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On a class of recursive games Nicolas Vieille December 12, 2001 In this chapter, we deal with a class of two-player, recursive games. Recall that a recursive game is a stochastic game such that r(z, a, b)=0whenever z is not an absorbing state. The games we consider have in addition the following properties: F.1 in any absorbing state, the payoff to player 2 is positive; F.2 for every initial state, and proÞle (α, β) where β is fully mixed (i.e.

β z (b) > 0 for every (z, b) ∈ S × B), the induced play reaches an absorbing state in Þnite time.

We present the proof of the following result.

Theorem 1 Any such game has a uniform equilibrium payoff.

The interest of this speciÞc class of games lies in the fact that the problem of equilibrium payoff existence for general two-player games can be reduced to this class. This reduction was done in the previous chapter. One saw there that one could assume in addition absorbing payoffso fp l a y e r1t ob e negative. It is not clear how to use this additional property.

Let Γ be such a recursive game. The basic idea of the proof is to construct a family (Γ ε ) ε>0 of approximating games, in which player 2's strategy choice is restricted. For each game in the family, we deÞne a modiÞed best-reply map, and apply a Þxed-point argument to derive a stationary proÞle (α ε , β ε ). Moreover, (α ε , β ε ) is a Puiseux proÞle (as a function of ε). The upshot is to prove that lim ε γ(α ε , β ε ) is a uniform equilibrium payoff of Γ.W e u s e extensively the tools introduced in a previous chapter by Solan [START_REF] Solan | General tools-Perturbations of Markov chains[END_REF].

The chapter is organized as follows. We start with an example that shows that a stationary ε-equilibrium needs not exist for such games. This contrasts with the case of zero-sum recursive games, where stationary ε-optimal strategies do exist (Everett [START_REF] Everett | Recursive games, in Contributions to the Theory of Games[END_REF]). In Section 2, we deÞne the constrained games, and the modiÞed best-reply map. The discussion there is complete, and is as i m p l i Þcation of the proof in Vieille [START_REF] Vieille | Two-person stochastic games II: the case of recursive games[END_REF] 1 . By contrast, Section 3 contains essentially no complete proof. Our goal there is to give a detailed (though non-rigourous) discussion of a speciÞc case of a game with two non-absorbing states. This discussion contains already all the features of the general proof, but the simplicity of the setup enables us to avoid many technicalities.

1E x a m p l e

Consider the game

z 1 . -2, 1 * z 2 % 4 5 & + 1 5 (-3, 3) * z 3 --1, 2 *
It is a variation on a example due to Flesch, Thuijsman and Vrieze [START_REF] Flesch | Recursive repeated games with absorbing states, M a t h e m a t i c so fO p e r a t i o n sR e s e a r c h[END_REF]. There are three non-absorbing states z 1 ,z 2 ,z 3 . The game is a game of perfect information : in each state, only one player has to play. In states z 1 and z 3 player 2 can either choose to go to z 2 (by playing the left column), or to go to an absorbing state (right column) with the indicated payoff. In state z 2 , player 1 can either choose to go to z 2 (by playing the top row), or to play the bottom row, which results in a non-deterministic transition: with probability 4 5 ,thepla ym o v estoz 3 ; it otherwise moves to an absorbing state with payoff vector (-3, 3).P a y o ff in the non-absorbing states is zero.

It is clear that this game has the payoff and transition features we assume in this lecture. For ε small enough, there is no proÞle (α, β) that is an εequilibrium for any initial state. Indeed, if α z 2 puts a positive probability on the bottom row, the unique (ε-)best reply of player 2 is the stationary strategy which chooses the left column in both states z 1 and z 3 . The unique (ε-)best reply of player 1 to this strategy is the stationary strategy which chooses the top row in state z 2 .

If α z 2 puts probability one on the top row, any (ε-)best reply of player 2 when the initial state is z 3 chooses the right column in state z 3 .G i v e na n y such strategy, the unique (ε-)best reply of player 1 when the initial state is z 2 is the stationary strategy which chooses the bottom row in state z 2 . This prompts the following question. Given z, is there a stationary εequilibrium for the initial state z ? T h i si st h ec a s ei nt h ee x a m p l ea b o v e . Whether this holds or not in general is an open problem.

