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Le probléme d’allocations stables généralise les problémes d’affectations
stables (" one-to-one ", " one-to-many " ou " many-to-many ") a I’attribution
de quantités réelles ou d’heures. Il existe deux ensembles d’agents distincts,
un ensemble I " employés " et un ensemble J " employeurs " ou chaque agent
a un ordre de préférences sur les agents de 1’ensemble opposé et chacun a un
certain nombre d’heures. Comme dans les cas spécifiques, le probléme
d’allocations stables peut contenir un nombre exponentiel de stables (quoique
dans le cas " générique " il admet exactement une allocation stable).

Un mécanisme est une fonction qui sélectionne exactement une allocation
stable pour n’importe quel probléme. Le mécanisme " optimal-employés " qui
sélectionne toujours l’allocation stable optimale pour les employés est
caractérisé comme €tant 1 “‘unique mécanisme " efficace " ou " monotone " ou
" strategy-proof. "

The stable allocation problem is the generalization of the well-known and
much studied stable (0,1)-matching problems to the allocation of real numbers
(hours or quantities). There are two distinct sets of agents, a set I of
"employees" or "buyers" and a set J of "employers" or "sellers", each agent
with preferences over the opposite set and each with a given available time or
quantity. In common with its specializations, and allocation problem may
have exponentially many stable solutions (though in the "generic" case it has
exactly one stable allocation).

A mechanism is a function that selects exactly one stable allocation for any
problem. The "employee-optimal" mechanism XI that always selects xI, the
"employee-optimal" stable allocation, is characterized as the unique one that
is, for employees, either "efficient", or "monotone", or "strategy-proof."
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Introduction

The stable marriage (or stable one-to-one) problem is the simplest example of a
two-sided market. There are two distinct sets of agents, e.g., men and women,
and each agent on one side of the market has preferences over the opposite set.
Matchings between men and women are sought that are “stable” in the sense
that no man and woman not matched (to each other) can both be better-off
by being matched [7]. The stable admissions (or stable one-to-many) problem
is a more general example of a two-sided market, again with two sets of agents
each having preferences over the opposite set. On one side of the market there
are individuals, e.g., prospective students, interns or employees, and on the
other there are institutions, e.g., universities, hospitals or firms, each seeking
to enroll some given number of individuals [7]. A still more general case is
the stable polygamous polyandry (or stable many-to-many) problem where every
agent seeks to enroll given numbers of agents of the opposite set [2]. All of these
are problems of assignment: agents are matched with agents [7, 9, 8, 10].

The stable allocation problem [3] is also a two-sided market with distinct
sets of agents where each agent has strict preferences over the opposite set. But
here each agent is endowed with real numbers — quantities or hours of work
— and instead of matching (or allocating 0’s and 1’s) the problem is to allocate
real numbers. For example, one set of agents consists of workmen each with a
number of available hours of work, the other of employers each seeking a number
of hours of work. “Stability” asks that no pair of opposite agents can increase
their hours “together” either due to unused capacity or by giving up hours with
less preferred partners.

Here, as is often true, the study of the more general problem clarifies and in
some aspects simplifies the issues and views that concern the particular cases.

Section 1 — the problem — presents the model and Section 2 — stable
allocations — summarizes the salient facts concerning them, their existence,
structure and properties (see [3]).

An “allocation mechanism” is a function that selects a unique stable alloca-
tion for any allocation problem. Section 3 — mechanisms — uniquely character-
izes the employee- and employer-optimal (or row- and column-optimal) allocation
mechanisms in terms of three separate properties: “efficiency,” “monotonicity,”
and “strategy-proofness.” This generalizes to stable allocations similar charac-
terizations first established for admissions or one-to-many matching [6, 1], then
for many-to-many matching [2].

1 The problem

A stable allocation problem (T, s,d,w) is specified by a directed graph I' defined
over a grid, and arrays of real numbers s, d > 0 and 7= > 0, as follows. There
are two distinct finite sets of agents, the row-agents I (“employees”’) and the
column-agents J (“employers”), and each agent has a strict preference order
over the agents of the opposite set. Each employee i € I has s(i) units of work



to offer, each employer j € J seeks to obtain d(j) units of work, and = (i, j) is
the maximum number of units that ¢ € I may contract with j € J. This data
is modeled as a graph.

