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Résumé: Le problème d’allocations stables généralise les problèmes d’affectations

stables (" one-to-one ", " one-to-many " ou " many-to-many ") à l’attribution

de quantités  réelles ou d’heures. Il existe deux ensembles d’agents distincts,

un ensemble I " employés " et un ensemble J " employeurs " où chaque agent

a un ordre de préférences sur les agents de l’ensemble opposé et chacun a un

certain nombre d’heures. Comme dans les cas spécifiques, le problème

d’allocations stables peut contenir un nombre exponentiel de stables (quoique

dans le cas " générique " il admet exactement une  allocation stable).

Un mécanisme est une fonction qui sélectionne exactement une allocation

stable pour n’importe quel problème. Le mécanisme " optimal-employés " qui

sélectionne toujours l’allocation stable optimale pour les employés est

caractérisé comme étant l ‘unique mécanisme " efficace " ou  " monotone " ou

" strategy-proof. "

Abstract: The stable allocation problem is the generalization of the well-known and

much studied stable (0,1)-matching problems to the allocation of real numbers

(hours or quantities). There are two distinct sets of agents, a set I of

"employees" or "buyers" and a set J of "employers" or "sellers", each agent

with preferences over the opposite set and each with a given available time or

quantity. In common with its specializations, and allocation problem may

have exponentially many stable solutions (though in the "generic" case it has

exactly one stable allocation).

A mechanism is a function that selects exactly one stable allocation for any

problem. The "employee-optimal" mechanism XI that always selects xI, the

"employee-optimal" stable allocation, is characterized as the unique one that

is, for employees, either "efficient", or "monotone", or "strategy-proof."
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Introdu
tion

The stable marriage (or stable one-to-one) problem is the simplest example of a
two-sided market. There are two distin
t sets of agents, e.g., men and women,
and ea
h agent on one side of the market has preferen
es over the opposite set.
Mat
hings between men and women are sought that are �stable� in the sense
that no man and woman not mat
hed (to ea
h other) 
an both be better-o�
by being mat
hed [7℄. The stable admissions (or stable one-to-many) problem
is a more general example of a two-sided market, again with two sets of agents
ea
h having preferen
es over the opposite set. On one side of the market there
are individuals, e.g., prospe
tive students, interns or employees, and on the
other there are institutions, e.g., universities, hospitals or �rms, ea
h seeking
to enroll some given number of individuals [7℄. A still more general 
ase is
the stable polygamous polyandry (or stable many-to-many) problem where every
agent seeks to enroll given numbers of agents of the opposite set [2℄. All of these
are problems of assignment: agents are mat
hed with agents [7, 9, 8, 10℄.

The stable allo
ation problem [3℄ is also a two-sided market with distin
t
sets of agents where ea
h agent has stri
t preferen
es over the opposite set. But
here ea
h agent is endowed with real numbers � quantities or hours of work
� and instead of mat
hing (or allo
ating 0's and 1's) the problem is to allo
ate
real numbers. For example, one set of agents 
onsists of workmen ea
h with a
number of available hours of work, the other of employers ea
h seeking a number
of hours of work. �Stability� asks that no pair of opposite agents 
an in
rease
their hours �together� either due to unused 
apa
ity or by giving up hours with
less preferred partners.

Here, as is often true, the study of the more general problem 
lari�es and in
some aspe
ts simpli�es the issues and views that 
on
ern the parti
ular 
ases.

Se
tion 1 � the problem � presents the model and Se
tion 2 � stable
allo
ations � summarizes the salient fa
ts 
on
erning them, their existen
e,
stru
ture and properties (see [3℄).

An �allo
ation me
hanism� is a fun
tion that sele
ts a unique stable allo
a-
tion for any allo
ation problem. Se
tion 3 � me
hanisms � uniquely 
hara
ter-
izes the employee- and employer-optimal (or row- and 
olumn-optimal) allo
ation
me
hanisms in terms of three separate properties: �e�
ien
y,� �monotoni
ity,�
and �strategy-proofness.� This generalizes to stable allo
ations similar 
hara
-
terizations �rst established for admissions or one-to-many mat
hing [6, 1℄, then
for many-to-many mat
hing [2℄.

