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Nous établissons une procédure numérique pour approcher uniformément par une suite de fonctions convexes., l'enveloppe convexe d'une fraction rationnelle ayant pour domaine, D, un ensemble de dimension finie supposé compacte et semialgébrique. Calculer la valeur d'une approximation en un point donné de K=co(D) se résume à résoudre un programme semi-défini. En suite, nous caractérisons K=co(D) comme projection d'un LMI semi-infini, et en plus nous approximons K par une suite décroissante d'ensembles convexes. Tester si un point donné n'est pas dans K se résume à résoudre un nombre fini de programmes semi-définis.

Introduction

Computing the convex envelope f of a given function f : R n → R is a challenging problem, and to the best of our knowledge, there is still no algorithm that approximates f by convex functions (except for the simpler univariate case). For instance, for a function f on a bounded domain Ω, Brighi and Chipot [START_REF] Brighi | Approximated convex envelope of a function[END_REF] propose triangulation methods and provide piecewise degree-1 polynomial approximations f h ≥ f , and derive estimates of f h -f (where h measures the size of the mesh). Another possibility is to view the problem as a particular instance of the general moment problem, and use geometrical approaches as described in e.g. Anastassiou [START_REF] Anastassiou | Moments in Probability and Approximation Theory[END_REF] or Kemperman [START_REF] Kemperman | Geometry of the moment problem[END_REF]; but, as acknowledged in [START_REF] Anastassiou | Moments in Probability and Approximation Theory[END_REF][START_REF] Kemperman | Geometry of the moment problem[END_REF], this approach is only practical for say, the univariate or bivariate cases.

Concerning convex sets, an important issue raised in Ben-Tal and Nemirovski [START_REF] Ben-Tal | Lectures on Modern Convex Optimization[END_REF], Parrilo and Sturmfels [START_REF] Parrilo | Minimizing polynomial functions[END_REF], is to characterize the convex sets that have a LMI (or semidefinite) representation, and called SDr sets in e.g. [START_REF] Ben-Tal | Lectures on Modern Convex Optimization[END_REF]. For instance, the epigrah of a univariate convex polynomial is a SDr set; see [START_REF] Ben-Tal | Lectures on Modern Convex Optimization[END_REF]. So far, and despite some progress in particular cases (see e.g. the recent proof of the Lax conjecture by Lewis et al [START_REF] Lewis | The Lax conjecture is true[END_REF]), little is known. However, Helton and Vinnikov [START_REF] Helton | Linear matrix inequality representation of sets[END_REF] have proved recently that rigid convexity is a necessary condition for a set to be SDr.

In this paper we consider both convex envelopes and convex hulls for certain classes of functions and sets, namely rational fractions and compact semi-algebraic sets. In both cases we show that one is able to provide relatively simple numerical approximations via semidefinite programming.

Contribution. Our contribution is twofold: Concerning convex envelopes, we consider the class of rational fractions f on a compact semi-algebraic set D ⊂ R n (and +∞ outside D). We view the problem as a particular instance of the general moment problem, and we provide an algorithm for computing convex and uniform approximations of its convex envelope f . More precisely, with K := co(D) being the convex hull of D:

-(a) We provide a sequence of convex functions {f r } that converges to f , uniformly on any compact subset of K in which f is continuous, as r increases.

-(b) At each point x ∈ R n , computing f r (x) reduces to solving a semidefinite program Q rx .

-(c) For every x ∈ int K, the SDP dual Q * rx is solvable and any optimal solution provides an element of the subgradient ∂f r (x) at the point x ∈ int K.

Concerning sets, we consider the class of compact semi-algebraic subsets D ⊂ R n , and -(d) We characterize its convex hull K := co(D) as the projection of a semiinfinite SDr set S ∞ , i.e., a set defined by finitely many LMIs involving matrices of infinite dimension, and countably many variables. Importantly, the LMI representation of S ∞ is simple and given directly in terms of the data defining the original set D.

-(e) We provide outer convex approximations of K, namely a monotone nonincreasing sequence of convex sets {K r }, with K r ↓ K. Each set K r is the projection of a SDr set S r , obtained from S ∞ by "finite truncation". Then, checking whether x / ∈ K reduces to solving finitely many SDPs based on SDr sets S r , until one is unfeasible, which eventually happens for some r. Importantly again, the LMI representation of S r is simple and given directly in terms of the data defining the original set D. Other outer approximations are of course possible, like e.g. convex polytopes {Ω r } containing K, but obtaining such polytopes with Ω r ↓ K is far from trivial.

Notation definitions and preliminary results

In the sequel, R[y](:= R[y 1 , . . . , y n ]) denotes the ring of real-valued polynomials in the variable y = (y 1 , . . . , y n ). Let y i ∈ R[y] be the natural projection on the i-variable that is for every x ∈ R n , y i (x) = x i . For a real-valued symmetric matrix M , the notation M 0 stands for M is positive semidefinite.

Let D ⊂ R n be compact, and denote by: -K, the convex envelope of D. Hence, by a theorem of Caratheodory, K is convex and compact; see Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF].

-C(D), the Banach space of real-valued continuous functions on D, equipped with the sup-norm

f := sup x∈D |f (x)|, f ∈ C(D).
-M (D), its topological dual, i.e., the Banach space of finite signed Borel measures on K, equipped with the norm of total variation.

-M + (D) ⊂ M (D), the positive cone, i.e., the set of finite Borel measures on D.

-∆(D) ⊂ M + (D), the set of borel probability measures on D.

-for f in C(D), let f be its natural extension to R n that is

(1) f (x) := f (x) on D +∞ on R n \ D.
Note that f is lowersemicontinuous (l.s.c.), admits a minimum and its domain is non-empty and compact.