The nodes of the preference graph T' are the pairs of opposite agents (i, 7),
i € I and j € J. They are taken to be located on the I x J grid where each row
corresponds to an employee or supplier ¢ € I and each column to an employer
or acquirer j € J. The (directed) arcs of T', or ordered pairs of nodes, are of
two types: a horizontal arc ((i, ), (,j')) expresses supplier i’s preference for j'
over j (sometimes written j' >; j), symmetrically a vertical arc ((i,4), (i',J))
expresses acquirer j’s preference for i’ over i (sometimes written i’ >; 7). If
7(i,7) = 0 for some (7,j) then the node may be omitted. Arcs implied by
transitivity are omitted. Figure 1 gives an example where the values s(i) are
associated with rows, the values d(j) with columns, and the values w(i,j) are
arbitrarily large.

The stable marriage problem is the stable allocation problem with s(i) =
d(j) = 1 and w(i,j) = 0 or 1, for all 4 € I, j € J; the stable university
admissions problem is the stable allocation problem with s(i) positive integers,
d(j)=1and 7(i,j) =0or 1, for all i € I, j € J; and the stable many-to-many
problem is the stable allocation problem with s(i) and d(j) positive integers,
and m(i,j) =0or 1,for alli € I, j € J (see [4, 5, 2]).

It is convenient, and unambiguous, to refer to the successors of a node — or
to say a node follows another — in its row or column, meaning they or it are
preferred or ranked higher. And, similarly, to refer to the predecessors of a node
— or to say a node precedes another — in its row or column, meaning they or
it are less preferred or ranked lower. Also a first, least preferred (or last, most
preferred) node in a row or column has no predecessors (no successors) — and
a first (or last) node with certain properties has no predecessors (no successors)
with those properties.

In general, if S is a set and y(s), s € S, a real number, then y(S) def

esy(s); also (r,S) € {(r,s) : s € S}. For (i,§) € T, (1,52) & {(i,0) : 1 >,
jyand (i,5>) % {(i,1) : 1 >; j}; the sets (i, j) and (i, j) are defined similarly.

An allocation x = (m(z,])) of a problem (I',s,d,n) is a set of real-valued
numbers satisfying

z(i,J) < s(i), alli € I,
z(1,j) < d(j), all j € J,
0<(i,j) <w(i,j), all (i,5) €T,

called, respectively, the row, the column and the entry constraints. In Figure
1 both y and z are allocations of the example. It may be — and will be —
assumed that 7 (i, ) < min {s(i),d(j)}.

An allocation z is stable if for every (i,j) € T,

x(i,j) < w(i,j) implies x(i,j2)s(i) or z(iZ,j) = d(j).



If for some (k,l) this condition fails, then (k,l) blocks x: agents k € I and
l € J may together, ignoring others, improve the allocation for themselves.
Specifically, the value of x(k,l) may be increased by § > 0, with z(k, j) > 0 for
some j <y I decreased by ¢ (or z(k,J) < s(k)) and z(i,1) > 0 for some i <; k
decreased by ¢ (or z(I,1) < d(l)). Otherwise, (k,[) is stable for x. In particular,
if either z(k,1) = w(k,1) or z(k,1Z) = s(k) then (k,1) is row-stable; and if either
z(k,1) = w(k,1) or z(kZ,1) = d(l) then (k,l) is column-stable — so a node may
be both row- and column-stable.

In the special case of marriage, (k,l) blocks when man %k and woman [ are
not matched (z(k,l) = 0), k is not matched or is matched to a less desirable
woman than [ (z(k,1=) = 0), [ is not matched or matched to a less desirable
man than k (z(k=,1) = 0), and w(k,l) = 1: thus together k and [ can realize
a better solution for themselves. In Figure 1, y is not stable — (4, 3) blocks y
(the other nodes are stable for y) — whereas z is stable.

10
s(1)=10 1
= 14
O s(2)=12 21 17
s(3)=14 7 3
1 |
Z:
5(4)=20 14
dl)= d2)= d3)= d4)= 6 122
1 13 15 17

Figure 1: An allocation problem (no upper bounds 7).

