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Introduction

The purpose of this chapter is to complement the previous chapter of Mertens (henceforth [M]), and to present selected recent developments of the theory that are not covered in it. We limit ourselves to some of the themes addressed there, without claiming to be exhaustive. In particular, we will not discuss topics such as algorithms or applications of stochastic games.

Our notations follow those of [M], and we refer to Section 1.1 there for a general presentation of stochastic games. Unless otherwise speciÞed, the state space Ω and the action sets S i , i ∈ I,a r ea s s u m e dÞnite.

In this Þnite setup, any undiscounted zero-sum stochastic game has a value [START_REF] Mertens | Stochastic games[END_REF]; see also Theorem 5.1 in [M]). In recent years, this fundamental result has been extended in several directions: to non-zero-sum games (do n-player stochastic games have an equilibrium payoff?) and to zero-sum games with imperfect monitoring and/or incomplete information (do such games have a max min and a min max?).

In Section 1, we report on the result that any two-player stochastic game has an equilibrium payoff. Section 2 contains the known results for games with more than two players. These two sections relate to Section 7 in [M]. Section 3 deals with the extension of the theory of zero-sum games to games with imperfect monitoring in the zero-sum case. Finally, Section 4 contains new results on games with large state spaces (see Section 7 of [M]) and lists miscellaneous results.

To facilitate an independent reading of this chapter, we recall now the deÞnition of equilibrium payoffs, and several other notions.

DeÞnition 1 Let Γ be an N-player game. The vector d ∈ R N is an εequilibrium payoff of Γ if there exists a strategy vector σ,a n dN 0 ∈ N ,s u c h that, for n ≥ N 0 :

1. kγ n (σ) -dk ≤ ε;

2. σ is an ε-equilibrium of Γ n .
In this deÞnition, Γ n is the n-stage version of Γ.W et h e ns a yt h a tσ is an ε-equilibrium; d is an equilibrium payoff if it is an ε-equilibrium payoff, for each ε > 0.G i v e nε 0 > ε > 0,a nε-equilibrium is also an ε 0 -equilibrium in all discounted games, provided the discount factor is close enough to zero. We refer to [START_REF] Sorin | Repeated games with complete information[END_REF] for a discussion of this concept.

As t r a t e g yi sstationary (or stationary Markov) if the distribution used to select an action depends only on the current state of the game. Thus, a stationary strategy x i of player i can be identiÞed with an element (x i ω ) ω of ∆(S i ) Ω ,w h e r ex i ω is the lottery used by player i in state ω. Stationary strategies will be denoted by Latin letters, and arbitrary strategies by Greek letters. Given a proÞle x of (stationary) strategies, the sequence (ω n ) n∈N of states is a Markov chain. The mixed extensions of the stage payoff g and of the transition probability P will also be denoted by g and P. A perturbation of a stationary strategy

x i =( x i ω ) is a stationary strategy e x i =( e x i ω ) such that the support of x i ω is a subset of the support of e x i ω ,f o re a c hω ∈ Ω.
2 Two-player non-zero-sum games

The purpose of this section is to present the main ideas of the proof of the next theorem, due to Vieille (2000a[START_REF] Solan | Quitting games[END_REF]). Several tools of potential use for subsequent studies are introduced.

Theorem 2 Every two-player stochastic game has an equilibrium payoff.

An overview

W.l.o.g., we assume that the stage payoff function (g 1 ,g 2 ) of the game satisÞes g 1 < 0 <g 2 . The basic idea is to devise an ε-equilibrium proÞle that takes the form of a stationary-like strategy vector σ, supplemented by threats of indeÞnite punishment.

We give a heuristic description of σ.T h ep r o Þle σ essentially coincides with a stationary proÞle x. For the Markov chain deÞned by x,c o n s i d e r the partition of the state space Ω into recurrent sets and transient states. (This partition depends on x, since the transitions depend on actions.) The recurrent sets are classiÞed into solvable and controlled sets. The solvable sets are those recurrent sets C for which the average payoff induced by x starting from C is high for both players; the controlled sets are the remaining sets. In each controlled set C, σ plays a perturbation of x, designed so that the play leaves C in Þnite time. In the other states, σ coincides with x.G i v e nσ,t h e play eventually reaches some solvable set (and remains within it). Whenever the play is in a controlled or solvable set, each player monitors the behavior of the other player, using statistical tests.

This description is oversimpliÞed and inaccurate in some fairly important respects, such as the fact that we use a generalized notion of recurrent set, called a communicating set.

The construction of σ consists of two independent steps: Þrst, to construct the solvable sets and some controlled sets, and reduce the existence problem to a class of recursive games; second, to deal with the class of recursive games. 1

Some terminology

Before proceeding with these steps, we shall provide a formal deÞnition of the notions of communicating, solvable and controlled sets.