2C o n s t r a i n e d g a m e s

We denote by Σ s ,T s the sets of stationary strategies of the two players, and set

T s (ε)={β ∈ T s such that β z (b) ≥ ε for every z ∈ S * ,b ∈ B} Choose integers n 0 , ..., n |B|×|S * | such that n 0 =0,a n dn p+ 1 > |S|(n p + 1
), for each p, and set N = n |B|×|S * | For each ε,wedeÞne a set-valued map on the convex compact set Σ s × T s (ε N ). Equivalently, we deÞne a game Γ ε in which player 2 is restricted to stationary strategies in T s (ε N ). The pleasant feature of this restriction is the following. For every pair (α, β) ∈ Σ s × T s (ε N ), the induced play is absorbing. Therefore, the function γ(z, •, •) deÞned by γ(z, α, β) = lim n γ n (z, α, β) is continuous over Σ s × T s (ε N ).T h e i d e a o f restricting strategy spaces in order to recover continuity of the (limit) payoff function is not new. It was, for instance, used in Vieille [START_REF] Vieille | [END_REF] to study absorbing recursive games with properties F1 and F2,a n di nF l e s c h ,T h u i j s m a na n d Vrieze [START_REF] Flesch | Recursive repeated games with absorbing states, M a t h e m a t i c so fO p e r a t i o n sR e s e a r c h[END_REF] to study general absorbing recursive games.

A natural idea is to look for a stationary equilibrium (α ε , β ε ) in the game Γ ε . The existence of such an equilibrium follows from standard arguments. One then investigates the asymptotic properties of (α ε , β ε ). Are of particular interest the limit proÞle (α, β)=l i m ε (α ε , β ε ), and the limit payoff γ = lim ε γ(α ε , β ε ) (both exist up to a subsequence). One might hope to be able to construct an ε-equilibrium in the original game, by perturbing the limit proÞle (α, β) in an appropriate way. This is the approach followed by Solan [START_REF] Solan | Stochastic games with two non-absorbing states, Discussion Paper 160[END_REF]. It succeeds for games with at most two non-absorbing states. The drawback is that the equilibrium payoff one obtains differs from γ.T h i s precludes any extension.

The modiÞed best-replies

We deÞne a product set-valued map Φ(α,

β)=Φ 1 (β) × Φ ε 2 (α, β) on Σ s × T s (ε N ).
Observe that for every (α, β) and every initial state z, the probability of ending in the absorbing state z * is a rational function of the variables α z (a), β z (b), (z, a, b) ∈ S * × A × B. Therefore, γ(z, α, β) is also a rational function of the same variables.

DeÞnition of Φ 1

DeÞne Φ 1 (β) as the set of stationary best-replies of player 1 to β:

Φ 1 (β)={α * ,s u c ht h a tγ 1 (z, α * , β) ≥ γ 1 (z, α, β) for every z ∈ S * , α ∈ Σ s }
The existence of such a best-reply is due to Blackwell [START_REF] Blackwell | Discrete dynamic programming[END_REF].

Set γ 1 M (z, β)=γ 1 (z, α * , β),w h e r eα * is any stationary best reply of player 1. Since any proÞle in Σ s × T s (ε N ) is absorbing, an element of Φ 1 (β) is characterized by the property:

E £ γ 1 M (β)|z, α z , β z ¤ =max A E £ γ 1 M (β)|z, •, β z ¤ , for every z ∈ S * . (1) 
It follows that Φ 1 (β) is a face of the polytope of stationary strategies of player 1. It is clear that Φ 1 is upper hemicontinuous, and has non-empty values.

DeÞnition of Φ ε 2

We now de Þne Φ ε 2 (α, β). Any action of any strategy in Φ ε 2 (α, β) is to have a positive probability. We shall deÞne a measure of the quality of a given action, and require that actions of different qualities have probabilities of different orders of magnitude. A natural candidate for measuring the quality of an action b in state z is the quantity

E £ γ 2 (α, β)|z, α z ,b ¤
it measures the expected payoff of player 2, when the initial state is z,a n d he plays b then β against α.T h i sd e Þnes a good measure of how well actions perform in state z against α. However, when it comes to comparing actions across states z and z 0 , it is unsatisfactory since it gets intertwined with the comparison of the two payoffs γ 2 (z, α, β) and γ 2 (z 0 , α, β).