1 The problem

A stable allo
ation problem (�; s; d; �) is spe
i�ed by a dire
ted graph � de�ned
over a grid, and arrays of real numbers s; d > 0 and � � 0, as follows. There
are two distin
t �nite sets of agents, the row-agents I (�employees�) and the

olumn-agents J (�employers�), and ea
h agent has a stri
t preferen
e order
over the agents of the opposite set. Ea
h employee i 2 I has s(i) units of work
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to o�er, ea
h employer j 2 J seeks to obtain d(j) units of work, and �(i; j) is
the maximum number of units that i 2 I may 
ontra
t with j 2 J . This data
is modeled as a graph.

The nodes of the preferen
e graph � are the pairs of opposite agents (i; j),
i 2 I and j 2 J . They are taken to be lo
ated on the I �J grid where ea
h row

orresponds to an employee or supplier i 2 I and ea
h 
olumn to an employer
or a
quirer j 2 J . The (dire
ted) ar
s of �, or ordered pairs of nodes, are of
two types: a horizontal ar


�
(i; j); (i; j0)

�
expresses supplier i's preferen
e for j0

over j (sometimes written j0 >i j), symmetri
ally a verti
al ar

�
(i; j); (i0; j)

�
expresses a
quirer j's preferen
e for i0 over i (sometimes written i0 >j i). If
�(i; j) = 0 for some (i; j) then the node may be omitted. Ar
s implied by
transitivity are omitted. Figure 1 gives an example where the values s(i) are
asso
iated with rows, the values d(j) with 
olumns, and the values �(i; j) are
arbitrarily large.

The stable marriage problem is the stable allo
ation problem with s(i) =
d(j) = 1 and �(i; j) = 0 or 1, for all i 2 I; j 2 J ; the stable university
admissions problem is the stable allo
ation problem with s(i) positive integers,
d(j) = 1 and �(i; j) = 0 or 1, for all i 2 I; j 2 J ; and the stable many-to-many
problem is the stable allo
ation problem with s(i) and d(j) positive integers,
and �(i; j) = 0 or 1, for all i 2 I; j 2 J (see [4, 5, 2℄).

It is 
onvenient, and unambiguous, to refer to the su

essors of a node � or
to say a node follows another � in its row or 
olumn, meaning they or it are
preferred or ranked higher. And, similarly, to refer to the prede
essors of a node
� or to say a node pre
edes another � in its row or 
olumn, meaning they or
it are less preferred or ranked lower. Also a �rst, least preferred (or last, most
preferred) node in a row or 
olumn has no prede
essors (no su

essors) � and
a �rst (or last) node with 
ertain properties has no prede
essors (no su

essors)
with those properties.

In general, if S is a set and y(s); s 2 S, a real number, then y(S)
def
=P

s2S y(s); also (r; S)
def
= f(r; s) : s 2 Sg. For (i; j) 2 �, (i; j�)

def
= f(i; l) : l �i

jg and (i; j>)
def
= f(i; l) : l >i jg; the sets (i�; j) and (i>; j) are de�ned similarly.

An allo
ation x =
�
x(i; j)

�
of a problem (�; s; d; �) is a set of real-valued

numbers satisfying

x(i; J) � s(i); all i 2 I;

x(I; j) � d(j); all j 2 J;

0 � x(i; j) � �(i; j); all (i; j) 2 �;


alled, respe
tively, the row, the 
olumn and the entry 
onstraints. In Figure
1 both y and z are allo
ations of the example. It may be � and will be �
assumed that �(i; j) � min

�
s(i); d(j)

	
.

An allo
ation x is stable if for every (i; j) 2 �,

x(i; j) < �(i; j) implies x(i; j�)s(i) or x(i�; j) = d(j):
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If for some (k; l) this 
ondition fails, then (k; l) blo
ks x: agents k 2 I and
l 2 J may together, ignoring others, improve the allo
ation for themselves.
Spe
i�
ally, the value of x(k; l) may be in
reased by Æ > 0, with x(k; j) > 0 for
some j <k l de
reased by Æ (or x(k; J) < s(k)) and x(i; l) > 0 for some i <l k
de
reased by Æ (or x(I; l) < d(l)). Otherwise, (k; l) is stable for x. In parti
ular,
if either x(k; l) = �(k; l) or x(k; l�) = s(k) then (k; l) is row-stable; and if either
x(k; l) = �(k; l) or x(k�; l) = d(l) then (k; l) is 
olumn-stable � so a node may
be both row- and 
olumn-stable.