-for f in C(D), let f the convex envelope of f . This is the greatest convex function smaller than f . Note that the vector spaces M (D) and C(D) are in duality with the duality bracket

σ, f := K f dσ, σ ∈ M (K), f ∈ C(K)
Hence, let τ * denote the associated weak* topology; this is the coarsest topology on M (D) for which σ → σ, f is continuous for every function f in C(D).

With f ∈ C(D), and x ∈ K = co(D) fixed, arbitrary, consider the infinitedimensional linear program (LP):

(2) LP x :

     inf σ∈M+(D) σ, f s.t. σ, y i = x i , i = 1, . . . , n σ, 1 = 1.
Its optimal value is denoted by inf LP x , and min LP x if the infimum is attained.

Notice that LP x is a particular instance of the general moment problem, as described in e.g. Kemperman [7,§2.6]. In particular, the set of x ∈ R n such that LP x has a feasible solution, is called the moment space.

Lemma 2.1. Let K = co(D), f ∈ C(D) and f be as in [START_REF] Anastassiou | Moments in Probability and Approximation Theory[END_REF]. Then the convex envelope f of f is given by:

(3) f (x) = min LP x , x ∈ K, +∞, x ∈ R n \ K,
so that the domain of f is K.

Proof. For x ∈ K, let ∆ x (D) be the set of probability measures σ on D, that are centered at x (that is σ, y i = x i for i = 1, . . . , n). Let ∆ * x (D) ⊂ ∆ x (D) be the subset of those probability measures that have a finite support. It is well know that

f (x) = inf σ∈∆ * x (D)
σ, f , ∀x ∈ K;

see Choquet [START_REF] Choquet | Integration and Topological Vector Spaces[END_REF] or Laraki [START_REF] Laraki | On the regularity of the convexification operator on a compact set[END_REF]. Next, since ∆ * x (D) is dense in ∆ x (D) with respect to the weak* topology, and ∆(D) is metrizable and compact with respect to the same topology (see Choquet [START_REF] Choquet | Integration and Topological Vector Spaces[END_REF]), deduce that for every x ∈ K

f (x) = min σ∈∆x(D) σ, f = min LP x .
If x / ∈ K, there is no probability measure on D, with finite support, and centered in x; therefore f (x) = +∞. Next, let p, q ∈ R[y], with q > 0 on D, and let f ∈ C(D) be defined as [START_REF] Brighi | Approximated convex envelope of a function[END_REF] y → f (y) = p(y)/q(y), y ∈ D.

For every x ∈ K, consider the LP, (5)

P x :      inf σ∈M+(D) σ, p s.t. σ, y i q = x i , i = 1, . . . , n σ, q = 1.
A dual of P x , is the LP (6) P * x : sup γ∈R,λ∈R n {γ + λ, x : p(y) -q(y) λ, y ≥ γq(y), ∀y ∈ D}, where λ, y := n i=1 λ i y i stands for the standard inner product in R n . The optimal value of P *

x is denoted by sup P * x (and max P * x if the supremum is attained). Equivalently, as q > 0 everywhere on D, and f = p/q on D, In view of the definition (4) of f , notice that

f (y) -λ, y ≥ γ, ∀y ∈ D ⇔ f (y) -λ, y ≥ γ, ∀y ∈ R n .
Hence P * x in ( 7) is just the dual LP * x of LP x , for every x ∈ K, and so sup P * x = sup LP *

x , for every x ∈ K. In fact we even have the following result: Theorem 2.2. Let p, q ∈ R[x] with q > 0 on D, and let f be as in [START_REF] Brighi | Approximated convex envelope of a function[END_REF]. Let x ∈ K = co(D) be fixed, arbitrary, and let P x and P *

x be as in ( 5) and [START_REF] Kemperman | Geometry of the moment problem[END_REF], respectively. Then P x and LP x are solvable and there is no duality gap, i.e., [START_REF] Laraki | The Preservation of Continuity and Lipschitz Continuity by Optimal Reward Operators[END_REF] sup

P * x = sup LP * x = min LP x = min P x = f (x), x ∈ K. Proof.
Observe that P x is equivalent to LP x . Indeed, with σ an arbitrary feasible solution of P x , the measure dµ := qdσ is feasible in LP x , with same value. Similarly, with µ an arbitrary feasible solution of LP x , the measure dσ := q -1 dµ, well defined on D because q > 0 on D, is feasible in P x , and with same value. Finally, it is well known that f is the Legendre-Fenchel biconjugate 1 of f , and so f (x) = sup P *

x , for all x ∈ K. Indeed, let f * : R n → R be the Legendre-Fenchel conjugate of f , i.e.,

λ → f * (λ) := sup y∈R n : { λ, y -f (y)}.
In view of the definition of f ,

f * (λ) = sup y∈D : { λ, y -f (y)},
and therefore,

sup P * x = sup λ { λ, x + inf y∈D {f (y) -λ, y }} = sup λ { λ, x -sup y∈D { λ, y -f (y)}} = sup λ { λ, x -f * (λ)} = (f * ) * (x) = f (x).
In fact, we have the following.

Corollary 2.3. Let x ∈ K be fixed, arbitrary, and let P * x be as in [START_REF] Kemperman | Geometry of the moment problem[END_REF].

(a) P * x is solvable iff ∂ f (x) = ∅ 2 .
In that case, any optimal solution (λ * , γ * ) satisfies:

(9) λ * ∈ ∂ f (x), and γ * = -f * (λ * ).
(b) If f is a rational fraction on D as in (4), then ∂ f (x) = ∅ for every x in K so that, in this case P *

x is solvable and (a) holds for every x in K.