2 Stable allocations

This section summarizes the pertinent facts concerning stable allocations. For
proofs and a more complete description, see [3].

The employee- or row-greedy solution A of a problem (T, s, d, ) is defined by
assigning to each row-agent ¢ € I his/her/its preferred solution acting as if there
were no other row agents. It is defined recursively, beginning with i’s preferred
choice (the last node in row i):

(i, ) = min {s(i) — A(i,57), d(5), (i,5)}

If no column constraint is violated, A is a stable allocation. In terms of marriage,
A assigns to each man his favorite available woman, and if no woman is assigned
more than one man it is a stable assignment. The employer- or column-greedy
solution v(T', s,d, 7) is defined similarly.



When the men, in marriage, propose to their preferred women, a woman
who receives a proposal may discard every man lower in her preferences without
changing the problem. A similar fact holds for allocation problems. If z is a
stable allocation of a problem (T, s,d, ), then

2(i,) < (i,5) = max {0, min {(i.j), d(j) = AG.0)}},

and the problems (T',s,d,7) and (T,s,d,n*) are equivalent in the sense that
they admit exactly the same set of stable allocations.

This suggests the generalization of the Gale-Shapley algorithm, the row-
greedy algorithm: try the row-greedy solution J; if it is an allocation then it must
be a stable allocation; otherwise, new stronger bounds may be deduced and the
process repeated. For discrete problems — when s,d and 7w are integer-valued
— the procedure must terminate with a problem whose row-greedy solution is
stable, so proves:

Theorem 1 There exist stable allocations for every stable allocation problem
(T, s,d, ).

The theorem is proven for arbitrary real-valued data via an “inductive al-
gorithm” [3] that is strongly polynomial: it requires at most 3|I||.J| + |.J| steps
to find a stable allocation, where | K| is the cardinality of K. In fact, the row-
greedy algorithm is arbitrarily bad for discrete problems, and it is not known
whether it converges at all in the general case.

Confronted with any two stable allocations an agent has no hesitation in
deciding which he, she or it prefers. Formally, any two stable allocations = and
y may be compared with the definition that follows

def
x >_?Z y,i €I, if z(i, k) < y(i, k) implies z(i,7) = 0 for j <; k, (1)

read “row-agent i prefers x to y or is indifferent between them.” z gf y when
x(i,) = y(i,-), meaning 7 is indifferent between z and y (implicitly how others

fare is of no importance to i), and z (;?f y when z »; y and = #; y. Symmetric
definitions hold for column-agents j € J.

x =; y implies x(i,j) < y(i,7) is true for at most one xz(i,j) > 0. In
particular, if z »; y then x(i,k) < y(i,k) and x(i,7) > y(i,j) imply k <; j.
Since each agent is assigned exactly the same total number of hours by every
stable allocation, row-agent i prefers x to y, or = »; y, implies that y may be
transformed into x by decreasing some values that correspond to less-preferred
column-agents and increasing others that correspond to more-preferred column-
agents.

In effect, the simplest complete description of an agent’s preferences between
stable allocations is the “min-min” criterion: the value of the least-preferred type
of hour should be as small as possible. Letting i(z) = j~ if (i,j7) > 0 and
x(i,7) =0 for j < j—, this means



either i(z) >;
or i(z) =

: i(y)
T if . . .o .o 2
i { i(y) =j and x(i,j7) <y(i,j"). @
The opposition of interests between rows and columns holds here too:

Theorem 2 If z,y are stable and x(k,l) # y(k,l), then x < y for k € I if and
only if x =1y forl e J.

Morevoer, it is easy to verify that the set of all stable allocations is a dis-
tributive lattice with respect to the partial order >; on the preferences of all
row-agents I defined by:

def X .
xr-ry if x>;yforalliel.

Surprisingly, considerable more is true. When the data s > 0, d > 0 and
7(i,7) > 0 are arbitrary real numbers it is to be expected that no sum of a
subset of the s(7) equals the sum of a subset of the d(j), nor that such sums are
equal when the s(i) and d(j) are each reduced by a sum of some corresponding
7(i,7): this is the “generic,” strongly nondegenerate problem. In this case the
problem has a unique stable allocation.