In the spe
ial 
ase of marriage, (k; l) blo
ks when man k and woman l are
not mat
hed

�
x(k; l) = 0

�
, k is not mat
hed or is mat
hed to a less desirable

woman than l
�
x(k; l�) = 0

�
, l is not mat
hed or mat
hed to a less desirable

man than k
�
x(k�; l) = 0

�
, and �(k; l) = 1: thus together k and l 
an realize

a better solution for themselves. In Figure 1, y is not stable � (4; 3) blo
ks y
(the other nodes are stable for y) � whereas z is stable.

(1)=10

d(1)=

10

1 11

14

12 17

y=

z=
11

14

6 12

7 3

2

1

s

(2)=12

s

s

(3)=14

(4)=20
d d d(2)= (3)= (4)=

11 13 15 17

s

s

Figure 1: An allo
ation problem (no upper bounds �).

2 Stable allo
ations

This se
tion summarizes the pertinent fa
ts 
on
erning stable allo
ations. For
proofs and a more 
omplete des
ription, see [3℄.

The employee- or row-greedy solution � of a problem (�; s; d; �) is de�ned by
assigning to ea
h row-agent i 2 I his/her/its preferred solution a
ting as if there
were no other row agents. It is de�ned re
ursively, beginning with i's preferred

hoi
e (the last node in row i):

�(i; j) = min
�
s(i)� �(i; j>); d(j); �(i; j)

	
:

If no 
olumn 
onstraint is violated, � is a stable allo
ation. In terms of marriage,
� assigns to ea
h man his favorite available woman, and if no woman is assigned
more than one man it is a stable assignment. The employer- or 
olumn-greedy
solution 
(�; s; d; �) is de�ned similarly.
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When the men, in marriage, propose to their preferred women, a woman
who re
eives a proposal may dis
ard every man lower in her preferen
es without

hanging the problem. A similar fa
t holds for allo
ation problems. If x is a
stable allo
ation of a problem (�; s; d; �), then

x(i; j) � ��(i; j)
def
= max

n
0; min

�
�(i; j); d(j)� �(i>; j)

	o
;

and the problems (�; s; d; �) and (�; s; d; ��) are equivalent in the sense that
they admit exa
tly the same set of stable allo
ations.

This suggests the generalization of the Gale-Shapley algorithm, the row-
greedy algorithm: try the row-greedy solution �; if it is an allo
ation then it must
be a stable allo
ation; otherwise, new stronger bounds may be dedu
ed and the
pro
ess repeated. For dis
rete problems � when s; d and � are integer-valued
� the pro
edure must terminate with a problem whose row-greedy solution is
stable, so proves:

Theorem 1 There exist stable allo
ations for every stable allo
ation problem
(�; s; d; �).

The theorem is proven for arbitrary real-valued data via an �indu
tive al-
gorithm� [3℄ that is strongly polynomial: it requires at most 3jI jjJ j+ jJ j steps
to �nd a stable allo
ation, where jKj is the 
ardinality of K. In fa
t, the row-
greedy algorithm is arbitrarily bad for dis
rete problems, and it is not known
whether it 
onverges at all in the general 
ase.

Confronted with any two stable allo
ations an agent has no hesitation in
de
iding whi
h he, she or it prefers. Formally, any two stable allo
ations x and
y may be 
ompared with the de�nition that follows

x
def
�i y; i 2 I; if x(i; k) < y(i; k) implies x(i; j) = 0 for j <i k; (1)

read �row-agent i prefers x to y or is indi�erent between them.� x
def
=i y when

x(i; �) = y(i; �), meaning i is indi�erent between x and y (impli
itly how others

fare is of no importan
e to i), and x
def
�i y when x �i y and x 6=i y. Symmetri


de�nitions hold for 
olumn-agents j 2 J .
x �i y implies x(i; j) < y(i; j) is true for at most one x(i; j) > 0. In

parti
ular, if x �i y then x(i; k) < y(i; k) and x(i; j) > y(i; j) imply k <i j.
Sin
e ea
h agent is assigned exa
tly the same total number of hours by every
stable allo
ation, row-agent i prefers x to y, or x �i y, implies that y may be
transformed into x by de
reasing some values that 
orrespond to less-preferred

olumn-agents and in
reasing others that 
orrespond to more-preferred 
olumn-
agents.