To disentangle the two comparisons, we deÞne the cost of action b in state z against α by

c(b; z, α, β)=max B E £ γ 2 (α, β)|z, α z , • ¤ -E £ γ 2 (α, β)|z, α z ,b ¤ .
The following properties clearly hold: Given (α, β),w ed e n o t eb yC 0 (α, β), ..., C L (α, β) the partition of S * × B into level sets for the function c(•; •, α, β), ranked by increasing cost (of course, the number L + 1 of level sets depends on (α, β)). DeÞne p 0 =0 ,a n d

p l = P l-1 0 |C i (α, β)|,f o r0 <l≤ L. Thus, for (z 0 ,b 0 ) ∈ C l (α, β), p l is the number of state-action pairs (z, b) that are strictly better than (z 0 ,b 0 ), i.e. c(b 0 ; z 0 , α, β) >c(b; z, α; β). DeÞne Φ ε 2 (α, β) as the set of e β ∈ T s (ε N ) such that for every (z, b) ∈ C l (α, β), 0 ≤ l ≤ L, one has ε n p l + 1 -1 ≤ e β z (b) ≤ ε np l By P. 1 , for every z ∈ S * ,t h e r ei sb ∈ B,s u c ht h a t(z, b) ∈ C 0 (α, β).I t easily follows that Φ ε 2 (α, β) is non-empty. The exact deÞnition of Φ ε 2 (α, β
) is tailored for an application of Kakutani's theorem, and for getting semialgebraicity properties. What is truly important for the asymptotic analysis that we present later is the observation below, which follows immediately from the deÞnition of Φ ε 2 (α, β):f o re v e r yz,

z 0 ∈ S * , b, b 0 ∈ B,a n d e β ∈ Φ ε 2 (α, β) c(b 0 ; z 0 , α, β) >c(b; z, α, β) ⇒ e β z 0 (b 0 ) ≤ ε h e β z (b) i |S * | (2) 2.1.3 Existence of a Þxed point By Kakutani's theorem, the product map Φ 1 (α) × Φ ε 2 (α, β) has a Þxed point in Σ s × T s (ε N ).D e n o t eb y F (ε)={(α, β) ∈ Σ s × T s (ε N ), α ∈ Φ 1 (β), β ∈ Φ ε 2 (α, β)}
the set of these Þxed points. By P.2, and the deÞnitions of Φ 1 and Φ ε 2 ,t h e set-valued map ε 7 → F (ε) is semialgebraic. Therefore, (see [START_REF] Neyman | [END_REF]) there exists a semialgebraic selection of F :f o re a c hε > 0 small enough, there exists

(α ε , β ε ) ∈ F (ε), such that α ε z (a), β ε z (b) have Puiseux expansions in ε,f o r every (z, a, b) ∈ S * × A × B.
3 Asymptotic analysis

General comments

We here consider the Puiseux proÞle (α ε , β ε ) that was obtained in the previous section. Our chief goal is to prove that γ = lim ε γ(α ε , β ε ) is an equilibrium payoff of the game. We set (α 0 , β 0 )=lim ε (α ε , β ε ).

Recall from [START_REF] Solan | General tools-Perturbations of Markov chains[END_REF] that the map ε 7 → (α ε , β ε ) induces a hierarchical decomposition of S * into (a forest of) communicating sets, which reßects how the behavior of the Markov chain induced by (α ε , β ε ) depends on ε.

A communicating set C is deÞned by the property that, given an initial state in C, the probability under (α ε , β ε ) that the play will reach any state in C before it leaves C goes to one as ε goes to zero. The leaves of the forest (i.e., the smallest communicating sets) coincide with the subsets of S * ,whic h are ergodic w.r.t. (α 0 , β 0 ). The roots are the largest communicating sets.

We den ote by D 1 , ..., D H the roots of the forest. We set T = S * \(D 1 ... ∪ D H ): T i st h es e to fs t a t e sw h i c hbe l o n gt on oc o m m u n i c a t i n gs e t .