Proof. Suppose that for some x ∈ K, P * x is solvable (that is, the supremum is achieved, say at λ * (x) and γ * (x)). Then, for every y ∈ K,

f (x) = λ * (x), x + γ * (x) f (y) = sup λ,γ { λ, y + γ : f (z) -λ, z ≥ γ, ∀z ∈ D}, y ∈ K ≥ λ * (x), y + γ * (x),
and in view of (3), the latter inequality also holds for every y in R n ; therefore,

f (y) -f (x) ≥ λ * (x), y -x , ∀y ∈ R n .
Hence, λ * (x) ∈ ∂ f (x). Finally, from the standard Legendre-Fenchel equality, we deduce that

γ * (x) = -f * (λ * (x)) where f * is the Legendre-Fenchel conjugate of f . Conversely, if λ * (x) ∈ ∂ f (x)
then, by the Legendre-Fenchel equality we have,

f (x) = λ * (x), x -f * (λ * (x)).
Therefore, we have:

(10) sup P * x = f (x) = λ * (x), x -f * (λ * (x)). Next, from f * (λ * (x)) = sup y∈D λ * (x), y -f (y), we have -f * (λ * (x)) ≤ f (y) -λ * (x), y , ∀y ∈ D, which shows that the pair (λ * (x), -f * (λ * (x))
) is a feasible solution of P * x , and in view of [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF], an optimal solution. Now, if f is a rational fraction on D, then it is differentiable and Lipschitz on D so that, from Theorem 3.6 in Benoist and Hiriart-Urruty [START_REF] Benoist | What is the Subdifferential of the Closed Convex Hull of a Function?[END_REF], ∂ f (x) is uniformly bounded as x varies on the relative interior of K. Since f is l.s.c. (see below), we deduce that ∂ f (x) = ∅ for every x in K. Actually, let x ∈ K and let x n be a sequence in the relative interior of K that converges to x and let

λ n ∈ ∂ f (x n ) such that λ n → λ (which is possible (passing to a subsequence if needed) since ∂ f (x n ) is uniformly bounded). Hence, for every y in R n , f (y) ≥ f (x n ) + λ n , y -x n , so that, f (y) ≥ lim inf n→∞ f (x n ) + λ, y -x ≥ f (x) + λ, y -x consequently, λ ∈ ∂ f (x), the desired result.
In other words, any optimal solution of P *

x provides an element of the subgradient of f at the point x. Corollary 2.3 should be viewed as a refinement for convex envelopes of rational fractions, of Theorem 2.20 in Kemperman [7, p. 28] for the general moment problem, where strong duality results are obtained for the interior of the moment space (here int K) only.

Preservation of continuity

Later we will construct a sequence f r that approximates f uniformly at each compact set on which f is continuous. Hence it is natural to first define conditions on the data, to ensure that f is continuous. The question was solved in Laraki [START_REF] Laraki | On the regularity of the convexification operator on a compact set[END_REF] when D is convex (K = co(D)). Here we extend this to our general framework. Examples : this is exactly the Splitting-Continuous condition defined in Laraki [START_REF] Laraki | On the regularity of the convexification operator on a compact set[END_REF] when D is convex. Note that if D is a polytope or is strictly-convex then it is Splitting-Continuous (see [START_REF] Laraki | On the regularity of the convexification operator on a compact set[END_REF][Theorem 1 .16]. In fact, if is convex then there are equivalence between Splitting-continuous and the more natural condition facesclosed. The latter concept means (when D is convex) that any Hausdorff converging sequence of faces of D is also a face of D (see [START_REF] Laraki | On the regularity of the convexification operator on a compact set[END_REF], Theorem 1.16). Lemma 3.2. Let f be continuous on the compact D of R n . Let f be as in [START_REF] Ben-Tal | Lectures on Modern Convex Optimization[END_REF]. Then, f is always l.s.c. with respect to K = co(D) and is continuous on any compact K that is strictly included in the relative interior of K. Moreover, D is Splitting-Continuous if and only if f is continuous on K, for every f which is the restriction on D of some continuous function on K.

Proof. From Theorem 10.1 in Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF], since f is convex, it is always continuous in the relative interior of K. Also, since the correspondence x → ∆ x (D) is always uppersemicontinuous (u.s.c.), and since f is continuous, f is always l.s.c. ; see e.g. Theorem 6 in Laraki and Sudderth [START_REF] Laraki | The Preservation of Continuity and Lipschitz Continuity by Optimal Reward Operators[END_REF].

Again, from Theorem 6 in Laraki and Sudderth [START_REF] Laraki | The Preservation of Continuity and Lipschitz Continuity by Optimal Reward Operators[END_REF], x → ∆ x (D) is continuous if and only if f is continuous on K, for every f which is the restriction on D of some continuous function on K.

Uniform convex approximations of f by SDP-relaxations

In this section, we assume that f is defined as in (4) for some polynomials p, q ∈ R[x], with q > 0 on K, where D ⊂ R n is the convex and compact semialgebraic set defined as [START_REF] Lewis | The Lax conjecture is true[END_REF] K := {x ∈ R n : | g j (x) ≥ 0, j = 1, . . . , m}, for some polynomials {g j } ⊂ R[x]. Depending on its parity, let 2r j -1 or 2r j be the total degree of g j , for all j = 1, . . . , m. Similarly, let 2r p , 2r q or 2r p -1, 2r q -1 be the total degree of p and q respectively. We next provide a sequence {f r } r of functions such that for all r

-f r is convex; -the domain of f r is K r ⊃ K = co(D); -f r ≤ f and for every x ∈ K, f r (x) ↑ f (x) as r → ∞.
In fact, we even have

lim r→∞ : f -f r K → 0,
that is, f r converges to f , uniformly on any compact K ⊂ K in which f is continuous. Consequently, if D is Splitting-Continuous and if q > 0 on K, then we obtain uniform convergence on K. Also, if K is strictly included in the relative interior of K then we also obtain uniform convergence.