In e�e
t, the simplest 
omplete des
ription of an agent's preferen
es between
stable allo
ations is the �min-min� 
riterion: the value of the least-preferred type
of hour should be as small as possible. Letting i(x) = j� if x(i; j�) > 0 and
x(i; j) = 0 for j < j�, this means
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x �i y if

�
either i(x) >i i(y)
or i(x) = i(y) = j� and x(i; j�) < y(i; j�):

(2)

The opposition of interests between rows and 
olumns holds here too:

Theorem 2 If x; y are stable and x(k; l) 6= y(k; l), then x �k y for k 2 I if and
only if x �l y for l 2 J .

Morevoer, it is easy to verify that the set of all stable allo
ations is a dis-
tributive latti
e with respe
t to the partial order �I on the preferen
es of all
row-agents I de�ned by:

x
def
�I y if x�i y for all i 2 I:

Surprisingly, 
onsiderable more is true. When the data s > 0, d > 0 and
�(i; j) � 0 are arbitrary real numbers it is to be expe
ted that no sum of a
subset of the s(i) equals the sum of a subset of the d(j), nor that su
h sums are
equal when the s(i) and d(j) are ea
h redu
ed by a sum of some 
orresponding
�(i; j): this is the �generi
,� strongly nondegenerate problem. In this 
ase the
problem has a unique stable allo
ation.

A

ordingly, it is �only� due to the degenera
ies of the stable one-to-one, one-
to-many and many-to-many mat
hing problems that the ri
h latti
e stru
ture
� potentially involving exponentially many stable allo
ations � o

urs. But
the data of a stable allo
ation problem is often integer valued and may well
admit degenera
ies and so multiple stable allo
ations. Thus it is ne
essary to
have a rationale for 
hoosing one stable allo
ation in the presen
e of many.

The example given above is su
h an instan
e. It has exa
tly 7 extreme stable
allo
ations � meaning stable allo
ations that are not a 
onvex 
ombination of
others. They are given in Figure 2. The stable allo
ation z of Figure 1 is not
extreme: z = 3

10x3 +
7
10x4. When the data is integer-valued there always exist

stable allo
ations in integers.

3 Me
hanisms

An allo
ation me
hanism � is a fun
tion that sele
ts exa
tly one stable allo
ation
for any problem (�; s; d; �). Three 
hara
terization are given of ea
h of two
parti
ularly 
onspi
uous me
hanisms. This generalizes known results for the
one-to-many [6, 1℄ and many-to-many mat
hing problems [2℄.

The employee- or row-optimal stable allo
ation xI of a problem (�; s; d; �) is
de�ned by:

xI �i x; all i 2 I; for every stable allo
ation x:

xI attributes to every row-agent the best possible allo
ation among all stable
allo
ations. The �row-optimal algorithm� [3℄ establishes
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111
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x
4
= x

5
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x
I
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14
152 3

111

Figure 2: All extreme stable allo
ation: arrows show 
olle
tive preferen
es �I

(in this 
ase a 
omplete order).

Theorem 3 Every problem (�; s; d; �) has a unique row-optimal stable allo
a-
tion xI .

By symmetry, every problem has a unique employer- or 
olumn-optimal stable
allo
ation xJ . So two obvious examples of me
hanisms are the employee- or
row-optimal me
hanism �I that always sele
ts xI , and the employer- or 
olumn-
optimal me
hanism �J that always sele
ts xJ .

E�
ien
y

It would be agreeable if it 
ould be asserted that the employee-optimal me
h-
anism �I is �e�
ient� in that no allo
ation, stable or not, is ever �better� for
the employees than the employee-optimal stable allo
ation xI . This depends,
of 
ourse, on what is meant by �better�: in an intuitive sense the allo
ation y
given in Figure 1 is 
olle
tively preferred to xI by the employees I (y is blo
ked
by (4; 3)). But by the min-min 
riterion (2) for 
omparing stable allo
ations,
row-agent 4 would be indi�erent between xI and y. The de�nition of �better�
will extend the min-min 
riterion to arbitrary allo
ations.