For 1 ≤ h ≤ H,w ed e n o t eb yQ h the distribution of exit from h ,a s deÞned by (α ε , β ε ) ε : Q h (z) is the limit (as ε goes to zero) of the probability under (α ε , β ε ) that, starting from D h , z is the Þrst state outside D h that is reached.

Consider the Markov chain over the state space {{D 1 },...,{D

H }} ∪ T ∪ A whose transition function e p is Q h in {D h },a n dp(•|z, α 0 , β 0 ) for z ∈ T .
Lemma 2 The Markov chain with transition function e p is absorbing.

Proof. there would otherwise be a communicating set included in T ,o r a communicating set which strictly contains some D h . In either case, this would contradict the fact that D 1 , ..., D H are the roots of the forest.

The next proposition presents no difficulty. It uses the previous lemma.

Proposition 3 Assume that: (1)f o re a c hz ∈ T , the pair of mixed actions (α 0 z , β 0 z ) is a Nash equilibrium of the matrix game with payoff E [γ|z, •, •];(2) for each 1 ≤ h ≤ H, the distribution Q h is a controllable exit distribution for γ. Then γ is an equilibrium payoff.

Proof. let us brießydescribeaproÞle (σ, τ ) which supports γ. Whenever the current state belongs to T ,t h ep r o Þle (σ, τ ) plays like (α 0 , β 0 ) (irrespective of past play). Whenever the game enters some set D h ,thepla y ersswitc h to the proÞle (σ h , τ h ) associated with the controllable exit distribution Q h . Finally, the players switch to punishment strategies if the game has not entered an absorbing state by stage N 0 ,w h e r eN 0 is large enough.

Thus, it suffices to prove that both items of this proposition are satisÞed. It is straightforward to check the Þrst, much more difficult to check the second.

Lemma 4 For each z ∈ S * , the pair of mixed actions (α 0 z , β 0 z ) is a Nash equilibrium of the matrix game with payoff E(γ|z, •, •)

Proof. we Þrst prove that α 0 z is a best reply to β 0 z .F o r e a c h ε, α ε z maximizes E [γ 1 (α ε , β ε )|z, •, β ε z ]
. By letting go to zero, one gets that α 0 In the sequel, we give the main ideas of the proof that, for every h,t h e distribution Q h of exit from D h is controllable (for the continuation payoff γ). We l et h be given and write D and Q for D h and Q h . W.l.o.g, one may assume that, for every (z, a, b)

z maximizes E [γ 1 |z, •, β 0 z ]. Observe that ε 7 → c(b; z, α ε , β ε ) is semi-algebraic,
∈ D × A × B, p(D|z, a, b) < 1 ⇒ p(D|z, a, b)=0.
For the sake of the presentation, it is also convenient to assume that for any two distinct triples

(z 1 ,a 1 ,b 1 ), (z 2 ,a 2 ,b 2 ) ∈ D×A×B such that p(D|z 1 ,a 1 ,b 1 )= p(D|z 2 ,a 2 ,b 2 )=0 , the supports of the two distributions p(•|z 1 ,a 1 ,b 1 ) and p(•|z 2 ,a 2 ,b 2 ) are disjoint.
>From [START_REF] Solan | General tools-Perturbations of Markov chains[END_REF], we know that Q can be decomposed as a convex combination of unilateral exits and joint exits:

Q = X l∈L 1 µ l Q l + X l∈L 2 µ l Q l + X l∈L 3 µ l Q l where Q l = p(•|z l ,a l , β 0 z l ) (for some (z l ,a l ) ∈ D × A)f o rl ∈ L 1 , Q l = p(•|z l , α 0 z l ,b l ) for l ∈ L 2 , and Q l = p(•|z l ,a l ,b l ) for l ∈ L 3 .F o rl ∈ L 3 ,a l and
b l have the property p(D|z l , α 0 z l ,b l )=1 = p(D|z l ,a l , β 0 z l ).W ea s s u m eµ l > 0, for every l. Given our assumption on the supports, this decomposition is unique. To interpret (µ l ),d e n o t eb ye the exit stage from D.F o rl ∈ L 1 , µ l is the limit as ε goes to zero of the probability that (z e-1 ,a e-1 )=(z l, a l ). Similar interpretations are true for l ∈ L 2 ,L 3 .

