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Résumé: Cet article analyse l'équilibre d'un marché d'assurances où les individus qui souscrivent une 
police d'assurance ont une obligation de bonne foi lorsqu'ils révèlent une information privée 
sur leur risque. Les assureurs peuvent, à un certain coût, vérifier le type des assurés qui 
présentent une demande d'indemnité et ils sont autorisés à annuler rétroactivement le contrat 
d'assurance s'il est établi que l'assuré avait présenté son risque de manière incorrecte lorsqu'il 
avait souscrit la police d'assurance. Toutefois les assureurs ne peuvent s'engager sur leur 
stratégie de vérification du risque. L'article analyse la relation entre l'optimalité de Pareto de 
second rang et l'équilibre concurrentiel du marché de l'assurance dans un cadre de théorie des 
jeux. Il caractérise les contrats offerts à l'équilibre, les choix de contrat par les individus ainsi 
que les conditions d'existence de l'équilibre. 

 
Abstract: This paper analyzes the equilibrium of an insurance market where applicants for insurance 

have a duty of good faith when they reveal private information about their risk type. Insurers 
can, at some cost, verify the type of insureds who file a claim and they are allowed to 
retroactively void the insurance contract if it is established that the policyholder has 
misrepresented his risk when the contract was taken out. However, insurers cannot precommit 
to their risk verification strategy. The paper analyzes the relationship between second-best 
Pareto-optimality and the insurance market equilibrium in a game theoretic framework. It 
characterizes the contracts offered at equilibrium, the individuals' contract choice as well as 
the conditions under which an equilibrium exists. 
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1 Introduction

Under the law of contracts, an insurer is bound by the provisions of an insurance policy

insofar as the policyholder has not deliberately concealed relevant information about

his risks when the insurance was taken out. The contract is automatically rescinded in

case of risk misrepresentation or non-disclosure of material facts affecting risk unless the

policyholder’s good faith is established1.

Dixit (2000) studies the consequences of the duty of good faith in the setting of a

competitive insurance market à la Rothschild-Stiglitz (1976). He shows that the good

faith principle achieves a Pareto improvement by allowing the insurers to better separate

low risk individuals from high risks ones. If verifying the accident probability is not too

costly, then a random ex post investigation should be carried out when an alleged low

risk individual files a claim, no indemnity being paid to a policyholder caught lying.

Dixit also shows that a larger insurance indemnity should be paid to a (truthful) low

risk individual in case of verification than when the claim is not verified. Furthermore,

the good faith principle extends the range of high risk and low risk proportions for

which a competitive equilibrium exists. Dixit and Picard (2003) extend Dixit’s results

to a setting where individuals may have only partial information about their risk level

: they only perceive a signal of their risk. Bad faith and good faith then respectively

correspond to intentional or unintentional misrepresentation of risk and insurers can

verify risk type, perceived signal or both.

In these papers, insurers commit to a random investigation policy and all policy-

holders reveal their information truthfully at equilibrium : in other words, they are all

in good faith. Consequently, when verification is costly, insurers may be tempted not

to verify the policyholders’ types or perceived signals with the preannounced frequency,

which implies that the insurers’ verification strategy is weakened by credibility problems.

The present paper will focus attention on this issue of the credibility of the insurers’

verification strategy when insurance applicants have a duty of good faith.

It is hardly likely that full commitment on a verification strategy can be recovered

thanks to repeated relationships. Firstly, the duration of an insurer-policyholder rela-

tionship is finite and random. In particular, an increase in the customers’ turnover (i.e.

a larger probability to quit at each period of time) is equivalent to an increase in the

discount rate : a large turnover rate will prevent the insurer to reach a full commitment.

Secondly, for a given policyholder the frequency of an accident is usually too low for

commitment to be sustainable in a long run relationship. This is all the more likely

because the optimal verification strategy is probabilistic which makes the detection of

deviations even more difficult. Thirdly, a policyholder usually has imperfect informa-
1See Clarke (1997) on the duty of good faith in the law of insurance contracts. Colquitt and Hoyt

(1997) show that most of the reasons provided by US life insurers for resisting claims are linked to the
bad faith of insured, mainly material risk misrepresentation, hidden preexisting condition, misstatement
of age or of medical history.
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tion about the verification frequency of other policyholders which reduces the insurers’

ability to build a reputation for frequent auditing.

In this paper, to make the problem more easily tractable, but also to look at the

good faith principle from the a priori less favorable point of view, we will consider a

one-shot insurer-policyholder relationship in which any commitment through repeated

relationship is dismissed. The setting is similar to the model of Rothschild and Stiglitz

(1976). There is a large number of risk averse individuals who have private information

on their accident probability : there are low risk individuals and high risk individuals.

These individuals seek for insurance on a competitive market. Each insurer offers a

menu of two contracts, one of them being reserved for low risk individuals. Individuals

choose the contract they prefer. A high risk individuals may lie: he may announce that

he is a low risk in order to benefit from cheaper insurance. Insurers may carry out a

costly verification of the risk type of alleged low risk individuals who file a claim. If

investigation reveals that the individual was not truthful, then the good faith principle

allows the insurer to canceal the contract and to deny any indemnity. The remaining

player is nature : it chooses the risk type of each individual and whether he has an

accident or not. Insurers, individuals and nature play a multistage game whose (perfect

Bayesian) equilibrium is the insurance market equilibrium. In particular, at equilibrium

the insurer’s verification probability is the best response to the policyholder’s contract

choice strategy.

Our first stage will be to characterize the second-best Pareto optimal allocations,

i.e. the allocations that are efficient under the additional constraints imposed by the

asymmetry of information between insureds and insurers and by the unability of insurers

to commit on their auditing strategy. This will be an important step toward the char-

acterization of the market equilibrium because, in the present model, the equilibrium

allocation (i.e. the players’ decisions on the equilibrium path of the insurance market

game) are second-best Pareto optimal2. It will be shown that second-best Pareto optimal

allocations, and in particular equilibrium allocations, are symmetric, in the sense that

generically all insurers offer the same menu of contract. Furthermore, at equilibrium

there is no cross-subsidization between contracts. These results will require refinements

of the Perfect Bayesian Equilibrium concept (trembling-hand perfection and a Markov-

type restriction on the low risk individual strategy), but from the point of view of realism

we really think that these are innocuous restrictions and that they do not really affect the

relevance of the results. Nevertheless, for the sake of completeness, we will show through

examples that the correspondance between second-best Pareto-optimal allocations and

equilibrium allocations vanishes when the refinements are not postulated.
2Readers who are familiar with the Rothschild-Stiglitz (1976) model may be surprised at such a

statement because, in the basic version of the Rothschild-Stiglitz model, the equilibrium allocation is
not necessarily second-best Pareto-optimal. Indeed in this version, each insurer only offers one contract
and at equilibrium insurers specialize in high risk or low risk customers. When each insurer can offer a
menu, as in the present model, then the Rothschild-Stiglitz equilibrium is second-best Pareto optimal.
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From a methodological standpoint, our model shows that the characterization of

second-best Pareto optimal allocations is a fruitful roundabout means to analyze the

competitive market equilibrium. Hopefully this is a result of general interest for other

markets with adverse selection where players (e.g. lenders and borrowers, employers

and employees,...) interact after the initial contract offer by the uninformed parties.

Concerning the analysis of the insurance market itself (under the refined equilibrium

concept), our main results are the following. Firstly, the good faith principle is still

Pareto-improving in this no-commitment setting. Secondly, an equilibrium exists for a

larger set of parameters than in the standard Rothschild-Stiglitz model. Thirdly, the

equilibrium may be separating or semi-separating. At a separating equilibrium, differ-

ent types purchase different contracts : there is full coverage for high risks and partial

coverage for low risks and no auditing is implemented at equilibrium. A separating equi-

librium in fact coincides with the Rothschild-Stiglitz equilibrium: high-risk individuals

are indifferent between buying full insurance at fair premium and choosing the insurance

contract which is intended for low-risks individuals. By contrast, at a semi-separating

equilibrium, high-risks randomize between both contracts ( we may say that they are in

bad faith with positive probability) and the risk type is verified with positive probability

for alleged low risk individuals who have filed a claim. Furthermore, a separating equi-

librium involves partial coverage for low risks individuals (as in the Rothschild-Stiglitz

model) but they are overinsured at a semi-separating equilibrium. Fourthly, we shall

define the conditions of validity of the different regimes that may prevail (separating

equilibrium, semi-separating equilibrium or no equilibrium) according to the values of

two parameters : the fraction of high risk individuals in the population and the cost of

risk type verification.

The paper is organized as follows. Section 2 sets out the model. Section 3 introduces

the definition and the basic properties of an insurance market equilibrium with risk

verification. Section 4 characterizes second-best Pareto-optimal allocations. Section

5 provides our results about the existence and the features of a market equilibrium.

Section 6 concludes. The proofs are gathered in the appendix.

2 The model

We consider a large population represented by a continuum of individuals facing id-

iosyncratic risks of accident. All individuals are risk averse : they maximize the ex-

pected utility of wealth u(W ), where W denotes wealth and the (twice continuously

differentiable) utility function u is such that u′ > 0 and u′′ < 0. If no insurance policy

is taken out, we have W = WN in the no-accident state and W = WA in the accident

state; A = WN −WA is the loss from an accident. Individuals differ according to their

probability of accident π and they have private information on their own accident prob-
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ability. We have π = π` for a low-risk individual (or `-type) and π = πh for a high-risk

individual (or h-type) with 0 < π` < πh < 1. The fraction of high-risk individuals is λ

with 0 < λ < 1 and π = λπh + (1− λ)π` is the average probability of loss.

Insurance contracts are offered by n insurers (n ≥ 2) indexed by i = 1, ..., n and

we assume that each individual can buy only one contract. An insurance contract is

written as (k, x) where k is the insurance premium and x is the net payout in case of an

accident. Hence x + k is the indemnity. The expected utility of a policyholder is then

written as

Eu = (1− π)u(WN − k) + πu(WA + x), (1)

where π ∈ {π`, πh}. C∗
` = (k∗` , x

∗
`) = (π`A,A−π`A) and C∗

h = (k∗h, x∗h) = (πhA,A−πhA)

are the actuarially fair full insurance contracts, respectively for low risk and high risk.

Let us begin with a brief presentation of the Rothschild-Stiglitz (1976) model. An

equilibrium in the sense of Rothschild and Stiglitz consists of a set of contracts such

that, when individuals choose contracts to maximize expected utility, (i): Each contract

in the equilibrium set makes non-negative expected profit, and (ii): There is no contract

outside the equilibrium set that, if offered in addition to those in the equilibrium set,

would make strictly positive expected profits. This concept of equilibrium may be

understood as a pure strategy subgame perfect equilibrium of a game where insurers

simultaneously offer contracts and individuals respond by choosing one of the contracts

(or refusing them all). At equilibrium, each contract makes zero profit and there is no

profitable deviation at the contract offering stage, given the subsequent reaction of the

insurance purchasers.

Rothschild and Stiglitz show that there cannot be a pooling equilibrium where both

groups would buy the same contract. Only a separating equilibrium can exist : dif-

ferent types then choose different contracts. Rothschild and Stiglitz establish that the

only candidate separating equilibrium is such that high risk individuals purchase full

insurance at fair price, i.e. they choose C∗
h, and low risk individuals purchase a con-

tract C∗∗
` with partial coverage. C∗∗

` is the contract that low risk individuals most

prefer in the set of (fairly priced) contracts that do not attract high risk individuals:

C∗∗
` = (k∗∗` , x∗∗` ) = (π`A

′, A′ − π`A
′) with A′ ∈ (0, A) given by

u(WN − πhA) = (1− πh)u(WN − π`A
′) + πhu(WA + (1− π`)A′). (2)

The Rothschild-Stiglitz equilibrium is illustrated in Figure 1, with state-dependent

wealth on each axis3. W 1 = WN − k and W 2 = WA + x respectively denote final

wealth in the no-accident state and in the accident state. The no-insurance situation

corresponds to point E with coordinates W 1 = WN and W 2 = WA. The high risk and

low risk fair-odds line go through E, with slopes (in absolute value) respectively equal to
3Because no ambiguity may occur, we use the same notation for insurance contracts (k, x) and their

images in the (W 1, W 2) plane.

5



πh/1− πh and π`/1− π`. At C∗
h the h-type indifference curve is tangent to the high risk

fair-odds line EH. Similarly, C∗
` is at a tangency point between a `-type indifference

curve and the low risk fair-odds line EL. C∗∗
` is at the intersection between EL and the

high-risk indifference curve that goes through C∗
h. EA in Figure 1 corresponds to the

average fair-odds line with slope π/1− π.

Figure 1

Rothschild and Stiglitz also show that the candidate equilibrium C∗
h, C∗∗

` is actually

an equilibrium (in the sense of the above definition) if and only if λ is larger than a

threshold λ̂, with λ̂ ∈ (0, 1). When λ = λ̂, the low-risk indifference curve that goes

through C∗∗
` is just tangent to EA. When λ < λ̂, there exist contracts that, if offered in

addition to C∗
h, C∗∗

` , would attract high and low-risk individuals and that would make

a positive expected profit. Hence, an equilibrium in the sense of Rothschild and Stiglitz

only exists if λ ≥ λ̂ as represented in Figure 1.

The above given definition of an equilibrium assumes that each insurer can only offer

one contract. At equilibrium some insurers offer C∗
h and others offer C∗∗

` . When insurers

are allowed to offer a menu of contract, which is certainly a more realistic assumption,

then the definition of an equilibrium in the sense of Rothschild and Stiglitz consists of a

set of menus that break even on average, such that there is no menu of contracts outside

the equilibrium set that, if offered in addition, would make strictly positive expected

profits. At an equilibrium, the menu C∗
h,C∗∗

` is offered by all insurers: h-types choose C∗
h

and `-types choose C∗∗
` . Hence the set of equilibrium contracts is unchanged. However,

the possibility of offering a menu increases the critical proportion of high risk individuals

above which an equilibrium exist: there exists λ∗ in (0, 1), with λ∗ > λ̂ such that an

equilibrium exists if and only if λ ≥ λ∗4.

In what follows, we will modify the Rothschild-Stiglitz model by considering the

consequences of the good faith principle. Applicants for insurance have a duty of good

faith, which stipulates that they should reveal their risk type truthfully and provides

that if an investigation reveals that a high risk individual passed himself off as a low

risk, then the insurance contract may be rescinded. It will be assumed that no third

party can verify whether a risk type investigation has actually been carried out, except

when risk misrepresentation has been established. In other words, only the proof of

risk misrepresentation is verifiable information. Under this assumption, a supposedly

low-risk policyholder receives the same insurance indemnity when the truthfulness of his

assertion has been verified by the insurer and when no investigation has been carried

out5. In such a framework, an insurance contract is still written as (k, x) where k is the

insurance premium and x is the net payout in case of an accident, and the expected

4The fact that λ∗ is larger than bλ was pointed out by Rothschild and Stiglitz (1976) themselves.
5This restriction on the set of admissible contracts is in line with the common practice of insurers.
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utility of a truthful policyholder is given by (1).

At the equilibrium of the insurance market, a contract Ci
` = (ki

`, x
i
`) is offered by

insurer i to low-risk individuals only, while another contract Ci
h = (ki

h, xi
h) offered by

insurer i may be taken out by any individual whatever his type. In case of an accident,

a policyholder who has taken out the Ci
` contract will be investigated with probability

pi ∈ [0, 1]. Through investigation, the insurer gets information about the type of the

policyholder. This information is verifiable if the policyholder has misrepresented his

type in which case the insurer voids the contract, which means that no indemnity is

paid and the premium is refunded to the policyholder, and the latter pays a fine F > 0

to the Government6. Verifying the insureds’ type costs c to the insurer. Individuals

may also opt out of purchasing insurance. For notational simplicity, this no-insurance

choice corresponds to an additional (fictitious) insurer i = 0, with C0
h = C0

` ≡ (0, 0) and

p0 ≡ 0.

σi
hh and σi

h` respectively denote the probability for a h-type individual to choose

Ci
h or Ci

` and σi
`h and σi

`` respectively denote the probability for a `-type individual

to choose Ci
h or Ci

`, with
∑n

i=0(σ
i
hh + σi

h`) = 1 and
∑n

i=0(σ
i
`h + σi

``) = 1. Let C =

(C1
h, C1

` , ..., Cn
h , Cn

` ), p = (p1, ..., pn), σh = (σ0
hh, σ0

h`, ..., σ
n
hh, σn

h`) and σ` = (σ0
`h, σ0

``, .., σ
n
`h, σn

``).

In what follows, {C, p, σh, σ`} is called an allocation: it is a complete description of the

decisions of firms and individuals in the insurance market.

3 Definition and basic properties of a market equilibrium

An equilibrium of the insurance market is a perfect Bayesian equilibrium of a five stage

game, called the market game. At stage 1, nature chooses the type of each individual :

he is a h-type with probability λ or a `-type with probability 1−λ. At the second stage,

each insurer i > 0 decides whether to offer a menu of contracts and, if so, she chooses

the specification Ci
h, Ci

` of each contract in the menu. At the third stage, each individual

decides whether to accept a contract, and if so, which contract in the proposed menus.

At the fourth stage, for each individual, nature decides whether an accident occurs or

not with probability (πh, 1− πh) or (π`, 1− π`) according to the individual’s type. The

insured policyholders who have suffered an accident file a claim. At the fifth stage, each

insurer chooses whether or not to verify the type of the alleged low-risk individuals who

have filed a claim (insurer i verifies with probability pi) and, depending on the results

of the investigation, she pays the indemnity or returns the premium.

For any insurance contract (k, x), be it a Ch or a C` contract, the expected utility

of `-type individuals is

U`(k, x) ≡ (1− π`)u(WN − k) + π`u(WA + x).
6Assuming F > 0 simplifies matters, but F may be arbitrarily small.
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The expected utility of h-type individuals is

Uh(Ci
h) ≡ (1− πh)u(WN − ki

h) + πhu(WA + xi
h) for Ci

h,

Uh`(Ci
`, p

i) ≡ (1− πh)u(WN − ki
`) + πh[(1− pi)u(WA + xi

h) + piu(WA − F )] for Ci
`.

Let Uh ≡ Uh(0, 0), U ` ≡ U`(0, 0), U∗
h ≡ Uh(C∗

h) = u(WN − πhA) and U∗
` ≡ U`(C∗

` ) =

u(WN − π`A). For Ci
h, insurer i’s expected profit is

Πh(Ci
h) = (1− πh)ki

h − πhxi
h for a h-type policyholder,

Π`(Ci
h) = (1− π`)ki

h − π`x
i
h for a `-type policyholder.

For a Ci
`, the expected profit is

Π`h(Ci
`, p

i) = (1− πh)ki
` − πh[(1− pi)xi

` + pic] for a h-type policyholder,

Π``(Ci
`, p

i) = (1− π`)ki
` − π`(xi

` + pic) for a `-type policyholder.

Let us now define the players’ strategies and beliefs in the market game. The strategy

of insurer i > 0 is defined by Ci ∈ R4
+ and pi(.) : R4n

+ → [0, 1] where Ci = (Ci
h, Ci

`) and

pi(C) is the audit probability for Ci
` at stage 5 when C = (C1, ..., Cn) is offered in the

market at stage 2. Let p(.) = (p1(.), ..., pn(.)) be the profile of auditing strategy and

p0(.) ≡ 0.