Consider now a problem where the s(i); i 2 I are generous in 
omparison
with the d(j); j 2 J , as in Figure 3. The employee-optimal stable allo
ation
xI is vi
iously �employee-ine�
ient�: every allo
ation, stable or not, that gives
a total of 7 hours to employee 1 and a total of 11 to employee 2 is �better�
for the employees. Thus if xI is in some sense �e�
ient� this possibility must
be ex
luded: a

ordingly, when xI(i; J) < s(i) any other allo
ation y with
y(i; J) = x(i; J) will be 
onsidered equally preferred by i.

Guided by these examples, extend the de�nition of an employee's preferen
es
between stable allo
ations (2) to preferen
es between arbitrary allo
ations x and
y as follows:
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3 4 0 0

0 0 5 6
x
I

=

6

11

11
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Figure 3: xI �ine�
ient�.

x
def
� i y if

i(x) <i i(y) or
i(x) = i(y) = l�; x(i; j�) < y(i; j�)

�
when x(i; J) = y(i; J) = s(i)

x(i; J) > y(i; J) when y(i; J) < s(i):

Also, row agent i is indi�erent between two allo
ations, x �i y, if i(x) = i(y) =
j� and x(i; j�) = y(i; j�) when x(i; J) = y(i; J) = s(i), or if x(i; J) = y(i; J) <
s(i). Take x �i y to mean x �i y or x �i y. As before,

x
def
� I y if x �i y for all i 2 I;

and x
def
� I y if x �I y and x �i y is not true for all i 2 I .

A preliminary lemma 
on
erning stable allo
ations is needed.

Lemma 1 Suppose that x is a stable allo
ation and y is an allo
ation, stable or
not, for whi
h y �i x for all i 2 I. Then there exists a stable allo
ation y� �I x.
Moreover,

(i) x(i; J) = y(i; J) = y�(i; J) = s(i) for every i 2 I,
(ii) x(I; j) = y(I; j) = y�(I; j) for every j 2 J , and
(iii) y�(i; j) > x(i; j) implies there exists h �j i for whi
h y(h; j) > x(h; j).

Proof. To begin, suppose that for some j 2 J , x(I; j) < y(I; j). Then x(i; j) <
y(i; j) for some i 2 I . If x(i; J) < s(i) then (i; j) blo
ks x, a 
ontradi
tion;
and if x(i; J) = s(i) then y �i x implies x(i; j0) > y(i; j0) for some j0 <i j,
so (i; j) blo
ks x, again a 
ontradi
tion. Therefore, x(I; j) � y(I; j) for all
j 2 J , and x(I; J) � y(I; J). But y �i x means x(i; J) � y(i; J) for i 2 I , so
x(I; J) � y(I; J) and the inequalities are all equations. Finally, x(i; J) < s(i)
implies x(i; J) < y(i; J) so x(i; J) = y(i; J) = s(i).

Let � =
��

i; i(x)
�
: i 2 I

	
. By de�nition, x

�
i; i(x)

�
> y

�
i; i(x)

�
for every�

i; i(x)
�
2 �. From above it follows that for ea
h

�
i; i(x)

�
2 � there is at

least one h 2 I with x
�
h; i(x)

�
< y

�
h; i(x)

�
� �

�
h; i(x)

�
. But y �h x implies�

h; h(x)
�
pre
edes

�
h; i(x)

�
in row h. Therefore, it must be that h <i(x) i sin
e

otherwise x would not be stable.
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Among all row agents i0 <i(x) i for whi
h
�
i0; i0(x)

�
pre
edes

�
i0; i(x)

�
and

x
�
i0; i(x)

�
< �(

�
i0; i(x)

�
, let i� be the 
olumn-agent that i(x) prefers. Note that

h may be i�; but if i� 6= h then h <i(x) i
�. Call �� the set of all su
h nodes.

By 
onstru
tion, every node of �� is pre
eded in its row by a node of � and
is followed by every node of � in its 
olumn, so the nodes of �[�� must 
ontain
a 
y
le C. Moreover, if in 
olumn j a node (i; j) follows a node of �� [ C and
pre
edes a node of � [ C, it must be that (i; j) is row-stable relative to x.

