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Les jeux d'arrêt sont des jeux séquentiels où, à chaque étape, chacun des joueurs peut décider d'arrêter ou de continuer. Le jeu s'arrête dès lors que l'un au moins des joueurs décide de s'arrêter. Le paiement reçu alors par les joueurs dépend de l'ensemble des joueurs qui ont choisi de s'arrêter à cette date. Si le jeu ne s'arrête jamais, le paiement est nul. Nous étudions un jeu à quatre joueurs. Dans ce jeu, les équilibres les plus simples sont périodiques de période deux. Par ailleurs, nous utilisons des outils géométriques pour montrer que les techniques utilisées pour les jeux à trois joueurs ne peuvent être adaptées au cas général.

I nt r oduct i on

Quitting games are I-player sequential games in which, at any stage, each player has the choice between continuing and quitting. W ed e n o t et h et w o actions of player i by {q i ,c i }. T h eg a m ee n d sa ss o o na sa tl e a s tone player chooses to quit; player i then receives a payoff r i S , which depends on the set S of players that did choose to quit. If the game never ends, the payoff to each player is 0.

In such a game, a strategy of player i is a sequence x i =( x i n ) n≥0 ,w h e r e x i n is the probability that player i continues at stage n, provided the game has not terminated before. Such a strategy is stationary if x i n is independent of i. W edenoteb ya i n the action played by player i at stage n, and denote by t =i n f{n ≥ 1, a i n = q i for some playeri ∈ I} the stage in which the game terminates, and by S t the set of players that choose to quit at that stage. Given a proÞle x of strategies, the expected payoff to player i is

γ i (x)=E x £ r i S t 1 t<+∞ ¤ ,
where E x stands for the expectation with respect to the probability distribution induced by x over the set of plays. It is not known whether quitting games have ε-equilibrium. Quitting games therefore form an intriguing class of stochastic games. We recall brießy existing results before presenting the contribution of this note.

I nt h ec a s eo ft w oplayers, stationary ε-equilibria do exist. A threeplayer example was devised by Flesch, Thuijsman and [START_REF] F. Thuijsman | Cyclic Markov equilibrium in stochastic games[END_REF], where ε-equilibrium strategies are more complex -they have a cyclic structure, and the length of the cycle is at least 3. However, in this example, there are equilibrium payoffs in the convex hull of the vectors r {i} ∈ R I , i ∈ I. These payoffs can be obtained using a proÞle x that plays in any stage a perturbation of (c i ) i∈I . Therefore, it left open the possibility of Þnding εequilibrium proÞles, by means of analyzing the limit behavior of stationary equilibria of discounted games, letting the discount factor go to zero. Indeed, such an analysis was provided by [START_REF] Solan | Three-player absorbing games[END_REF], for the more general class of three-player games with absorbing states. These results are discussed in Section 2.

The purpose of this note is twofold. First, we explain why the techniques that work for 4-player games fail in general. Second, we provide a 4-player example, where all the ε-equilibrium payoffs involve some kind of cyclic behavior, in which the probability of quitting in any stage is bounded away from zero. The main consequence is that all the known tools for proving the existence of equilibrium payoffs in stochastic games (see, e.g., Tuijsman and [START_REF] Vrieze | On equilibria in stochastic games with absorbing states[END_REF], [START_REF] Solan | Stochastic games with two non-absorbing states[END_REF], Vieille (2000aVieille ( ,2000b))) seem likely to fail to yield any result in general I-player quitting games. In a companion paper [START_REF] Solan | Quitting games[END_REF]) we introduced new tools and provided sufficient conditions under which quitting games admit an equilibrium payoffs.

T wo-and t hr ee-pl ayer qui t t i ng gam es

The purpose of this section is to discuss the case where the number of players does not exceed 3. We shall hint that such games always have ε-equilibria of as i m p l ef o r m .