The strategy of h-type individuals is σh(.) : R4n
+ → S2n+1 where σh(C) = (σ0

hh(C), σ0
h`(C),

..., σn
hh(C), σn

h`(C)) describes the h-types’ contract choices when C is offered and S2n+1 =

{t = (t1, t2, ...t2n+2) ∈ R2n+2
+ ,

∑2n+2
j=1 tj = 1} is the 2n+1 dimensional simplex. In words,

a h-type individual chooses Ci
h with probability σi

hh(C) and he chooses Ci
` with proba-

bility σi
h`(C) when C is offered. Likewise, the strategy of `-types is σ`(.) : R4n

+ → S2n+1

where σ`(C) = (σ0
`h(C), σ0

``(C), ..., σn
`h(C), σn

``(C)) specifies the contract choices by `-

type individuals. Hence the profile of strategy is denoted by {C, p(.), σh(.), σ`(.)}.
Auditing decisions depend on the insurers’beliefs about the policyholders’ type. Be-

liefs depend on the set of contracts that are offered in the market. At stage 5, the beliefs

of insurer i > 0 are defined by by µi(.) : R4n
+ → [0, 1] where µi(C) is the probability that

a Ci
`-claimant is a h-type when C is offered at stage 2. The system of beliefs is denoted

by µ(.) = (µ1(.), ..., µn(.)). We have assumed that insurers refund premium but do not

pay anything else if investigation reveals that an alleged `-type individual was in fact a

h-type. Thus, given the beliefs µi(C) and the audit probability pi, the expected cost of

a claim filed by a Ci
`-policyholder is xi

` + pi[c− µi(C)xi
`].

Definition 1. A profile of strategies C̃, p̃(.), σ̃h(.), σ̃`(.) and system of beliefs µ̃(.) is a

8



Perfect Bayesian Equilibrium of the market game if it has the following properties:

n∑
i=0

[σ̃i
hh(C)Uh(Ci

h) + σ̃i
h`(C)Uh`(Ci

`, p̃
i(C))] ≥

n∑
i=0

[σi
hhUh(Ci

h) + σi
h`Uh`(Ci

`, p̃
i(C))]

for all σh ∈ S2n+1 and all C ∈ R4n
+ , (3)

n∑
i=0

[σ̃i
`h(C)U`(Ci

h) + σ̃i
``(C)U`(Ci

`)] ≥
n∑

i=0

[σi
`hU`(Ci

h) + σi
``U`(Ci

`)]

for all σ` ∈ S2n+1 and all C ∈ R4n
+ , (4)

p̃i(C)[µ̃i(C)xi
` − c] ≥ pi[µ̃i(C)xi

` − c]

for all pi ∈ [0, 1], all C ∈ R4n
+ and all i = 1, ..., n, (5)

λ[σ̃i
hh(C̃)Πh(C̃i

h) + σ̃i
h`(C̃)Π`h(C̃i

`, p̃
i(C̃))]

+(1− λ)[σ̃i
`h(C̃)Π`(C̃i

h) + σ̃i
``(C̃)Π``(C̃i

`, p̃
i(C̃))]

≥ λ[σ̃i
hh(Ci, C̃−i)Πh(Ci

h) + σ̃i
h`(C

i, C̃−i)Π`h(Ci
`, p̃

i(Ci, C̃−i))]

+(1− λ)[σ̃i
`h(Ci, C̃−i)Π`(Ci

h) + σ̃i
``(C

i, C̃−i)Π``(Ci
`, p̃

i(Ci, C̃−i))

for all Ci = (Ci
h, Ci

`) ∈ R4
+ and all i = 1, ..., n, (6)

µ̃i(C) =
λπhσ̃i

h`(C)
λπhσ̃i

h`(C) + (1− λ)π`σ̃
i
``(C)

for all C such that σ̃i
h`(C) + σ̃i

``(C) > 0 and all i = 1, ..., n. (7)

(3) means that σ̃h(.) is an optimal contract choice strategy for h-types, given the

profile of insurers’ auditing strategy. (4) says that σ̃`(.) is an optimal contract choice

strategy for `-types. From (5), p̃i(.) is an optimal auditing strategy given insurer i’s

beliefs. Together (3),(4) and (5) mean that for any contract offer C made at stage 2, then

{σ̃h(C), σ̃`(C), p̃(C)} is a Nash equilibrium of the corresponding continuation subgame,

given beliefs µ̃(C). (6) means that C̃i is an optimal offer by insurer i when C̃−i = ( C̃1, ...,

C̃i−1, C̃i+1, ..., C̃n) is offered by the other insurers, given the continuation equilibrium

strategy. In other words, (3)-(6) says that the strategy profile C̃, p̃(.), σ̃h(.), σ̃`(.) is

sequentially rational given the belief system µ̃(.). Finally (7) states that µ̃(.) is derived

from strategy profile σ̃h(.), σ̃`(.) through Bayes law whenever possible. For brevity, in

what follows a Perfect Bayesian Equilibrium of the market game is simply called an

equilibrium (or, more explicitly, an insurance market equilibrium). Lemmas 1 and 2
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establish basic properties of any equilibrium.

Lemma 1. At an equilibrium E = {C̃, p̃(.), σ̃h(.), σ̃`(.), µ̃(.)}, for all C ∈ R4n
+ and all i

such that σ̃i
h`(C) + σ̃i

``(C) > 0, we have p̃i(C) < 1 and

p̃i(C)[µ̃i(C)xi
` − c] = 0. (8)

When σ̃i
h`(C) = 0 and σ̃i

``(C) > 0, we have p̃i(C) = 0.

Lemma 1 first says that auditing is stochastic. Indeed, if p̃i(C) = 1, then h-types do

not choose Ci
` and insurer i has no incentive to audit, hence a contradiction. Equation

(8) states that insurer i may audit types with positive probability only if (according

to her beliefs) the proportion of h-types among Ci
`-purchasers is equal to a threshold

µ̃i(C) = c/xi
`. For such a threshold, the expected benefit of auditing µ̃i(C)xi

` is equal

to the audit cost c. In particular, when Ci
` is chosen by `-types only, then the claimants

are not audited.

Lemma 2. At an equilibrium E = {C̃, p̃(.), σ̃h(.), σ̃`(.), µ̃(.)}, we have

λσ̃i
h`(C)Π`h(Ci

`, p̃
i(C)) + (1− λ)σ̃i

``(C)Π``(Ci
`, p̃

i(C))

= λσ̃i
h`(C)Πh(Ci

`) + (1− λ)σ̃i
``(C)Π`(Ci

`) for all C ∈ R4n
+ and all i = 1, ..., n. (9)

Lemma 2 shows that the expected profit made on any contract Ci
` can be written as

a function of the individuals’ strategy σ̃i
h`(C) and σ̃i

``(C) only: the equilibrium auditing

strategy p̃i(C) does not appear explicitly in the right-hand-side of (9).

4 Second-best Pareto-optimal allocations

The next step toward the characterization of an insurance market equilibrium consists

in listing the properties of the equilibrium allocation (i.e. of the strategies played on

the equilibrium path of the game). For an allocation {C, p, σh, σ`}, they are written as

follows:

λπhσi
h`x

i
` = c[λπhσi

h` + (1− λ)π`σ
i
``] if pi > 0, i > 0 (10)

λπhσi
h`x

i
` ≤ c[λπhσi

h` + (1− λ)π`σ
i
``] if pi = 0, i > 0 (11)

λ[σi
hhΠh(Ci

h) + σi
h`Πh(Ci

`)] + (1− λ)[σi
`hΠ`(Ci

h) + σi
``Π`(Ci

`)] ≥ Πi
0 if i > 0, (12)

n∑
i=0

[σi
hhUh(Ci

h) + σi
h`Uh`(Ci

`, p
i)] = max{Uh(Ci

h), Uh`(Ci
`, p

i), i = 0, ..., n}, (13)

n∑
i=0

[σi
`hU`(Ci

h) + σi
``U`(Ci

`)] = max{U`(Ci
h), U`(Ci

`), i = 0, ..., n}, (14)

C ∈ R4n
+ , p ∈ [0, 1]n, σh ∈ S2n+1, σ` ∈ S2n+1. (15)
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Any equilibrium {C̃, p̃(.), σ̃h(.), σ̃`(.), µ̃(.)} leads to an equilibrium allocation {C̃, p, σh, σ`}
defined by p = p̃(C̃), σh = σ̃h(C̃), σ` = σ̃`(C̃) which satisfies the conditions (10) to (15)

with Πi
0 = 0 for all i > 0. (10) and (11) follow from (5), (7) and Lemma 1: in words,

the expected benefit from auditing is equal to the audit cost when an audit is performed

with positive probability and it is lower than the audit cost otherwise. Lemma 2 shows

that the left-handside in (12) is equal to the equilibrium expected profit of insurer i.

Thus when Πi
0 = 0, (12) means that each insurer makes non-negative profit: (6) shows

that this will be actually the case for the equilibrium allocation since deviating to a zero-

contract offer is a possible choice for the insurers. From (13) and (14), all individuals

only choose the best contracts with positive probability.

Definition 2. An allocation {C, p, σh, σ`} is feasible if it satisfies the equations (10)

to (15) with Πi
0 = 0 for all i > 0. A feasible allocation {C, p, σh, σ`} is second-best

Pareto-optimal if there is no other feasible allocation {C ′, p′, σ′h, σ′`} such that

n∑
i=0

[σi′
hhUh(Ci′

h ) + σi′
h`Uh`(Ci′

` , pi′)] ≥
n∑

i=0

[σi
hhUh(Ci

h) + σi
h`Uh`(Ci

`, p
i)], (16)

n∑
i=0

[σi′
`hU`(Ci′

h ) + σi′
``U`(Ci′

` )] ≥
n∑

i=0

[σi
`hU`(Ci

h) + σi
``U`(Ci

`)], (17)

at least one of these inequalities being slack.

In Definition 2, Pareto-optimality is defined in the second-best sense because of in-

formational asymmetries and no-commitment constraints: insurers do not observe the

risk types (hence the self-selection constraints (13) and (14)) and they cannot precom-

mit to their auditing decisions (hence the incentives constraints (10)-(11))7. In order to

characterize second-best Pareto optimal allocations, let us consider the maximization

problem, denoted P1(λ, c, u0,Π1
0, ..., Πn

0 ), in which the `-types expected utility is maxi-

mized over the set of allocations that satify the conditions (10) to (15) and that provide

at least expected utility u0 to h-types, with u0 ≥ Uh. This is written as:

P1(λ, c, u0,Π1
0, ...,Π

n
0 ): Maximize

n∑
i=0

[σi
`hU`(Ci

h) + σi
``U`(Ci

`)],

with respect to C, p, σh, σ` subject to conditions (10) to (15) and

n∑
i=0

[σi
hhUh(Ci

h) + σi
h`Uh`(Ci

`, p
i)] ≥ u0. (18)

Any second-best Pareto-optimal allocation {C, p, σh, σ`} is an optimal solution to P1(λ, c, u0,

0, ..., 0) with u0 =
∑n

i=0[σ
i
hhUh(Ci

h) + σi
h`Uh`(Ci

`, p
i)]. We shall see that the h-types’

7See Crocker and Snow (1985) and Henriet and Rochet (1990) on second-best Pareto optimality in
the Rothschild-Stiglitz model.
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expected utility is uniquely defined at the optimum of P1(λ, c, u0, 0, ..., 0). Hence sym-

metrically, any optimal solution to P1(λ, c, u0, 0, ..., 0) is second-best Pareto optimal.

Obviously, any equilibrium allocation {C̃, p, σh, σ`} is a feasible solution to P1(λ, c, U e
h,

Π1
, ...,Πn) where U e

h is the equilibrium expected utility of h-type individuals, i.e. U e
h =∑n

i=0[σ
i
hhUh(C̃i

h) + σi
h`Uh`(C̃i

`, p
i)], and Πi is the equilibrium expected profit of insurer

i, i.e

Πi = λ[σi
hhΠh(C̃i

h) + σi
h`Πh(C̃i

`)] + (1− λ)[σi
`hΠ`(C̃i

h) + σi
``Π`(C̃i

`)].

Let us consider problem P2(λ, c, u0,Π0) obtained from P1(λ, c, u0,Π0, ...,Π0) by assuming

that all individuals actually purchase insurance and by adding a symmetry assumption:

all insurers offer the same contracts and individuals are evenly shared among the insurers:

P2(λ, c, u0,Π0) : Maximize σ̂`hU`(Ch) + σ̂``U`(C`),

with respect to Ch = (kh, xh), C` = (k`, x`), p̂, , σ̂hh, σ̂h`, σ̂`h, σ̂`` subject to

λ[σ̂hhΠh(Ch) + σ̂h`Πh(C`)] + (1− λ)[σ̂`hΠ`(Ch) + σ̂``Π`(C`)] ≥ Π0, (19)

λπhσ̂h`x` = c[λπhσ̂h` + (1− λ)π`σ̂``] if p̂ > 0, (20)

λπhσ̂h`x` ≤ c[λπhσ̂h` + (1− λ)π`σ̂``] if p̂ = 0, (21)

σ̂hhUh(Ch) + σ̂h`Uh`(C`, p̂) = max{Uh(Ch), Uh`(C`, p̂)}, (22)

σ̂`hU`(Ch) + σ̂``U`(C`) = max{U`(Ch), U`(C`)}, (23)

σ̂hhUh(Ch) + σ̂h`Uh`(C`, p̂) ≥ u0, (24)

(Ch, C`) ∈ R4
+, p̂ ∈ [0, 1], (σ̂hh, σ̂h`) ∈ S1, (σ̂`h, σ̂``) ∈ S1. (25)

In P2(λ, c, u0,Π0), there are only two contracts : Ch and C`. p̂ is the audit probability

for C`, σ̂hh is the probability for h-types to choose Ch, σ̂h` is the probability for h-types

to choose C`, etc... Π0 is the required profit per insured. Let Φ2(λ, c, U0,Π0) be the

value function of P2(λ, c, u0,Π0)8.

Let us first consider P2(λ, c, u0,Π0) under the additional constraint p̂ = 0 or σ̂`` =

σ̂h` = 0 which means that either there is no auditing or nobody chooses C` (so that p̂ is

irrelevant). The corresponding maximization problem and value function are respectively

denoted P3(λ, c, u0,Π0) and Φ3(λ, c, u0,Π0). They are characterized in Proposition 1

and Corollary 1. We respectively denote C0 ≡ (πA + Π0, (1 − π)A − Π0) and u0 ≡
u(WN − πA− Π0) the full insurance pooling contract that provides expected profit Π0

and the corresponding utility. Let also U0
h = u(WN − πhA − Π0). U0

h is the highest

expected utility that h-types may reach through a (full coverage) insurance contract

that provides profit at least equal to Π0, with U0
h = U∗

h if Π0 = 0.

8We will later show that problem P2(λ, c, u0, Π0) has an optimal solution when the set of its feasible
solutions is non empty (i.e. when u0 is not too large). For the time being, Φ2(λ, c, u0, Π0) is defined as the
smallest upper bound of `-types expected utility among the allocations that are feasible in P2(λ, c, u0, Π0)
with Φ2(λ, c, u0, Π0) = −∞ if there is no feasible solution. The same for Φ3 and Φ4 below.
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Proposition 1. (i) There is a unique optimal solution to P3(λ, c, u0,Π0) and it is such

that p̂ = 0, σ̂hh = σ̂`` = 1, σ̂h` = σ̂`h = 0 and (Ch, C`) ∈ R4
+ maximize U`(C`) subject to9

λΠh(Ch) + (1− λ)Π`(C`) ≥ Π0, (26)

U`(C`) ≥ U`(Ch), (27)

Uh(Ch) ≥ Uh(C`), (28)

Uh(Ch) ≥ u0. (29)

(ii) At this optimal solution Ch = C` = C0 if u0 = u0 and Ch 6= C` if u0 6= u0 with:

If u0 < u0 : xh + kh = A, k` + x` < A,Uh(C`) = Uh(Ch) < u0, U`(C`) > u0 > U`(Ch),

If u0 > u0 : xh + kh > A, k` + x` = A,Uh(C`) > Uh(Ch) = u0, U`(C`) = U`(Ch) < u0.

(iii) For all η > 0, there exist ε, ε′ > 0 and (Ch, C`) ∈ R4
+, p̂ = 0, σ̂hh = σ̂`` =

1, σ̂h` = σ̂`h = 0 feasible in P3(λ, c, u0 + ε, Π0 + ε′) such that U`(C`) > U`(Ch), Uh(Ch) >

Uh(C`), Uh(Ch) ≥ u0 + ε and U`(C`) ≥ Φ3(λ, c, u0,Π0)− η.

Proposition 1-i states that individuals do not randomize at a second-best Pareto-

optimal allocation without auditing: Ch is chosen by h-types and C` by `-types. Propo-

sition 1-ii coincides with the results by Crocker and Snow (1985)10. When u0 < u0,

h-types are fully insured and `-types have partial insurance, while the h-types self-

selection constraint (28) is binding and the `-types constraint (27) is slack. The results

are reversed when u0 > u0: then there is overinsurance for h-types and full insurance

for `-types, while (27) is binding and (28) is slack. A pooling allocation is optimal only

when u0 = u0. Proposition 1-iii states that if the `-type expected utility is lower than

Φ3(λ, c, u0,Π0) and h-types reach expected utility u0, then it is possible to improve the

welfare of everybody while increasing profit through a pair of strictly incentive compat-

ible contracts.

Corollary 1. There exists λ∗ in (0, 1) such that Φ3(λ, c, U∗
h , 0) > U`(C∗∗

` ) if 0 ≤ λ < λ∗

and Φ3(λ, c, U∗
h , 0) = U`(C∗∗

` ) if λ∗ ≤ λ ≤ 1.

From Corollary 1, when λ < λ∗ there exists a menu of contracts with cross-subsidization

that Pareto-dominates th Rothschild-Stiglitz alloction. As already mentioned, in such

a case there is no equilibrium in the Rothschild-Stiglitz model.
9Of course, by symmetry, there also exists an optimal solution to P3(λ, u0, Π0) where `-types choose

Ch and h-types choose C`. The fact that `-types chooses C` and h-types choose Ch is purely a notational
convention since there is no auditing. It is the characterization of the contract chosen by each type that
matters.

10The characterization of Crocker and Snow (1985) can be directly recovered from the Proposition
since u0 = u(W − πA) when Π0 = 0. They implicitly postulate that individuals do not randomize
between contracts at a second-best Pareto-optimal allocation: Proposition 1-i establishes that this is
actually the case.
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Now let us consider problem P2(λ, c, u0,Π0) under the additional constraints p̂ > 0

and {σ̂`` > 0 or σ̂h` > 0}. This will be called problem P4(λ, c, u0,Π0), with value function

Φ4(λ, c, u0,Π0). Note that (20) implies σ̂h` > 0 when σ̂`` > 0. Hence, any allocation

feasible in P4(λ, c, u0,Π0) is such that σ̂h` > 0, which implies Uh`(C`, p̂) ≥ u0 for such an

allocation. σ̂h` > 0 and p̂ > 0 then give Ch 6= C`. We also have Uh(C`) = Uh`(C`, 0) >

Uh`(C`, p̂) ≥ Uh(Ch): hence h-types strongly prefer C` to Ch.

The domain of P4(λ, c, u0,Π0) is not a closed set and consequently this problem may

not have any optimal solution. However, we are in fact interested in P4(λ, c, u0,Π0) only

when Φ4(λ, c, u0,Π0) ≥ Φ3(λ, c, u0,Π0) and, among other results, Proposition 2 shows

that, under this restriction, P4(λ, c, u0,Π0) has actually an optimal solution.