Let

Æ(i; j) =

�
x(i; j) if (i; j) 2 C \ �;
�(i; j)� x(i; j) if (i; j) 2 C \ ��

Æ = minfÆ(i; j) : (i; j) 2 Cg;

and de�ne

y�(i; j) =

8<
:

x(i; j)� Æ if (i; j) 2 C \ �;
x(i; j) + Æ if (i; j) 2 C \ ��;
x(i; j) if (i; j) =2 C:

y� is 
learly an allo
ation satisfying y� �I x and the 
onditions (i), (ii) and
(iii). It is also stable: the only nodes (i; j) that 
ould blo
k or be
ome unstable
are those that pre
ede a node of C \� but su

eed a node of C\�� in a 
olumn
j. But su
h nodes were row-stable and so remain row-stable.

An allo
ation x is e�
ient for employees or row-e�
ient if there is no allo-

ation y, stable or not, satisfying

y �i x for all i 2 I:

A me
hanism is employee- or row-e�
ient if it always sele
ts an row-e�
ient
stable allo
ation.

Theorem 4 �I is the unique row-e�
ient me
hanism.

Proof. Clearly, no me
hanism other than �I 
an be row-e�
ient; a

ordingly,
it is only ne
essary to show that �I is row-e�
ient. So suppose the 
ontrary:
there exists for some problem an allo
ation y, y �i xI for all i 2 I . Then by
Lemma 1 there exists a stable allo
ation y� �I xI , 
ontradi
ting Theorem 3.

A blo
king theorem

The next theorem is the key to establishing the remaining two 
hara
teriza-
tions. Although the analog of a similar result for stable assignment problems,
its proof invokes a new idea whi
h leads to a mu
h simpler proof of that result.

Theorem 5 If in a problem P = (�; s; d; �), y is an allo
ation stri
tly preferred
to xI by ea
h of the agents i 2 I 0 but none of the agents i =2 I 0, then some node
(i; j) with i =2 I 0 blo
ks y.

8



Proof. If x is an allo
ation of P , its restri
tion to I 0 � J is denoted xjI0 .

Let d0(j)
def
= xI (I

0; j) � d(j) for j 2 J , and 
onsider the subproblem P 0 =
(�0; s0; d0; �0), where �0 is � restri
ted to I 0�J , s0(i) = s(i); i 2 I 0, and �0(i; j) =
�(i; j) over �0. Then xIjI0 , is a stable allo
ation of P 0, and yjI0 is an allo
ation
of P 0 that satis�es yjI0 �i xIjI0 for all i 2 I 0. By Lemma 1, there exists a stable
allo
ation y� of P 0, with y� �I0 xIjI0 , and

xI(i; J) = y(i; J) = y�(i; J) = s(i) for i 2 I 0; and
xI(I

0; j) = y(I 0; j) = y�(I 0; j) for j 2 J:
(3)

A

ordingly, if xI(i; j) < y(i; j) for i 2 I 0 then xI (i; j
0) > y(i; j0) for some

j0 <i j. The stability of xI then implies xI(i
�; j) = d(j), so (i; j) must be

followed in its 
olumn by a node (i0; j) with xI (i
0; j) > y(i0; j). If i0 =2 I 0

then the theorem is proven: (i0; j) blo
ks y be
ause either y(i0; J) < s(i0) or
y(i0; J) = s(i0), xI �i0 y and xI (i

0; j) > y(i0; j) implies that xI (i
0; j0) < y(i0; j0)

for some j0 <i0 j. Therefore, it may be assumed that

xI (i; j) < y(i; j); i 2 I 0 implies xI(i
0; j) � y(i0; j) for i0 =2 I 0; i0 >j i: (4)

Extend the de�nition of y� to all of I � J by

y�(i; j) =

�
y�(i; j) i 2 I 0;
xI (i; j) i =2 I 0:

Clearly, y� is an allo
ation of P satisfying y� �I xI , so y� 
annot be stable.
Suppose (k; l) blo
ks y�: it is �rst shown that k =2 I 0, then that (k; l) in fa
t

blo
ks y (as well as y�).