We Þrst introduce a few notations. Given a proÞle x, and a stage n ∈ N, we denote by x n =( x n ,x n+1 ,...) the proÞle induced by x in the subgame starting from stage n.W el e tc denote the proÞle of actions (c i ),a n db yc i the pure stationary strategy that plays repeatedly c i . When convenient, we shall not distinguish between a stationary strategy x i =( x i , ..., x i ) and the probability x i ∈ [0, 1].

T wo-pl ayer qui t t i ng gam es

For notational convenience, we represent a two-player quitting game as

c 2 q 2 c 1 (b 1 ,b 2 ) q 1 (a 1 ,a 2 ) (d 1 ,d 2 )
If there is a pure stationary equilibrium we are done. Otherwise either a 1 > 0 or b 2 > 0 (otherwise (c 1 , c 2 ) is an equilibrium). Assume w.l.o.g. that a 1 > 0.T h e na 2 <d 2 , which implies that d 1 <b 1 , which implies that b 2 < 0.

If a 2 ≥ b 2 then the stationary strategy (x 1 , c 2 ) is an ε-equilibrium, where

x 1 n =(1-η)c i + ηq i ,a n dη ∈ (0, 1
) is sufficiently small. Of a 2 <b 2 then the stationary strategy (x 1 , q 2 ) is an ε-equilibrium, where x 1 is deÞned as above.

Therefore, two-player quitting games always have stationary ε-equilibrium. Note that equilibria need not exist, as e.g. in the zero-sum game

c 2 q 2 c 1 (1, -1) q 1 (1, -1) (0, 0)

T hr ee-player quit t ing gam es

Flesch et al. (1997) exhibited a three-player quitting game with no stationary ε-equilibrium. [START_REF] Solan | Three-player absorbing games[END_REF] proved the existence of ε-equilibria for the more general class of three-player absorbing games. When specialized to quitting games, Solan's proof yields a proÞle x =(x n ) n∈N that is either stationary or such that kx n -ck < ε for each n ∈ N . The proof is based on a vanishing discounting argument.

We offer here a geometric argument that is speciÞc to the case of quitting games, in the hope of providing a better understanding of why the generalization to more-than-three-player games does not hold. However, it is not our intention to provide a detailed proof. In particular, we shall only deal with the case where r i {i} > 0 for each i ∈ N . The discussion of the other c a s e si ss o m e w h a ts i m i l a r .

We normalize the payoffst oh a v er i {i} =1for each i. W eo r g a n i z et h e discussion according to the conÞguration of payoffs. The different cases are exhaustive, but not mutually exclusive. All strategies are stationary unless explicitly speciÞed.

For every ε ∈ (0, 1] deÞne T ε = {x ∈ [0, 1] 3 | P 3 i=1 x i = ε,a n d∆ ε = {x ∈ [0, 1] 3 | P 3 i=1 x i ≥ ε.
C ase 0:T h e r ee x i s t sε ∈ (0, 1) such that for every proÞle x ∈ T ε there is at least one player i whose unique best reply to x is q i . We prove that the game has a stationary equilibrium. The proof is based on a standard Þxed-point argument, applied to the best-replies of a constrained game.

For every x ∈ T ε let I x ⊆ I be the set of players i such that γ i (x -i ,q i )γ i (x) > 0. The assumption tells us that I x is not empty for every x ∈ T ε .S i n c eγ i (x) and γ i (x -i ,q i ) are continuous over the compact set

T ε , ρ = min x∈T ε max i∈I x {γ i (x -i ,q i ) -γ i (x)} > 0.
It follows that there is ε 1 > ε such that for every x ∈ T ε 1 there is a player i such that

γ i (x -i ,q i ) -γ i (x) > ρ/2.D e Þne a continuous function f : ∆ ε → ∆ ε by f i (x)= ½ x i +(ε 1 -ε)(γ i (x -i ,q i ) -γ i (x)) γ i (x -i ,q i ) ≥ γ i (x) x i + ρ 2 (ε 1 -ε)(γ i (x -i ,q i ) -γ i (x)) γ i (x -i ,q i ) < γ i (x).
Since f is continuous, it has a Þxed point in ∆ ε , which is a stationary equilibrium.