To do this we first introduce some additional notation. Let P k ⊂ R[z] be the space of polynomials of total degree less than k, and let r 0 := max[r p , r q + 1, r 1 , . . . , r m ]. Then for r ≥ r 0 , consider the optimization problem: [START_REF] Parrilo | Minimizing polynomial functions[END_REF] Q rx :

           inf y L y (p) s.t. L y (z i q) = x i , i = 1, . . . , n, L y (h 2 ) ≥ 0, ∀ h ∈ P r , L y (h 2 g j ) ≥ 0, ∀ h ∈ P r-rj , : j = 1, . . . , m, L y (q) = 1.
Problem Q rx is a convex optimization problem, in fact, a so-called semidefinite programming problem, called a SDP-relaxation of P x . For more details on semidefinite programming and its applications, the reader is referred to Vandenberghe and Boyd [START_REF] Vandenberghe | Semidefinite programming[END_REF].

Indeed, given y = {y α }, let M r (y) be the moment matrix associated with y, that is, the rows and columns of M r (y) are indexed in the canonical basis of P r , and the entry (α, β) is defined by

M r (y)(α, β) = L y (z α+β ) = y α+β , for all α, β ∈ N, with |α|, |β| ≤ r. Then L y (h 2 ) ≥ 0, ∀h ∈ P r ⇔ M r (y) 0.
Similarly, writing z → g j (z) := γ∈N n (g j ) γ z γ , j = 1, . . . , m, the localizing matrix M r (g j y) associated with y and g j ∈ R[z], is the matrix also indexed in the canonical basis of P r , and whose entry (α, β) is defined by

M r (g j y)(α, β) = L y (g j (z)z α+β ) = γ∈N n y α+β+γ (g j ) γ ,
for all α, β ∈ N, with |α|, |β| ≤ r. Then, for every j = 1, . . . , m, L y (g j h 2 ) ≥ 0, ∀h ∈ P r ⇔ M r (g j y) 0.

Observe that if y has a representing measure µ y , i.e. if

y α = x α dµ y , ∀α ∈ N n ,
then, with h ∈ P r , and also denoting by h = {h α } ∈ R s(r) its vector of coefficients in the canonical basis, h, M r (g j y)h = h 2 g j dµ y .

Therefore, if µ y has its support contained in the level set {x ∈ R n : g j (x) ≥ 0}, we must have M r (g j y) 0. One also denotes by M ∞ (y) and M ∞ (g j y) the (obvious) respective "infinite" versions of M r (y) and M r (g j y), i.e., moment and localizing matrices with countably many rows and columns indexed in the canonical basis {z α }, and involving all the variables y (as opposed to finitely many in M r (y) and M r (g j y)).

For more details on moment and localizing matrices, the reader is referred to Lasserre [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF]. 4.2. SDP-relaxations. Hence, using the above notation, the optimization problem Q rx defined in ( 12) is just the SDP [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF] Q rx :

           inf y L y (p) s.t. L y (z i q) = x i , i = 1, . . . , n M r (y) 0, M r-rj (g j y)
0, j = 1, . . . , m, L y (q) = 1, with optimal value denoted inf Q rx , and min Q rx if the infimum is attained.

If we write M r (y) = α B α y α , and M r-rj (g j y) = α C j α y α , for appropriate symmetric matrices {B α , C j α }, then the dual of Q rx is the SDP ( 14)

Q * rx :            sup λ,γ,X,Zj γ + λ, x s.t. B α , X + m j=1 C j α , Z j + γq α + n i=1 λ i (z i q) α = p α , |α| ≤ 2r X, Z j 0.
In fact, Q * rx is the same as (letting g 0 ≡ 1)

(15) Q * rx :            sup γ∈R,λ∈R n ,uj ∈R[z] γ + λ, x s.t. p -γq -λ, z q = m j=0
u j g j u j s.o.s., deg u j g j ≤ 2r, j = 0, . . . , m (where s.o.s. stands for sum of squares).

We next make the following assumption on the polynomials {g j } ⊂ R[z] in the definition of the set D in [START_REF] Lewis | The Lax conjecture is true[END_REF]. Assumption 4.1 is not very restrictive. For instance, it is satisfied if: -all the g j 's are linear (and so, D is a polytope), or if -the level set {z ∈ R n | g j (z) ≥ 0} is compact, for some j ∈ {1, . . . , m}. Moreover, if one knows that the compact set D is contained in a ball {z ∈ R n | : z ≤ M }, for some M ∈ R, then it suffices to add the redundant quadratic constraint M 2 -z 2 ≥ 0 in the definition (11) of D, and Assumption 4.1 holds true.

Under Assumption 4.1, every polynomial v ∈ R[x], strictly positive on D, can be written as

v = v 0 + m j=1 v j g j ,
for some family of s.o.s. polynomials {v j } m j=0 ⊂ R[x]. This is Putinar's Positivstellensatz, an particular version of Schmüdgen's Positivstellensatz (see Putinar [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]).