Proposition 2. If Φ4(λ, c, u0,Π0) ≥ Φ3(λ, c, u0,Π0) then:

(i) u0 < u0,

(ii) There is an optimal solution to P4(λ, c, u0,Π0). It is such that: σ̂`` = 1, 0 <

σ̂h` < 1 and Ch, C`, σ̂h` maximize U`(C`) subject to :

λΠh(Ch)(1− σ̂h`) + λσ̂h`Πh(C`) + (1− λ)Π`(C`) ≥ Π0, (30)

σ̂h` = K(x`, λ, c) ≡ (1− λ)cπ`

λπh(x` − c)
≤ 1, (31)

U`(C`) ≥ U`(Ch), (32)

Uh(C`) > Uh(Ch), (33)

Uh(Ch) ≥ u0. (34)

(iii) For this optimal solution, we have Uh(Ch) = Uh`(C`, p̂) = u0 < u0 < U`(C`)

and kh + xh = A. Furthermore when u0 = U∗
h and Π0 = 0, we have Ch = C∗

h and

k` + x` > A.

(iv) For all η > 0, there exist ε, ε′ > 0 and (Ch, C`) ∈ R4
+ p̂ > 0, σ̂`` = 1, σ̂h` ∈ (0, 1]

feasible in P4(λ, c, u0 + ε, Π0 + ε′) such that U`(C`) > U`(Ch), Uh(C`) > Uh(Ch) ≥ u0 + ε

and U`(C`) ≥ Φ4(λ, c, u0,Π0)− η.

Proposition 2 characterizes an optimal allocation of P4(λ, c, u0,Π0) when auditing

matters, that is when Φ4(λ, c, u0,Π0) ≥ Φ3(λ, c, u0,Π0). The proposition first states

that we necessarily have u0 < u0 in such a case. This is an intuitive result because

auditing is a way to deter h-types to choose the contract which is intended for `-types.

If the h-types minimal expected utility is larger than u0, then the problem we must face

is in fact to deter `-types to choose the contract intended for h-types and auditing is

useless in such a case.

Proposition 2-ii states that σ̂`` = 1 and 0 < σ̂h` < 1 at an optimal solution to

P4(λ, c, u0,Π0). Indeed if σ̂`` < 1 then `-types would weakly prefer Ch to C`, while

h-types would (strongly) prefer C` to Ch. The proof shows that allocating contracts

without auditing would be more efficient in such a case: in other words, we would have
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Φ4(λ, c, u0,Π0) < Φ3(λ, c, u0,Π0), hence a contradiction. σ̂h` = K(x`, λ, c) > 0 is just

a consequence of (20) and σ̂`` = 1: audit incentives require that h-types choose C`

with probability K(x`, λ, c) when `-types choose C` with probability 1. Furthermore

we have σ̂h` < 1 for otherwise we would get a pooling allocation where all individuals

choose C`. Auditing would be useless in such a case and we know from Proposition 1

that this pooling allocation is dominated in P3(λ, c, u0,Π0) when u0 6= u0. Proposition

2-ii then states that optimal contracts maximize the `-type expected utility with profit

larger or equal to Π0, under self-selection constraints (`-types weakly prefer C` to Ch

and h-types strictly prefer C` to Ch) and Ch should provide at least utility u0 to h-types.

Equations (22) to (25) are then satisfied with σ̂h` ∈ (0, 1), σ̂`` = 1 and p̂ ∈ (0, 1) such

that Uh(Ch) = Uh`(C`, p̂). Hence h-types randomize between Ch and C` because the

audit probability makes them indifferent between the two contracts, and their mixed

strategy makes insurers indifferent between auditing and not auditing.

Proposition 2-iii states that Ch is a full insurance contract with utility u0. Fur-

thermore C` provides overinsurance (i.e. k` + x` > A) if u0 = U∗
h and Π0 = 0. This

contrasts sharply with the Rothschild-Stiglitz separating pair of contracts, where low

risk individuals are underinsured. The optimal contracts are in fact obtained by deleting

the `-types self selection constraint (32) and by checking ex post that it is satisfied by

the optimal solution of the relaxed problem. In this relaxed problem, it is optimal to

choose kh + xh = A and Uh(Ch) = u0, which gives U`(Ch) = Uh(Ch) < u0 < U`(C`).

Hence `-types and h-types strictly prefer C` to Ch.

When Π0 = 0 and u0 = U∗
h , Ch = C∗

h just breaks even. Using σ̂h` = K(x`, λ, c), a

straightforward calculation shows that C` also breaks even when k` = φ(x`), where

k` = φ(x`) ≡
π`πhx2

`

(1− π`)πhx` − c(πh − π`)
, (35)

or equivalently, when k` = π`[1 + σ(x`, c)](k` + x`) where σ(x`) is given by

σ(x`) ≡
λc(πh − π`)

πhx` − c(πh − π`)
. (36)

Since k` +x` is the indemnity for C`, σ(x`) can be interpreted as a loading factor in the

insurance terminology. (36) shows that an increase in x` entails a decrease in the loading

factor. In other words, the marginal price of insurance is decreasing with respect to

coverage. This is just a consequence of the fact that σ̂h` = K(x`, λ, c) is decreasing in x` :

when the net indemnity provided by C` increases, insurers are incited to perform an audit

for a lower proportion of h-types among C`-claimants, hence less cross-subsidization

and a positive externality for `-types. This is illustrated in Figure 2. The locus PP ′ is

the zero profit line in the (W1,W2) plane, with equation W1 = WN − φ(W2 −WA)11.
11EL is an aymptote for PP ′. Furthermore, PP ′ crosses the 45◦ line if A/c is large enough. For

A/c small, PP ′ is entirely above the 45◦ line. See the proof of Proposition 2 in the Appendix for
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We denote Ĉ` = (k̂`, x̂`) the C` contract at an optimal solution to P4(λ, c, U∗
h , 0). Ĉ`

maximizes U`(k`, x`) subject to k` = φ(x`). In the (W1,W2) plane, Ĉ` is located at the

tangency of PP ′ and a `-type indifference curve, above the 45◦ line. As expected, the

lower the audit cost c, the lower the loading factor σ. PP ′ shifts rightwards when c is

decreasing and it goes to the low risk fair-odds line k` = π`x`/(1 − π`) when c goes to

zero. Hence Ĉ` goes to C∗
` when c goes to zero.

Figure 2

Finally, Proposition 4-iv states that, if the `-types expected utility is lower than

�4(λ, c, u0, Π0) and h-types reach expected utility u0, then it possible to improve the

welfare of everybody while increasing profit, through a pair of contracts with auditing

where `-types choose C` and h-types randomize between Ch and C`.

We will show later that the insurance market equilibrium can be characterized by

comparing Φ3(λ, c, U∗
h , 0), Φ4(λ, c, U∗

h , 0) = U`(Ĉ`) and U`(C∗∗
` ). This comparison de-

pends on λ and c and it follows from some simple properties of Φ3 and Φ4
12. First, of

course ∂Φ3(λ, c, U∗
h , 0)/∂c ≡ 0 because there is no auditing in P3(λ, c, U∗

h , 0). Second, as

shown in Corollary 1, when λ < λ∗ then the optimal solution to P3(λ, c, U∗
h , 0) requires

cross-subsidization between risk types and, as expected, the larger the proportion of

high risks in the population, the lower the expected utility that `-types may reach in

this problem. This gives ∂Φ3(λ, c, U∗
h , 0)/∂λ < 0 if λ < λ∗ and Φ3(λ, c, U∗

h , 0) = U`(C∗∗
` )

if λ ≥ λ∗. Third, when Φ4(λ, c, U∗
h , 0) ≥ Φ3(λ, c, U∗

h , 0) then at an optimal solution to

P4(λ, c, U∗
h , 0), the proportion of h-types among the individuals who choose C` is inde-

pendent from λ: it depends on x` in such a way that insurers are indifferent between

auditing and no auditing13. In such a case any increase in λ does not affect the `-types op-

timal expected utility in P4(λ, c, U∗
h , 0), which gives ∂Φ4(λ, c, U∗

h , 0)/∂λ = 0. Conversely,

an increase in the cost of auditing increases the h-types proportion among the individu-

als who choose C`, hence an adverse effect on the `-types optimal expected utility, which

implies ∂Φ4(λ, c, U∗
h , 0)/∂c < 0. Let c∗ > 0 such that Φ4(λ, c∗, U∗

h , 0) = U`(C∗∗
` ). c∗ is

the audit cost for which the `-types optimal expected utility with auditing is equal to

the `-types expected utility at the Rothshild-Stiglitz allocation. We can check thet c∗ is

uniquely defined because Φ4(λ, 0, U∗
h , 0) = U`(C∗

` ) > U`(C∗∗
` ), Φ4(λ, c, U∗

h , 0) < U`(C∗∗
` )

for c large enough and Φ4(λ, c∗, U∗
h , 0) is continuously decreasing in c and is inde-

pendent from λ. Let us also define c̃(λ) by Φ3(λ, c̃(λ), U∗
h , 0) = Φ4(λ, c̃(λ), U∗

h , 0) for

λ ∈ [0, λ∗] with c̃′(λ) > 0. Using Φ3(λ∗, c, U∗
h , 0) = U`(C∗∗

` ) gives c̃(λ∗) = c∗ and

Φ3(0, c, U∗
h , 0) = U(C∗

` ) = Φ4(λ, 0, U∗
h , 0) gives c̃(0) = 0. Let Φ2(λ, c, u0,Π0) be the

computational details.
12See Corollaries 2 and 3 in Appendix for details.
13Equation (31) shows that this proportion is equal to cπ`/[cπ` + πh(x` − c)].
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value function to P2(λ, c, u0,Π0), with

Φ2(λ, c, u0,Π0) = max{Φ3(λ, c, u0,Π0),Φ4(λ, c, u0,Π0)}.

We thus have

Φ2(λ, c, U∗
h , 0) = Φ3(λ, c, U∗

h , 0) = U`(C∗∗
` ) > Φ4(λ, c, U∗

h , 0) if λ > λ∗, c > c∗,

Φ2(λ, c, U∗
h , 0) = Φ4(λ, c, U∗

h , 0) = U`(Ĉ`) > Φ3(λ, c, U∗
h , 0) if λ > λ∗, c < c∗ or λ ≤ λ∗, c < c̃(λ),

Φ2(λ, c, U∗
h , 0) = Φ3(λ, c, U∗

h , 0) > max{U`(C∗∗
` ), U`(Ĉ`)} if λ < λ∗, c > c̃(λ).

Using these results as well as Propositions 1 and 2, we are now able to fully charac-

terize the optimal solution to P2(λ, c, U∗
h , 0). This is done in Proposition 3 which is a

straightforward consequence of our previous results.

Proposition 3. An optimal solution to P2(λ, c, U∗
h , 0) is characterized by

(i) Ch = C∗
h, C` = C∗∗

` , σ̂hh = 1, σ̂h` = 0, σ̂`h = 0, σ̂`` = 1 if λ ≥ λ∗, c ≥ c∗,

(ii) Ch = C∗
h, C` = Ĉ`, σ̂h` = K(x̂`, λ, c) ∈ (0, 1), σ̂hh = 1− σ̂h`, σ̂`h = 0, σ̂`` = 1

if c ≤ c∗, λ ≥ λ∗ or c ≤ c̃(λ), λ < λ∗,

(iii) Ch = (kh, xh), C` = (k`, x`) with kh + xh = A,Uh(Ch) > U∗
h , k` + x` < A,

and σ̂hh = 1, σ̂h` = 0, σ̂`h = 0, σ̂`` = 1 if c ≥ c̃(λ), λ ≤ λ∗,

where Ĉ` = (k̂`, x̂`) is such that k̂` + x̂` > A and maximizes U`(C`) subject to

Π`(C`) +
cπ`

πh(x` − c)
Πh(C`) ≥ 0.

If λ ≥ λ∗, c ≥ c∗, then the optimal solution to P2(λ, c, U∗
h , 0) is reached in P3(λ, c, U∗

h , 0):

it coincides with the Rothschild-Stiglitz allocation Ch = C∗
h and C` = C∗∗

` without au-

diting. This is area I in Figure 3. When λ > λ∗, c ≤ c∗ or λ ≤ λ∗, c ≤ c̃(λ), which corre-

sponds to area II, then the optimal solution to P2(λ, c, U∗
h , 0) is reached in P4(λ, c, U∗

h , 0)

with Ch = C∗
h,C` = Ĉ` and random auditing p̂ ∈ (0, 1). In areas I and II, each con-

tract Ch and C` breaks even. Lastly, when λ ≤ λ∗, c ≥ c̃(λ), the optimal solution to

P2(λ, c, U∗
h , 0) is reached in P3(λ, c, U∗

h , 0), hence without any auditing, but it involves

cross-subsidization between Ch and C`. This is area III.

Figure 3

We are now in position to analyse the optimal solution to P1(λ, c, u0,Π1
0, ...,Π

n
0 )

by using our results about P2(λ, c, u0,Π0). It is convenient at this stage to define the
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following variables

N i = σi
hh + σi

h` + σi
`h + σi

``, λi =
σi

hh + σi
h`

N i
if N i > 0,

σ̂i
hh =

λσi
hh

λiN i
, σ̂i

h` =
λσi

h`

λiN i
if λiN i > 0,

σ̂i
`h =

(1− λ)σi
`h

(1− λi)N i
, σ̂i

`` =
(1− λ)σi

``

(1− λi)N i
if (1− λi)N i > 0.

N i ∈ [0, 1] is the fraction of individuals who purchase insurance from insurer i and λi ∈
[0, 1] is the fraction of h-types among these policyholders. σ̂i

hh, σ̂i
h`, σ̂

i
`h, σ̂i

`` specify the

contract choices of insurer i policyholders. P1(λ, c, u0,Π1
0, ...,Π

n
0 ) may then be rewritten

as

Maximize
n∑

i=0

N i(1− λi)
1− λ

[σ̂i
`hU`(Ci

h) + σ̂i
``U`(Ci

`)]

with respect to Ci
h, Ci

`, p
i, i = 1, ..., n and N i, λi, σ̂i

hh, σ̂i
h`, σ̂

i
`h, σ̂i

``, i = 0, ..., n, subject to

N iλi[σ̂i
hhΠh(Ci

h) + σ̂i
h`Πh(Ci

`)] + N i(1− λi)[σ̂i
`hΠ`(Ci

h) + σ̂i
``Π`(Ci

`)] ≥ Πi
0

for all i = 1, ..., n,
(37)

λiπhσ̂i
h`x

i
` = c[λiπhσ̂i

h` + (1− λi)π`σ̂
i
``] if pi > 0 and N i > 0, i > 0, (38)

λiπhσ̂i
h`x

i
` ≤ c[λiπhσ̂i

h` + (1− λi)π`σ̂
i
``] if pi = 0 and N i > 0, i > 0, (39)

n∑
i=0

N iλi

λ
[σ̂i

hhUh(Ci
h) + σ̂i

h`Uh`(Ci
`, p

i)] = max{Uh(Ci
h), Uh`(Ci

`, p
i), i = 1, ..., n},(40)

n∑
i=0

N i(1− λi)
1− λ

[σ̂i
`hU`(Ci

h) + σ̂i
``U`(Ci

`)] = max{U`(Ci
h), U`(Ci

`), i = 1, ..., n}, (41)

n∑
i=0

N iλi

λ
[σ̂i

hhUh(Ci
h) + σ̂i

h`Uh`(Ci
`, p

i)] ≥ u0, (42)

n∑
i=0

N i = 1,

n∑
i=0

λiN i = λ and N i ≥ 0, λi ≥ 0 if i ≥ 0, (43)

Ci ∈ R4
+, pi ∈ [0, 1] if i > 0, (σ̂i

hh, σ̂i
h`) ∈ S1, (σ̂i

`h, σ̂i
``) ∈ S1 if i ≥ 0. (44)

Let P̂1(λ, c, u0,Π1
0, ...,Π

n
0 ) denote this new way of writing problem P1(λ, c, u0,Π1

0, ...,Π
n
0 ).

Proposition 4. P̂1(λ, c, u0, 0, ..., 0) has feasible solutions if and only if u0 ∈ [Uh, û0(λ, c)]

where û0(λ, c) ≡ sup{u0 s.t. Φ2(λ, c, u0, 0) ≥ U `} ∈ (U∗
h , U∗

` ). Let {Ci ≡ (Ci
h, Ci

`), p
i, N i, λi,

σ̂i
hh, σ̂i

h`, σ̂
i
`h, σ̂i

``, i = 0, ..., n} be an optimal solution to P̂1(λ, c, u0, 0, ..., 0) when u0 ∈
[Uh, û0(λ, c)]. Let ui

0 = max{Uh(Ci
h), Uh`(Ci

`, p
i)} for i = 0, ..., n and u′0 = max{u0

0, ..., u
n
0}.

Then N0 = 0 and {Ci, pi, σ̂i
hh, σ̂i

h`, σ̂
i
`h, σ̂i

``} is an optimal solution to P2(λ, c, u0, 0) for

all i > 0 such that N i > 0 . Furthermore if u′0 6= U∗
h , then λi = λ for all i. If u′0 = U∗

h

18



and U`(C∗∗
` ) > U`(Ĉ`), then

Ci
h = C∗

h, σ̂i
hh = 1, σ̂i

h` = 1 if N iλi > 0,

Ci
` = C∗∗

` , σ̂i
`h = 0, σ̂i

`` = 1, pi = 0 if N i(1− λi) > 0.

If u′0 = U∗
h and U`(C∗∗

` ) < U`(Ĉ`), then λi > 0 for all i such that N i > 0 and

Ci
h = C∗

h, σ̂i
hh = 1 if λi = 1, N i > 0

Ci
h = C∗

h, σ̂i
hh = 1−K(x`, λ

i, c) if λi < 1,K(x`, λ
i, c) < 1, N i > 0

Ci
` = Ĉ`, Uh`(Ĉ`, p

i) = U∗
h , σ̂i

h` = K(x`, λ
i, c) ∈ (0, 1], σ̂i

`h = 0, σ̂i
`` = 1 if λi < 1, N i > 0.

When u0 is larger than the threshold û0, then it is impossible to simultaneously

provide expected utility larger than U ` to `-types and larger than u0 to h-types, and

in such a case the set of feasible solutions to P̂1(λ, c, u0, 0, ..., 0) is empty. When u0 ∈
[Uh, û0] the optimal solution to P̂1(λ, c, u0, 0, ..., 0) is symmetric: generically, all insurers

(at least those with customers) offer the same menu of contracts and they have the same

auditing strategy as at the optimal solution to P2(λ, c, u0, 0). No individual remains

uninsured. In Proposition 4, u′0 denotes the h-types’ expected utility: it is the left-hand

side in (42), with u′0 ≥ u0. When u′0 6= U∗
h , then all insurers get the same proportions

of high risks and low risks among their customers (i.e. λi = λ for all i such that

N i > 0) and {Ci, pi, σ̂i
hh, σ̂i

h`, σ̂
i
`h, σ̂i

``} is an optimal solution to P2(λ, c, u0, 0). To get

the intuition of this result, consider the case u′0 > U∗
h , which implies that insurers make

losses on h-types. If 0 < λi < λj < 1 and N i, N j > 0, then `-types and h-types reach the

same expected utility from insurer i than from insurer j, while the burden of high risk

individuals is larger (per insured) for insurer j than for insurer i. The offer of insurer

i would be inefficient in such case since she could make a more advantageous offer to

`-types while providing the same expected utility to h-types and making non-negative

profits. The proof of the Proposition elaborates on this intuitive argument (extended

to the case u′0 < U∗
h) to establish that the optimal proportion of high risk individuals

is the same for all insurers and consequently all insurers offer the same contracts, with

the same auditing strategy. When u′0 = U∗
h , then the distribution of h-types and `-

types is arbitrary (we may have λi 6= λj , N i > 0, N j > 0) and {Ci, pi, σ̂i
hh, σ̂i

h`, σ̂
i
`h,

σ̂i
``} is an optimal solution to P2(λi, c, u0, 0). However, this optimal solution does not

depend on λi when u′0 = U∗
h (indeed in such a case, it is neither a burden nor an

advantage to have a large proportion of high risk individuals among the insureds) : we

have Ci
h = C∗

h and either Ci
` = C∗∗

` , pi = 0 if U`(C∗∗
` ) > U`(Ĉ`) or Ci

` = Ĉ`, p
i = p̂ such

that Uh`(Ĉ`, p̂) = U∗
h otherwise. Hence, whatever the value of u′0, all insurers should

offer the same menu of contracts, with the same auditing strategy. Since a second–best

Pareto-optimal allocation {C, p, σh, σ`} is an optimal solution to P̂1(λ, c, u0, 0, ..., 0), with
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u0 =
∑n

i=0[σ
i
hhUh(Ci

h)+σi
h`Uh`(Ci

`, p
i)], Proposition 4 allows us to conclude that such an

allocation is symmetric with the same contracts and audit probability as at the optimal

solution to P2(λ, c, u0, 0). Finally, Propositions 1,2 and 4 jointly show that there is cross-

subsidization between contracts when u′0 6= U∗
h : when u′0 > U∗

h , then Ci
h is in deficit and

Ci
` is profitable for all i such that N i > 0 and the situation is reversed when u′0 < U∗

h .