C ase 1:

r 2 {1} ,r 3 {1} ≥ 1.
In that case, both players 2 and 3 are at worst indifferent between quitting alone or waiting for player 1 to quit. The stationary proÞle ((1 -η)c 1 + ηq 1 , c 2 , c 3 ) is an ε-equilibrium, provided η is sufficiently small. This analysis remains valid when the roles of the players are permuted.

C ase 2 : There is no convex combination α 1 r {1} + α 2 r {2} + α 3 r {3} of the three vectors (r {1} ,r {2} ,r {3} ) such that

α 1 r {1} + α 2 r {2} + α 3 r {3} ≥ (1, 1, 1).
By continuity, there is ρ > 0 such that in every convex combination of r {1} , r {2} and r {3} , at least one player receives at most 1 -ρ. It follows that for ε > 0 sufficiently small, the assumption of Case 0 holds. In particular, there is a stationary equilibrium.

C ase 3 : r 1 {2} ,r 1 {3} < 1.
One can easily verify that the assumption of Case 1 or Case 2 is satisÞed.

C ase 4: There is a convex combination

α 1 r {1} + α 2 r {2} + α 3 r {3} of the three vectors (r {1} ,r {2} ,r {3} ) such that α 1 r {1} + α 2 r {2} + α 3 r {3} =(1, 1, 1).
The stationary proÞle ((1 -ηα 1 )c 1 + ηα 1 q 1 , (1 -ηα 2 )c 2 + ηα 2 q 2 , (1ηα 3 )c 3 + ηα 3 q 3 ) is an ε-equilibrium, provided η is sufficiently small. We next introduce a convenient notational convention. For i 6 = j,w eshall write r i {j} ='+ 0 if r i {j} ≥ 1 and r i {j} ='-0 if r i {j} < 1. I fn o n eo ft h ea s s u m ptions of C ase 1 and C ase 3 are satisÞed, the triple (r {1} ,r {2} ,r {3} ) ∈ R 9 is either of the form ((1, +, -), (-, 1, +), (+, -, 1)) or ((1, -, +), (+, 1, -), (-, +, 1)). Each of these two situations is reducible to the other by permuting two players. We will proceed under the assumption that (r {1} ,r {2} ,r {3} ) is of the form ((1, +, -), (-, 1, +), (+, -, 1)).

C ase 5: There is a convex combination

α 1 r {1} + α 2 r {2} + α 3 r {3} of the three vectors (r {1} ,r {2} ,r {3} ) such that α 1 r {1} + α 2 r {2} + α 3 r {3} ≥ (1, 1, 1).
The set of such (α 1 , α 2 , α 3 ) is the intersection of three hyperplanes, each involves two constraints, hence it is either a singleton or a triangle. If it is a singleton the assumption of Case 4 is satisÞed.

We proceed with the case where the set is a triangle. The vertices are labelled A, B, C in such a way that players 1 and 3 (resp. 1 and 2, 2 and 3) get a payoff equal to one under the convex combination

A =(α A 1 , α A 2 , α A 3 ) (resp. B, C)( s e et h eÞgure).
Figure 1 We n ext wri te A (resp. B, C) as a convex combination of (1, 0, 0) and B (resp. of (0, 1, 0) and C,o f(0, 0, 1) and A):

A = β 1 (1, 0, 0) + (1 -β 1 )B B = β 2 (0, 1, 0) + (1 -β 2 )C C = β 3 (0, 0, 1) + (1 -β 3 )A.
Fix M ∈ N , large enough. DeÞne a non-stationary proÞle σ as follows. Players 1,2a n d3( i nt h a to r d e r )a l t e r n a t ei n d e Þnitely as follows. During M stages, player i quits with probability β i M (while the other two players continue). Depending on who starts Þrst, the payoff induced by σ is close to the payoff associated with the convex combination A, B or C respectively. Moreover, the proÞle σ is an ε-equilibrium of the quitting game.