DeÞnition 3 As u b s e tC is communicating given a proÞle x if, given any ω, ω 0 ∈ C, there exists a perturbation e

x of x for which, starting from ω,t h e probability of reaching ω 0 without leaving C equals one.

In particular, C is closed given x: P (C|ω,x ω )=1,f o re a c hω ∈ C.N o t e that any recurrent set for x is communicating given x.

It is convenient to have the initial state of the game vary. Given an initial state ω,w ed e n o t eb y(v 1 (ω),v2 (ω)) the threat point of the game. 2 If, facing a stationary strategy x 2 , player 1 is to play s 1 in state ω, and to be punished immediately afterwards, his best future payoff is measured by the expectation

E [v 1 |ω,s 1 ,x 2 ω ] of v 1 under P (•|ω,s 1 ,x 2 ω ).F o rC ⊆ Ω,a n dg i v e nx 2 ,w es e t H 1 (x 2 ,C)=max s 1 ∈S 1 max ω∈C E £ v 1 |ω,s 1 ,x 2 ω ¤ ,
which somehow measures the threat point for player 1, against x 2 , and given that the play visits all states of C. The deÞnition of

H 2 (x 1 ,C) is the sym- metric one. It is easily seen that H 1 (x 2 ,C) ≥ max C v 1 (ω).
Let a proÞle x, and a recurrent set R for x be given. The (long-run) average payoff E ω,x [ḡ n ] exists for each ω and is independent of ω ∈ R.W e denote it by γ R (x).

The deÞnition builds upon a notion Þrst introduced by Thuijsman and Vrieze (1991).

DeÞnition 4 As e tC ⊆ Ω is solvable if, for some proÞle x, the following two conditions are fulÞlled:

1. C is a communicating set given x.

There exists a point

γ =(γ 1 , γ 2 ) ∈ co {γ R (x), R recurrent subset of C} such that (γ 1 , γ 2 ) ≥ (H 1 (x 2 ,C),H 2 (x 1 ,C)). ( 1 
)
This concept is motivated by the following observation. The communication requirement ensures that the players are able to visit the recurrent subsets of C cyclically by playing appropriate small perturbations of x. Given the interpretation of (H 1 (x 2 ,C),H 2 (x 1 ,C)) as a threat point, the inequality (1) may be interpreted as an individual rationality requirement. By a standard proof, one can show that γ is an equilibrium payoff of the game, provided the initial state belongs to C.

The set of equilibrium payoffs of the game does not increase when one replaces each state in a solvable set C by an absorbing state, with payoff the vector γ associated with C. Therefore, we assume throughout the chapter that all such sets coincide with absorbing states.

We now describe controlled sets. A pair (ω,s i ) ∈ C × S i is a unilateral exit of player i from C ⊆ Ω given a strategy x -i if P (C|ω,s i ,x -i ω ) < 1. At r i p l e t(ω,s 1 ,s 2 ) ∈ C × S 1 × S 2 is a joint exit from C given x if P (C|ω,s 1 ,s 2 ) < 1, and none of the pairs (ω,s 1 ) and (ω,s 2 ) is a unilateral exit.

DeÞnition 5 Let C ⊆ Ω be a communicating set given a proÞle x.

The set C is controlled by player i if there is a unilateral exit (ω,s i ) of player i (from C given x -i ) such that

(E £ v 1 |ω,s i ,x -i ω ¤ ,E £ v 2 |ω,s i ,x -i ω ¤ ) ≥ (H 1 (x 2 ,C),H 2 (x 1 ,C)). (2) 
The set C is jointly controlled if there exists

γ ∈ co © E £ v|ω,s 1 ,s 2 ¤ , (ω,s 1 ,s 2 ) joint exit from C given x ª such that γ ≥ (H 1 (x 2 ,C),H 2 (x 1 ,C)).
The rationale behind this deÞnition runs as follows. Let C ⊆ Ω be a set controlled by player 1, and let x, (ω,s 1 ) ∈ C × S 1 be the associated proÞle and exit. Assume for simplicity that P (C|ω,s 1 ,x 2 ω )=0. Assume that we are given for each ω 0 / ∈ C an equilibrium payoff γ(ω 0 ) for the game starting at ω 0 .T henE [γ(•)|ω,s 1 ,x 2 ω ] is an equilibrium payoff of the game, for every initial state in C.