On the contrary, each contract breaks even when u′0 = U∗
h .

5 Existence and characterization of market equilibrium

Let us consider the conditions under which an equilibrium allocation is second-best

Pareto-optimal. Intuitively, if this were not the case, then a deviant insurer - say insurer

j - could offer a menu of contracts Cj
h, Cj

` that would be advantageous to all individuals

while making positive profit, hence a contradiction with the definition of an equilibrium.

In the Rothschild-Stiglitz model, this kind of argument directly shows that λ ≥ λ∗ is

a necessary condition for C∗
h, C∗∗

` to be an equilibrium offer and, as we know, it is also

a sufficient condition14. The matter is less trivial here since the auditing probability of

any insurer i may be changed if insurer j deviates from her equilibrium contract offer.

Formally, we may have pi ≡ p̃i(C̃) 6= p̃i(Cj , C̃−j) if Cj 6= C̃j . In such a case, we may

conceive that an inefficient feasible allocation cannot be destabilized by insurer j because

the change in pi makes the deviation unprofitable. More explicitly, if p̃i(Cj , C̃−j) < pi,

then h-types may decide to choose C̃i after Cj is offered in deviation, even if the new offer

(provided that it attracts everybody) Pareto-dominates the equilibrium allocation. This

may make the deviation unprofitable. More explicitly, consider a contract C̃i
` = (k̃i

`, x̃
i
`)

not chosen on the equilibrium path (i.e. σi
h` = σi

`` = 0) and such that pi > 0 and

Uh`(C̃i
`, p

i) < U e
h < Uh(C̃i

`). In words, at equilibrium h-types are detered from choosing

C̃i
` because they fear they may be audited. In some circumstances, C̃i

` may act as an

implicit threat to prevent deviant insurer j to attract h-types. Let us focus on the case

where U e
h < Uh(Cj

h) < U∗
h , U`(C

j
h) < U e

` ,Πh(Cj
h) > 0 and Cj

` = (0, 0), where U e
` denotes

the `-type equilibrium expected utility. In words, insurer j aims at making profit by

attracting h-types and her offer is strictly dominated for `-types15.

Suppose first that U`(C̃i
`) < U e

` . In that case only h-types may choose C̃i
` after

insurer j’s deviation. We know from Lemma 1 that pi > 0 requires x̃i
` ≥ c. If x̃i

` > c and

if a h-type individual chooses C̃i
` after the deviation (i.e. if σ̃i

h`(C
j , C̃−j) > 0), we would

have µ̃i(Cj , C̃−j) = 1 and thus p̃i(Cj , C̃−j) = 1, which makes C̃i
` unattractive to h-types.

However if x̃i
` = c, then insurer i is indifferent between auditing and not auditing when

C̃i
` is chosen by h-types only and (for instance) p̃i(Cj , C̃−j) = 0, σ̃i

h`(C
j , C̃−j) = 1 is a

14Of course, we here consider the version of the Rothschild-Stiglitz model where each insurer offers
a menu of contracts. If each insurer can only offer one contract, then a Rothshild-Stiglitz equilibrium
exists but is not second-best Pareto-optimal when bλ < λ < λ∗.

15We here assume that contracts offered by other insurers j′ 6= j allow `-types to still reach Ue
` after

the deviation.
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continuation equilibrium strategy where insurer j does not attract h-types. Note however

that in such a case, insurer i would play a weakly dominated strategy on the equilibrium

path: indeed when x̃i
` = c then pi > 0 is an optimal strategy of insurer i only if µi = 1, i.e.

if C̃i
` is chosen by h-types only. If `-types may unintentionally choose C̃i

` with a positive

probability, then pi = 0 would be the only equilibrium strategy. In other words, errors

in the `-types’ decisions jeopardize the use of auditing as an implicit threat to prevent

deviations at the contract offer stage. Assuming that insurers play weakly dominated

strategy is probably not very convincing and in our main results this possibility is

ruled out by resorting to the trembling hand perfection criterion of Selten (1975)16.

In what follows, we say that an equilibrium E = {C̃, p̃(.), σ̃h(.), σ̃`(.), µ̃(.)} satisfies the

THP condition if {p, σh, σ`} is a trembling hand perfect Bayesian equilibrium of the

continuation subgame that follows the equilibrium offer C̃, hence the following Lemma.

Lemma 3. At any equilibrium E = {C̃, p̃(.), σ̃h(.), σ̃`(.), µ̃(.)} that satisfies THP, we

have pi = 0 for all i such that x̃i
` = c

Under the THP condition, if x̃i
` = c then decreasing the audit probability of C̃i

`

cannot act as an implicit threat to prevent a deviant insurer to attract h-types. Any

equilibrium allocation is then second-best Pareto-optimal (see Proposition 5). As we

shall see later, this is not necessarily the case if the THP condition is not satisfied.

Suppose now U`(C̃i
`) = U e

` . Hence C̃i
` belongs to the set of equilibrium contracts

that are optimal for `-type individuals. These individuals may conceivably change their

contract choice following the new offer by insurer j, and in particular we may have

σ̃i
``(C

j , C̃−j) > σi
`` = 0. Given this change in the way `-types randomize between

contracts, the equilibrium audit probabilities may also change. In particular, we may

have p̃i(Cj , C̃−j) < pi and Uh`(C̃i
`, p̃

i(Cj , C̃−j)) > Uh(Cj
h). In such a case, h-types

would not choose Cj
h - i.e. σ̃j

hh(Cj , C̃−j) = 0 - and insurer j wouldn’t make any profit

in the deviation. In fact, in this scenario, a change in strictly dominated contracts

(i.e. the deviation from C̃j to Cj) acts as a sunspot for `-types: they modify the

way they randomize between contracts although there is no change in the set of their

optimal contracts. This is conceptually possible but not very convincing from the

realism standpoint. In our main characterization of the equilibrium, we will dismiss this

possibility by appealing to a Markov-type restriction on the `-types strategy. We will

say that a `-type strategy σ`(.) is stable with respect to changes in strictly dominated

strategies if σ`(C) = σ`(C ′) when C and C ′ only differ through contracts that are strictly

dominated for `-types and we say that E satisfies SDS if σ̃`(.) is stable with respect to

changes in strictly dominated strategies. Restricting attention to the case where E
satisfies SDS is in the spirit of the Markov Perfect Equilibrium (MPE ) concept17. In

an extensive-form game, a MPE is a profile of strategies that are a perfect equilibrium
16The definition of trembling hand perfection is reminded in the proof of Lemma 3 in the Appendix.
17See Fudenberg and Tirole (1991, Ch.13) and Maskin-Tirole (2001).
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and that are measurable with respect to the payoff-relevant history: in other words,

only changes in payoff-relevant past events can affect the players’ strategy. The SDS

condition is thus a variation on the MPE concept where the restriction on strategies

only concerns `-type individuals: their choices are not affected by changes in the offer

of strictly dominated contracts.

Proposition 5. Any equilibrium allocation that satisfies THP is second-best Pareto-

optimal and it is an optimal solution to P1(λ, U e
h, 0, ..., 0) with U e

h ≤ U∗
h . If the equilib-

rium also satisfies SDS , then U e
h = U∗

h .

Propositions 4 with u0 = u′0 = U e
h and Proposition 5 jointly show that under THP all

insurers (at least those who attract customers) offer the same equilibrium contracts and

they play the same auditing strategy as at the optimal solution to P2(λ, c, U e
h, 0). If SDS

is postulated in addition, then U e
h = U∗

h and the equilibrium allocation is characterized

as in Proposition 4 with u′0 = U∗
h , which means that the equilibrium is second-best

Pareto optimal without cross-subsidization between contracts. In particular, since U∗
h ∈

[Uh, ûh(λ, c)], all individuals purchase insurance at equilibrium.

Under THP and SDS, only two types of equilibrium may thus generically occur.

When U`(C∗∗
` ) > U`(Ĉ`), a candidate equilibrium is such that h-types choose C∗

h and

`-types choose C∗∗
` : it is a separating equilibrium without auditing. When U`(C∗∗

` ) <

U`(Ĉ`), a candidate equilibrium is such that h-types randomize between C∗
h and Ĉ`

while `-types only choose Ĉ` : it is a semi-separating equilibrium. The risk type of Ĉ`-

claimants is then randomly audited and the audit probability makes h-types indifferent

between C∗
h and Ĉ`.

For all i, let N
i = σi

hh + σi
h` + σi

`h + σi
`` with N

0 = 0 and λ
i = (σi

hh + σi
h`)/N

i

if N
i

> 0, with
∑n

i=1 N
i = 1 and

∑n
i=1 N

i
λ

i = λ. Propositions 6 and 7 provide

necessary and sufficient conditions for a separating equilibrium and for a semi-separating

equilibrium to exist.

Proposition 6. Under THP and SDS, there exists a separating equilibrium E = {C̃, p̃(.), σ̃h(.),

σ̃`(.), µ̃(.)} if and only if c ≥ c∗ and λ ≥ λ∗. The separating equilibrium allocation coin-

cides with the Rothschild-Stiglitz allocation and there is no type verification on the equi-

librium path, i.e. C̃i
h = C∗

h, σ̂i
hh = 1, σ̂i

h` = 0 if N
i
λ

i
> 0 and C̃i

` = C∗∗
` , σ̂i

`h = 0, σ̂i
`` = 1

if N
i(1− λ

i) > 0.

We know from Propositions 4 and 5 that under THP and SDS a separating equilib-

rium is such that C̃i
h = C∗

h and C̃i
` = C∗∗

` for any insurer i that attracts h-types and `-

types. In other words, the separating equilibrium contracts coincide with the Rothschild-

Stiglitz pair of contracts. A separating equilibrium requires U`(C∗∗
` ) ≥ U`(Ĉ`), or equiv-

alently U`(C∗∗
` ) ≥ Φ4(λ, c, U∗

h , 0). Under this inequality, a deviant insurer i cannot make
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positive profit by offering a menu Ci with auditing in the continuation equilibrium, i.e.

with p̃i(Ci, C̃−i) > 0. For a separating equilibrium to exist it should also be impossible

for insurer i to make profit by attracting all individuals without auditing, i.e. with

p̃i(Ci, C̃−i) = 0, which requires U`(C∗∗
` ) = Φ3(λ, c, U∗

h , 0). Hence a necessary condition

for a separating equilibrium is

U`(C∗∗
` ) = Φ3(λ, c, U∗

h , 0) ≥ Φ4(λ, c, U∗
h , 0),

or equivalently λ ≥ λ∗, c ≥ c∗. Conversely, as shown in the proof of Proposition 6, under

this condition, any deviation from C̃i = (C∗
h, C∗∗

` ) to another menu Ci is unprofitable

at a continuation equilibrium. Hence a separating equilibrium exists if and only if (λ, c)

is in the area I of Figure 5, boundary line included.

Proposition 7. Under THP and SDS, there exists a semi-separating equilibrium E =

{C̃, p̃(.), σ̃h(.), σ̃`(.), µ̃(.)} if and only if c ≤ c∗ , λ ≥ λ∗ or c ≤ c̃(λ), λ < λ∗. At a

semi-separating allocation, `-types choose Ĉ` while h-types randomize between C∗
h and

Ĉ` and the risk type of Ĉ`-claimants is audited with positive probability. For all i such

that N
i
> 0, we have

C̃i
` = Ĉ`, Uh`(Ĉ`, p

i) = U∗
h , σ̂i

h` = K(x̂`, λ
i
, c) ∈ (0, 1], σ̂i

`h = 0, σ̂i
`` = 1 if λ

i
< 1,

C̃i
h = C∗

h, σ̂i
hh = 1−K(x`, λ

i
, c) if λ

i
< 1,K(x`, λ

i
, c) < 1

C̃i
h = C∗

h, σ̂i
hh = 1, σ̂i

h` = 0 if λ
i = 1.

Any semi-separating equilibrium is such that C̃i
h = C∗

h and C̃i
` = Ĉ` for any contract

that attracts customers. The proportion of h-types among the individuals who choose

a Ci
` contract is the same for all i: it is equal to cπ`/[cπ` + πh(x̂` − c)]. When λ

i is

larger than this proportion (i.e. when K(x`, λ
i
, c) < 1) then other h-type customers of

insurer i choose C̃i
h
18. As shown in Proposition 3, Ĉ` involves overinsurance, which is in

sharp contrast with the Rothschild-Stiglitz separating equilibrium19. A semi-separating

equilibrium requires U`(Ĉ`) ≥ U`(C∗∗
` ), or equivalently Φ4(λ, c, U∗

h , 0) ≥ U`(C∗∗
` ). In

that case, a deviant insurer cannot make profit by offering a pair of incentive compatible

contracts without cross-subsidization. The existence of a semi-separating equilibrium

also requires that a deviant insurer cannot make profit by cross-subsidizing incentive

compatible contracts, which may be written as

Φ4(λ, c, U∗
h , 0) ≥ Φ3(λ, c, U∗

h , 0),
18Since K(bx`, λ, c) < 1, there is an infinite number of possible distributions of individuals among

insurers.
19In practice, the insureds’ moral hazard may make insurers reluctant to offer such overinsurance

contracts. The optimal contract would then trade off the incentives to costly risk verification and
the mitigation of insureds’ moral hazard. For instance, if we simply impose that claims shouldn’t be
overpaid, the semi-separating equilibrium is at point F on Figure 2, with full coverage of losses.
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and equivalently λ > λ∗, c ≤ c∗ or λ ≤ λ∗, c ≤ c̃(λ) as stated in Proposition 7. Con-

versely, under this condition, any deviation from C̃i = (C∗
h, Ĉ`) to Ci is unprofitable at

a continuation equilibrium. Hence a semi-separating equilibrium exists when (λ, c) is in

the area II of Figure 5, with its boundary line. Finally, no equilibrium exists in area III.

An equilibrium allocation is thus a second-best Pareto optimal allocation that breaks

even.

We may conclude these comments on Propositions 6 and 7 with some straightforward

but important remarks. Firstly, if the insurers were not allowed to void the contract

when misrepresentation is established, then an equilibrium would exist only if λ ≥ λ∗

as in the standard Rothschild-Stiglitz model. Hence allowing the insurers to void the

contract enlarges the set of parameters for which an equilibrium exists. The smaller the

verification cost c, the smaller the threshold for λ above which an equilibrium exists.

Equivalently, for any λ, an equilibrium always exists if c is small enough. If c were

equal to zero, uncertainty on the insureds’ risk type would vanish and competition on

the insurance market would lead to type separation and full insurance at fair price.

When c goes to zero, then Ĉ` goes to C∗
` without any discontinuity at c = 0: the

equilibrium semi-separating allocation then converges to the full information solution.

On the contrary, there is a discontinuity in insurance coverage and premium when c

reaches the threshold c∗ since we go from partial coverage in the separating equilibrium

area I to overinsurance in the semi-separating equilibrium area II. Last but not least, the

semi-separating equilibrium (when it exists) Pareto-dominates the Rothschild-Stiglitz

equilibrium since the welfare of high risk individuals is increased while the low risks’

expected utility is unchanged. All things considered, although insurers cannot commit

on their verification strategy, allowing them to void the contract improves efficiency in

the market and makes existence of equilibrium more likely.

Proposition 5 suggests that an equilibrium that does not satisfy THP may not be

second-best Pareto efficient. This is actually the case as shown by the following example.

Assume n = 4, λ > λ∗ and c > c∗. For i = 1 or 2, let C̃i
h = (π̂hÂ, Â − π̂hÂ) with π̂h >

πh, Â 6= A and C̃i
` is such that

Uh(C̃i
`) = Uh(C̃i

h) and (1− λ)Π`(C̃i
`) + λ(π̂h − πh)Â = 0.

When π̂h−πh and Â−A goes to 0, (C̃1
h, C̃1

` ) and (C̃2
h, C̃2

` ) converge to (C∗
h, C∗∗

` ) which is

the optimal solution to P2(λ, c, U∗
h , 0). For i = 3 or 4, let C̃i

h = (0, 0) and C̃i
` = (k̃i

`, x̃
i
`) =

(k̃i
`, c), where k̃i

` is such that

Uh(C̃i
`) > U∗

h and U`(C̃i
`) < U`(C̃1

` ) = U`(C̃2
` ).

Let σi
hh = σi

`` = 1/2 for i = 1 or 2, p1 = p2 = 0, p3 = p4 = 1, µ1 = µ2 = 0 and

µ3 = µ4 = 1. In words, on the equilibrium path h -types choose C̃1
h or C̃2

h and ` -types
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choose C̃1
` or C̃2

` and nobody chooses the contracts offered by insurers i = 3 or 4. h-type

individuals are detered from choosing C̃3
` or C̃4

` because p3 = p4 = 1 and this auditing

strategy is optimal for insurers 3 and 4 given the out of equilibrium beliefs µ3 = µ4 = 1.

The couples of contracts C̃1
h, C̃1

` and C̃2
h, C̃2

` are incentive compatible and no auditing

is performed on the equilibrium path. Furthermore there is cross-subsidization between

C̃1
h and C̃1

` : insurer 1 makes profit with C̃1
h and losses with C̃1

` . Likewise for insurer

2. When π̂h − πh is not too large, then A ≡{C̃i
h, C̃i

`, p
i, σi

hh, σi
h`, σ

i
`h, σi

``; i = 1, ..., 4} is

not second-best Pareto-optimal since Â 6= A. However, for any deviation to a pair of

contracts that Pareto-dominates A, there exists continuous equilibrium strategies that

make it non-profitable. Consider for example the case where insurer 1 deviates from

C̃1 = (C̃1
h, C̃1

` ) to C1 = (C1
h, C1

` ) with C1
h = (π̂′hA,A − π̂′hA), πh < π̂′h < π̂h and C1

` is

such that Uh(C1
` ) = Uh(C1

h) and (1− λ)Π`(C1
` ) + λ(π̂′h − πh)A > 0. For π̂′h − πh small

enough, we have Uh(C1
h) > U e

h and U`(C1
` ) > U e

` , where U e
h and U e

` are the expected

utility of h-types and `-types at A. Intuitively, insurer 1 aims at attracting h-types

through C1
h and `-types through C1

` . Consider the strategy p̃3(C1, C̃−1) = 0 and beliefs

µ̃3(C1, C̃−1) = 1 for all C1 6= C̃1. Note that these beliefs are consistent with the strategy

of the individuals since C̃3
` is not chosen by `-types (they prefer C̃1

` or C̃2
` to C̃3

` ): C̃3
` can

only be chosen by h-types. Given these beliefs, p̃3(C1, C̃−1) = 0 is an optimal strategy

of insurer 3 because x̃i
` = c. σ̃3

h`(C
1, C̃−1) = 1 is then an optimal strategy of h-types:

they do not choose C1
h and consequently the deviation is unprofitable. Symmetrically,

there exists continuation equilibrium strategies that make any deviation by insurer 2

non profitable. In case of deviation by insurer 3, p̃4(C3, C̃−3) = 0 is a continuation

equilibrium strategy of insurer 4, and here also the deviation cannot attract h-types.