Therefore, for three-player quitting games, there always exists a stationary ε-equilibrium or an ε-equilibrium x =(x n ) n∈N , such that kx n -ck < ε for each n.

D iscussion

This geometric construction may help to understand why in general there need not be neither a stationary ε-equilibrium nor an equilibrium payoff in the convex hull of {r {i} } i∈I . Assume for simplicity that r i {i} =1for each player i.

Consider for a moment a 3-player game. From each point u ∈ [1, ∞) 3 , and every i such that u i =1, draw a small arrow in the direction ur {i} (the number of arrows from each u can be 0,1,2 or 3). If there is a Þxed point u (that is, u = r {i} for some player i), then there is a stationary ε-equilibrium, that corresponds to Case 1 above. If the arrows form a closed path, then there is a cyclic equilibrium, that corresponds to Case 5 above.

In general, for every vector

u ∈ [1, ∞) I ,l e tI u = {i ∈ I | u i =1},a n d V u = ( v = X i∈I u α i r {i} , α i ≥ 0, X i∈I u α i =1, α i > 0 ⇒ v i =1
) , be all vectors in the convex hull co(r {i} ,i ∈ I u ) such that each player that takes part in the convex combination receives 1.

For every u ∈ [1, ∞) 3 draw small arrows in direction u -v, for every v ∈ V u .A n y Þxed point (that is, if u ∈ V u )
, correspond to a stationary ε-equilibrium. Any closed path that is formed by the arrows corresponds to a cyclic ε-equilibrium. More generally, if there is an open path of inÞnite length then there is a non-cyclic ε-equilibrium. Moreover, if there is an equilibrium payoff in the convex hull of {r {i} } i∈I , then there is either a Þx edpo in t,aclosedp ath ,ora nopenp ath with length inÞnity. Alas, as the next example shows, there are 4-player games in which there are no Þxed points, and all paths are open and have Þnite length.

T he Ex am pl e

We will study the following four player quitting game:

1 1 1 1 2 2 3 4 1, 4, 0, 0 continue 1, 1, 1, 1 4, 1, 0, 0 1, 0, 1, 1 0, 0, 4, 1 0, 1, 0, 0 1, 1, 0, 1 1, 1, 1, 0 0, 0, 1, 4 1, 0, 0, 0 0, 1, 1, 1 0, 0, 0, 1 1, 1, 1, 1 -1, -1, -1, -1 0, 0, 1, 0 Figure 2
In this game player 1 chooses a row (top row = continue), player 2 chooses a column (left column = continue), player 3 chooses either the top two matrices or the bottom two matrices, (top two matrices = continue) and player 4 chooses either the left two matrices or the right two matrices (left two matrices = continue).

Note that there are the following symmetries in the payoff function: for every 4-tuple of actions (a, b, c, d) we have:

v 1 (a, b, c, d)=v 2 (b, a, d, c), v 1 (a, b, c, d)=v 4 (c, d, b, a) and v 2 (a, b, c, d)=v 3 (c, d, b, a),
where v i (a, b, c, d) is the payoff to i if the action combination is (a, b, c, d) (v i (c 1 ,c 2 ,c 3 ,c 4 )=0).
In section 3.1 we prove that this game admits an equilibrium proÞle y that has the following structure:

y n = ½ (x, 1,z,1) n odd (1,x,1,z)
n even where x, z ∈]0, 1[ are independent of n; that is, at odd stages players 2 and 4 continue, while 1 and 3 quit with positive probability, whereas at even stages 1 and 3 continue, while 2 and 4 quit with positive probability. Thus, the game admits a cyclic equilibrium with period 2.