Accordingly, it is “only” due to the degeneracies of the stable one-to-one, one-
to-many and many-to-many matching problems that the rich lattice structure
— potentially involving exponentially many stable allocations — occurs. But
the data of a stable allocation problem is often integer valued and may well
admit degeneracies and so multiple stable allocations. Thus it is necessary to
have a rationale for choosing one stable allocation in the presence of many.

The example given above is such an instance. It has exactly 7 extreme stable
allocations — meaning stable allocations that are not a convex combination of
others. They are given in Figure 2. The stable allocation z of Figure 1 is not
extreme: z = x5 + ;5x4. When the data is integer-valued there always exist
stable allocations in integers.

3 Mechanisms

An allocation mechanism ® is a function that selects exactly one stable allocation
for any problem (T',s,d,w). Three characterization are given of each of two
particularly conspicuous mechanisms. This generalizes known results for the
one-to-many [6, 1] and many-to-many matching problems [2].

The employee- or row-optimal stable allocation z of a problem (T, s,d, ) is
defined by:

xy =; x, alli € I, for every stable allocation z.

x attributes to every row-agent the best possible allocation among all stable
allocations. The “row-optimal algorithm” [3] establishes



Figure 2: All extreme stable allocation: arrows show collective preferences »;
(in this case a complete order).

Theorem 3 FEvery problem (', s,d, ) has a unique row-optimal stable alloca-
tion Tr.

By symmetry, every problem has a unique employer- or column-optimal stable
allocation zy. So two obvious examples of mechanisms are the employee- or
row-optimal mechanism y that always selects xy, and the employer- or column-
optimal mechanism y s that always selects x ;.

Efficiency

It would be agreeable if it could be asserted that the employee-optimal mech-
anism 7 is “efficient” in that no allocation, stable or not, is ever “better” for
the employees than the employee-optimal stable allocation x;. This depends,
of course, on what is meant by “better”: in an intuitive sense the allocation y
given in Figure 1 is collectively preferred to z; by the employees I (y is blocked
by (4,3)). But by the min-min criterion (2) for comparing stable allocations,
row-agent 4 would be indifferent between z; and y. The definition of “better”
will extend the min-min criterion to arbitrary allocations.

Consider now a problem where the s(i),i € I are generous in comparison
with the d(j),j € J, as in Figure 3. The employee-optimal stable allocation
xy is viciously “employee-inefficient”: every allocation, stable or not, that gives
a total of 7 hours to employee 1 and a total of 11 to employee 2 is “better”
for the employees. Thus if z; is in some sense “efficient” this possibility must
be excluded: accordingly, when z;(i,J) < s(i) any other allocation y with
y(i,J) = (i, J) will be considered equally preferred by i.

Guided by these examples, extend the definition of an employee’s preferences
between stable allocations (2) to preferences between arbitrary allocations x and
y as follows:
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Figure 3: =1 “inefficient”.

. i(z) <;i(y) or when 2. J) = v(i. J) = s(i
St ) i)t <yt | VD) =) =0
x(i,J) > y(i,J) when y(i, J) < s(i).

Also, row agent i is indifferent between two allocations, x ~; y, if i(z) = i(y) =
j~ and z(i,57) = y(i,57) when z(i, J) = y(i,J) = s(i), or if (3, J) = y(i,J) <
s(1). Take x >=; y to mean x »=; y or x ~; y. As before,

def X i
xr-ryife>=;yforalliel,

def
and z ;Iyifmtzyandwwiyisnottrueforalliel.

A preliminary lemma concerning stable allocations is needed.

Lemma 1 Suppose that © is a stable allocation and y is an allocation, stable or
not, for whichy >=; x for all i € I. Then there exists a stable allocation y* =1 x.
Moreover,

(i) 26, J) = y(i, T) = y*(i, J) = 5() for everyi € I,

(ii) 2(1,) = y(I,§) = y*(I, ) for every j € J, and

(i) y ( ,J) > (i, j) implies there exists h <; i for which y(h,j) > z(h,j).