We give few hints for this fact. By using appropriate perturbations of x, the players are able to come back repeatedly to ω without leaving C.I f player 1 slightly perturbs x 1 by s 1 in each of these visits, the play leaves C in Þnite time and the exit state is distributed according to P (•|ω,s 1 ,x 2 ω ). Given such a scenario, it takes many visits to ω before the plays leaves C. Hence player 1 may check the empirical choices of player 2 in these stages. Condition (2) implies that • player 2 prefers playing x 2 in state ω to playing any other distribution and being punished; he prefers waiting for player 1 to use the exit (ω,s 1 ) to using any of his own exits, since

E £ γ 2 (•)|ω,s 1 ,x 2 ω ¤ ≥ E £ v 2 (•)|ω,s 1 ,x 2 ω ¤ ≥ H 2 (x 1 ,C).
• player 1 prefers using the exit (ω,s 1 ) (and getting

E [γ 1 (•)|ω,s 1 ,x 2 ω ]
) to using any other exit and being punished; he prefers using the exit (ω,s 1 ) to using no exit at all and being punished.

A similar property holds for jointly controlled sets.

A reduction to positive recursive games

To any controlled set C, we associate in a natural way a distribution µ C of exit, i.e., a distribution such that µ C (C) < 1.I fC is controlled by player i,l e tµ

C = P (•|ω,s i ,x -i ω ) (with the notations of DeÞnition 5). If C is jointly controlled, let µ C be a convex combination of the distributions P (•|ω,s 1 ,s 2 ), ((ω,s 1 ,s 2 ) joint exit from C given x) such that E µ C [v]=γ.
GivenacontrolledsetC, with its distribution µ C of exit, deÞne a changed game Γ C by changing the transitions in each state of C to µ C . For a collection C of disjoint controlled sets, the changed game Γ C is obtained by applying this procedure to each element of C.

In general, there is no inclusion between the equilibrium payoff sets of the original and the changed games Γ and Γ C . The goal of the next proposition, which is the main result in Vieille (2000a), is to exhibit a family C such that:

(i) such an inclusion holds and (ii) the changed game Γ C has very speciÞc properties.

Remember that, by assumption, the solvable sets of Γ coincide with the absorbing states of Γ.

Proposition 6 There exists a family C of disjoint controlled sets with changed game Γ C having the following property: for each strategy x 1 there exists a strategy x 2 such that (i) the play reaches an absorbing state in Þnite time;

(ii) for each initial state ω 1 , the expected termination payoff to player 2 is at least v 2 (ω 1 ).

Two remarks are in order. First, by (i), there must exist an absorbing state in Γ. The existence of solvable sets is therefore a corollary to the proposition. Next, the two games Γ and Γ C need not have the same threat point v.T h e value v 2 (ω 1 ) that appears in the statement is that of Γ.

Let C be given by this proposition. Let Γ 0 C be the game obtained from Γ C , after setting the payoff function to zero in each non-absorbing state.

Note that Γ 0 C is a recursive game such that:

P. 1 all absorbing payoffs to player 2 are positive;

P. 2 player 2 can force the play to reach an absorbing state in Þnite time: for any proÞle x =(x 1 ,x 2 ) where x 2 is fully mixed, the play reaches an absorbing state in Þnite time, whatever the initial state.

Property P. 1 is a consequence of the assumption g 2 > 0; property P. 2 follows from Proposition 6 (i). Recursive games that satisfy both properties P.1 and P. 2 are called positive recursive games.

It can be shown 3 that each equilibrium payoff of Γ 0 C is also an equilibrium payoff of the initial game Γ. The main consequence of Proposition 6 is thus that one is led to study positive recursive games.

Existence of equilibrium payoffs in positive recursive games

We now present some of the ideas in the proof of the result: Proposition 7 Every (two-player) recursive game which satisÞes P .1 and P .2 has an equilibrium payoff.

In zero-sum recursive games, ε-optimal strategies do exist [START_REF] Everett | Recursive games[END_REF]). In non-zero-sum positive recursive games, stationary ε-equilibria need not exist. For instance, in the game4 

ω 1 ½ 1 5 (-1, 3) * 4 5 ω 2 ω 0 ω 0 1, 1 * ω 1 ω 0 2, 2 * ω 2 Example 1
one can check that no stationary proÞle x exists that would be an ε-equilibrium for every initial state.

Throughout this section, take Γ to be a Þxed positive recursive game. The basic idea of the proof is to approximate the game by a sequence of constrained games. For each ε > 0,l e tΓ ε be the game in which player 2 is constrained to use stationary strategies that put a weight of at least ε on each single action. Player 1 is unconstrained. A crucial feature of Γ ε is that the average payoff function, deÞned for stationary proÞles x by γ(x)= lim n→∞ γ n (x), is continuous.