We then prove the following: P r op osi t i on 1 The game does not admit a stationary equilibrium.

P r op osi t i on 2

For ε small enough, the game does not admit an ε-equilibrium x such that ||x n -c|| < ε for every n.

It follows from Propositions 1 and 2 that the game does not admit a stationary ε-equilibrium, provided ε is small enough. Indeed, let us argue by contradiction, and assume that for every ε there exists a stationary εequilibrium x ε .L e tx ? be an accumulation point of {x ε } as ε → 0.I fx ? is terminating (x * 6 = c) then it is a stationary 0-equilibrium, which is ruled out by Proposition 1.O t h e r w i s e ,x ? = c,a n dt h e n ,f o rε sufficiently small, there is an ε-equilibrium x where k x n -c k< ε, which is ruled out by Proposition 2.

Proposition 1 is proved in section 3.2, while Proposition 2 is proved in section 3.3.

C y cl i c equili br i um

We prove that the game possesses a cyclic equilibrium, where the length of the cycle is 2. At odd stages players 2 and 4 play c 2 and c 4 respectively, and players 1 and 3 continue with probability x and z respectively, both strictly less than 1.A te v e ns t a g e sp l a y e r s1 and 3 play c 1 and c 3 respectively, and players 2 and 4 continue with probability z and x respectively.

Formally, we study now proÞles y that satisfy:

y n = ½ (x, 1,z,1) n odd (1,z,1,x)
n even where x, z ∈]0, 1[ are independent of n.

The one-shot game played by players 1 and 3 at odd stages is 

1 3 1 -x x z 1 -z 1, 0 γ 1 c , γ 3 c 1,1 0,1
The one-shot game played by players 2 and 4 at even stages is

2 4 1 -z z x 1 -x 1, 0 γ 2 c , γ 4 c 1,1 0,1
Figure 4: The game of players 2 and 4 at even stages where player 2 is the row player, player 4 is the column player, and the payoffs that are received by players 1 and 3 if termination occurs are given by matrix [START_REF] F. Thuijsman | Cyclic Markov equilibrium in stochastic games[END_REF]. The two situations are identical (up to the continuation payoffs).

We now Þnd necessary conditions on (x, z).F i r s t ,(x, z) is a fully mixed equilibrium of the matrix game in Figure (3), so that

xγ 3 c =1and zγ 1 c =1, (2) 
and both players 1 and 3 receive 1 in this equilibrium. By the symmetry of the proÞle, the continuation payoffs( r e s p .initial payoffs) of players 4 and 2 must coincide with the initial payoffs( r e s p .continuation payoffs) of players 1 and 3. That is, (γ 3 c , γ 1 c ) is the payoff received in the matrix game (1), when the empty entry is Þlled with (1, 1) and the row and column players play according to x and z respectively, so that

½ γ 3 c = xz +4z(1 -x)+(1-x)(1 -z) γ 1 c = xz +4x(1 -z)
Using (??), the second equation implies that x = 1 z(4-3z) , and therefore the Þrst equation translates to z(4 -3z)=1+3z -1+2z z(4-3z) ,o r

z(1 -z +3z 2 )(4 -3z)=1+2z.
Call f (z) the polynomial in the left hand side, and g(z) the one on the right hand side. Then f (0) = 0 < 1=g(0), f(1) = 3 = g(1),a n df 0 (1) = -1 < 2=g 0 (1). In particular, there exists z ∈ (0, 1) such that f (z)=g(z), hence a cyclic equilibrium exists.

N o St at i onar y Equili br i a

We check here that the game has no stationary equilibrium. We organize the discussion according to the number of players who play both actions with positive probability.

It is immediate to check that there is no stationary equilibrium in which at least three players play pure strategies.

