nvg (z5¥)

by assumption vg (zF**) > 0 so that for n large enough W (z¢°) < 0.

Step 2: if z, = 2 then W (z) > 0

Since Cy, is strictly decreasing, the sequence (z%) is a strictly increasing
sequence bounded by z§**. Since vg is strictly increasing this implies that
Ylvg(zY) is certainly negative for n large enough so that W (z'P2*) = —XTvg(z%)
is certainly positive.

Step 3: % >0

dz
We have
W _dCs gy s da
dey,  dry, T =Udzb deg
Using (1) we get:
da?fg de dCL
5 — )=
dxr, (n )de dzt,

2] am indebted to Rida Laraki for providing the argument for this proof.
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By substitution it follows that:

dw _dCs dﬂzt:n(( )dvg dCL)
drp,  drp dxp U dzt,
By assumption — dvs / dCL is uniformly bounded away from zero by ¢ so that

ﬂ>d05 dv_Ln(n—l)E
dry — dxp dryr, 2

. dv L . . dC S .
Since —— is bounded away from zero and since —= is bounded away from
T T

aw
—oo we certainly have - > 0 for n large enough.
T
Hence for a given n large enough there is a unique solution to W(zr) = 0

that is, to (2’). This solution is in |z $¢, z7**[ so that (3’) is also satisfied. Denote
1, this solution and (g%) for ¢ € {0,1,2...n} the associated sequence obtained
through (1%). Observe that (4’) is satisfied as well : since vg is increasing the
function Eﬁ,ifvs(ﬁg) is bell shaped with respect to t so for all ¢ we have:

Si=ros () 2 Min(Stvs(§5),vs(95)) = Min(Cs (i), vs (2§*) > 0

because g1, < zF** implies Cs(9r) > 0 and v(z'P**) > 0 by construction.

It is now a 51mple matter to check whether (5’) holds or not. If it does a
complete solution to ®7 is obtained, if it does not there cannot be a solution
for that value of n since conditions (1’) through (4’) have a unique solution. m

Proof. (Theorem 6)

Suppose vz, (yr(n,d)) > € > 0 for all n, then using (1) the sequence (y%(n,d)):=p
is a strictly increasing sequence defined backwards from y%(n, §) = z%**. Conse-
quently, for an arbitrarily large number of items in this sequence vg(y%(n,d)) <
0 whereas for a finite number of them, vg(y4(n,d)) > 0. It follows that (4)
cannot hold. Hence either there cannot be a solution for arbitrarily large n or,
if there is one, lim,,_, v1.(yL(n,d)) = 0.

Suppose lim,,_, o v, (yr(n,d)) = 0, it is now proved that, if § < 1, we have
a contradiction. Indeed, since vy, (yL (n,d)) is close to zero, using (1) it is seen
that the whole sequence (y4(n, §))i=f can be made arbitrarily close to z3*. By
assumption z%° < z¥**, so that (5) cannot hold. This completes the ﬁrst part
of the theorem. Furthermore we proved that if ®} has a solution for arbitrarily
large n, lim, o vr(yr(n) = 0.

Combining this result with (2’) we get lim,_, - Zfvs(y5(n)) = Cs(z5°).

Consider now the last point. First of all, given that % is bounded away
from infinity and from zero and that vg(z) is bounded away from zero, there
exists a unique z* < x¢° such that

i dc
/ vs(m)d—;(:ﬁ)dm =0

*
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For all z < z%° define F(z) = f;gc vs (u) %L (u)du, the function F is such
that F(z) > 0 iff z < z*.
We now show the convergence of yi(n) to z*.

Using (1) and (2’) we get :

Cs(yr(n))vr(yn(n)) = EiZfvs(ys(n))vr(yw(n))
= YiZlvs(ys(n) [Cr (v5 ' (n)) — CL (ys(n))]

When vy, (yz(n) is small this non negative expression is close to F(yk(n)).

To see this, make the change of variable from zg to u = Cr, (zg) . As t goes
from 1 to n, x5 increases from y}(n) to y%(n) and u from u'(n) = Cy, (y(n)) to
u™(n) = Cr, (y2(n)) = 0 but u'~!(n) — u’(n) remains ¢ independent and equals
vr(yr(n)), let Au(n) = vr(yr(n))

We may then write

v (yr(n))Zi=ivs (ys(n)) = ZiZivs (CF ' (u' (n))) Au(n)

For large values of n we have

: aCy

vs(Cgl(u,))du:/fs ’US(.’I)) e (x)dw

s O ) o) ~ [ N

ul(n)

This proves that y%(n) cannot be far below z*. Using (2’) and (5’) for
the two sequences n and n + 1, it is clear that y5(n + 1) and yL(n) cannot be
far apart either. More precisely:

yh(n+ 1) — u3(0)] < ~Min(SE (), TOE R (ws ()

Since dg’;f is bounded away from infinity, lim,,_, .o |y}g(n +1)— yé(n)| =0,
this is enough to prove that yL(n) converges to some limit and this limit can
only be z* since
lim,, o0 C's (y2(n))vr (v (7)) = Timy, o0 Cis(y2,()) ity o0 v, (32, (n)) = Ci5(0).0 =
0. m
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