We re f er to e l eme nts of L 1 ,L 2 ,L 3 as unilateral exits of player 1, unilateral exits of player 2, and joint exits.

To conclude this section, we explain what is the basic issue in proving that Q is controllable. As is shown in [START_REF] Solan | General tools-Perturbations of Markov chains[END_REF], this is straightforward if Q l γ 1 = γ 1 (D) for every l ∈ L 1 ,a n dQ l γ 2 = γ 2 (D) for every l ∈ L 2 . Obtaining the Þrst property is not difficult. However, there is no reason why the second property should hold. It might even be the case that Q l γ 2 does depend on l ∈ L 2 .I n such a case, it is clear that player 2 would favor the unilateral exits l ∈ L 2 for which Q l γ 2 is highest. It is also clear that no statistical test can be designed that would force player 2 to choose his various unilateral exits according to the weights µ l ,l∈ L 2 .

In the next section, we show on an example how the deÞnition of the modiÞed best-replies allows us to recover some properties of the quantities Q l γ 1 ,f o rl ∈ L 2 (expected exit payoffs of player 1, associated to unilateral exits of player 2). We later sketch how to deal with the general case.

An example

Let us consider a game with two non-absorbing states, labeled z 1 and z 2 . We shall not deÞne the game completely. We rather assume that the basic data of the game (payoffs and transitions) are such that the Puiseux proÞle (α ε , β ε ) has the following properties:

1. the unique maximal communicating set is D = S * = {z 1 ,z 2 }. In particular, the limit payoff γ(z) = lim γ(z, α ε , β ε ) is independent of the initial state z;w ed e n o t ei tγ(D);

2. there exist m, m 0 ∈ L 2 , such that Q m γ 2 <Q m 0 γ 2 < γ 2 (D).
Our goal is to deduce from the Þxed-point properties of (α ε , β ε ) an um ber of additional properties.

General remarks

We Þrst derive elementary consequences of Lemma 4:

• for each l ∈ L 1 ,Q l γ 1 = γ 1 (D); • for each l ∈ L 2 ,Q l γ 2 ≤ γ 2 (D); • Observe that γ 2 (z 1 )=max B E £ γ 2 |z 1 , α 0 z 1 , • ¤
, and that a similar relation holds for γ 2 (z 2 ).Since γ 2 (z 1 )=γ 2 (z 2 ), comparing the (limit) costs of two actions b and b 0 in the two states z and z 0 is equivalent to comparing

E [γ 2 |z, α 0 z ,b] and E [γ 2 |z 0 , α 0 z 0 ,b 0 ]: lim ε c(b; z, α ε , β ε ) > lim ε c(b 0 ; z 0 , α ε , β ε ) ⇔ E £ γ 2 |z, α 0 z ,b ¤ <E £ γ 2 |z 0 , α 0 z 0 ,b 0 ¤ (3)
We now use the fact that (α ε , β ε ) is a Puiseux proÞle. Thus, there are positive real numbers p z (b), and nonnegative numbers

d z (b) ((z, b) ∈ S * ×B), such β ε z (b) ∼ p z (b)ε dz (b) as ε goes to zero. Similarly, α ε z (a) ∼ p z (a)ε dz (a) .B y deÞnition of Φ 1 , p z (a) > 0 only if a maximizes E [γ 1 (α ε , β ε )|z, •, β ε z ] .
We conclude this section with a crucial observation. From (3) and the deÞnition of Φ ε 2 , one deduces that, for any two pairs (z, b) and (z 0 ,b 0 ),

E £ γ 2 |z, α 0 z ,b ¤ <E £ γ 2 |z 0 , α 0 z 0 ,b 0 ¤ ⇒ d z (b) > 2d z 0 (b 0 ). (4) 