Then we have the following result:

Theorem 4.2. Let D be as in [START_REF] Lewis | The Lax conjecture is true[END_REF], and let Assumption 4.1 hold. Let f be as in (4) with p, q ∈ R[z], and with q > 0 on D. Let f be as in (3), and with x ∈ K = co(D) fixed, consider the SDP-relaxations {Q rx } defined in (12) (or equivalently in ( 13)). Then: (a) For every x ∈ R n ,

(17) inf Q rx ↑ f (x), as r → ∞.
(b) The function f r : R n → R ∪ {+∞} defined by

(18) x → f r (x) := inf Q rx , x ∈ R n , is convex, and as r → ∞, f r (x) ↑ f (x) pointwise, for all x ∈ R n . (c) If K has a nonempty interior int K, then (19) sup Q * rx = max Q * rx = inf Q rx = f r (x), x ∈ int K,
and for every optimal solution

(λ * r , γ * r ) of Q * rx , f r (y) -f r (x) ≥ λ * r , y -x , ∀ y ∈ R n ,
that is, λ * r ∈ ∂f r (x). For a proof see §6.1. As a consequence, we also get: Corollary 4.3. Let D be as in [START_REF] Lewis | The Lax conjecture is true[END_REF], and let Assumption 4.1 hold. Let f and f be as in ( 4) and ( 3) respectively, and let f r : K → R, be as in Theorem 4.2. Then f r is always l.s.c. Moreover, for every compact K ⊂ K in which f is continuous,

(20) lim r→∞ : sup x∈K : | f (x) -f r (x)| = 0,
that is, the monotone nondecreasing sequence {f r } converges to f , uniformly on every compact in which f is continuous. Consequently, if in addition D is Splittingcontinuous and if q > 0 on K, then the convergence is uniform on K.

Proof. The lowersemicontinuity of f r may be obtained using Laraki & Sudderth [START_REF] Laraki | The Preservation of Continuity and Lipschitz Continuity by Optimal Reward Operators[END_REF]. This is due to the facts that:

-the objectif function of Q rx does not depend on x, and -the feasible set of Q rx as a function of x, is u.s.c., in the sense of Kuratowski. By Theorem 4.2, we already have that f r ↑ f on K.

(1) The convergence f r ↑ f on K, (2) the fact that f r is l.s.c., (3) that the limit f is continuous, and finally (4) that K is compact, imply that the convergence is uniform on K. Actually, by ( 1) and ( 2) the function f (x) -f r (x) is always positive and u.s.c. on K, and therefore, by (4), it admits a global maximizer x r ∈ K. Let α = lim sup r→∞ f (x r ) -f r (x r ). Without loss of generality and using (4), suppose that the limsup is achieved with the sequence {x n } ⊂ K that converges to some x 0 ∈ K. Let t be some fixed integer. Hence, for any n ≥ t, using (1) one has

f n (x n ) ≥ f t (x n ),
[by monotonicity of {f n }] so that we obtain

lim n→∞ f n (x n ) ≥ f t (x 0 ), [by lowersemicontinuity of f t ].
Finally, letting t go to infinity and using (3),

lim n→∞ f n (x n ) ≥ f (x 0 ),
and so,

α = lim n→∞ f (x n ) -f n (x n ) = f (x 0 ) -lim n→∞ f n (x n ) ≤ 0.
This implies uniform convergence on K.

Remark 4.4 If Assumption 4.1 does not hold, then in the SDP-relaxation Q rx in [START_REF] Parrilo | Minimizing polynomial functions[END_REF], one replaces the m LMI constraints L y (g j h 2 ) ≥ 0 for all h ∈ P r-rj , with the 2 m LMI constraints

L y (g J h 2 ) ≥ 0, ∀h ∈ P r-r J , ∀J ⊆ {1, . . . , m},
where g J := j∈J g j , and r J = deg g J , for all J ⊆ {1, . . . , m} (and g ∅ ≡ 1). Indeed, Theorem 4.2 and Corollary 4.3 remain valid with f r (x) := inf Q rx , for all x ∈ R n (with the newly defined Q rx ). In the proof, one now invokes Schmüdgen's Positivstellensatz [START_REF] Schmüdgen | The K-moment problem for compact semi-algebraic sets[END_REF] (instead of Putinar's Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF]) which states that every polynomial v, strictly positive on D, can be written as v = J⊂{1,...,m} v J g J , [(compare with ( 16))]

for some family of s.o.s. polynomials {v J } ⊂ R[x]; see Schmüdgen [START_REF] Schmüdgen | The K-moment problem for compact semi-algebraic sets[END_REF]. 

D := {x ∈ R : g(x) ≥ 0}, with x → g(x) := (b -x)(x -a), x ∈ R.
Theorem 4.5. Let D be as in (21), p, q ∈ R[x], with q > 0 on D, and let f, f be as in ( 4) and (3) respectively. Then, with 2r ≥ max[deg p, 1 + deg q], let Q rx be the SDP-relaxation defined in [START_REF] Parrilo | Minimizing polynomial functions[END_REF]. Then:

(22) f (x) = inf Q rx , x ∈ K.
Proof. Recall that when D is convex and compact, then for every x ∈ D, f (x) = sup P * x , with P * x as defined in [START_REF] Helton | Linear matrix inequality representation of sets[END_REF]. Next, in the univariate case, a polynomial h ∈ R[x] of degree 2r or 2r -1, is nonnegative on K if and only if h = h 0 + h 1 g, for some s.o.s. polynomials h 0 , h 1 ∈ R[x], and with deg h 0 , h 1 g ≤ 2r. This is in contrast with the multivariate case, where the degree in Putinar's representation [START_REF] Vandenberghe | Semidefinite programming[END_REF] is not known in advance. Therefore, let 2r ≥ max[deg p, 1 + deg q]. The polynomial p -γq -λ, y q (of degree ≤ 2r) is nonnegative on D if and only if p -γq -λ, y q = u 0 + u 1 g, for some s.o.s. polynomials u 0 , u 1 ∈ R[x], with deg u 0 , u 1 g ≤ 2r. Therefore, as q > 0 on K, and recalling the definition of P *

x in (6), f (y) -λ, y ≥ γ, ∀y ∈ K ⇔ p(y) -q(y) λ, y ≥ γq(y), ∀y ∈ K ⇔ p(y) -q(y) λ, y -γq(y) ≥ 0, ∀y ∈ K ⇔ p(y) -q(y) λ, y -γq(y) = u 0 (y) + u 1 (y)g(y), for some s.o.s. polynomials u 0 , u 1 ∈ R[x], with deg u 0 , u 1 g ≤ 2r. Therefore, Q * rx is identical to P *

x , from which the result follows. So, in the univariate case, the SDP-relaxation Q rx is exact, that is, the value at x ∈ K of the convex envelope f , is easily obtained by solving a single SDP.

The convex hull of a compact semi-algebraic set

An important question stated in Ben-Tal and Nemirovski [3, §4.2 and §4.10.2], Parrilo and Sturmfels [START_REF] Parrilo | Minimizing polynomial functions[END_REF], and not settled yet, is to characterize the convex subsets of R n that are semidefinite representable (written SDr), or equivalently, have an LMI representation; that is, subsets Ω ⊂ R n of the form

Ω = {x ∈ R n : M 0 + n i=1 M i x i 0},
for some family {M i } n i=0 of real symmetric matrices. In other words, a SDr set is the feasible set of a system of LMI's (Linear Matrix Inequalities), and powerful techniques are now available so solve SDPs. For instance, the epigraph of a univariate convex polynomial is SDr; see [3, p. 292]. Recently, Helton and Vinnikov [START_REF] Helton | Linear matrix inequality representation of sets[END_REF] have proved that rigid convexity (as defined in [START_REF] Helton | Linear matrix inequality representation of sets[END_REF]) is a necessary condition for a convex set to be SDr.

In this section, we are concerned with a (large) class of convex sets, namely the convex hull of an arbitrary compact semi-algebraic set, i.e., the convex hull K = co(D) of a compact set D defined by finitely many polynomial inequalities, as in [START_REF] Lewis | The Lax conjecture is true[END_REF]. We will show that:

-K is the projection of a semi-infinite SDr set S ∞ , that is, S ∞ is defined by finitely many LMIs involving matrices with countably many rows and columns, and involving countably many variables. Importantly, the LMI representation of the set S ∞ is given directly in terms of the data, i.e., in terms of the polynomials g j 's that define the set D.

-K can be approximated by a monotone nonincreasing sequence of convex sets {K r } (with K r ⊃ K for all r), that are projections of SDr sets S r . Each SDr set S r is a "finite truncation" of S ∞ , and therefore, also has a specific LMI representation, directly in terms of the data defining the set D. In other words, {K r } is a converging sequence of outer convex approximations of K, i.e. K r ↓ K as r → ∞. Detecting whether a point x ∈ R n belongs to K r reduces to solving a single SDP that involves the SDr set S r .

With D ⊂ R n as in [START_REF] Lewis | The Lax conjecture is true[END_REF], define the 2 m polynomials (23)

x → g J (x) := j∈J g j , ∀ J ⊆ {1, . . . , m}, of total degree 2r J or 2r J -1, and with the convention that g ∅ ≡ 1.

Equivalently, (28)

K r :=    x ∈ R n : ∃y ∈ R s(2r)    L y (z i ) = x i i = 1, . . . , n M r-r J (g J y)
0, J ⊆ {1, . . . , m} y 0 = 1.

   .
In view of the meaning of L y (z i ), K r is the projection on R n of the SDr set S r ⊂ R s(2r) defined in (26) (on the n variables y α , with |α| = 1); Obviously, {K r } forms a nested sequence of sets, and we have (29)

K r0 ⊃ K r0+1 . . . ⊃ K r . . . ⊃ K.
Let f be the identity on D (f = 1 on D). Then its convex envelope f is given by

f (x) = 1, x ∈ K, +∞ x ∈ R n \ K.
Note that f is clearly a continuous function on K.

On D, write f = 1 = p/q with p = q ≡ 1, so that with r ≥ r 0 := max J r J , the SDP-relaxation Q rx defined in [START_REF] Parrilo | Minimizing polynomial functions[END_REF] and in Remark 4.4, now reads (30)

Q rx : inf y { y 0 : y ∈ S r ; L y (z i ) = x i , : i = 1, . . . , n}, x ∈ R n ,
and so, for all r ≥ r 0 , (31

) inf Q rx = 1, if x ∈ K r +∞, otherwise.
Next, let f r : R n → R ∪ {+∞} be the function x → f r (x) := inf Q rx , with obvious domain K r .

Corollary 5.2. Let D ⊂ R n be compact and defined as in [START_REF] Lewis | The Lax conjecture is true[END_REF], and let K := co(D).

(a) If x / ∈ K, then f r (x) = +∞ whenever r ≥ r x , for some integer r x . (b) With K r being as in (28), K r ↓ K as r → ∞.

Proof. (a) By Theorem 4.2(b) and Remark 4.4, f r is convex and f r (x) ↑ f (x), for all x ∈ R n . If x ∈ K then f r (x) = 1 for all r. If x / ∈ K then f r (x) = 1 if x ∈ K r , and +∞ outside K r . But as f r (x) ↑ f (x) = +∞, there is some r x such that f r (x) = +∞, for all r ≥ r x , the desired result.