Suppose k 2 I 0.
y� is stable in P 0, so either y�(k; l�) = s(k) or y�(k�; l) = d0(l). Therefore,

sin
e (k; l) blo
ks y� in P , y�(k; l�) < s(k) and y�(k�; l) = d0(l). The fa
t
y� �k xI implies xI (k; l

�) � y�(k; l�) < s(k), so (k; l) has prede
essors in row
k, (k; j0); (k; j00) with xI (k; j

0) > 0; y�(k; j00) > 0.
But xI is stable, so either (a) xI (k; l) = �(k; l), or (b) xI (k

�; l) = d(l) and
xI(k; l) < �(k; l).

Case (a) 
annot be true sin
e xI(k; l) = �(k; l) > y�(k; l) and y� �i xI imply
y� �i xI so y�(k; j) = 0 for all j <k l, 
ontradi
ting y�(k; j00) > 0.

In 
ase (b), xI(k
�; l) = d(l) implies xI (i; l) = 0 for all i <l k. Moreover,

sin
e y� is stable in P 0, y�(k; j00) > 0 for j00 <k l implies y�(i; l) = 0 for i 2 I 0

and i <l k. But y�(i; l) = xI (i; l) for i =2 I 0, so y�(i; l) = 0 for all i <l k
also. These two last fa
ts together with (3) imply d(l) = xI (k

�; l) = y�(k�; l),

ontradi
ting the hypothesis that (k; l) blo
ks y�.

So it may be supposed that k =2 I 0.
xI (k; j) = y�(k; j); j 2 J , so xI(k; l

�) = y�(k; l�) < s(k), and xI (k; l) =
y�(k; l) < �(k; l). But xI is stable, so xI(k

�; l) = d(l) whereas y�(k�; l) < d(l).
Thus from (3), xI (I; l) = y�(I; l) = d(l) and there exists an i� 2 I 0; i� <l k for
whi
h y�(i�; l) > xI (i

�; l) = 0.
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Now Lemma 1(iii) shows the 
ru
ial fa
t 
on
erning y: there exists h �l

i� <l k with y(h; l) > xI (h; l).
Claim: xI (i; l) = y(i; l) for i =2 I 0. Sin
e y(h; l) > xI (h; l) it follows from (4)

that xI(i; l) � y(i; l) for i =2 I 0 and i >l h. But xI (i; l) = 0 for i <l k, so xI (i; l) �
y(i; l) for all i =2 I 0. Sin
e xI(I; l) = d(l) and, from (3), xI (I 0; l) = y(I 0; l), it
follows that every inequality xI(i; l) � y(i; l); i =2 I 0, must in fa
t be an equation,
as 
laimed. Therefore, in parti
ular, y(k; l) = xI(k; l) = y�(k; l) < �(k; l).

If y(k; J) < s(k), then y(h; l) > xI(h; l) = 0 for h <l k shows (k; l) blo
ks
y. Otherwise, y(k; J) = s(k) and xI �k y implies that xI (k; J) = s(k). But
xI(k; l

�) < s(k), so xI (k; j
0) > 0 for some j0 <k l and therefore y(k; j00) > 0 for

some j00 �k j0 (sin
e xI �k y), so (k; l) blo
ks y in this 
ase too.

Monotoni
ity

If P = (�; s; d; �) is an allo
ation problem then P h = (�h; s; d; �h) is im-
proved over P for employee or row-agent h if the problems are the same ex
ept
that row-agent h may improve in the rankings of one or more 
olumn-agents:

for j 2 J; h >j i in P implies h >j i in P h and �h(h; j) � �(h; j):

A me
hanism � is employee- or row-monotone if �(P h) �h �(P ) whenever
P h is an improved allo
ation problem for any employee or row-agent h. It
seems reasonable that an improvement in the situation of a row-agent h should
translate into the same or a better out
ome for agent h. Yet examples show
that the 
olumn-optimal me
hanism �J is not row-monotone.

Theorem 6 �I is the unique row-monotone me
hanism.

Proof. It is �rst shown that �I is row-monotone, then that it is the only
row-monotone me
hanism.