D-graphs and degrees of transitions

Recall that is a communicating set. From Freidlin-Wentzell's formula, we know that the exit distribution Q from D can be expressed in terms of D-graphs. We shall here have a closer look. Since D is a communicating set, there is some pair (a, b) such that p(D|z 1 ,a,b)=1 and p(z 2 |z 1 ,a,b) > 0.D e Þn et h ed e g r e eo ft h et r a n s ition from

z 1 to z 2 ,d (z 1 → z 2 ) as the minimum of d z 1 (a)+d z 1 (b) over such pairs (a, b).D e Þne d(z 2 → z 1 ) similarly. For l ∈ L 1 ∪ L 2 ∪ L 3 , we deÞne the degree deg(l) of the exit labeled l as follows. If l ∈ L 3 with Q l = p(•|z 2 ,a l ,b l ),w es e t deg(l)=d(z 1 → z 2 )+d z 2 (a l )+d z 2 (b l ). If l ∈ L 1 with Q l = p(•|z 2 ,a l , β z 2 ),w es e t deg(l)=d(z 1 → z 2 )+d z 2 (a l ).
T h ed e g r e eo fo t h e rt y p e so fe x i t si sd e Þned accordingly. The following observation is an immediate consequence of Freidlin-Wentzell's formula.

Lemma 5 deg(l) is independent of l ∈ L 1 ∪ L 2 ∪ L 3 .

Exits of player 2 and continuation payoffso fp l a y e r1

We derive some implications of Lemma 5 and (4). Since

Q m γ 2 <Q m 0 γ 2 , d z m (b m ) >d z m 0 (b m 0 ). (5) 
Since

deg(m)=deg(m 0 ),itmustbethecasethatz m 6 = z m .T oÞxtheideas, we assume z m = z 1 ,andz m 0 = z 2 . For similar reasons, if p(S * |z 1 , α 0 z 1 ,b) < 1, then one has E £ γ 2 |z 1 , α 0 z 1 ,b ¤ ≤ 1. Another consequence is that, for any l ∈ L 2 , Q l γ 2 = Q m γ 2 if z l = z 1 ,a n dQ l γ 2 = Q m 0 γ Z if z l = z 2 .
We divide the unilateral exits L 2 of player 2 into L 1 2 and L 2 2 accordingly. Denote by Q 1 and Q 2 the renormalizations of Q over exits in L 1 2 and L 2 2 respectively:

Q i = P l∈L i 2 µ l Q l P l∈L i 2 µ l ,.i = 1, 2.
We shall prove that Q 1 γ 1 = γ 1 (D)=Q 2 γ 1 . In words, this means that player 1 is indifferent between the two classes of unilateral exits of player 2.

Lemma 6 Q 1 γ 1 = γ 1 (D).
Proof. We show that player 1 is able to block the transition from z 1 to z 2 . By this, we mean that, in order to reach z 2 from z 1 without leaving {z 1 ,z 2 },it is necessary that player 1 perturbs α 0 z 1 . We argue by contradiction. Assume that, for some b, p(

S * |z 1 , α 0 z 1 ,b)=1 and p(z 2 |z 1 , α 0 z 1 ,b) > 0.O b s e r v et h a t E £ γ 2 |z 1 , α 0 z 1 ,b ¤ = γ 2 (D). Therefore, d z 1 (b m ) > 2d z 2 (b m 0 ) and d z 1 (b m ) > 2d z 1 (b). Since d(z 1 → z 2 ) ≤ d z 1 (b),a n dd(z 2 → z 1 ) ≥ 0, this yields d(z 2 → z 1 )+d z 1 (b m ) >d(z 1 → z 2 )+d z 2 (b m 0 )
which contradicts deg(m)=deg(m 0 ). By deÞnition of Φ 1 , α 0 is a best reply to β ε , for every ε small enough. In particular, lim

ε γ 1 (z 1 , α 0 , β ε ) = lim ε γ 1 (z 1 , α ε , β ε )=1.
Starting from z 1 , the play cannot reach z 2 under (α 0 , β ε ) (in particular, {z 1 } is an ergodic set under (α 0 , β 0 )). It will eventually reach an absorbing state, when player 2 plays a unilateral It is easy to check that

lim ε γ 1 (z 1 , α 0 , β ε )=Q 1 γ 1 . Lemma 7 Q 2 γ 1 = γ 1 (D)
Proof. the proof is more subtle than the previous one. The previous argument relies on the fact that, when player 1 plays α 0 , there is no way for player 2 to reach z 2 , starting from z 1 . When one exchanges z 1 and z 2 ,t h e corresponding fact needs not hold. It might for instance be the case that z 2 is transient under (α 0 , β 0 ). It might thus be the case that lim ε γ 1 (z 2 , α 0 , β ε )=Q 1 γ 1 therefore repeating the previous argument starting from z 2 gives nothing new.