Next, one deÞnes B ε as an analog of the best-reply correspondence on the space of constrained stationary proÞles. This correspondence is well-behaved so that: (i) it has a Þxed point x ε for each ε > 0, and (ii) the graph of Þxed points (as a function of ε) is semialgebraic, hence there is a selection ε 7 → x ε of Þx e dp o i n t s s u c ht h a tx i,ω ε (s i ) has an expansion in Puiseux series in the neighborhood of zero (see [M], Section 4). This can be shown to imply that the limits x 0 = lim ε→0 x ε and γ = lim ε→0 γ(x ε ) do exist. Finally, one proves that, for each ω, γ ω is an equilibrium payoff for Γ starting in ω;a n associated ε-equilibrium consists in playing a history-dependent perturbation of x 0 , sustained by appropriate threats. [START_REF] Solan | Stochastic games with two non-absorbing states[END_REF] proves that, by taking the usual best-reply map for B ε ,t h e program sketched in the previous paragraph works for games in which there are no more than two non-absorbing states, but not for more general games.

Before deÞning B ε in greater detail, we assume we have an intuitive notion of what it is. Given a Þxed point x ε of B ε , we begin by describing the asymptotic behavior of the play, as ε goes to zero. This discussion will point out some of the requirements that a satisfactory deÞnition of B ε should meet.

For each ε > 0,giv enx ε =(x 1 ε ,x 2 ε ), the play reaches an absorbing state in Þnite time, since x 2 ε is fully mixed and since Γ satisÞes P. 2 .Asε goes to zero, the probability of some actions may vanish, and there may exist recurrent sets for x 0 that contain non-absorbing states.

DeÞne a binary relation → on the non-absorbing states by ω → ω 0 if and only if the probability (starting from ω, computed for x ε ) that the play visits ω 0 converges to one as ε goes to zero. DeÞne an equivalence relation by

ω ∼ ω 0 ⇔ ( ω → ω 0 and ω 0 → ω).
The different equivalence classes deÞne a partition of the set of non-absorbing states. Note that a transient state (given x 0 )m a yb ei n c l u d e di nal a r g e r equivalence class, or constitute an equivalence class by itself. One can check that each class is either a state, or a set that is communicating given x 0 = lim ε→0 x ε .

Consider an equivalence class C of the latter type, and let > 0 be Þxed. Since the play reaches the set of absorbing states in Þnite time, C is transient under x ε . Hence, given an initial state in C, the distribution Q ε C of the exit state 5 from C is well-deÞned. This distribution usually depends on the initial state in C.S i n c e(x ε ) has a Puiseux expansion in the neighborhood of zero, it can be shown that the limit Q C = lim ε→0 Q ε C exists. Moreover, it is independent of the initial state in C. Next, the distribution Q C has a natural decomposition as a convex combination of the distributions

P (•|ω,s i ,x -i 0 )
, where (ω,s -i ) is a unilateral exit of C given x 0 and P (•|ω,s 1 ,s 2 ), where (ω,s 1 ,s 2 ) is a joint exit from C given x 0 .

It is straightforward to observe that the limit payoff vector γ(

•) = lim ε→0 γ(•,x ε ) is such that, for ω ∈ C, γ(ω) coincides with the expectation E Q C [γ(•)] of γ(•) under Q C .
The main issue in designing the family (B ε ) ε of maps is to ensure that C is somehow controlled, in the following sense. Assuming that γ(ω 0 ) is an equilibrium payoff for the game starting from ω 0 / ∈ C, it should be the case that γ(ω)=E Q C [γ(•)] is an equilibrium payoff starting from ω ∈ C.T h em a i nd i fficulty arises when the decomposition of Q C involves two unilateral exits (ω, s2 ), (e ω, e s 2 ) of player 2, such that

E £ γ 2 (•)|ω,x 2 0,ω , s2 ¤ > E £ γ 2 (•)|e ω,x 2 
0,e ω , e s 2 ¤ . Indeed, in such a case, player 2 is not indifferent between the two exits, and would favor using the exit (ω, s2 ).