Proof. To begin, suppose that for some j € J, z(I,j) < y(I,7). Then z(i,j) <
y(i,j) for some i € I. If x(i,J) < s(i) then (i,7) blocks z, a contradiction;
and if z(i, J) = s(i) then y »; = implies z(i,j') > y(i,j') for some j' <; 7,
o (i,7) blocks z, again a contradiction. Therefore, x(I,j) > y(I,j) for all
j€J,and «(I,J) > y(I,J). But y »=;  means z(i,J) < y(i,J) for i € I, so
x(I,J) < y(I,J) and the inequalities are all equations. Finally, (i, J) < s(7)
implies (i, J) < y( J) so z(i,J) = y(i,J) = s(i).

Let o = {(i,i(z)) : i € I} By definition, z(i,i(z)) > y(i,i(x)) for every
(i,i(z)) € a. From above it follows that for each (i,i(z)) € «a there is at
least one h € I with z(h,i(z)) < y(h,i(z)) < w(h,i(z)). But y =, = implies
(h, h(a:)) precedes (h,z(x)) in row h. Therefore, it must be that h <;(,) i since
otherwise  would not be stable.



Among all row agents i’ <;(,) i for which (i’,i’(m)) precedes (z’,z(m)) and
z(i',i(z)) < w((i',i(x)), let * be the column-agent that i(z) prefers. Note that
h may be i*; but if i* # h then h <;) i*. Call a* the set of all such nodes.

By construction, every node of a* is preceded in its row by a node of a and
is followed by every node of « in its column, so the nodes of o Ua* must contain
a cycle C. Moreover, if in column j a node (i, 7) follows a node of a* U C' and
precedes a node of a U C, it must be that (i, j) is row-stable relative to .

Let

5(i, ) = x(i,7) if (i,j7) e CNa,
J w(i,j) — z(i,j) if (i,5) € CNa’
5= minf5(,j): () € C),
and define
z(i,j)—0 if (i,7) € CNa,
y*(i,j) = ¢ =(i,j)+d if (i,j) € Cna,
(i, §) if (i,5) ¢ C.

*

y* is clearly an allocation satisfying y* =5 x and the conditions (i), (i7) and
(731). It is also stable: the only nodes (4, j) that could block or become unstable
are those that precede a node of C'Na but succeed a node of CNa* in a column
j. But such nodes were row-stable and so remain row-stable. m

An allocation z is efficient for employees or row-efficient if there is no allo-
cation y, stable or not, satisfying

y =; x foralliel.

A mechanism is employee- or row-efficient if it always selects an row-efficient
stable allocation.

Theorem 4 x; is the unique row-efficient mechanism.

Proof. Clearly, no mechanism other than x; can be row-efficient; accordingly,
it is only necessary to show that xr is row-efficient. So suppose the contrary:
there exists for some problem an allocation y, y »; xy for all ¢ € I. Then by
Lemma 1 there exists a stable allocation y* > z, contradicting Theorem 3. m

A blocking theorem

The next theorem is the key to establishing the remaining two characteriza-
tions. Although the analog of a similar result for stable assignment problems,
its proof invokes a new idea which leads to a much simpler proof of that result.

Theorem 5 If in a problem P = (T',s,d,n), y is an allocation strictly preferred
to xy by each of the agents i € I' but none of the agents i ¢ I', then some node
(i,7) with i ¢ I' blocks y.



Proof. If x is an allocation of P, its restriction to I' x J is denoted T

Let d'(j) def zr(I',5) < d(j) for j € J, and consider the subproblem P’ =
(T, s',d',n"), where I is T restricted to I' x J, s'(i) = s(i),i € I', and 7' (4, j) =
m(i,j) over I''. Then zyp, is a stable allocation of P’, and y;+ is an allocation
of P’ that satisfies y|;» >; xyp for all i € I'. By Lemma 1, there exists a stable
allocation y* of P', with y* = @y, and

zr(i,J) =y(i,J) =y*(i,J) =s(i) foriel’, and 3)
eI, j) =y(I',j) =y~ (I',]) for j € J.