However, the previous argument works in the case where player 1 can block the transition from z 2 to z 1 : there is no b ∈ B, such that p({z 1 ,z 2 }|z 2 , α 0 z 2 ,b)= 1 and p(z 1 |z 2 , α 0 z 2 ,b) > 0. Thus we may assume that such a b does exist. Denote it * .

We shall infer additional properties by modifying the degrees of the actions of player 1. Assume that, for every pair such that d z (a) > 0 the degree of a is modiÞed to d z (a) (we do not rule out the case d z (a)=d z (a)), and denote by α ε the resulting strategy. Formally,

α ε z (a)= p z (a)ε dz (a) P A p z (a 0 )ε dz (a 0 )
where we set for simplicity d z (a)=0if d z (a)=0 . Clearly, α ε belongs to Φ 1 (β ε ) and thus lim

ε γ 1 (α ε , β ε )=γ 1 .
It is also clear that lim ε γ 1 (α ε , β ε )=

P l∈L 1 µ l Q l + P l∈L 2 µ l Q l + P l∈L 3 µ l Q l for
some weights (µ l ) l (some of these weights might here be zero). 2We now show that, by a proper choice of the degrees d z (a),f o r(z, a) ∈ S * × A, the induced weights µ l will satisfy

C.1 µ l =0,f o re a c hl ∈ L 1 ∪ L 3 C.2 µ l = µ l P L 2 µ k ,f o rl ∈ L 2 . For l ∈ L 1 ∪ L 3 ,w eÞx d z l (a l ) >d z l (a l ):
we the degree of all the actions of player 1 which are involved in unilateral exits of player 1 or in joint exits. Clearly, the new degree deg(l) of any l ∈ L 1 ∪ L 3 is higher than deg(l).

We shall now prove that deg(l)=deg(l),foran yl ∈ L 2 . This will provide C.1. Since degrees of actions of player 2 are unchanged, we need to prove that

deg(z 1 → z 2 )=deg(z 1 → z 2 ) deg(z 2 → z 1 )=deg(z 2 → z 1 ) To get C.2, one needs more. Let (a, b) ∈ A × B any pair of actions which is involved in the transition z 1 → z 2 : p({z 1 ,z 2 }|z 1 ,a,b)=1,p (z 2 |z 1 ,a,b) > 0 and d z 1 (a)+d z 1 (b)=d(z 1 → z 2 ).
We sh al l prove that d z 1 (a)=d z 1 (a). Results regarding transitions from z 2 to z 1 can be obtained by a similar proof.

Assume that d z 1 (a) >d z 1 (a).BydeÞnition of the new degrees, this means that a = a l ,f o rs o m el ∈ L 1 ∪ L 3 .C l e a r l y ,l ∈ L 1 would contradict the fact that p({z 1 ,z 2 }|z 1 ,a,β 0

z 1 )=1.T h u s ,l ∈ L 3 : one has Q l = p(•|z 1 ,a,b l ),f o r some b l ∈ B such that p({z 1 ,z 2 }|z 1 , α 0 z 1 ,b l )=1. By Lemma 5, one has deg(m 0 )=deg(l), which reads deg(z 1 → z 2 )+d z 2 (b m 0 )=deg(z 2 → z 1 )+d z 1 (a)+d z 1 (b l ). (6) 
Recall now that d(z

1 → z 2 )=d z 1 (a)+d z 1 (b) and that, by deÞnition of b * , one has d(z 2 → z 1 ) ≤ d z 2 (b * ). Substituting in (6) yields d z 2 (b m 0 ) ≤ d z 1 (b l )+d z 2 (b * ) -d z 1 (b) ≤ d z 1 (b l )+d z 2 (b * ). (7) 
Observe now that neither b l in state z 1 ,n o rb * in state z 2 is a unilateral exit of player 2: one has p(γ

2 |z 1 , α 0 z 1 ,b l )=γ 2 (D)=p(γ 2 |z 2 , α 0 z 2 ,b * ).B y( 4 ) , this implies d z 2 (b m 0 ) > 2d z 1 (b l ) and d z 2 (b m 0 ) > 2d z 2 (b * ),
which is in contradiction with [START_REF] Vieille | [END_REF]. It is now not difficult to get the result. What have we proven so far ? Let us rephrase our results:

• denote by L 2 the set of l ∈ L 2 which satisfy Q l γ 2 < γ 2 (D);t h e r ei sa partition (L 1 2 ,L 2 
2 ) of L 2 into level sets for Q l γ 2 ;

• to each set L i 2 (i = 1, 2) is associated a communicating subset F i of D : F 1 = {z 1 },a n dF 2 = {z 2 } or {z 1 ,z 2 }
depending on whether or not player 1 can block the transition from z 2 to z . For each i,p la y e r1c a n block the transition from F i to the remaining part of D (if F i = D, this is an empty statement). Moreover, -the expectation of γ 1 under the renormalized exit distributions Q L 1 2 and Q L 2 2 is γ 1 (D). -in F i , there is no unilateral exit of player 2 which is better than exits in L i 2 : As shown in [START_REF] Solan | General tools-Perturbations of Markov chains[END_REF], this is enough to ensure that Q is controllable. The corresponding proÞle uses public lotteries, performed by player 1.

E £ γ 2 |z l , α 0 z l ,b l ¤ ≥ E £ γ 2 |z

The general case

We bri e ßy indicate how to generalize the previous example. We make no a t t e m p ta tap r o o f .

As above, let D be a maximal communicating subset, and write the decomposition of the corresponding exit distribution as

Q = X l∈L 1 µ l Q l + X l∈L 2 µ l Q l + X l∈L 3 µ l Q l
The problem is to Þnd a partition (L 1 , ..., L H ) of L 2 = {l ∈ L 2 ,Q l γ 2 < γ 2 (D)} and communicating subsets (F 1 , ..., F H ) of D that have the properties of the previous section.

Let l ∈ L 2 . Denote by D 1 ⊂ D 2 ... ⊂ D M the communicating subsets of D which contain z l . Denote by D(l) the Þrst one in this sequence that has the property that it is much more difficult to leave D(l) than to reach z l starting from D(l).W ew i l ln o td e Þne this property formally. It is an extension of the property that we used in the case of two non-absorbing states for F i , namely that player 1 can block the transition from F i to the remaining states of D.

The sets L 1 , ..., L H and F 1 , ..., F H are obtained as follows. Denote Þrst by L 1 , ..., L P the partition of L 2 into level sets for l 7 → Q l γ 2 .F o r e a c h p,w e look at the equivalence classes of the relation R p deÞned on L p by lR p l 0 ⇔ D(l)=D(l 0 )

The sets L 1 , ..., L H are all the equivalence classes of all the relations R p , 1 ≤ p ≤ P .F o r1 ≤ h ≤ H,w es e tD h = D(l),w h e r el ∈ L h .

P. 1 P. 2

 12 c(b; z, α, β) ≥ 0 for every z, b, α, β;m o r e o v e r ,min B c(•; z, α, β)=0; For every b and z, the function c(b; z, •, •) is semialgebraic (see the chapter by Neyman [4]).

  for every b, z,hencehas a constant sign in a neighborhood of zero. Let b ∈ B.I fi ti st h ec a s et h a t c(b; z, α ε , β ε ) > 0,f o rε small enough, one has β ε z (b) ≤ ε,b yd e Þnition of Φ ε 2 . Therefore, for every action b in the support of β 0 z and ε small enough, one has c(b; z, α ε , β ε )=0which means that b maximizes E [γ 2 (α ε , β ε )|z, α ε , •].O n e concludes as for player 1.

  , α 0 z ,b ¤ , for every l ∈ L i , (z, b) ∈ F i × B such that p({z 1 ,z 2 }|z, α 0 z ,b) < 1. • Þnally, Q l γ 1 = γ 1 (D) for every l ∈ L 1 , E [γ 1 |z, a, β 0 z ] ≤ γ 1 (D)and E [γ 2 |z, α 0 z ,b] ≤ γ 2 (D),f o re v e r y(z, a, b) ∈ D × A × B.

I wish to thank Eilon Solan for very helpful suggestions.

It is not clear that the decomposition of the new exit distribution will involve only the exits labeled l ∈ L . This will however be the case, provided the degrees are only slightly modiÞed.