(b) As {K r } is a nonincreasing nested sequence and K ⊂ K r for all r, one has

K r ↓ K * := ∞ r=0 K r ⊃ K.
It suffices to show that K * ⊆ K, which we prove by contradiction. Let x ∈ K * , and suppose that x / ∈ K. By (a), we must have f r (x) = +∞ whenever r ≥ r x , for some integer r x . In other words, x / ∈ K r whenever r ≥ r x . But then, x / ∈ K * , in contradiction with our hypothesis. Corollary 5.2 provides us with a means to test whether x / ∈ K. Indeed, it suffices to solve the SDP-relaxation Q rx defined in (30), until inf Q rx = +∞ for some r (which means that x / ∈ K r for all r ≥ r x ), which eventually happens if x / ∈ K.

6. Proofs 6.1. Proof of Theorem 4.2. (a) By standard weak duality, sup Q * rx ≤ inf Q rx ≤ f (x) for all r ∈ N, and all x ∈ R n . Next, let x ∈ K be fixed, arbitrary. From Theorem 2.2 and Corollary 2.3, P *

x is solvable, and sup P * x = max P * x = f (x) for all x ∈ K. Therefore, from the definition of P *

x in (6), there is some (γ * , λ * ) ∈ R × R n such that p(y) -q(y) λ * , y -γ * q(y) ≥ 0, y ∈ D, and γ * -λ * , x = f (x). Hence, with > 0 fixed, arbitrary, γ * --λ * , x = f (x) -, and p(y) -q(y) λ * , y -(γ * -)q(y) ≥ q(y) > 0, y ∈ D.

Therefore, under Assumption 4.1, the polynomial p -q λ * , y -(γ * -)q, which is strictly positive on D, can be written

p(y) -q(y) λ * , y -(γ * -)q(y) = m j=0 u j g j , for some s.o.s. polynomials {u j } m j=0 ⊂ R[x]. But then, (γ * -, λ * , {u j }) is a feasible solution of Q *
rx as soon as r ≥ r := max j=0,1,...,m deg (u j g j ), and with value γ * --λ * , x = f (x) -. Hence, for every > 0,

f (x) -≤ sup Q * rx ≤ inf Q rx ≤ f (x), r ≥ r .
This concludes the proof of (17) for x ∈ K.

Next, let x / ∈ K so that f (x) = +∞. From the prroof of Theorem 2.2, we have seen that P * x = f (x) for all x ∈ R n . Therefore, with M > 0 fixed, arbitrarily large, one my find λ ∈ R n , γ ∈ R such that M ≤ λ, x + γ and f (y) + λ, y ≥ γ, ∀y ∈ D.

Hence

f (y) + λ, y -γ + > 0, ∀y ∈ D.

Therefore, as q > 0 on D, the polynomial g := p + λ, y q -(γ -)q is positive on D. By Putinar Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF], it may be written

g = u 0 + m j=1 u j g j for some family of s.o.s. polynomials {u j } m j=0 ⊂ R[x]. But then, with 2r M ≥ max[deg u 0 , deg u j g j ], the 3-uplet (λ, γ -, {u j }) is a feasible solution of Q *
rx , whenever r ≥ r M , and with value M -. And so, as M was arbitrarily large, sup P * rx → +∞ = f (x), as r → ∞. This concludes the proof of (17) for x / ∈ K. (b) That f r is convex follows from its definition f r (x) = inf Q rx for all x ∈ R n , and the definition (13) of the SDP Q rx . First, observe that for all r sufficiently large, say r ≥ r 0 , inf Q rx > -∞ for all x ∈ R n , because sup Q * rx ≥ -1, for all x ∈ R n . Indeed, with γ = -1, λ = 0, the polynomial p + q = p -qγ -q λ, y is positive on D, and therefore, by Putinar Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF], p + q = u 0 + j u j g j , for some family of s.o.s. polynomials {u j } m 0 . Therefore, (-1, 0, {u j }) is feasible for Q * rx with value -1, whenever 2r 0 ≥ max[deg u 0 , deg u j g j ]. Next, let x := αu + (1 -α)v, with u, v ∈ R n , and 0 ≤ α ≤ 1. As we want to prove

inf Q r(αu+(1-α)v) ≤ α inf Q ru + (1 -α) inf Q rv , 0 ≤ α ≤ 1,
we may restrict to u, v ∈ R n such that inf Q ru , inf Q rv < +∞. So, let y u (resp. y v ) be feasible for Q ru (resp. Q rv ), and with respective values inf Q ru + , inf Q rv + .

As the matrices M r (y), M r-rj (g j y) are all linear in y, and y → L y (•) is linear in y as well, y := αy u +(1-α)y v is feasible for Q rx , with value α inf

Q ru +(1-α) inf Q rv + . Therefore, inf Q rx = inf Q r(αu+(1-α)v) ≤ α inf Q ru + (1 -α) inf Q rv + , ∀ > 0,
and letting → 0 yields the result. Finally, the pointwise convergence f r (x) ↑ f (x) for all x ∈ R n , follows from (17). (c) Let K be with a nonempty interior int K, and let x ∈ int K. Let µ be the probability measure uniformly distributed on the ball B x := {y ∈ K :: y -x ≤ δ} ⊂ K.