The approach in Vieille (2000b) is similar to proper ε-equilibrium. Given x =(x 1 ,x 2 ), one measures for each pair (ω,s 2 ) ∈ Ω × B the opportunity cost of using s 2 in state ω by max

S 2 E [γ 2 (x)|ω,x 1 ω , •] -E [γ 2 (x)|ω,x 2 ω ,s 2 
] (it thus compares the expected continuation payoff by playing s 2 with the maximum achievable). B 2 ε (x) consists of those x2 such that whenever the pair (ω,s 2 ) has a higher opportunity cost than (ω, s2 ), then the probability x2 ω (s 2 ) assigned by x2 to s 2 at state ω is quite small compared with x2 ω(s 2 ). One then sets

B ε (x)=B 1 ε (x) × B 2 ε (x),
w h e r eB 1 ε is the best-reply map of player 1. We conclude by giving a few stylized properties that show how to deal with the difficulties mentioned above. Since both exits (ω, s2 ) and (e ω, e s 2 ) have a positive contribution to Q C , it follows that e ω is visited (inÞnitely, as ε goes to zero) more often than ω, and also that, in some sense, facing x 1 0 , player 2 can not reach ω from e ω, hence communication from e ω to ω can be blocked by player 1. Thus player 1 is able to inßuence the relative frequency of visits in e ω and ω, hence the relative weight of the two exits (ω, s2 ), (e ω, e s 2 ). It must therefore be the case that player 1 is indifferent between the two exits (e ω, e s 2 ) and (ω, s2 ).T h eε-equilibrium proÞle will involve a lottery performed by player 1, who chooses which of the two exits (if any) should be used to leave C.

Comments 1-

The lack of symmetry between the two players may appear somewhat unnatural. However, it is not an artifact of the proof since symmetric stochastic games need not have a symmetric ε-equilibrium. For instance, the only equilibrium payoffs of the symmetric game

0, 0 2, 1 * 1, 2 * 1, 1 *
are (1, 2) and (2, 1).

2-All the complexity of the ε-equilibrium proÞles lies in the punishment phase.

3-

The main characteristics of the ε-equilibrium proÞle (solvable sets, controlled sets, exit distributions, stationary proÞles that serve as a basis for the perturbations) are independent of ε.T h e v a l u e o f ε > 0 has an inßuence on the statistical tests used to detect potential deviations, the size of the perturbations used to travel within a communicating set, and the speciÞcation of the punishment strategies.

4-

The above proof has many limitations. Neither of the two parts extends to games with more than two players. The ε-equilibrium proÞles have no subgame perfection property. Finally, in zero-sum games, the value exists as soon as payoffs are observed (in addition to the current state). For nonzero-sum games, the tests check past choices. Whether an equilibrium exists when only the vector of current payoffs is publicly observed, is not known.

5-These ε-equilibrium proÞles involve two phases: after a solvable set is reached, players accumulate payoffs (and check for deviations); before a solvable set is reached, they care only about transitions (about which solvable set will eventually be reached). This distinction is similar to the one which appears in the proof of existence of equilibrium payoffs for games with one-sided information [START_REF] Simon | The existence of equilibria in certain games, separation for families of convex functions and a theorem of Borsuk-Ulam type[END_REF], where a phase of information revelation is followed by payoff accumulation. This (rather vague) similarity suggests that a complete characterization of equilibrium payoffsforstochastic games would intertwine the two aspects in a complex way, by analogy with the corresponding characterization for games with incomplete information [START_REF] Hart | Non-zero-sum two-person repeated games with incomplete information[END_REF]).

6-

In Example 1, the following holds: given an initial state ω,a n dε > 0, the game starting at ω has a stationary ε-equilibrium. Whether this holds for any positive recursive game is not known.

Games with more than two players

It is as yet unknown whether n-player stochastic games always have an equilibrium payoff. We describe a partial result for three-player games, and explain what is speciÞct ot h i sn u m b e ro fp l a y e r s .

The Þrst contribution is due to Flesch, Thuijsman and Vrieze (1997), who analyzed Example 2 below.

0, 0, 0 0, 1, 3 * 1, 3, 0 * 1, 0, 1 * 3, 0, 1 * 1, 1, 0 * 0, 1, 1 * 0, 0, 0 * Example 2
This example falls in the class of repeated games with absorbing states: there is a single non-absorbing state (in other words, the current state changes once at most during any play). We follow customary notations (see [M]). Players 1, 2 and 3 choose respectively a row, a column and a matrix. Starting from the non-absorbing state, the play moves immediately to an absorbing state, u n l e s st h em o v ec o m b i n a t i o n(Top, Left, Left) is played.

In this example, the set of equilibrium payoffs coincides with those convex combinations (γ 1 , γ 2 , γ 3 ) of the three payoffs (1, 3, 0), (0, 1, 3), (3, 0, 1) such that (γ 1 , γ 2 , γ 3 ) ≥ (1, 1, 1),a n dγ i = 1 for at least one player i.C o r r esponding ε-equilibrium proÞles involve cyclic perturbations of the proÞle of stationary (pure) strategies (Top, Left, Left). Rather than describe this example in greater detail, we discuss a class of games below that includes it.

This example gave the impetus for the study of three-player games with absorbing states (see [START_REF] Zamir | Repeated games of incomplete information: zero-sum[END_REF], Section 5 for some motivation concerning this class of games). The next result is due to [START_REF] Solan | Three-player absorbing games[END_REF].