Likewise, p̃3(C4, C̃−4) = 0 is a continuation equilibrium strategy of insurer 3 that make

any deviation by insurer 4 non profitable. In this example, insurers 3 and 4 play a

weakly dominated strategy on the equilibrium path: they choose p3 = p4 = 1, which

is an optimal strategy for their out-of-equilibrium beliefs µ3 = µ4 = 1. Decreasing p3

from 1 to 0, after any deviation by insurer i 6= 3 is an implicit threat that prevents the

deviation to be profitable. Such an equilibrium would vanish if insurers do not play

weakly dominated strategies, which is the case under the THP condition.

Proposition 5 also suggests that we may have U e
h < U∗

h (and thus positive profit

on h-types) at an equilibrium that does not satisfy SDS. This is true, as shown by the

following example. Assume n = 4 and either c < c∗, λ ≥ λ∗ or c < c̃(λ), λ < λ∗. For

i = 1 or 2, let (C̃i
h, C̃i

`) be the optimal solution to P4(λ, c, u(WN − π̂hA), 0) with π̂h >

πh. When π̂h− πh goes to 0, (C̃1
h, C̃1

` ) and (C̃2
h, C̃2

` ) converge to (C∗
h, Ĉ`) which is the

optimal solution to P2(λ, c, U∗
h , 0). For i = 3 or 4, let C̃i

h = (0, 0) and C̃i
` = (k̃i

`, x̃
i
`) such

that

U`(C̃i
`) = U`(C̃1

` ) = U`(C̃2
` ), Uh(C̃i

`) > U∗
h and c < x̃i

` <
c[(1− λ)π` + λπh]

λπh
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For i = 1 or 2, let σi
h` = K(x̃i

`, λ, c)/2, σi
hh = [1−K(x̃i

`, λ, c)]/2, σi
`` = 1/2, σi

`h = 0 and

Uh`(C̃i
`, pi) = Uh(C̃i

h). For i = 3 or 4, let σi
h` = σi

hh = σi
`` = σi

`h = 0, µi = 1 and pi = 1.

A ≡{C̃i
h, C̃i

`, p
i, σi

hh, σi
h`, σ

i
`h, σi

``; i = 1, ..., 4} is second-best Pareto-optimal if π̂h− πh

is not too large. The only way to make a profitable deviation is to attract only h-types.

Consider for example the case where insurer 1 deviates from C̃1 = (C̃1
h, C̃1

` ) to another

pair of contracts C1 = (C1
h, C1

` ) that attracts h-types, but not `-types. We may assume

w.l.o.g. that C1
` = (0, 0). A necessary condition for this deviation to be profitable is

Uh(C1
h) < U∗

h . Let σ̃i
h` ≡ σ̃i

h`(C
1, C̃−1), σ̃i

`` ≡ σ̃i
h`(C

1, C̃−1) and p̃i ≡ p̃i(C1, C̃−1) for

i = 1, ..., 4. This continuation equilibrium strategy profile (and the corresponding beliefs

µ̃i ≡ µ̃i(C1, C̃−1)) can be chosen in such a way that h-types and `-types randomize

between C̃2
` or C̃3

` and they choose neither C1 nor C̃4
` . Indeed, let σ̃2

`` + σ̃3
`` = 1. Choose

p̃2 and p̃3 such that Uh(C̃i
`, p̃

i) = U∗
h for i = 2 and 3 and p̃1 = p̃4 = 1. Given

the `-types’ contract choice strategy, the insurers’ auditing strategy and the h-types’

contract choice strategy are mutual best responses when σ̃2
h` + σ̃3

h` = 1, σ̃2
h` = σ̃2

``K̃
2

and σ̃3
h` = σ̃3

``K̃
3, where K̃i ≡ K(x̃i

`, λ, c) for i = 2 and 3 and K̃2 < 1 < K̃3. These

conditions are fulfilled when σ̃2
h` = K̃2(K̃3−1)/(K̃3−K̃2), σ̃3

h` = K̃3(1−K̃2)/(K̃3−K̃2),

σ̃2
`` = (K̃3−1)/(K̃3−K̃2) and σ̃3

`` = (1−K̃2)/(K̃3−K̃2). The same kind of continuation

equilibrium exists in case of a deviation by insurers 2, 3 or 4. In this equilibrium, σ`(.)

is not stable with respect to changes in strongly dominated strategies because once C1

is proposed by insurer 1 in deviation from equilibrium, then `-types choose C̃2
` or C̃3

`

while they chose C̃1
` or C̃2

` before the deviation. This equilibrium is Pareto-optimal but

U e
h < U∗

h and insurers 1 and 2 cross-subsidize their contracts. Such an equilibrium would

vanish under the SDS condition.

Note finally that in these two examples, π̂h may be chosen such that Uh(Ci
h) = Uh for

i = 1, 2, so that h-types do not draw any surplus from insurance. Simple variations on

the examples would lead to market equilibria where h-types randomize between C̃1
h or C̃2

h

and no-insurance. However, given the lack of robustness of the underlying strategy, such

equilibria should probably be considered a theoretical curiosity rather than a realistic

view of the insurance market.

6 Conclusion

The good faith principle is a major pillar of the law of insurance contracts. It states

that insureds have a duty of good faith and it allows insurers to rescind contracts ex post

when intentional misrepresentation of risk is established. Thereby it contributes to more

efficient risk sharing in insurance markets under asymmetric information. However the

effects of the good faith principle may conceivably be weakened or even cancelled by a

credibility constraint on the verification strategy.

In order to better understand the effects of this credibility constraint, we have ana-
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lyzed the equilibrium of an insurance market where applicants for insurance have a duty

of good faith when revealing their risk type and insurers cannot precommit to their

risk verification policy. Three main results have been reached. Firstly, the equilibrium

qualitatively differs from the one that prevails in the standard Rothschild-Stiglitz model

: here it may be either separating or semi-separating. At a semi-separating equilibrium,

there is some degree of bad faith from high risk individuals : they do not always re-

veal their risk type truthfully. Furthermore, low risk individuals get overinsurance at a

semi-separating equilibrium, contrary to the main prediction of the standard Rothschild-

Stiglitz model. Secondly, the possibility of cancealing the contract when bad faith is

established extends the set of parameters for which a competitive equilibrium exists. In

particular, an equilibrium always exists if the verification cost is low enough. Thirdly,

the good faith principle remains Pareto-improving in comparison with the Rothschild -

Stiglitz equilibrium, although insurers are deprived of any possibility of precommitment

in their risk verification strategy.

We have approached these issues in two stages. The first stage consisted in character-

izing second-best Pareto optimal allocations and, in a second stage, we have shown that,

under adequate assumptions, the equilibrium allocation is second-best Pareto-optimal

without cross-subsidization between contracts. In a sense, this is a very natural result.

Intuitively, an equilibrium allocation is necessarily second-best Pareto optimal for other-

wise it would be possible to offer a profitable menu of contracts that would attract all the

individuals. Furthermore, an equilibrium allocation does not cross-subsidize contracts

for otherwise it would be to the insurers’ advantage to delete the contract in deficit.

Although the general principle of this argument is true, it requires careful attention.

The two main difficulties were firstly to establish the symmetry of second-best Pareto-

optimal allocations and secondly to characterize the precise conditions under which an

equilibrium allocation is second-best Pareto optimal without cross-subsidization. This

roundabout way through second-best Pareto-optimality is not trivial and one may find

it somewhat tedious, but we think it is an adequate way to characterize the equilibrium

of a market under adverse selection. Hopefully a similar approach may be useful for the

analysis of other markets with adverse selection where agents interact after the contract

offer stage, such as the credit market or the labour market.
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Appendix
This Appendix gathers the proofs of the Lemmas, Propositions and Corollary stated

in the paper. Lemmas 4 to 8 and Corollaries 2 to 4 are intermediate stages of the proofs.

Proof of Lemma 1: Consider an equilibrium E . (5) gives

p̃i(C) = 0 (resp. ∈ [0, 1],= 1) if µ̃i(C)xi
` < c (resp. = c,> c) for all i and all C. (45)

Assume that σ̃i
h`(C) + σ̃i

``(C) > 0. If p̃i(C) = 1, then Uh`(Ci
`, p̃

i(C)) < Uh and thus

σ̃i
h`(C) = 0. We get µ̃i(C) = 0 from (7) and then (45) gives p̃i(C) = 0, hence a

contradiction. We thus have p̃i(C) < 1. Using (45) then gives (8). When σ̃i
h`(C) = 0

and σ̃i
``(C) > 0, we have µ̃i(C) = 0 from (7) and then(45) gives p̃i(C) = 0.

Proof of Lemma 2: Using (8) yields

λσ̃i
h`(C)Π`h(Ci

`, p̃
i(C)) + (1− λ)σ̃i

``(C)Π``(Ci
`, p̃

i(C))

= λσ̃i
h`(C)Π`h(Ci

`, 0) + (1− λ)σ̃i
``(C)Π``(Ci

`, 0).

(9) then follows from Π`h(Ci
`, 0) = Πh(Ci

`) and Π``(Ci
`, 0) = Π`(Ci

`).

Proof of Proposition 1: (i) and (ii). P3(λ, c, u0,Π0) is obtained by imposing p̂ = 0

and deleting (20) in P2(λ, c, u0,Π0). Assume σ̂hh > 0 and σ̂h` > 0 in P3(λ, c, u0,Π0).

(22), (24) and p̂ = 0 then give Uh(Ch) = Uh`(C`, 0) = Uh(C`) ≥ u0. Indifference

curves of h-types and `-types cross only once. Hence we have either U`(C`) > U`(Ch) or

U`(C`) < U`(Ch). Assume U`(C`) > U`(Ch). (23) then gives σ̂`` = 1 and σ̂`h = 0. Let

C ′
h = (k′h, x′h) be defined by C ′

h = σ̂h`C` + σ̂hhCh. Using u′′ < 0 gives

Uh(C ′
h) > Uh(Ch) = Uh(C`) ≥ u0. (46)

Furthermore

Πh(C ′
h) = σ̂hhΠh(Ch) + σ̂h`Πh(C`). (47)

Hence there exists C ′′
h = (k′′h, x′′h), k′′h > k′h, x′′h < x′h such that20

Πh(C ′′
h) > σ̂hhΠh(Ch) + σ̂h`Πh(C`), (48)

Uh(C ′′
h) = Uh(Ch) = Uh(C`) ≥ u0, (49)

U`(Ch) < U`(C ′′
h) < U`(C`). (50)

20This can be checked by drawing the h-type and `-type indifference curves going through C` in the
(W1, W2) plane with U`(C`) > U`(Ch).
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σ̂`` = 1, (19) and (48) show that there exists C ′
` in a neighbourhood of C` such that

λΠh(C ′′
h) + (1− λ)Π`(C ′

`) ≥ Π0, (51)

U`(C ′
`) > U`(C`), (52)

Uh(C`) > Uh(C ′
`). (53)

We deduce from (50) and (52) that

U`(C ′
`) > U`(C ′′

h). (54)

Lastly (49) and (53) give

Uh(C ′′
h) ≥ u0 and Uh(C ′′

h) > Uh(C ′
`). (55)

Hence there exist C ′
`, C

′′
h such that (51), (54) and (55) are satisfied which shows that

C`, Ch is dominated in P3(λ, c, u0,Π0) by a feasible solution with σ̂`` = 1. A similar

conclusion is obtained when U`(C`) < U`(Ch) by inverting the roles of C` and Ch. Hence

any feasible solution to P3(λ, c, u0,Π0) where h-types randomize between contracts is

dominated by a solution where they don’t. We can thus restrict attention to solutions

such that either σ̂hh = 1, σ̂h` = 0 or σ̂h` = 1, σ̂hh = 0.

Assume σ̂hh = 1, σ̂h` = 0 : (22) and p̂ = 0 then give Uh(Ch) ≥ Uh(C`). Suppose

σ̂`h > 0 and σ̂`` > 0. (23) then gives U`(C`) = U`(Ch). Let C ′′
` = σ̂``C` + σ̂`hCh with

Uh(Ch) ≥ Uh(C ′′
` ),U`(C ′′

` ) > U`(Ch) and Π`(C ′′
` ) = σ̂``Π`(C`) + σ̂`hΠ`(Ch). C ′′

` , Ch is

feasible in P3(λ, c, u0,Π0), with `-types choosing C ′′
` and h-types choosing Ch. Since

U`(C ′′
` ) > U`(C`) we get a contradiction. The same argument is valid when σ̂h` = 1.

Hence neither `-types nor h-types randomize at an optimal solution to P3(λ, c, u0,Π0).

This problem is then written as in part (i) of the Proposition by calling Ch the contract

chosen by h-types and C` the contract chosen by `-types: we then have σ̂hh = 1,

σ̂h` = 0, σ̂`` = 1 and σ̂`h = 0. Finally we check that (21) is satisfied in that case.

Let k0
j = kj−Π0, x

0
j = xj +Π0 and C0

j = (k0
j , x

0
j ) for j = h or `. Let u0(W ) ≡ u(W −

Π0) with u0 = u0(WN −πA) and let U0
j (k, x) ≡ (1−πj)u0(WN −k)+πju

0(WA +x) for

j = h or `. P3(λ, c, u0,Π0) is then written as : choosing (C0
h, C0

` ) ∈ R4
+ so as to maximize

U0
` (C0

` ) subject to (1 − λ)Π`(C0
` ) + λΠh(C0

h) ≥ 0, U0
` (C0

` ) ≥ U0
` (C0

h), U0
h(C0

` ) ≤ U0
h(C0

h)

and U0
h(C0

h) ≥ u0. This problem has a unique optimal solution which is characterized

as in part (ii) of the Proposition21.

(iii) is a consequence of the continuity of Φ3(λ, c, u0,Π0) - which itself follows from

the Maximum Theorem - and of the fact that given (27) and (28), there exists (C ′
h, C ′

`)

21See Crocker and Snow (1985). The proof runs as follows. When u0 < u0, we delete the `-type
incentive constraint (27). Maximizing U`(C`) subject to the other constraints then gives an optimal
solution characterized as in the part (ii) of the Proposition, and (27) is satisfied for this solution.
Similarly, when u0 > u0, (28) is deleted and there is an optimal solution to the relaxed problem : it is
specified as in part (ii) of the Proposition and it satisfies (28).
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in a neighbourhood of (Ch, C`) such that U`(C ′
`) > U`(C ′

h) and Uh(C ′
h) > Uh(C ′

`).

Proof of Corollary 1: We have Φ3(λ, c, U∗
h , 0) ≥ U`(C∗∗

` ) for all λ because C∗
h, C∗∗

`

is feasible in P3(λ, c, U∗
h , 0). Note that Φ3 is continuous in λ from the Maximum Theorem.

Assume that λ is such that Φ3(λ, c, U∗
h , 0) > U`(C∗∗

` ). We then have Uh(Ch) > U∗
h and

thus Πh(Ch) < 0. (26) then gives Π`(C`) > 0 which implies ∂Φ3(λ, c, u0, 0)/∂λ =

µ[Πh(Ch)−Π`(C`)] < 0 at any point of differentiability, where µ > 0 is a Kuhn-Tucker

multiplier associated with (26). We also have Φ3(0, c, U∗
h , 0) = U`(C∗

` ) > U`(C∗∗
` ).

Hence there exists λ∗ in (0, 1] such that Φ3(λ, c, U∗
h , 0) > U`(C∗∗

` ) if 0 ≤ λ < λ∗ and

Φ3(λ, c, U∗
h , 0) = U`(C∗∗

` ) if λ∗ ≤ λ ≤ 1.

It remains to show that λ∗ < 1. Assume that v ≡ Φ3(λ, c, U∗
h , 0)− U`(C∗∗

` ) > 0 and

let C` = (k`, x`), Ch = (kh, xh) be an optimal solution to P3(λ, c, U∗
h , 0) with k` + x` <

A, kh + xh = A and kh = π̂hA with π̂h ≤ πh. Condition U`(C`) = U`(C∗∗
` ) + v may

be equivalently written as k` = f(x`, v) where function f is such that ∂f/∂x` > 0,

∂2f/∂x2
` < 0 and ∂f/∂v < 0. Condition x` + k` ≤ A is equivalent to x` ≤ x`(v)

where x`(v) is defined by x`(v) + f(x`(v)) = A, with x′`(v) > 0 and we have x∗∗` ≤
x` ≤ x∗` . Condition (28) is binding and gives π̂h = g(k`, x`) with g′1 > 0, g′2 < 0. Let

h(x`, v) ≡ g(f(x`, v), x`) and let Π̃(x`, v) be the expected profit after having substituted

k` = f(x`, v) and π̂h = h(x`, v) into the LHS of (26):

Π̃(x`, v) = (1− λ)[(1− π`)f(x`, v)− π`x`] + λ[h(x`, v)− πh]A < Π̃(x`, 0),

with Π̃(x∗∗` , 0) = 0. We have ∂Π̃(x`, 0)/∂x` < 0 for all x` in [x∗∗` , x∗` ] if

λ > λ ≡
(1− π`)∂f(x∗∗` , 0)/∂x` − π`

(1− π`)∂f(x∗∗` , 0)/∂x` − π` − h
′
A
∈ (0, 1),

where h
′ = max{∂h(x`, 0)/∂x` | x` ∈ [x∗∗` , x∗` ]} < 0. Hence Π̃(x`, v) < 0 for all x` in

[x∗∗` , x∗` ] if v > 0 and λ > λ. Consequently v > 0 implies λ ≤ λ, which gives λ∗ ≤ λ < 1.

Corollary 2. Φ3(λ, c, u0,Π0) is decreasing in Π0, stationary in c and non-increasing in

u0. It is locally decreasing (respect. locally non-increasing) in λ if u0 > U0
h(respect.=

U0
h).

Proof : Let Ch, C` be the optimal solution to P3(λ, c, u0,Π0): it is characterized

in Proposition 1. For ε > 0, small enough, there exists C ′
` in a neighbourhood of C`

such that U`(C ′
`) > U`(C`), Uh(C ′

`) < Uh(C`) and (1 − λ)Π`(C ′
`) + λΠh(Ch) ≥ Π0 − ε.

Hence Ch, C ′
` is feasible in P3(λ, c, u0,Π0 − ε), which shows that Φ3(λ, c, u0,Π0 − ε) >

Φ3(λ, c, u0,Π0). Hence Φ3 is increasing in Π0. Obviously Φ3(λ, c, u0,Π0) is indepen-

dent from c and non-increasing in u0. Finally, at any point of differentiability, using

Proposition 1 and the Envelope Theorem gives ∂Φ3/∂λ = µ[Πh(Ch) − Π`(C`)] where

µ > 0 is the Kuhn-Tucker multiplier associated with (26). (ii) in Proposition 1 gives
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Πh(Ch) < (≤)Π0 when u0 > (=)U0
h . Using (26) shows that Π`(C`) > (=)Π0 when

Πh(Ch) < (=)Π0 and 0 < λ < 1, hence the last result of the Corollary.