Take xI and xhI to be, respe
tively, the row-optimal stable allo
ations for
P and for P h, improved over P for row-agent h, and suppose �I is not row-
monotone: xI �h xhI . Let I 0 = fi 2 I : xI �i x

h
I g 6= ;. I 0 must be a proper

subset of I , by Theorem 4 applied to P h. Theorem 5 says that xI must be
blo
ked in P h by a node (i; j), i =2 I 0. But sin
e h 2 I 0 is the only row-
agent whose position has 
hanged and it advan
ed in going from P to P h, all
prede
essors of (i; j) 2 P h are also prede
essors of (i; j) 2 P ; and the only
bounds that may in
rease are those of row h 2 I 0. Therefore, (i; j) must blo
k
xI in P too, a 
ontradi
tion. So �I is row-monotone.

Suppose, now, that � is a row-monotone me
hanism di�erent from the row-
optimal me
hanism, � 6= �I . Then there must exist a problem P with �(P ) =
� 6= xI = �I(P ), say xI �k � for some k 2 I . Sin
e � is stable either k(�) <k

k(xI) = l, or k(�) = k(xI) = l and �(k; l) > xI(k; l).
Take P�k = (��k; s; d; ��k) to be identi
al to P = (�; s; d; �) ex
ept that

��k(k; l) = xI (k; l), and that k be
omes the least prefered row-agent on the list
of every 
olumn-agent j who is ranked below l by k (note that xI(k; j) = 0 for
su
h j). P is an improved problem for k over P�k.
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xI is 
learly stable in P�k. Claim: if y is any stable allo
ation in P�k then
y �k xI . For suppose the 
ontrary, namely, xI �k y. Then l = k(xI ) �k k(y)
and y

�
k; k(y)

�
> xI

�
k; k(y)

�
so by Theorem 2, y �k(y) xI . But

�
k; k(y)

�
has no

prede
essor in its 
olumn, so y
�
k; k(y)

�
< xI

�
k; k(y)

�
, a 
ontradi
tion.

Let ��k def
= �(P�k). Sin
e ��k is stable, ��k �k xI . But xI �k � so

��k �k �, 
ontradi
ting the row-monotoni
ity of �.

Strategy

Agents may play for strategi
 advantage by not reporting their true prefer-
en
es.

If P = (�; s; d; �) is the true problem then P 0 = (�0; s0; d; �0) is an alternate
problem for I 0 � I if the two problems are identi
al ex
ept for the employees or
row-agents I 0 who announ
e altered preferen
es and/or altered quotas s0 and
bounds �0. Sin
e the s(i) and the �(i; j) are �true� values (indeed, a �(i; j) may
be imposed by j 2 J), they 
annot be violated, so s0(i) � s(i) and �0(i; j) �
�(i; j).

A me
hanism � is employee- or row-strategy-proof if when P 0 is an alternate
problem for I 0 of P , �(P 0) �i �(P ) for all i 2 I 0 is false for any 
hoi
e of I 0 � I .

Theorem 7 �I is the unique row-strategy-proof me
hanism.

Proof. First, �I is row-strategy-proof. For suppose that there exists a stable
allo
ation y in P 0, an alternate problem for I 0 of P , where y is an allo
ation
preferred by the row-agents I 0 to xI in P . Let �I be the set of all row-agents
that prefer y to xI . By Theorem 4, �I 6= I , and by Theorem 5 there must exist
some (i; j) with i =2 �I that blo
ks y in P . But the preferen
es of i are exa
tly
the same in P and P 0, so (i; j) blo
ks y in P 0 too, a 
ontradi
tion. So �I is
row-strategy-proof.

Suppose now that � is a row-strategy-proof me
hanism di�erent from the
row-optimal me
hanism, � 6= �I . Then there must exist a problem P with
�(P ) = � 6= xI = �I(P ), say, xI �k � for some k 2 I .

Let I 0 = fi 2 I : xI �k �g and de�ne P 0 = (�0; s; d; �0) to be the same as P
ex
ept that

for i 2 I 0 : �0
�
i; i(xI)

�
= xI

�
i; i(xI)

�
and �0(i; j) = 0 when j <i i(xI ):

xI is a stable allo
ation in P 0 = (�; s; d; �0), and if y is any stable allo
ation
in P 0, then 
learly y �i xI for all i 2 I 0. Thus �0 = �(P 0) satis�es �0 �i xI �i �
for i 2 I 0, 
ontradi
ting the fa
t that � is row-strategy proof.
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