Theorem 8 Every three-player repeated game with absorbing states has an equilibrium payoff.

Sketch of the Proof: Solan deÞnes an auxiliary stochastic game in which the current payoff e g(x) is deÞned to be the (coordinatewise) minimum of the current vector payoff g(x) and of the threat point. 6 He then uses Vrieze and Thuijsman's (1989) idea of analyzing the asymptotic behavior (as λ → 0) of a family (x λ ) λ>0 of stationary equilibria of the auxiliary λdiscounted game.

The limits lim λ→0 x λ and lim λ→0 γ λ (x λ ) do exist, up to a subsequence. If it happens that lim λ→0 γ λ (x λ )=γ(lim λ→0 x λ ),t h e nx =l i m λ→0 x λ is a stationary equilibrium of the game. Otherwise, it must be the case that the nature of the Markov chain deÞned by x λ changes at the limit: for λ > 0 close enough to zero, the non-absorbing state is transient for x λ ,w h e r e a si t is recurrent for x.

In this case, the limit payoff lim λ→0 γ λ (x λ ) can be written as a convex combination of the non-absorbing payoff e g(x) (which by construction is dominated by the threat point) and of payoffs received in absorbing states reached when perturbing x. By using combinatorial arguments, Solan constructs an ε-equilibrium proÞle that coincides with cyclic perturbations of x, sustained by appropriate threats.

In order to illustrate Example 2 above and Solan's proof, we focus on the following games, called quitting games.E a c h p l a y e r h a s t w o a c t i o n s :quit and continue: S i = {c i ,q i }. The game ends as soon as at least one player chooses to quit (if no player ever quits, the payoff is zero). For simplicity, we assume that a player receives 1 if he is the only one to quit.

A stationary strategy is characterized by the probability of quitting, i.e., by a point in [0, 1]. Hence the space of stationary proÞles is the unit cube D =[0, 1] 3 ,w i t h(0, 0, 0) being the unique non-absorbing proÞle.

Assume Þrst that, for some player, say player 1, the payoff vector γ(q 1 ,c 2 ,c 3 ) is of the form (1, +, +), where the + sign stands for "a number higher than or equal to one". Then the following stationary proÞle is an ε-equilibrium, provided α is small enough: player 1 quits with probability α,p l a y e r2a n d 3 continue with probability 1.

We now rule out such conÞgurations. For ε > 0 small, consider the constrained game where the players are restricted to stationary proÞles x that satisfy P 3 i=1 x i ≥ ε, i.e., the points below the triangle T = {x ∈ D, x 1 + x 2 + x 3 = ε} are chopped off D (see Figure 1).

If it happens that at every point x ∈ T , one has γ i (x) < 1 for some7 i, then any stationary equilibrium of the constrained game (which exists by standard Þxed-point arguments) is a stationary equilibrium of the true game.

It therefore remains to discuss the case where γ(x 0 )=(+, +, +) for some x 0 ∈ T .G i v e nx ∈ T , the probability that two players quit simultaneously is of order ε 2 , hence γ is close on T to the linear function x 1 γ(q 1 ,c -1 )+x 2 γ(q 2 ,c -2 )+x 3 γ(q 3 ,c -3 ).

Since γ 1 (q 1 ,c -1 )=1,a n dγ 1 (x 0 ) ≥ 1, it must be that γ 1 (q 2 ,c -2 ) ≥ 1 or γ 1 (q 3 ,c -3 ) ≥ 1. Similar observations hold for the other two players.

If γ(q 1 ,c -1 ) were of the form (1, -, -),o n ew o u l dh a v eγ(q 2 ,c -2 )= (+, 1, +) or γ(q 3 ,c -3 )=(+, +, 1), whic hhasbeenruledout. Uptoaperm utation of players 2 and 3, one can assume γ(q 1 ,c -1 )=(1, +, -).T h esig n so f γ(q 2 ,c -2 ) and γ(q 3 ,c -3 ) are then given by (-, 1, +) and (+, -, 1).

Draw the triangle T together with the straight lines {x, γ i (x)=1},f o r i = 1, 2, 3.

The set of x ∈ T for which γ(x)=(+, +, +) is the interior of the triangle (ABC) delineated by these straight lines. We now argue that for each x on the edges of (ABC), γ(x) is an equilibrium payoff. Consider for instance γ(A) and let σ be the strategy proÞle that plays cyclically: according to the stationary proÞle (η, 0, 0) during N 1 stages, then according to (0, η, 0) and (0, 0, η) during N 2 and N 3 stages successively. Provided N 1 ,N 2 ,N 3 are properly chosen, the payoff induced by σ coincides with γ(A).Pro videdη is small enough, in the Þrst N 1 stages (resp. next N 2 ,n e x tN 3 stages), the continuation payoff8 moves along the segment joining γ(A) to γ(B) (resp., γ(B) to γ(C), γ(C) to γ(A)). Therefore, σ is an ε-equilibrium proÞle associated with γ(A).