Definition 3. An allocation A feasible in Pi(λ, c, u0,Π0) is dominated in Pj(λ, c, u0,Π0)

by an allocation A′, for i, j ∈ {2, 3, 4}, if A′ is feasible in Pj(λ, c, u0,Π0) and if `-types

reach a higher expected utility at A′ than at A.

Lemma 4. Any allocation A = {Ch, C`, p̂, , σ̂hh, σ̂h`, σ̂`h, σ̂``}, σ̂`` < 1, feasible in

P4(λ, c, u0,Π0) is dominated in P2(λ, c, u0,Π0) by another allocation A′ = {C ′
h, C ′

`, p̂
′, , σ̂′hh, σ̂′h`, σ̂

′
`h, σ̂′``}

such that σ̂′`` = 1.

Proof : Let A be a feasible allocation in P4(λ, c, u0,Π0) such that σ̂`` < 1.

1. Suppose first σ̂`` = 0, σ̂`h = 1, and thus U`(Ch) ≥ U`(C`). Using (20) gives x` = c.

Let k′` > k` such that Uh(k′`, c) = u0 ≤ Uh`(k`, c, p̂) and let C ′
` = (k′`, c).

If σ̂h` = 1 or if σ̂h` ∈ (0, 1) and Πh(C ′
`) ≥ Πh(Ch), then A1 = {C1

h = Ch, C1
` =

C ′
`, p̂

1 = 0, σ̂1
hh = 0, σ̂1

h` = 1, σ̂1
`h = 1, σ̂1

`` = 0} is feasible in P3(λ, c, u0,Π0), with an

expected profit larger than Π0. Hence A1 is not optimal in P3(λ, c, u0,Π0), which implies

Φ3(λ, c, u0,Π0) > U`(Ch) ≥ Φ4(λ, c, u0,Π0). Proposition 1 then implies that there exists

a feasible allocation A′ with σ̂′`` = 1 that dominates A in P2(λ, c, u0,Π0).

If σ̂h` ∈ (0, 1) and Πh(C`) < Πh(Ch), then A2 = {C2
h = Ch, C2

` = (0, 0), p̂2 = 0, σ̂2
hh =

1, σ̂2
h` = 0, σ̂2

`h = 1, σ̂2
`` = 0} is feasible in P3(λ, c, u0,Π0), with an expected profit larger

than Π0, hence the same conclusion.

2. Suppose now σ̂``, σ̂`h ∈ (0, 1). (20) gives x` > c, σ̂h` = K(x`, λ, c)σ̂`` where

K(x, λ, c) is given by (31), which allows us to write (19) as

(1− λ)Π`(Ch) + λΠh(Ch) + (1− λ)σ̂``∆(Ch, C`) ≥ Π0, (56)

where ∆(Ch, C`) = Π`(C`)−Π`(Ch) +
cπ`

πh(x` − c)
[Πh(C`)−Πh(Ch)]. (57)

Consider first the case ∆(Ch, C`) > 0. If K(x`, λ, c) ≤ 1,then A3 = {C3
h = Ch, C3

` =

C`, p̂
3 = p̂, σ̂3

hh = 1− σ̂3
h`, σ̂

3
h` = K(x`, λ, c), σ̂3

`h = 0, σ̂3
`` = 1} is feasible in P4(λ, c, u0,Π0)

with the same expected utility for `-types and a larger expected profit, which shows that

A is dominated in P4(λ, c, u0,Π0) by an allocation such that σ̂`` = 1. If K(x`, λ, c) >

1, then A4 = {C4
h = C`, C

4
` = Ch, p̂4 = 0, σ̂4

hh = 1, σ̂4
h` = 0, σ̂4

`h = 1 − σ̂4
``, σ̂

4
`` =

1/K(x`, λ, c)]} is feasible in P3(λ, c, u0,Π0) with the same expected utility for `-types.

We know from Proposition 1 that `-type individuals do not randomize at the optimum

of this problem. A4 is thus dominated in P3(λ, c, u0,Π0), hence the conclusion of the

Lemma.

Consider now the case ∆(Ch, C`) ≤ 0. Let us show thatA is dominated in P3(λ, c, u0,Π0).

Assume first σ̂h` < 1, which implies Uh(Ch) ≥ u0. (56) gives (1−λ)Π`(Ch)+λΠh(Ch) ≥
Π0 which shows that the allocation A5 where all individuals choose Ch is feasible in

P3(λ, c, u0,Π0) with the same expected utility for `-types. When u0 6= u0 or u0 = u0
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and Ch 6= C0 , then Proposition 1 shows that A5 is dominated in P3(λ, c, u0,Π0) by

a separating allocation A′ with σ̂′`` = 1. When u0 = u0 and Ch = C0, we have

λΠh(Ch)+(1−λ)Π`(Ch) = Π0 and (22), (23), 0 < σ̂`` < 1, σ̂h` > 0 and p̂ > 0 show that

U`(C`) = U`(Ch) and Uh(C`) > Uh(Ch). Using Ch = C0 then gives Π`(Ch) > Π`(C`)

and Πh(Ch) > Πh(C`), which implies

λ[σ̂hhΠh(Ch) + σ̂h`Πh(C`)] + (1− λ)[σ̂`hΠ`(Ch) + σ̂``Π`(C`)] < Π0,

which contradicts the fact that A is feasible in P4(λ, c, u0,Π0).

Assume now σ̂h` = 1. If Π`(C`) ≥ Π`(Ch), then A6 = {C6
h = Ch, C6

` = C`, p̂
6 =

0, σ̂6
hh = 0, σ̂6

h` = 1, σ̂6
`h = 0, σ̂6

`` = 1} is feasible in P3(λ, c, u0,Π0) with unchanged

expected utility for `-types. If C` = C0, then (19) gives

λΠh(C0) + (1− λ)[σ̂`hΠ`(Ch) + σ̂``Π`(C0)] ≥ Π0,

which contradicts σ̂`h > 0 and Ch 6= C`. Hence C` 6= C0. Proposition 1-ii shows that

the pooling allocation A6 is not optimal in P3(λ, c, u0,Π0), hence the result. If Π`(C`) <

Π`(Ch) then A7 = {C7
h = Ch, C7

` = C`, p̂
7 = 0, σ̂7

hh = 0, σ̂7
h` = 1, σ̂7

`h = 1, σ̂7
`` = 0} is

feasible in P3(λ, c, u0,Π0) with profit larger Π0: thus A7 is not an optimal solution to

this problem and the same result follows.

Proof of Proposition 2: Assume that A is feasible in P4(λ, c, u0,Π0) and not

dominated in P2(λ, c, u0,Π0). We know from Lemma 4 that σ̂`` = 1 which gives (32).

Furthermore (19)-(20) gives (30)-(31). (33) follows from σ̂h` > 0 and p̂ > 0 and (34)

holds if σ̂hh > 0. Ch is undetermined when σ̂hh = 0. W.l.o.g. A can be chosen such that

(34) hold. Conversely, if σ̂`` = 1 and σ̂h`, Ch, C` satisfy conditions (30) to (34), then A
is feasible in P4(λ, c, u0,Π0) with p̂ > 0 given by Uh`(C`, p̂) = Uh(Ch).

(i) Suppose that u0 ≥ u0. We know that Πh(C) ≤ (respect. <)(π − πh)A + Π0 for

all C such that Uh(C) ≥ (respect. >)u0, with similar inequalities for `-types. Hence

σ̂hhΠh(Ch) + σ̂h`Πh(C`) < (π − πh)A + Π0. (19) then gives Π`(C`) > (π − π`)A + Π0,

which implies U`(C`) < u0. One checks that Uh(C`) > u0 > U`(C`) implies k` + x` > A.

Let C ′
` = (k′`, x

′
`) such that k′`+x′` = A,U`(C ′

`) = U`(C`), which implies Π`(C ′
`) > Π`(C`)

and Uh(C`) > Uh(C ′
`). Let C ′

h = C` if σ̂hh = 0 or if σ̂hh > 0 and Πh(Ch) ≤ Πh(C`)

and C ′
h = Ch otherwise. Hence U`(C ′

`) ≥ U`(C ′
h), Uh(C ′

h) > Uh(C ′
`) and Uh(C ′

h) > u0.

Finally (19) yields

λΠh(C ′
h) + (1− λ)Π`(C ′

`) > λ[σ̂hhΠh(Ch) + σ̂h`Πh(C`)] + (1− λ)Π`(C`) = Π0.

Thus A1 = {C1
h = C ′

h, C1
` = C ′

`, p̂
1 = 0, σ̂1

hh = 1, σ̂1
h` = 0, σ̂1

`h = 0, σ̂1
`` = 1} is feasible in

P3(λ, c, u0,Π0) with expected utility U`(C ′
`) = U`(C`) and expected profit larger than

Π0. We deduce that A is dominated in P2(λ, c, u0,Π0), hence a contradiction.
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(ii) Proposition 1 gives Φ3(λ, c, u0,Π0) > u0 when u0 < u0. Given that Φ4(λ, c, u0,Π0) ≥
Φ3(λ, c, u0,Π0),we may thus restrict the constraint set of P4(λ, c, u0,Π0) by assuming

U`(C`) ≥ u0. Let us consider the maximization of U`(C`) with respect to Ch, C`, σ̂h`

subject to (30), (31),(34),U`(C`) ≥ u0 and Uh(C`) ≥ Uh(Ch). In words P4(λ, c, u0,Π0) is

modified by deleting (32), by writing (33) as a weak inequality and by adding U`(C`) ≥
u0. This maximization is denoted P4(λ, c, u0,Π0). It gives kh = A−xh = WN −u−1(u0)

and Πh(C`) ≤ Πh(Ch) = kh−πhA. (30) then gives Π`(C`) ≥ [Π0−λ(kh−πhA)]/(1−λ) ≡
Π`. Let S` ≡ {C` ∈ R2

+ | Π`(C`) ≥ Π`, U`(C`) ≥ u0}. Note that S` is bounded. Fur-

thermore, given Ch = (WN − u−1(u0), A −WN + u−1(u0)), we have C` ∈ S` if C`, σ̂h`

is feasible in P4(λ, c, u0,Π0). The constraint set for C`, σ̂h` in P4(λ, c, u0,Π0) is thus

bounded when Ch is optimally chosen. Since this set is closed, we deduce that it is com-

pact and, given that U` is continuous, P4(λ, c, u0,Π0) has an optimal solution Ch, C`, σ̂h`

with Ch 6= C`. (32) is necessarily satisfied for this optimal solution, for otherwise we

would have U`(C`) < U`(Ch) = u0, hence a contradiction. Furthermore, (33) is not bind-

ing for otherwise A2 = {C2
h = Ch, C2

` = C`, p̂
2 = 0, σ̂2

hh = 1, σ̂2
h` = 0, σ̂2

`h = 0, σ̂2
`` = 1}

would be feasible in P3(λ, c, u0,Π0) with positive profit (because Πh(C`) < Πh(Ch) from

(33) and Ch 6= C` ). A2 would not be optimal in in P3(λ, c, u0,Π0), which would con-

tradict Φ4(λ, c, u0,Π0) ≥ Φ3(λ, c, u0,Π0). We thus conclude that this optimal solution

is also an optimal solution to P4(λ, c, u0,Π0). It is such that σ̂h` < 1, for otherwise

A3 = {C3
h = Ch, C3

` = C`, p̂
3 = 0, σ̂3

hh = 0, σ̂3
h` = 1, σ̂3

`h = 0, σ̂3
`` = 1} would be feasible,

but not optimal in P3(λ, c, u0,Π0) since u0 6= u0, hence once again a contradiction.

(iii) Using 0 < σ̂h` < 1 gives Uh`(C`, p̂) = Uh(Ch), with p̂ ∈ (0, 1) from (33). The

fact that Uh(Ch) = u0 < u0 < U`(C`) and kh +xh = A has been established in the proof

of part (ii). Assume Π0 = 0 and u0 = U∗
h . We directly obtain Ch = C∗

h. Furthermore,

substituting σ̂h` given by (31) into (30) gives k` ≥ φ(x`) with φ(x`) given by (35).

φ(x`) has a minimum at x` = 2c(πh − π`)/πh(1 − π`) ≡ xm, with φ(x`) → ∞ when

x` → xm/2 < c, φ(x`) ' π`x`/(1−π`) when x` →∞. and φ′′(x`) > 0 for all x` > xm/2.

Note also that φ′(x`) < π`/(1−π`) for all x` > xm/2. φ(x`) is drawn in Figure 4. When

A/c is large enough, as represented in Figure 4, the loci k` = φ(x`) and k` + x` = A

cross twice. In that case, PP ′ and the 45◦ degree line cross twice in the W1,W2 plane,

as represented in Figure 2. For small values of A/c, we have k` + x` > A on the whole

locus k` = φ(x`) and PP ′ is entirely above the 45◦ degree line. Maximizing U`(k`, x`)

subject to k` = φ(x`) gives

−∂U`(k`, x`)/∂x`

∂U`(k`, x`)/∂k`
=

π`u
′(WA + x`)

(1− π`)u′(WN − k`)
= φ′(x`) <

π`

1− π`
,

which implies u′(WA + x`) < u′(WN − k`). Using u′′ < 0 then gives WA + x` > WN − k`

or k` + x` > WN −WA = A.

Figure 4
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(iv) follows from the continuity of �4(λ, c, u0,Π0) in u0 and Π0 and from the fact

that given (33) and (34), there exists (C ′
h, C ′

`) in a neighbourhood of (Ch, C`) such that

U`(C ′
`) > U`(C ′

h) and Uh(C ′
`) > Uh(C ′

h).

Corollary 3. At any point where Φ4(λ, c, u0,Π0) > Φ3(λ, c, u0,Π0), Φ4 is locally de-

creasing in Π0, c and u0. Furthermore Φ4 is locally decreasing (respect. stationary,

locally increasing) in λ if u0 > U0
h (respect = U0

h , < U0
h).

Proof: Let λ, c, u0,Π0 such that Φ4(λ, c, u0,Π0) > Φ3(λ, c, u0,Π0) and let Ch, C`

be a pair of optimal contracts in P4(λ, c, u0,Π0). The fact that Φ4 is locally decreasing

in Π0 follows from Proposition 2 with the same kind of argument as for Φ3in Corollary

1. Furthermore, we know from Proposition 2 that 0 < σ̂h` < 1 and Uh(Ch) = u0

at an optimal solution to P4(λ, c, u0,Π0), which gives ∂Φ4/∂u0 < 0 at any point of

differentiability. Using the Enveloppe Theorem gives

∂Φ4(λ, c, u0,Π0)
∂c

= µ[Πh(C`)−Πh(Ch)]
(1− λ)cπ`

πh(x` − c)2
< 0,

∂Φ4(λ, c, u0,Π0)
∂λ

= −µ[Π`(C`)+
cπ`

πh(x` − c)
Πh(C`)]+µ

πhx` − c(πh − π`)
πh(x` − c)

Πh(Ch), (58)

at any point of differentiability, with µ > 0 a Kuhn-Tucker multiplier. Proposition

2-iii gives Πh(Ch) < (=, >)Π0 when u0 > (=, <)U0
h . (30), (31) and (58) then yield

∂Φ4(λ, c, u0,Π0)/∂λ < (=, >)0 when u0 > (=, <)U0
h .

Corollary 4. Φ2 is decreasing in Π0, non-increasing in u0 and c and locally decreasing

(respect. locally non-increasing) in λ if u0 > U0
h (respect. u0 ≥ U0

h).

Proof : Corollary 4 is a direct consequence of Corollaries 2 and 3.

Let P̃j(λ, c, u0,Π0) be the same maximization problem as Pj(λ, c, u0,Π0) with j = 2, 3

or 4, up to the difference that (24) is written as an equality instead of an inequality and

let Φ̃j(λ, c, u0,Π0) be the corresponding value function with Φ̃j ≤ Φj .

Lemma 5. (i) Φ̃2 and Φ̃3 are decreasing in Π0,

(ii) Φ̃2 and Φ̃3 are decreasing (respect. stationary, increasing) in λ if and only if

u0 > U0
h (respect. u0 = U0

h , u0 < U0
h),

(iii) Φ̃3(0, c, u0,Π0) < (respect.=)Φ̃3(λ, c, u0,Π0) for all λ ∈ (0, 1] if u0 < U0
h(respect.=

U0
h),

(iv) Φ̃3(0, c, u0,Π0) is locally increasing in u0 if u0 < u(WN − π`A).

Proof : (i) can be proved in the same way as the equivalent property for Φ3 in

Corollary 2. When u0 < u0 the optimal solution to P̃3(λ, c, u0,Π0) is such that kh+xh =

A with Πh(Ch) > (respect.=, <)Π0 if u0 < (respect.=, >)U0
h . (ii) can then be proved

in the same way as the equivalent property for Φ3 in Corollary 2. (iii) and (iv) are

obvious.
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Lemma 6. An optimal solution to P̃2(λ, c, U∗
h , 0) is characterized by Ch = C∗

h, C` =

C∗∗
` , σ̂hh = 1, σ̂h` = 0, σ̂`h = 0, σ̂`` = 1 if U`(C∗∗

` ) ≥ U`(Ĉ`) and Ch = C∗
h, C` =

Ĉ`, σ̂h` = K(x̂`, λ, c) ∈ (0, 1], σ̂hh = 1 − σ̂h`, σ̂`h = 0, σ̂`` = 1 if U`(C∗∗
` ) ≤ U`(Ĉ`),

where Ĉ` = (k̂`, x̂`) is defined as in Proposition 3.

Proof : The Lemma straighforwardly follows from Φ̃2 = inf{Φ̃3, Φ̃4} and from the

fact that Ch = C∗
h, C` = C∗∗

` , σ̂hh = 1, σ̂h` = 0, σ̂`h = 0, σ̂`` = 1 is an optimal solution

to P̃3(λ, c, U∗
h , 0) and Ch = C∗

h, C` = Ĉ`, σ̂h` = K(x̂`, λ, c) ∈ (0, 1], σ̂hh = 1 − σ̂h`, σ̂`h =

0, σ̂`` = 1 is an optimal solution to P̃4(λ, c, U∗
h , 0).

Let us consider problem P̃1(λ, c, u0,Π0
0, ...,Π

n
0 ), with value function Φ̃1(λ, c, u0,Π0

0, ...,Π
n
0 ),

which is analogous to P̂1(λ, c, u0,Π1
0, ...,Π

n
0 ) except that C0

h, C0
` and p0 can be freely cho-

sen (C0
h and C0

` are no more necessarily equal to (0, 0) and p0 is no more necessarily equal

to 0) and (37), (38) and (39) should hold also for i = 0. Of course, C0
h = C0

` = (0, 0), p0 =

0 is possible in P̃1, and we thus have Φ̃1(λ, c, u0,Π0
0, ...,Π

n
0 ) ≥ Φ1(λ, c, u0,Π1

0, ...,Π
n
0 ),

where Φ1 is the value function of P̂1.

Lemma 7. (i) Φ̃1(λ, c, u0, 0, ..., 0) = Φ2(λ, c, u0, 0) for all λ, c, u0.

(ii) Φ̃1(λ, c, u0,Π0, ...,Π0) < Φ2(λ, c, u0,Π0) for all Π0 > 0 and all λ, c, u0.