Accordingly, if z;(i,j) < y(i,4) for i € I' then x,(i,j') > y(i,j') for some
j' <; j. The stability of z; then implies z;(iZ,5) = d(j), so (i,j) must be
followed in its column by a node (i',j) with zr(i',j) > y(i',7). X' ¢ I
then the theorem is proven: (i’,7) blocks y because either y(i',J) < s(i') or
y(i',J) = s(i"), xr =y y and z1(i',5) > y(i’,j) implies that (', j") < y(i', 5")
for some j' <; j. Therefore, it may be assumed that

zr(i,j) <y(i,j),i € I' implies z;(i',j) <y(i',j) for i ¢ I',i" >;i.  (4)
Extend the definition of y* to all of I x J by
o _ [y ier,
y (17.7) - { m[(l,]) Z ¢ I’.

Clearly, y* is an allocation of P satisfying y* =1 x, so y* cannot be stable.
Suppose (k, 1) blocks y*: it is first shown that k ¢ I', then that (k,l) in fact
blocks y (as well as y*).

*

Suppose k € I'.
y* is stable in P, so either y*(k,[Z) =
since (k,l) blocks y* in P, y*(k lZ)

s(k) or y*(k=,1) = d'(l). Therefore,
< s(k) and y*(k=,1) = d'(I). The fact

y* > xr implies z7(k,12) < y*(k,12) < s(k), so (k,l) has predecessors in row
k, (k,j"), (k,j") with 1 (k, j') > 0,y"(k,j") > 0.
But z; is stable, so either (a) z;(k,l1) = mw(k,I), or (b) z7(kZ,1) = d(I) and

21 (k,1) < m(k,1).

Case (a) cannot be true since zy(k, 1) = w(k,1) > y*(k,l) and y* >; zr imply
y* =; zr so y*(k,j) = 0 for all j <, [, contradicting y*(k, ;") > 0.

In case (b), z7(k=,1) = d(I) implies z7(i,1) = 0 for all i <; k. Moreover,
since y* is stable in P, y*(k,j") > 0 for j” < [ implies y*(i,l) = 0 for i € I'
and i <; k. But y*(i,1) = x7(i,1) for i ¢ I', so y*(i,1) = 0 for all i <; k
also. These two last facts together with (3) imply d(I) = z;(k2,1) = y*(k2,1),
contradicting the hypothesis that (k, 1) blocks y*.

So it may be supposed that k ¢ I'.

zr(k,j) = y*(k,j),j € J, so z1(k,12) = y*(k,12) < s(k), and z7(k,l) =
y*(k,1) < w(k,1). But z7 is stable, so x7(k=,1) = d(I) whereas y*(k=,1) < d(I).
Thus from (3), z;(I,1) = y*(I,1) = d(l) and there exists an i* € I',i* <; k for
which y*(i*,1) > zr(i*,1) =



Now Lemma 1(ii7) shows the crucial fact concerning y: there exists h <;
i* < k with y(h,1) > z;(h,l).

Claim: z7(i,1) = y(i,l) for ¢ ¢ I'. Since y(h,l) > xr(h,1) it follows from (4)
that 7 (i,1) < y(i,l) fori ¢ I' andi >; h. But z7(i,l) = 0fori <; k, so xy(i,1) <
y(i,1) for all ¢ ¢ I'. Since zr(I,l) = d(I) and, from (3), z7(I',1) = y(I',1), it
follows that every inequality z(i,1) < y(i,1),i ¢ I', must in fact be an equation,
as claimed. Therefore, in particular, y(k,1) = z;(k,1) = y*(k,1) < w(k,1).

If y(k,J) < s(k), then y(h,1) > xr(h,l) = 0 for h <; k shows (k,[) blocks
y. Otherwise, y(k,J) = s(k) and zr > y implies that z;(k,J) = s(k). But
zr(k,12) < s(k), so z7(k,j') > 0 for some j' < [ and therefore y(k, ;") > 0 for
some j" <y, j' (since z; =y y), so (k,l) blocks y in this case too. m

Monotonicity

If P = (T,s,d,n) is an allocation problem then P* = (T'" s,d,7") is im-
proved over P for employee or row-agent h if the problems are the same except
that row-agent h may improve in the rankings of one or more column-agents:

for j € J, h>;iin P implies h >; i in P* and 7" (h,j) > n(h, j).

A mechanism ® is employee- or row-monotone if ®(P") =, ®(P) whenever
P" is an improved allocation problem for any employee or row-agent h. It
seems reasonable that an improvement in the situation of a row-agent h should
translate into the same or a better outcome for agent h. Yet examples show
that the column-optimal mechanism x s is not row-monotone.