We shall now verify that there is no stationary equilibrium where two players play pure stationary strategies. Using the symmetries in the payoff function, it is enough to consider the cases where either player 3 and 4 play pure strategies, or players 2 and 4 play pure strategies.

Assume Þrst that there is an equilibrium in which players 3 and 4 play pure stationary strategies. The strategies of players 1 and 2 form then an equilibrium of a 2 × 2 game. We will see that these two-player games have only pure equilibria. The four-player game would thus have an equilibrium in pure stationary strategies -a contradiction. In the Þrst three cases, the induced game is equivalent to a one-shot game. In the last case, it is a quitting game. C ase 1: P la y ers3and4pla y(q 3 ,q 4 ): the unique equilibrium in the induced game is (c 1 ,c 2 ). C ase 2: P l a y e r s3a n d4p l a y(c 3 ,q 4 ): unique equilibrium is (c 1 ,q 2 ). C ase 3: P l a y e r s3a n d4p l a y(q 3 ,c 4 )-symmetric to case 2. C ase 4: P l a y e r s3a n d4p l a y(c 3 ,c 4 ): the unique equilibria are (q 1 ,c 2 ) and (c 1 ,q 2 ).

We shall now see that there is no stationary equilibrium where players 2 and 4 play pure actions, by analyzing the induced game between players 1 and 3. C ase 1: P l a y e r s2a n d4p l a y(c 2 ,c 4 ): the induced game has a unique equilibrium (q 1 ,q 3 ). C ase 2:P l a y e r s2a n d4p l a y(q 2 ,c 4 ): the unique equilibrium in the induced game is ( 1 2 c 1 + 1 2 q 1 , 1 4 c 3 + 3 4 q 3 ). Player 2 would receive 5 8 , but he would get 1 by playing c 2 . C ase 3: P l a y e r s2a n d4p l a y(c 2 ,q 4 ): the unique equilibrium is (q 1 ,c 3 ). C ase 4: P l a y e r s2a n d4p l a y(q 2 ,q 4 ): the unique equilibrium is (c 1 ,q 3 ).

Next, we check that there is no stationary equilibrium where one player, say player 4, plays a pure strategy, and all the other players play a fully mixed strategy. We denote by (x, y, z) the fully mixed stationary equilibrium in the three-player game when player 4 plays some pure stationary strategy.

Assume Þr s tt h a tp l a y e r4p l a y sq 4 . Then, in order to have player 2 indifferent, we should have

x(1 -z)=z -(1 -x)(1 -z)
which implies that z =1/2. In order to have player 1 indifferent, we should have

(1 -y)z + y(1 -z)=yz -(1 -y)(1 -z)
which solves to yz =1/2, and therefore y =1, which is pure.

Assume now that player 4 plays c 4 . First we note that x<1/2,ot herw ise player 3 prefers to play q 3 over c 3 . Next, if player 2 is indifferent between his actions, then

(1 -x)(1 + 3z) 1 -xz = x +(1-x)z
or equivalently,

(1 -x)(1 + 2z + xz 2 )=(1-xz)x.
Since x<1/2, it follows that 1 -x>x. Therefore it follows that

1+2z + xz 2 < 1 -xz
which is clearly false.

N o fully m ix ed st at ionar y equilibr ium

We prove now that there is no fully mixed stationary equilibrium. We start by a few notations. Let (x, y, z, t) be a supposed fully mixed stationary equilibrium. By symmetry, we may assume that y =m i n ( x, y, z, t).W r i t e a := γ 1 (x, y, z, t) ≥ γ 1 (0,y,z,t) > 0.

Assume players 2,3,4 play the stationary proÞle (y, z, t), and that player 1 plays from the second stage on the stationary proÞle x. By playing c 1 at stage 1 player 1 gets α(a; y, z, t):=yzt(a -2) -2yz +3zt -yt + y + z, whereas by playing q 1 at stage 1 he gets

β(y, z, t):=t +(1-t)(y + z -1).
Since in a fully mixed equilibrium it is optimal to use both c 1 and q 1 with positive probability, one has a = β(y, z, t)=α(a; y, z, t).