Proof : Let {Ch, C`, p̂, , σ̂hh, σ̂h`, σ̂`h, σ̂``} be an optimal solution to P2(λ, c, u0, 0).

Then {Ci = (Ch, C`), pi = p̂, N i = 1/(n + 1), λi = λ, σ̂i
hh = σ̂hh, σ̂i

h` = σ̂h`, σ̂
i
`h =

σ̂`h, σi
`` = σ̂`` for all i = 0, ..., n} is feasible in P̃1(λ, c, u0, 0, ..., 0), which implies

Φ̃1(λ, c, u0, 0, ..., 0) ≥ Φ2(λ, c, u0, 0). (59)

Let A = (A0, ...,An) with Ai = {Ci
h, Ci

`, p
i, N i, λi, σ̂i

hh, σ̂i
h`, σ̂

i
`h, σ̂i

`` } be an optimal

solution to P̃1(λ, c, u0,Π0, ...,Π0) with Π0 > 0 and let ui
0 = max{Uh(Ci

h), Uh`(Ci
`, p

i)} for

i = 0, ..., n, with ui
0 ≥ u0 if N iλi > 0. Note that σ̂i

hh and σ̂i
h` are indeterminate if N iλi =

0 : in such a case, we choose σ̂i
hh and σ̂i

h` such that σ̂i
hhUh(Ci

h) + σ̂i
h`Uh`(Ci

`, p
i) = ui

0.

Note also that Π0 > 0 gives 0 < N i < 1 for all i = 0, ..., n.

Case 1: λi ∈ {0, 1} for all i = 0, ..., n.

For all i such that λi = 1, we necessarily have u0 ≤ ui
0 ≤ u(W − πhA − Π0

N i ) since

otherwise (37),(40) and (42) would be incompatible. Using Π0 > 0 and N i < 1 then

implies u0 < U0
h .

For all i such that λi = 0,we have Φ̃1(λ, c, u0,Π0, ...,Π0) = σ̂i
`hU`(Ci

h) + σ̂i
``U`(Ci

`)

and (38) gives pi = 0. Hence Ai is feasible in P̃3(0, c, ui
0,

Π0

N i ), which gives

Φ̃3(0, c, ui
0,

Π0

N i
) ≥ Φ̃1(λ, c, u0,Π0, ...,Π0). (60)

We also have ui
0 ≤ uj

0 if λj = 1 and thus ui
0 ≤ u(WN − πhA− Π0

Nj ) < U0
h .
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If ui
0 ≤ u0, we can write

Φ̃3(0, c, ui
0,

Π0

N i
) < Φ̃3(0, c, ui

0,Π0) from Π0 > 0, 0 < N i < 1 and Lemma 5-i,

≤ Φ̃3(0, c, u0,Π0) from ui
0 ≤ u0 ≤ U0

h < u(WN − π`A) and Lemma 5-iv,

≤ Φ̃3(λ, c, u0,Π0) from Lemma 5-iii,

≤ Φ2(λ, c, u0,Π0) from the definition of Φ2 and Φ̃3.

and (60) finally yields

Φ2(λ, c, u0,Π0) > Φ̃1(λ, c, u0,Π0, ...,Π0). (61)

If ui
0 > u0, we can write

Φ̃3(0, c, ui
0,

Π0

N i
) < Φ̃3(0, c, ui

0,Π0) from Π0 > 0, 0 < N i < 1 and Lemma 5-i,

≤ Φ̃3(λ, c, ui
0,Π0) from ui

0 ≤ U0
h and Lemma 5-iii,

≤ Φ3(λ, c, ui
0,Π0) from the definitions of Φ3 and Φ̃3,

≤ Φ3(λ, c, u0,Π0) from ui
0 > u0,

≤ Φ2(λ, c, u0,Π0) from the definitions of Φ2 and Φ3,

which also leads to (61).

Case 2: There exists i ∈ {0, ..., n} such that 0 < λi < 1 and N i > 0.

Let u′0 = max{u0
0, ..., u

n
0}, with u′0 ≥ u0. For all i such that 0 < λi < 1 and N i > 0,

we have ui
0 = u′0 and

Φ̃2(λi, c, u′0,Π0) > Φ̃2(λi, c, u′0,
Π0

N i
) ≥ Φ̃1(λ, c, u0,Π0, ...,Π0). (62)

Note that the second inequality in (62) is a consequence ofAi beeing feasible in P̃2(λi, c, ui
0,

Π0

N i )

and Φ̃1(λ, c, u0,Π0, ...,Π0) = σ̂i
`hU`(Ci

h) + σ̂i
``U`(Ci

`) when N i > 0 and 0 < λi < 1.

For all i such that λi = 1 and N i > 0, we have ui
0 = u′0 ≤ u(W − πhA− Π0

N i ) < U0
h .

Hence, if there exists i such that λi = 1 and N i > 0, then Lemma 5-ii gives

Φ̃2(1, c, u′0,Π0) > Φ̃2(λj , c, u′0,Π0) for all j such that 0 < λj < 1,

and (62) yields

Φ̃2(1, c, u′0,Π0) > Φ̃1(λ, c, u0,Π0, ...,Π0). (63)

Suppose that

Φ̃2(0, c, u′0,Π0) ≤ Φ̃1(λ, c, u0,Π0, ...,Π0). (64)

(62) and (64) give Φ̃2(0, c, u′0,Π0) < Φ̃2(λi, c, u′0,Π0) for all i such that 0 < λi < 1, N i > 0

and Lemma 5-ii gives u′0 < U0
h . Suppose in addition that there exists i such that λi = 0
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and N i > 0. If σ̂i
`` > 0, we have pi = 0 from (38) and thusAi is feasible in P̃3(0, c, ui

0,
Π0

N i ).

Furthermore Φ1(λ, c, u0,Π0, ...,Π0) = σ̂i
`hU`(Ci

h) + σ̂i
``U`(Ci

`) when N i > 0 and λi < 1.

Hence

Φ̃3(0, c, ui
0,Π0) > Φ̃3(0, c, ui

0,
Π0

N i
) ≥ Φ̃1(λ, c, u0,Π0, ...,Π0), (65)

and

Φ̃3(0, c, ui
0,Π0) ≤ Φ̃3(0, c, u′0,Π0) from ui

0 ≤ u′0 < U0
h < u(WN − π`A) and Lemma 5-iv,

≤ Φ̃2(0, c, u′0,Π0) from the definitions of Φ2 and Φ̃3. (66)

(65) and (66) imply Φ̃1(λ, c, u0,Π0, ...,Π0) < Φ̃2(0, c, u′0,Π0), which contradicts (64).

Hence if there exists i such that λi = 0 and N i > 0, we have

Φ̃2(0, c, u′0,Π0) > Φ̃1(λ, c, u0,Π0, ...,Π0). (67)

(62),(63) and (67) show that Φ̃2(λi, c, u′0,Π0) ≥ Φ̃1(λ, c, u0,Π0, ...,Π0) for all i such that

N i > 0. Using (43) and the fact that Φ̃2 is monotonic in λ (as shown in Lemma 5-ii)

gives

Φ̃2(λ, c, u′0,Π0) > Φ̃1(λ, c, u0,Π0, ...,Π0). (68)

Since u′0 ≥ u0 and Φ2 is non-increasing in u0, we can write

Φ2(λ, c, u0,Π0) ≥ Φ2(λ, c, u′0,Π0) ≥ Φ̃2(λ, c, u′0,Π0), (69)

and (68) and (69) imply (61), this inequality beeing valid when Π0 > 0. This is part (ii)

of the Lemma. The computations are unchanged when Π0 = 0 with weak inequalities

instead of strong inequalities and (61) is still valid with ≥ instead of >. (59) and (61)

written as a weak inequality together give part (i) of the Lemma.

Proof of Proposition 4:

Consider problem P̃1(λ, c, u0, 0, ..., 0) and let ui
0 and u′0 be defined as in the Propo-

sition.

1. Assume first u′0 > U∗
h . Let i such that N i > 0. In that case (37) and (42) imply

λi < 1, which gives Φ̃1(λ, c, u′0, 0, ..., 0) = σ̂i
`hU`(Ci

h) + σ̂i
``U`(Ci

`). Furthermore, if λi > 0

then{Ci, pi, σ̂i
hh, σ̂i

h`, σ̂
i
`h, σ̂i

``} is feasible in P̃2(λi, c, u′0, 0). Hence if λi > 0, we have

Φ̃2(λi, c, u′0, 0) ≥ Φ̃1(λ, c, u′0, 0, ..., 0),

= Φ2(λ, c, u′0, 0) from Lemma 7-i,

≥ Φ̃2(λ, c, u′0, 0) from the definition of Φ2 and Φ̃2.

Since u′0 > U∗
h , Lemma 5-ii then implies λi ≤ λ. Since this inequality should hold for

all i such that N i > 0, (43) allows us to deduce that λi = λ for all i such that N i > 0.
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2. Assume now u′0 < U∗
h (which implies u0 < U∗

h). Let i such that N i > 0. The

same argument as in the case u′0 > U∗
h yields λi ≥ λ if 0 < λi < 1. Suppose that λi = 0.

We have

Φ̃3(0, c, u′0, 0) ≥ Φ̃3(0, c, ui
0, 0) from ui

0 ≤ u′0 < U∗
h < u(WN − π`A) and Lemma 5-iv,

≥ Φ̃1(λ, c, u0, 0, ..., 0), (70)

because {Ci, pi, σ̂i
hh, σ̂i

h`, σ̂
i
`h, σ̂i

``}, is feasible in P̃3(0, c, ui
0, 0) and Φ̃1(λ, c, u0, 0, ..., 0) =

σ̂i
`hU`(Ci

h) +σ̂i
``U`(Ci

`) when N i > 0 and λi = 0. Using

Φ̃1(λ, c, u0, 0, ..., 0) = Φ2(λ, c, u0, 0) from Lemma 7-i,

≥ Φ̃2(λ, c, u′0, 0) from the definition of Φ̃2 and u′0,

≥ Φ̃3(λ, c, u′0, 0) from the definition of Φ̃3, (71)

(70) and (71) give Φ̃3(0, c, u′0, 0) ≥ Φ̃3(λ, c, u′0, 0) which contradicts Lemma 5-iii because

u′0 < U∗
h . Hence, we have λi ≥ λ if N i > 0. Using (43) gives λi = λ for all i such that

N i > 0.

3. When u′0 6= U∗
h , using λi = λ for all i such that N i > 0 allows us to write

σ̂i
`hU`(Ci

h) + σ̂i
``U`(Ci

`) = Φ̃1(λ, c, u0, 0, ..., 0) = Φ2(λ, c, u0, 0),

if N i > 0 and since {Ci, pi, σ̂i
hh, σ̂i

h`, σ̂
i
`h, σ̂i

``} is feasible in P2(λ, c, u0, 0), we conclude

that it is an optimal solution to this problem.

4. Assume u′0 = U∗
h . If 0 < λi < 1 and N i > 0, we have Φ̃1(λ, c, U∗

h , 0, ..., 0) =

σ̂i
`hU`(Ci

h) + σ̂i
``U`(Ci

`) and U∗
h = ui

0. Thus {Ci, pi, σ̂i
hh, σ̂i

h`, σ̂
i
`h, σ̂i

``} is feasible in

P̃2(λi, c, U∗
h , 0).

Φ̃1(λ, c, U∗
h , 0, ..., 0) = Φ2(λ, c, U∗

h , 0) from Lemma 7-i,

≥ Φ̃2(λ, c, U∗
h , 0) from the definition of Φ̃2,

= Φ̃2(λi, c, U∗
h , 0) from Lemma 5-ii.

Hence {Ci, pi, σ̂i
hh, σ̂i

h`, σ̂
i
`h, σ̂i

``} is the optimal solution to P̃2(λi, c, U∗
h , 0), which is char-

acterized in Lemma 6. If λi = 0 and N i > 0, then {Ci, pi, σ̂i
hh, σ̂i

h`, σ̂
i
`h, σ̂i

``} is feasible

in P̃2(0, c, ui
0, 0), with ui

0 ≤ U∗
h . Suppose ui

0 < U∗
h . Then

Φ̃2(0, c, ui
0, 0) ≥ σ̂i

`hU`(Ci
h) + σ̂i

``U`(Ci
`),

= Φ̃1(λ, c, U∗
h , 0, ..., 0) because N i > 0, λi = 0,

= Φ2(λ, c, U∗
h , 0) from Lemma 7-i,

≥ Φ̃2(λ, c, U∗
h , 0) from the definition of Φ̃2,

= Φ̃2(0, c, U∗
h , 0) from Lemma 5-ii,
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which contradicts Lemma 5-iv. Using u′0 = U∗
h and ui

0 ≥ U∗
h then gives ui

0 = U∗
h . Hence

{Ci, pi, σ̂i
hh, σ̂i

h`, σ̂
i
`h, σ̂i

``} is optimal in P̃2(0, c, U∗
h , 0) and is characterized as in Lemma

6. Finally if N i > 0 and λi = 1, then the feasibility constraints in P̃1(1, c, U∗
h , 0, ..., 0)

imply Ci
h = C∗

h and σ̂i
hh = 1.

5. Thus far we have characterized the optimal solution to P̃1(λ, c, u0, 0, ..., 0). For this

optimal solution the `-types’expected utility is larger or equal to U ` if Φ2(λ, c, u0, 0) ≥ U `

or equivalently if u0 ≤ û0(λ, c). In such a case, the optimal solution to P̂1(λ, c, u0, 0, ..., 0)

involves N0 = 0 and it is characterized as in the Proposition, since problem P̂1 with

N0 = 0 is equivalent to problem P̃1 (there are n insurers in P̂1 and n + 1 insurers

in P̃1, but the number of insurers do not affect the characterization of the optimal

solution). When u0 > û0(λ, c), then P̂1(λ, c, u0, 0, ..., 0) has no feasible solution. In-

deed assume Φ2(λ, c, u0, 0) < U `. If P̂1(λ, c, u0, 0, ..., 0) has a feasible solution then

Φ1(λ, c, u0, 0, ..., 0) ≥ U `, which implies Φ̃1(λ, c, u0, 0, ..., 0) ≥ U `. Lemma 7-i then gives

Φ2(λ, c, u0, 0) ≥ U `, hence a contradiction.

Proof of Lemma 3 : Let Γ be the continuation subgame after C̃ was offered at

stage 2. Consider a perturbed continuation subgame Γε, where mixed strategies are

constrained by pi ∈ [ε, 1 − ε] for all i, σh ∈ S̃2n+1
ε , σ` ∈ S̃2n+1

ε , with S̃2n+1
ε = {t =

(t1, ..., t2n+2) ∈ S2n+1, tj ≥ ε for all j = 1, ..., 2n + 2} and ε > 0. Γε is derived from

Γ by requiring that each player chooses each pure strategy with at least some minimal

positive probability ε22, with Γ ≡ Γ0. {p, σh, σ`, µ} is a trembling hand perfect Bayesian

equilibrium of Γ if it is a perfect Bayesian equilibrium of Γ and if there is some sequence

of perturbed games {Γεm}∞m=1 that converges to Γ [in the sense that εm > 0 for all m

and limm→∞ εm = 0] for which there is some associated sequence of perfect Bayesian

equilibria {pm, σhm, σ`m, µm} such that {pm, σhm, σ`m} converges to {p, σh, σ`} when

m →∞.

Let’s get to the proof of the Lemma. {p, σh, σ`} is a perfect Bayesian equilibrium

of Γ. Assume it is trembling hand perfect and consider a sequence of perturbed games

{Γεm}∞m=1 that converges to Γ and an associated sequence of perfect Bayesian equilibria

{pm, σhm, σ`m, µm} such that {pm, σhm, σ`m} converges to {p, σh, σ`}. Bayes law gives

gives

µi
m ≡

λπhσi
h`m

λπhσi
h`m + (1− λ)π`σ

i
``m

∈ (0, 1) for all m.

Minimizing pi(µi
mx̃i

` − c) with respect to pi ∈ [εm, 1 − εm] implies pi
m = εm for all m if

x̃i
` = c. Using limm→∞ εm = 0 then gives limm→∞ εm = 0pi = 0 if x̃i

` = c.

Lemma 8. For any equilibrium E = {C̃, p̃(.), σ̃h(.), σ̃`(.), µ̃(.)} and for all C such that

Uh(Ci
`) > max{Uh(Cj

h), j = 1, ..., n;Uh`(C
j
` , p̃

j(C)), j = 1, ..., n and j 6= i} > Uh,

22For notational simplicity, we suppose that this minimal probability ε is the same for all players and
all pure strategies.
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(i) If xi
` > c and σ̃i

``(C) > 0, then

σ̃i
h`(C) = min{1, σ̃i

``(C)K(xi
`, λ, c)},

p̃i(C) = φi(C) (resp. = 0,∈ [0, φi(C))) if σ̃i
``(C)K(xi

`, λ, c) < 1(resp. > 1,= 1).

(ii) If xi
` > c and σ̃i

``(C) = 0, then σ̃i
h`(C) = 0 and p̃i(C) ∈ [φi(C), 1].

(iii) If xi
` = c and σ̃i

``(C) > 0, then σ̃i
h`(C) = 1 and p̃i(C) = 0.

(iv) If xi
` = c, and σ̃i

``(C) = 0, then σ̃i
h`(C) = 1, p̃i(C) < φi(C) or σ̃i

h`(C) ∈
[0, 1], p̃i(C) = φi(C) or σ̃i

h`(C) = 0, p̃i(C) > φi(C).

(v) If xi
` < c then σ̃i

h`(C) = 1 and p̃i(C) = 0,

where K(x, λ, c) and φi(C) ∈ (0, 1) are respectively given by (31) and by

Uh`(Ci
`, φ

i(C)) = max{Uh(Cj
h), j = 1, ..., n;Uh`(C

j
` , p̃

j(C)), j = 1, ..., n and j 6= i}.

Proof : Consider the case where xi
` > c and σ̃i

``(C) > 0. (3), (5) and (7) show that

σi
h` ≡ σ̃i

h`(C), σi
`` ≡ σ̃i

``(C)and pi ≡ p̃i(C) are linked by the reaction functions of the h-

type individuals and of insurer i, which are σi
h` = 1 (resp.∈ [0, 1],= 0) if pi < φi(C) (resp.

pi = φi(C), pi > φi(C)) and pi = 1 (resp.∈ [0, 1],= 0) if σi
h` > σi

``K(xi
`, λ, c) (resp.

σi
h` = σi

``K(xi
`, λ, c), σi

h` < σi
``K(xi

`, λ, c)). These reaction functions are illustrated in

Figure 5, with σ̃i
h`(C) = σ̃i

``(C)K(xi
`, λ, c) and p̃i(C) = φi(C). The results are similarly

obtained in the other cases.

Figure 5

Proof of Proposition 5

Step 1 of the proof shows that under THP any equilibrium allocation is an optimal

solution to P1(λ, U e
h, 0, ..., 0) and Step 2 establishes that U e

h ≤ U∗
h , with U e

h = U∗
h if SDS

is supposed in addition.

Step 1

Let {C̃, p, σh, σ`} be an equilibrium allocation that satisfies THP, with C̃, p̃(.), σ̃h(.), σ̃`(.)

the profile of strategies and µ̃(.) the system of beliefs. {C̃, p, σh, σ`}is feasible in P1(λ, c, U e
h,

Π1
, ...,Πn). Because Πi ≥ 0, we deduce that {C̃, p, σh, σ`}is feasible in P1(λ, c, U e

h, 0, ..., 0).

Assume that this equibrium allocation is not an optimal solution to P1(λ, c, U e
h, 0, ..., 0).