Theorem 6 X is the unique row-monotone mechanism.

Proof. It is first shown that x; is row-monotone, then that it is the only
row-monotone mechanism.

Take x; and z” to be, respectively, the row-optimal stable allocations for
P and for P", improved over P for row-agent h, and suppose Y7 is not row-
monotone: xy =5 z%. Let I' = {i € I : z; =; 2"} # 0. I' must be a proper
subset of I, by Theorem 4 applied to P"*. Theorem 5 says that x; must be
blocked in P" by a node (i,5), i ¢ I'. But since h € I' is the only row-
agent whose position has changed and it advanced in going from P to P", all
predecessors of (i,j) € P" are also predecessors of (i,j) € P; and the only
bounds that may increase are those of row h € I'. Therefore, (i,j) must block
xy in P too, a contradiction. So x; is row-monotone.

Suppose, now, that ® is a row-monotone mechanism different from the row-
optimal mechanism, ® # ;. Then there must exist a problem P with ®(P) =
¢ # x5 = x1(P), say x; = ¢ for some k € I. Since ¢ is stable either k(¢) <i
k(xzr) =1, or k(¢) = k(zr) =1 and ¢(k,1) > x7(k,1).

Take P~% = (I'"*,s,d,7*) to be identical to P = (T',s,d, ) except that
77 *(k,1) = z7(k,1), and that k becomes the least prefered row-agent on the list
of every column-agent j who is ranked below [ by k (note that z;(k,j) = 0 for
such j). P is an improved problem for k over P~*.
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xy is clearly stable in P~*. Claim: if y is any stable allocation in P~* then
y = xy. For suppose the contrary, namely, z; > y. Then | = k(z;) > k(y)
and y(k, k(y)) > z1(k, k(y)) so by Theorem 2, y >, 1. But (k, k(y)) has no
predecessor in its column, so y(k, k(y)) <z (k, k:(y)), a contradiction.

Let ¢=* % &(P-*). Since ¢~* is stable, =% >, z7. But z; =k ¢ so
¢~* =1 ¢, contradicting the row-monotonicity of ¢. m

Strategy

Agents may play for strategic advantage by not reporting their true prefer-
ences.

If P=(T,s,d,n) is the true problem then P' = (I',s',d,n") is an alternate
problem for I' C I if the two problems are identical except for the employees or
row-agents I' who announce altered preferences and/or altered quotas s’ and
bounds 7. Since the s(i) and the 7 (¢, ) are “true” values (indeed, a 7 (i, j) may
be imposed by j € J), they cannot be violated, so s'(i) < s(i) and #'(i,7) <
7(i,):

A mechanism ® is employee- or row-strateqy-proof if when P’ is an alternate
problem for I' of P, ®(P’) =; ®(P) for all i € I' is false for any choice of I' C I.

Theorem 7 X is the unique row-strategy-proof mechanism.

Proof. First, x5 is row-strategy-proof. For suppose that there exists a stable
allocation y in P’, an alternate problem for I’ of P, where y is an allocation
preferred by the row-agents I' to z7 in P. Let I be the set of all row-agents
that prefer y to ;. By Theorem 4, I # I, and by Theorem 5 there must exist
some (i,7) with i ¢ I that blocks y in P. But the preferences of i are exactly
the same in P and P’, so (i,j) blocks y in P’ too, a contradiction. So xr is
row-strategy-proof.

Suppose now that ® is a row-strategy-proof mechanism different from the
row-optimal mechanism, ® # yy. Then there must exist a problem P with
®(P) = ¢ # x5 = x1(P), say, xy > ¢ for some k € I.

Let I' = {i € [ : x1 = ¢} and define P' = (I, s,d, ') to be the same as P
except that

fori€I' :n'(i,i(z1)) = 2 (i,i(zr)) and 7'(4,5) = 0 when j <; i(z).
x is a stable allocation in P’ = (T, s,d, '), and if y is any stable allocation

in P, then clearly y =; xy for all i € I'. Thus ¢' = ®(P’) satisfies ¢' »; x; =; ¢
for i € I', contradicting the fact that ® is row-strategy proof. m
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