Therefore, the polynomial ∆ 1 (y, z, t):=α(β(y, z, t); y, z, t) -β(y, z, t) vanishes at (y, z, t). For simplicity, we write ∆ 1 (y, z, t)=(β -2)yzt -2yz +4zt +1-2t, thereby omitting the arguments in β.W ed e Þne ∆ 2 (x, z, t), ∆ 3 (x, y, t) and ∆ 4 (x, y, z) in a symmetric way.

To rule out the existence of a fully mixed stationary equilibrium , we shall prove that there is no (x, y, z, t) ∈ (0, 1) 4 such that (i) y =min(x, y, z, t),(ii) ∆ 1 (y, z, t)=∆ 4 (x, y, z)=0and (iii) β(y, z, t) ∈ (0, 1).

L em m a 3 ∆ 1 (t, t, t) > 0 for each t ∈ [0, 1]. P r oof. t 7 → ∆ 1 (t, t, t) is a polynomial in one variable. The result follows by using any of the standard methods for counting the number of zeroes of a polynomial in a compact interval, e.g. Sturm's method.

We list a few useful observations, valid on {y ≤ z, t} F a c t 1 β is (strictly) increasing in each variable.

F a c t 2 ∆ 1 is decreasing in y. F a c t 3 ∆ 1 is increasing in z.
The proofs of the Þrst two facts are obtained by elementary algebraic manipulations, and are therefore omitted. For the third one, prove Þrst that ∂∆ 1 ∂z is decreasing in y.S i n c ey ≤ t,t h i sy i e l d s ∂∆ 1 ∂z (y, z, t)

≥ ∂∆ 1 ∂z (t, z, t)= (β -2)t 2 + t 2 z(1 -t)+2t>0.
By F a c t 2 and

F ac t 3 , ∆ 1 (y, z, t) ≥ ∆ 1 (t, t, t) > 0 if y ≤ t ≤ z.
L em m a 4 The polynomial ∆ 1 does not vanish on

Ω := {y ≤ z ≤ t} ∩ {z ≥ 1 2 }. P r oof. St ep 1: ∆ 1 > 0 on Ω ∩ © y< 1 2 ª
. Indeed, in that region, one has y ≤ 1 2 ≤ z ≤ t,h e n c e ,b yF ac t s 2 and 3,

∆ 1 (y, z, t) ≥ ∆ 1 ( 1 2 , 1 2 ,t)= 1 2 - t 2 + β t 4 > 0. St ep 2: ∆ 1 > 0 on Ω 1 := { 1 2 ≤ y ≤ z ≤ t ≤ 2 3
}. We restrict (y, z, t) to be in Ω 1 .B yF ac t 2 , ∆ 1 (y, z, t) ≥ ∆ 1 (z, z, t).W e prove below that ∆ 1 (z, z, t) is decreasing in z. This will imply ∆ 1 (z, z, t) ≥ ∆ 1 (t, t, t) > 0, hence the claim. Note Þrst that, by F ac t 1 ,

β(y, z, t) ≤ β( 2 3 , 2 3 , 2 3 )= 7 9 . ( 3 ) 
An elementary computation gives

∂ ∂t ∂ ∂z {∆ 1 (z, z, t)} =2z(β -2) + 2zt(2 -y -z)+2z 2 (1 -t) -2z 2 t +4> 0.
Therefore,

∂ ∂z ∆ 1 (z, z, t) ≤ ∂ ∂z ∆ 1 (z, z, 2 3 )= 4 3 z(β -2) + 4 9 z 2 -4z + 8 3 . (4) 
T h er i g h t -h a n ds i d ei n( 4 )i sd e c r e a s i n gi nz.I t i s t h e r e f o r e m a x i m a l f o r z = 1 2 .I ti st h e ne q u a lt o 2 3 (β -1) + 1 9 which is negative by ( 3). This proves that ∆ 1 (z, z, t) is decreasing in z.