Hence, z i dµ = x i for all i = 1, . . . , n. Next, define the measure ν to be dν = q -1 dµ so that qdν = 1, and z i dµ = z i qdν = x i for all i = 1, . . . , n, Take for y = {y α }, the vector of moments of the measure ν. As ν has a density, and is supported on K, it follows that M r (y) 0 and M r (q j y) 0, j = 1, . . . , m, for all r. Therefore, y is a strictly feasible solution of Q rx , i.e., Slater's condition holds, which in turn implies the absence of a duality gap between Q rx and its dual Q * rx (sup Q * rx = inf Q rx ). In addition, as inf Q rx > -∞, we get sup

Q * rx = max Q * rx = inf Q rx , which is (19).
So, as Q * rx is solvable, let (γ * r , λ * r , {u * j }) be an optimal solution, that is, f r (x) = γ * r -λ * r , x and p(z) -γ * r q(z) -q(z) λ * r , y = that is, λ * r ∈ ∂f r (x), the desired result.

  m {γ + λ, x : f (y) -λ, y ≥ γ, ∀y ∈ D}.

Definition 3 . 1 .

 31 The compact set D of R n is Splitting-Continuous if and only if x → ∆ x (D) is continuous when ∆(D) is equipped with the weak* topology.

4. 1 .

 1 Notation and definitions. Let y = {y α } α∈N n be a sequence indexed in the canonical basis {z α } of R[z], and let L y : R[z] → R be the linear functional defined by h (:= α∈N n h α z α ) → L y (h) := α∈N n h α y α .

Assumption 4 . 1 .

 41 There is a polynomial u ∈ R[z], positif on D, which can written(16) u = u 0 + m j=1 u j g j ,for a family of s.o.s. polynomials {u j } m j=0 ⊂ R[z], and the level set {z ∈ R n | : u(z) ≥ 0} is compact.

3 4. 3 .

 33 The univariate case. In the univariate case, simplifications occur. Let D ⊂ R be the interval [a, b], that is, D has the representation (21)

  )g j (z), ∀ z ∈ R n .Therefore, one hasf r (x) = γ * r + λ * r , x f r (y) = sup γ,λ,u {γ + λ, y : p(z) -γq(z) -q(z) λ, z = m j=0 u j (z)g j (z), ∀z ∈ R n } ≥ γ * r + λ * r , y , ∀y ∈ R n , from which we get f r (y) -f r (x) ≥ λ * r , y -x , ∀y ∈ R n ,

See Section

in Benoist and Hiriart-Urruty [2] 2 ∂ b f (x) = ∅ at least for every x in the relative interior of K (see Rokafellar 1970, Theorem 23.4)

Let M r (g J y) ∈ R s(r)×s(r) be the localizing matrix associated with the polynomial g J , and a sequence y, for all J ⊆ {1, . . . , m}, and all r = 0, 1, . . .; see also §4.1 for the definition of the infinite matrix M ∞ (g J y).

Define S ∞ ⊂ R ∞ by:

(24)

The set S ∞ is a semi-infinite SDr set as it is defined by 2 m LMIs whose matrices have countably many rows and columns, and with countably many variables. If Assumption 4.1 holds, one may instead use the simpler semi-infinite SDr set

Similarly, define K ∞ ⊂ R n by: (25)

Lemma 5.1. Let D ⊂ R n be as in [START_REF] Lewis | The Lax conjecture is true[END_REF] and compact, and let K ∞ be as in (25).

Then

. . , n, for some probability measure µ with support contained in D. Let y be the vector of moments of µ, well defined because µ has compact support. Then we necessarily have y 0 = 1, and M r (g J y) 0 for all r and all J ⊆ {1, . . . , m}; see §4.1. Equivalently, M ∞ (g J y) 0, for all J ⊆ {1, . . . , m}, and so y ∈ S ∞ . From, z i dµ, = L y (z i ), : ∀i = 1, . . . , n, we conclude that x ∈ K ∞ , and so K ⊆ K ∞ . Conversely, let x ∈ K ∞ . Then, there exists y ∈ S ∞ such that y 0 = 1 and L y (z i ) = x i , for all i = 1, . . . , n. As M ∞ (g J y) 0, for all J ⊆ {1, . . . , m}, then by Schmüdgen Positivstellensatz [START_REF] Schmüdgen | The K-moment problem for compact semi-algebraic sets[END_REF], y is the vector of moments of some probability measure µ y , with support contained in D. Next, L y (z i ) = x i , ∀i = 1, . . . , n ⇔ x i = z i dµ y , ∀i = 1, . . . , n, which proves that x ∈ co(D) = K. Therefore, K ∞ ⊆ K, and the result follows.

So, Lemma 5.1 states that the convex hull K of any compact semi-algebraic set D, is the projection on the variables y α with |α| = 1, of the semi-infinite SDr set S ∞ (recall that for every α ∈ N n , |α| = n i=1 α i ). However, the set S ∞ is not described by finite-dimensional LMIs, because we have countably many variables y α , and matrices with infinitely many rows and columns.

We next provide outer approximations {K r } of K, which are projections of SDr sets {S r }, with S r ⊃ S ∞ , for all r, and K r ↓ K, as r → ∞.

With r ≥ r 0 , let S r ⊂ R s(2r) be defined as:

(26) S r := {y ∈ R s(2r) : y 0 = 1; M r-r J (g J y) 0, ∀J ⊆ {1, . . . , m}}.

Notice that S r is a SDr set obtained from S ∞ by "finite" truncation. Indeed, S r contains finitely many variables y α , namely those with |α| ≤ 2r. And M r (g J y) is a finite truncation of the infinite matrix M ∞ (g j y); see §4.1.

As for S ∞ , under Assumption 4.1, S r in (26) may be replaced with the (simpler) SDr set S r := {y ∈ R s(2r) : y 0 = 1; M r (y) 0, M r-rj (g j y) 0, j = 1, . . . , m}.

Next, let (27)

K r := {x ∈ R n : ∃y ∈ S r s.t. L y (z i ) = x i , i = 1, . . . , n}.