Clearly, this approach relies heavily upon the geometry of the threedimensional space. Note that, for such games, there is a stationary εequilibrium or an equilibrium payoff intheconvexhullof{γ(q i ,c -i ),i = 1, 2, 3}. Solan and Vieille (2000b) devised a four-player quitting game for which this property does not hold. Whether or not n-player quitting games do have equilibrium payoffs remains an intriguing open problem. 9An important trend in the literature is to identify classes of stochastic games for which there exist ε-equilibrium proÞles (see for instance [START_REF] Thuijsman | Perfect information stochastic games and related classes[END_REF]) that exhibit a simple structure (stationary, Markovian, etc.).

To conclude, we mention that the existence of (extensive-form) correlated equilibrium payoffs is known (Solan and Vieille (2000a)).

Theorem 9 Every stochastic game has an (autonomous) extensive-form correlated equilibrium payoff.

The statement of the result refers to correlation devices that send (private) signals to the players at each stage. The distribution of the signals sent in stage n depends on the signal sent in stage n -1, and is independent of any other information.

Idea of the proof: The Þrst step is to construct a "good" strategy proÞle, meaning a proÞle that yields all players a high payoff,a n db yw h i c h no player can proÞt by a unilateral deviation that is followed by an indeÞnite punishment. One then constructs a correlation device that imitates this proÞle: the device chooses for each player a recommended action according to the probability distribution given by the proÞle. It also reveals to all players what its recommendations were in the previous stage. In this way, a deviation is detected immediately.

Zero-sum games with imperfect monitoring

These are games where, at any stage, each player receives a private signal which depends, possibly randomly, on the choices of the players (see Sorin (1992), Section 5.2 for the model). In constrast to (complete information) repeated games, dropping the perfect monitoring assumption already has important implications in the zero-sum case.

It is instructive to consider Þrst the following striking example (Coulomb (1999)): We now show that the addition of the L column, which is apparently dominated, has the effect of bringing the max min down to zero.

Indeed, let σ be any strategy of player 1, and let y the stationary strategy of player 2 that plays L and R with probabilities 1 -ε and ε, respectively. Denote by θ the absorbing stage, i.e. the Þrst stage in which one of the two move proÞles (T,M) or (T,R) is played.

If P σ,y (θ < +∞)=1, then γ n (σ,y) → ε as n goes to inÞnity. Otherwise, choose an integer N large enough so that P σ,y (N ≤ θ < +∞) < ε 2 .I n particular, P σ,y (θ ≥ N, player 1 ever plays T after stage N) ≤ ε.

Let y 0 be the stationary strategy of player 2 that plays M and R with probabilities 1 -ε and ε, respectively, and call τ the strategy that coincides with y up to stage N ,a n dw i t hy 0 afterwards. Since (B, L) and (B, M) yield the signal to player 1, the distributions induced by (σ,y) and by (σ, τ ) on sequences of signals to player 1 coincide up to the Þrst stage after stage N, in which player 1 plays T .

Therefore, P σ,τ -almost surely,

ḡn → 0 if θ <N ḡn → 1 -ε if N ≤ θ < +∞ ḡn → ε if θ =+∞. Since P σ,y (N ≤ θ < +∞) ≤ ε, lim n→+∞ E σ,τ [ḡ n ] ≤ 2ε
.T h u s ,p l a y e r2c a n defend zero. Since player 1 clearly guarantees 0 and can defend 1 2 ,t h eg a m eh a sn o value and the max min is equal to zero.

The following theorem is due to [START_REF] Coulomb | Repeated games with absorbing states and signaling structure[END_REF][START_REF] Coulomb | Generalized big-match[END_REF].

Theorem 10 Every zero-sum repeated game with absorbing states and partial monitoring has a max min.

Sketch of the proof: Following the steps of [START_REF] Kohlberg | Repeated games with absorbing states[END_REF], the max min is Þrst shown to exist for so-called generalized Big Match games, then for all games with absorbing states.

The class of generalized Big Match games includes Example 3. Player 1 has only two actions, T and B, while the action set S 2 of player 2 is partitioned into S2 and e S 2 .F o rs 2 ∈ S2 , transitions and payoffs are of s 1 ∈ {T,B}.F o rs 2 ∈ e S 2 , the probability of reaching an absorbing state is positive given (T,s 2 ) and equals zero given (B, s 2 ). Coulomb (1999) characterizes the max min for such games; as in Example 3, it depends only on the signal structure to player 1, given the action B.