Then using Lemma 7-i allows us to write

max{U`(C̃i
h), U`(C̃i

`), i = 1, ..., n} < Φ̃1(λ, c, U e
h, 0, ..., 0) = Φ2(λ, c, U e

h, 0).

Consider a deviation by an insurer i0 from C̃i0 = (C̃i0
h , C̃i0

` ) to Ci0 = (Ci0
h , Ci0

` )

and let p̃i ≡ p̃i(Ci0 , C̃−i0), µ̃i ≡ µ̃i(Ci0 , C̃−i0), σ̃i
jk ≡ σ̃i

jk(C
i0 , C̃−i0) for (j, k) ∈ {h, `}2.

Let also Π̃i0 be the profit of insurer i0 at the continuation equilibrium following the

deviation. Hence Πi0 and Π̃i0 are respectively the LHS and the RHS of (6) for i = i0.

Case 1: There exists i0 ∈ {1, ..., n} such that Πi0 = 0.
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Propositions 1-iii and 2-iv show that there exists {Ci0 , p̂, σ̂hh, σ̂h`, σ̂`h, σ̂``} feasible

in P2(λ, c, U e
h +ε, ε′), with ε, ε′ > 0, and such that σ̂`` = 1, U`(Ci0

` ) > U`(Ci0
h ), Uh(Ci0

h ) 6=
Uh(Ci0

` ), Uh(Ci0
h ) ≥ U e

h + ε, U`(Ci0
` ) ≥ Φ2(λ, c, U e

h, 0)− η and

0 < η < Φ2(λ, c, U e
h, 0)−max{U`(C̃i

h), U`(C̃i
`), i = 1, ..., n}.

Hence U`(Ci0
` ) > max{U`(C̃i

h), U`(C̃i
`), i = 1, ..., n; i 6= i0} and thus σ̃i0

`` = 1. Let i 6= i0

such that pi > 0. Lemmas 1 and 3 then imply x̃i
` > c. When σ̃i

h` > 0, we have µ̃i = 1

and (5) gives p̃i = 1. We thus have p̃i ≥ pi and max{Uh(C̃i
h), Uh`(C̃i

`, p̃
i), i = 1, ..., n; i 6=

i0} ≤ U e
h for all i 6= i0 such that σ̃i

h` > 0. Uh(Ci0
h ) ≥ U e

h + ε then implies σ̃i0
hh + σ̃i0

h` = 1.

Case 1.1: Uh(Ci0
` ) > Uh(Ci0

h ). Let ϕ ∈ (0, 1) such that Uh`(Ci0
` , ϕ) = Uh(Ci0

h ).

Suppose xi0
` ≤ c. Then (20) and σ̂`` = 1 show that p̂ = 0 and (22) gives σ̂h` = 1.

Hence the profit of insurer i0 is larger or equal to ε′ when all individuals choose Ci0
` .

Furthermore, using σ̃i0
`` = 1 and Lemma 8 gives p̃i0 = 0, σ̃i0

h` = 1. We get Π̃i0 ≥ ε′ > Πi0 ,

hence a contradiction with (6).

Suppose now xi0
` > c and let K0 ≡ K(xi0

` , λ, c) > 0.

If K0 < 1: Suppose p̂ = 0. Using σ̂`` = 1 and (21) then gives σ̂h` ≤ K0 and thus

σ̂h` < 1. (22) then implies p̂ ≥ ϕ > 0, which is a contradiction. Hence p̂ > 0 and (20)

yields σ̂h` = K0 ∈ (0, 1) and (22) gives p̂ = ϕ. Lemma 8 then yields σ̃i0
h` = σ̂h` and

σ̃i0
hh = σ̂hh.

If K0 > 1: A similar argument gives p̃i0 = p̂ = 0 and σ̃i0
h` = σ̂h` = 1.

If K0 = 1: We obtain σ̂h` = 1 and p̂ ∈ [0, ϕ]. There is a continuum of continuation

equilibria defined by σ̃i0
h` = 1, p̃i0 ∈ [0, ϕ].

Case 1.2: In the case Uh(Ci0
` ) < Uh(Ci0

h ), we have p̃i0 = p̂ = 0, σ̃i0
hh = σ̂hh = 1 and

σ̃i0
`` = σ̂`` = 1.

In Cases 1.1 and 1.2, we get Π̃i0 ≥ ε′ > Πi0 , hence a contradiction with (6).

Case 2: Πi > 0 for all i = 1, ..., n.

Let i0 ∈ {1, ..., n} such that 0 < Πi0 ≤ Πi for all i. Since{C̃, p, σh, σ`} is feasible in

P1(λ, c, U e
h,Π1

, ...,Πn), we have

max{U`(C̃i
h), U`(C̃i

`), i = 1, ..., n} ≤ Φ̃1(λ, c, U e
h,Π1

, ...,Πn).

∂Φ̃1/∂Πi
0 ≤ 0, ∂Φ2/∂Π0 > 0 and Lemma 7-ii then show that there exists δ > 0 such

that

max{U`(C̃i
h), U`(C̃i

`), i = 1, ..., n} < Φ2(λ, c, U e
h,Πi0 + δ).

Note that σi0
hh +σi0

h` < 1 and/or σi0
`h +σi0

`` < 1 for otherwise we would have Πi = 0 for all

i 6= i0. Propositions 1-iii and 2-iv show that for all η > 0, we can find ε > 0 such that

{Ci0 , p̂, σ̂hh, σ̂h`, σ̂`h, σ̂``} is an optimal solution to P2(λ, c, U e
h + ε, Πi0 + δ), U`(Ci0

` ) >
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U`(Ci0
h ), U`(Ci0

` ) ≥ Φ2(λ, c, U e
h + ε, Πi0 + δ)− η. Let η such that

0 < η < Φ2(λ, c, U e
h,Πi0 + δ)−max{U`(C̃i

h), U`(C̃i
`), i = 1, ..., n}.

The same argument as in Case 1 shows σ̃i0
`` = σ̂`` = 1, σ̃i0

hh = σ̂hh and σ̃i0
h` = σ̂h`, which

gives Π̃i0 = Πi0 + δ, hence a contradiction with (6).

Step 2

Suppose U e
h 6= U∗

h . Since {C̃, p, σh, σ`} is an optimal solution to P1(λ, c, U e
h, 0, .., 0),

we know from Proposition 4 (with u0 = u′0 = U e
h) that for all i such that N

i
> 0, then

Ai ≡ {C̃i, pi, σ̂i
hh, σ̂i

h`, σ̂
i
`h, σ̂i

``} is an optimal solution to P2(λ, c, U e
h, 0), where σ̂i

hh, σ̂i
h`

... are deduced from σh, σ` as in P̂1(λ, c, U e
h, 0, .., 0). We also know that Πi = 0 for all

i because (19) is binding at an optimal solution to P2(λ, c, U e
h, 0). Finally, Propositions

1, 2 and 4 show that σi
`h = 0 and that σi

`` = σi
hh + σi

h` for all i such that N
i
> 0.

Case 1′: U e
h > U∗

h .

Case 1′.1: σi
hh > 0 for all i such that N

i
> 0.

Let i0 such that N
i0 > 0. Using U e

h > U∗
h gives Πh(C̃i0

h ) < 0. Then (19) - written for

Ai0 with Π0 = 0 - gives Π`(C̃i0
` ) > 0.

Suppose first that pi0 = 0, which implies thatAi0 is an optimal solution to P3(λ, c, U e
h, 0)

and thus σi0
hh = σi

`` = 1. If there exists i1 6= i0 such that N
i1 > 0, let Ci0

h = (0, 0) and

Ci0
` such that U`(Ci0

` ) > U`(C̃i0
` ) and Uh(Ci0

` ) < Uh(C̃i0
` ), which implies σ̃i0

`` = 1 and

σ̃i0
h` = 023. For Ci0

` close enough to C̃i0
` , we have

Π̃i0 = (1− λ)Π`(Ci0
` ) > λΠh(C̃i0

h ) + (1− λ)Π`(C̃i0
` ) = Πi0 = 0,

which contradicts (6). If N
i = 0 for all i 6= i0, choose the same deviation as above but

for i1 6= i0, which gives Π̃i1 > Πi1 = 0, hence a contradiction once again.

Suppose now pi0 > 0, i.e. Ai0 is an optimal solution to P4(λ, c, U e
h, 0), which implies

x̃i0
` > c. Choose Ci0

h = (0, 0) and Ci0
` such that xi0

` > x̃i0
` and U`(Ci0

` ) > U`(C̃i0
` ), which

gives σ̃i0
`` = 1. Using (31) gives K(xi0

` , λ, c) < K(x̃i0
` , λ, c) = σ̂i0

h` ≤ 1. Lemma 8 then

gives σ̃i0
h` = K(xi0

` , λ, c). We have

λ[σ̂i0
hhΠh(C̃i0

h ) + σ̂i0
h`Πh(C̃i0

` )] + (1− λ)Π`(C̃i0
` ) = Πi0/N

i0 = 0. (72)

Using U e
h > U∗

h and σ̂i0
hh > 0 gives Πh(C̃i0

h ) < 0. Hence (72) and σ̂i0
h` = K(x̃i0

` , λ, c) yield

λK(x̃i0
` , λ, c)Πh(C̃i0

` ) + (1− λ)Π`(C̃i0
` ) > 0. Thus

Π̃i0 = λσ̃i0
h`Πh(Ci0

` )+(1−λ)σ̃i0
``Π`(Ci0

` ) = λK(xi0
` , λ, c)Πh(Ci0

` )+(1−λ)Π`(Ci0
` ) > 0 = Πi0 ,

for Ci0
` close enough to C̃i0

` , hence a contradiction.

23Note that σi0
hh > 0 and pi0 = 0 give Uh( eCi0

h ) ≥ Uh( eCi0
` ). Hence eσi0

h` = 0 follows from Uh(Ci0
` ) <

Uh( eCi0
` ) ≤ Uh( eCi0

h ) = Uh( eCi1
h ).
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Case 1′.2: σi0
hh = 0 and N

i0 > 0 for some i0 ∈ {1, ..., n}.
In that case we have σi0

h` = σi0
`` = N

i0 and σ̂i0
h` = σ̂i0

`` = 1. The optimal solution to

P2(λ, c, U e
h, 0) is thus a pooling allocation where both types choose C̃i0

` . Propositions 1

and 2 that this is possible only when U e
h = u(WN − πA) and C̃i0

` = (πA,A− πA). Let

Ci0
h , close to C̃i0

` , such that U`(Ci0
h ) > U`(C̃i0

` ) and λΠh(Ci0
h ) + (1− λ)Π`(Ci0

h ) > 0. Let

Ci0
` = (0, 0). We obtain a contradiction since

Π̃i0 = λσ̃i0
hhΠh(Ci0

h ) + (1− λ)Π`(Ci0
h ) ≥ λΠh(Ci0

h ) + (1− λ)Π`(Ci0
h ) > 0 = Πi0 .

Case 2′: U e
h < U∗

h .

Assume in addition that the equilibrium satisfies SDS. When U e
h < U∗

h , we know

from Propositions 1, 2 and 4 that C̃i
h = (π̂hA, (1 − π̂h)A) with π̂h > πh such that

u(W−π̂hA) = U e
h, for all i such that σi

hh > 0. Let i0 such that N
i0 > 0 and suppose that

there exists i1 6= i0 such that σi1
hh > 0. Let Ci0

h = (π̂′hA, (1 − π̂′h)A) with πh < π̂′h < π̂h

and Ci0
` = C̃i0

` . For all i 6= i0, we have Uh(Ci0
h ) > Uh(C̃i

h) and thus σ̃i
hh = 0. Hence

σ̃i0
hh = 1 −

∑n
i=1 σ̃i

h`. SDS gives σ̃i
`` = σi

`` for all i. Furthermore THP and Lemma 3

imply x̃i
` > c if pi > 0. Hence we have σ̃i

h` = σi
h` if pi > 0 from Lemma 8. Furthermore

when pi = 0 we have Uh(C̃i
`) ≤ U

e and thus Uh(C̃i
`) < Uh(Ci0

h ), which gives σ̃i
h` = 0.

Hence, σ̃i
h` ≤ σi

h` for all i. Consequently

σi0
hh = 1−

n∑
i=1

σi
h` −

∑
i6=i0

σi
hh ≤ 1−

n∑
i=1

σ̃i
h` −

∑
i6=i0

σi
hh.

Hence σ̃i0
hh ≥ σi0

hh +
∑

i6=i0
σi

hh > σi0
hh. We have

Πi0 = λ[σi0
hhΠh(C̃i0

h ) + σi0
h`Πh(C̃i0

` )] + (1− λ)σi0
``Π`(C̃i0

` ).

We have Πh(C̃i0
h ) > 0 if σi0

hh > 0 from U e
h < U∗

h and we also have Πh(Ci0
h ) > 0. Since

Πh(C̃i0
` ) < Π`(C̃i0

` ) and Πi0 = 0, we deduce Πh(C̃i0
` ) < 0 if σi0

h` > 0. Hence

Πi0 ≤ λ[(σ̃i0
hh −

∑
i6=i0

σi
hh)Πh(Ci0

h ) + σ̃i0
h`Πh(Ci0

` )] + (1− λ)σ̃i0
``Π`(Ci0

` ) < Π̃i0 ,

for π̂h−π′h small enough, hence a contradiction. If σi
hh = 0 for all i 6= i0, we may consider

a similar deviation by any insurer i 6= i0 leading to the same kind of contradiction.

Proof of Proposition 6

Let E be a separating equilibrium that satisfies THP and SDS. Propositions 4 and 5

yield the characterization of the equilibrium allocation given in Proposition 6. They also

show that U`(C∗∗
` ) = Φ2(λ, c, U∗

h , 0) is a necessary condition for a separating equilibrium

to exist. Let us show that it is also a sufficient condition. Hence assume U`(C∗∗
` ) =

Φ2(λ, c, U∗
h , 0) and let C̃, p, σh, σ` be defined as in Proposition 6, with N

i = 1/n, λ
i = λ
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and µi ≡ µ̃i(C̃) = 0 for all i. Equations (3) to (6) are satisfied for C = C̃. Insurers and

insureds play mixed strategy in the continuation subgame following C and consequently

for all C 6= C̃, p̃(C), σ̃h(C), σ̃`(C), µ̃(C) can be chosen in such a way that (3),(4), (5)

and (7) are satisfied, i.e. it is a continuation equilibrium. We have to show that for all

Ci 6= C̃i and all i, p̃ ≡ p̃(Ci, C̃−i), σ̃h ≡ σ̃h(Ci, C̃−i), σ̃` ≡ σ̃`(Ci, C̃−i), µ̃i ≡ µ̃i(Ci, C̃−i)

can be chosen such that equation (6) is also satisfied. Let Π̃i be the RHS in (6). The

LHS is Πi = 0 and thus (6) is written as Π̃i ≤ 0. Note that at any continuation

equilibrium following the deviation by insurer i, we have σ̃i
hhΠh(Ci

h) + σ̃i
h`Π`(Ci

`) ≤ 0

because σ̃i
hk = 0 if Uh(Ci

k) < U∗
h for k = h, `.

If max{U`(Ci
h), U`(Ci

`)} ≤ U`(C∗∗
` ), we may choose the continuation equilibrium such

that σ̃i
`h + σ̃i

`` = 0 which implies Π̃i ≤ 0.

If max{U`(Ci
h), U`(Ci

`)} > U`(C∗∗
` ), let σ̃i

`h and σ̃i
`` in [0, 1] such that σ̃i

`h + σ̃i
`` = 1

and σ̃i
`hU`(Ci

h)+ σ̃i
``U`(Ci

`) = max{U`(Ci
h), U`(Ci

`)}. If σ̃i
`hΠ`(Ci

h)+ σ̃i
``Π`(Ci

`) ≤ 0, then

Π̃i ≤ 0. If σ̃i
`hΠ`(Ci

h) + σ̃i
``Π`(Ci

`) > 0 (which is assumed in what follows), we have

max{Uh(Ci
h), Uh(Ci

`)} > U∗
h . Consider the two following cases.

Case 1: Uh(Ci
h) ≥ U∗

h . If Uh(Ci
`) > Uh(Ci

h), xi
` > c and K(xi

`, λ, c)σ̃i
`` ≤ 1, let

p̃i ∈ [0, 1] such that Uh`(Ci
`, p̃

i) = Uh(Ci
h), σ̃i

h` = K(xi
`, λ, c)σ̃i

``, σ̃
i
hh = 1−σ̃i

h`. Otherwise,

let p̃i = 0 and let σ̃i
h` and σ̃i

hh such that σ̃i
h` + σ̃i

hh = 1, σ̃i
hhUh(Ci

h) + σ̃i
h`Uh(Ci

`) =

max{Uh(Ci
h), Uh(Ci

`)}. Let also µ̃i given by (7) and σ̃i′
jk = 0, p̃i

′
= 0, µ̃i

′
= 1 for all

i′ 6= i and (j, k) ∈ {h, `}2. This is a continuation equilibrium, i.e. (3),(4), (5) and (7)

are satisfied. Furthermore A ≡ {Ch = Ci
h, C` = Ci

`, p̂ = p̃i, σ̂hh = σ̃i
hh, σ̂h` = σ̃i

h`, σ̂`h =

σ̃i
`h, σ̂`` = σ̃i

``} satisfies conditions (20) to (25). If (19) also holds, then A is feasible

in P2(λ, c, U∗
h , 0) and thus max{U`(Ci

h), U`(Ci
`)} ≤ Φ2(λ, c, U∗

h , 0) = U`(C∗∗
` ), hence a

contradiction. (19) thus does not hold, which gives Π̃i < 0.

Case 2: Uh(Ci
h) < U∗

h . In that case, we necessary have Uh(Ci
`)} > U∗

h . If xi
` > c

and K(xi
`, λ, c)σ̃i

`` ≤ 1 (Case 2.1), let p̃i ∈ (0, 1] such that Uh`(Ci
`, p̃

i) = U∗
h , σ̃i

h` =

K(xi
`, λ, c)σ̃i

``, σ̃
i
hh = 0. Otherwise (Case 2.2), let p̃i = 0, σ̃i

h` = 1, σ̃i
hh = 0. Let also µ̃i

given by (7), and σ̃i′
hh = (1 − σ̃i

h`)/(n − 1), σ̃i′
j` = 0, p̃i

′
= 0, µ̃i

′
= 1 for all i′ 6= i and

j ∈ {h, `}. This is a continuation equilibrium and A (defined as in Case 1) satisfies (20)

to (25). In Case 2.1, if (19) also holds, then A is feasible in P4(λ̃i, c, U∗
h , 0) where λ̃i =

σ̃i
``cπ`/[σ̃i

``cπ` + πh(xi
` − c)] ∈ (0, 1) and thus max{U`(Ci

h), U`(Ci
`)} ≤ Φ4(λ̃i, c, U∗

h , 0) =

Φ4(λ, c, U∗
h , 0) ≤ Φ2(λ, c, U∗

h , 0) = U`(C∗∗
` ), hence the same contradiction as in Case 1,

which gives Π̃i < 0. In Case 2.2, if (19) also holds, then A is feasible in P3(λ, c, U∗
h , 0),

which also leads to Π̃i < 0.

Proof of Proposition 7

Proposition 7 can be proved in almost the same way as Proposition 6. Propositions

4 and 5 provide the characterization of a semi-separating equilibrium and they show

that U`(Ĉ`) = Φ2(λ, c, U∗
h , 0) is a necessary condition for a semi-separating equilibrium

to exist. The same reasoning as in the proof of Proposition 7 (by substituting Ĉ` to
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C∗∗
` ) shows that it is also a sufficient condition.
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