As might be expected, the max min is quite sensitive to the signalling structure. For instance, consider again Example 3. Assume that the signal a associated with the entry (B, M) is replaced by a random device that sends the signal a with probability 1 -η, and the signal a 0 otherwise. If a 0 = b,t h e max min is still close to zero for η small (the M column is indistinguishable from a convex combination of the L and R columns). If a 0 6 = b,t h emax min is equal to 1 2 , whatever the value of η > 0. Let Γ be any game with absorbing states. To any pair x 1 , e

x 1 of distributions over S 1 is associated a (Þctitious) generalized Big Match Γ x 1 ,e x 1 ,i n which the B and T rows correspond, respectively, to the mixed moves x 1 and x 1 , slightly perturbed by e

x 1 . It is shown by [START_REF] Coulomb | Repeated games with absorbing states and signaling structure[END_REF] that the max min of Γ is equal to the supremum over (x 1 , e

x 1 ) of the max min of the auxiliary game Γ x 1 ,e x 1 .T h ed i fficult part is to show that player 2 can defend such a quantity.

Stochastic games with large state space

Consider Þrst a stochastic game with countable state space Ω and Þnite actions sets S 1 and S 2 . Maitra and Sudderth (1992) prove that, with lim sup n→+∞ g n as the payoff function for the inÞnite game, 10 the game has a value. This was considerably extended by [START_REF] Martin | The determinacy of Blackwell games[END_REF]. Let Ω,S 1 and S 2 be endowed with the discrete topology, and the set H ∞ of plays be given the product topology. Let the payoff function of the inÞnite game be any Borel function f on H ∞ . (Martin does not deal with stochastic games, but, as argued in [START_REF] Maitra | Stochastic games with Borel payoffs[END_REF], the extension to stochastic games is immediate.) Theorem 11 T h eg a m ew i t hp a y o ff function f has a value.

See [START_REF] Martin | The determinacy of Blackwell games[END_REF] for the proof. The proof relies on another theorem of [START_REF] Martin | Borel determinacy[END_REF] for games of perfect information. We also refer to [START_REF] Maitra | Stochastic games with Borel payoffs[END_REF] for an introduction to the proof.

  plays B, he receives the signal a if either the L or M column was chosen by player 2, and the signal b otherwise. The signals to player 2, and to player 1 when he plays the T row, are irrelevant for what follows. Note that the right-hand side 1 * 0 * 0 1 of the game coincides (up to an affine transformation on payoffs) with the Big Match (see [M], Section 2), w h i c hw a h o w nt oh a v et h ev a l u e 1 2

  

Ag a m ei sr e c u r s i v ei ft h ep a y o ff function is identically zero outside absorbing states. Recursive games were introduced by Everett (1957).

By deÞnition, v i (ω) is the value of the zero-sum stochastic game deduced from Γ, where the other player minimizes player i's payoff.

This is where the assumption g 1 < 0 <g 2 comes into play.

In this example, each entry contains only the transitions. Transitions are deterministic except in state ω 0 , when player 1 plays the Bottom row; the play then moves, with probability[START_REF] Hart | Non-zero-sum two-person repeated games with incomplete information[END_REF] 

,t ot h es t a t eω 2 , and to an absorbing state with payoff (-1, 3) otherwise.

Which is deÞned to be the actual current state, at the Þrst stage for which the current stage does not belong to C.

In particular, the current payoff is not multilinear.

Player i would then rather quit than let x be played. In geometric terms, the best-reply map points inwards on T .

I.e., the undiscounted payoff obtained in the subgame starting at that stage.

A partial existence result is given in[START_REF] Solan | Quitting games[END_REF].

This payoff function includes many cases of interest, including discounted stochastic games.

We conclude by citing miscellaneous results. In stochastic games with incomplete information on one side, a lottery chooses at stage 0 the stochastic game to be played, and only player 1 is informed. Such games be analyzed through an auxiliary stochastic game in which the current posterior held by player 2 on the true game being played is part of the state variable. It is conjectured that the max min exists and coincides lim n→∞ v n and lim λ→0 v λ . The basic intuition is that the max min should coincide with the value of the auxiliary game, which is not known to exist (see Mertens (1987)). Only scattered results are available so far. This has been veriÞed by Sorin (1984) for games of the Big Match type, and by Rosenberg and Vieille (2000) when the possible stochastic games are recursive. For with absorbing states, it is known that lim n→∞ v n = lim λ→0 v λ (Rosenberg (2000)).