St ep 3:

∆ 1 > 0 on Ω 2 := { 1 2 ≤ y< 2 3 ≤ z ≤ t}. We restrict (y, z, t) to be in Ω 2 .N o t i c eÞrst that β ≥ 2 3 . One has ∆ 1 (y, z, t) ≥ ∆ 1 ( 2 3 , 2 3 ,t)=(β( 2 3 , 2 3 ,t) -2) 4 9 t + 1 9 + 2 3 t ≥ t +1 9 .
The Þrst inequality uses F ac t s 2 and 3. The second one follows from (F a c t 1)

β( 2 3 , 2 3 ,t) ≥ β( 2 3 , 2 3 , 2 3 ) ≥ 3 4 . St ep 4: ∆ 1 > 0 on Ω 3 := © 2 3 ≤ y ≤ z ≤ t ª .
We restrict (y, z, t) to be in Ω 3 .A si nSt ep 3, β ≥ 2 3 .W ep r o v eb e l o wt h a t ∆ 1 is increasing in t.U s i n gF a c t 2 , this will imply ∆ 1 (y, z, t) ≥ ∆ 1 (z, z, z) > 0. One has

∂∆ 1 ∂t =(β -2)yz + yzt(2 -y -z)+4z -2 ≥ (β -2)yz +4z -2. ( 5 
)
Plainly, the right-hand side of ( 5) is increasing in z. Therefore, it is minimal when z = y,h e n c ea tl e a s t-5 4 y 2 +4y -2. This latter expression is itself minimized at y = 2 3 a n dt h e ne q u a lt o 1 9 .T h u s ,

∂∆ 1 ∂t > 1 9 . St ep 5: ∆ 1 > 0 on Ω 4 := ¡ [ 1 2 , 2 3 ] × [ 1 2 , 2 3 ] × [ 2 3 , 1[ ¢ ∩ {y ≤ z}. We restrict (y, z, t) to be in Ω 4 .B yF ac t 1 , β(y, z, t) ≥ 2 3 .B yF a c t 2 , ∆ 1 (y, z, t) ≥ ∆ 1 (z, z, t). These inequalities imply ∆ 1 (y, z, t) ≥- 4 3 z 2 t -2z 2 +4zt +1-2t. ( 6 
)
Denote by f the function deÞned by the right-hand side of ( 6). We prove below that, for each t ≥ 2 3 , the function f (•,t) is positive on

£ 1 2 , 2 3 ¤
.L e t t ≥ 2 3 be given. Plainly,

f ( 1 2 ,t)= 1 2 - t 3 > 1 6 and f( 2 3 ,t)= 2 27 t + 1 9 > 1 7 . (7) 
Next, note that

∂f ∂z (z, t)=- 8 3 zt -4z +4t
is increasing in t and decreasing in z. Therefore, ∂f ∂z (z, t) is minimal at

( 2 3 , 2 
3 ), where it equals -32 27 ,a n dm a x i m a la t( 1 2 , 1), where it equals 2 3 .I np a r t i c u l a r

sup z∈[1/2,2/3] ¯∂f ∂z (z, t) ¯≤ 12 7 .( 8 ) Since each z ∈ [ 1 2 , 2 3 ] satisÞes |z -1 2 | ≤ 1 12 ,o r|z -2 3 | ≤ 1 12
, the inequality f (z, t) > 0 follows from ( 7), (8) and the mean value theorem.

L em m a 5 The polynomial ∆ 4 does not vanish on Ω 5 := {y ≤ z} ∩ {z ≤ 1 2 }. P r oof. Recall that we only consider values of (x, y, z, t) such that γ 4 (x, y, z, t) > 0.T h e r e f o r e ∆ 4 (x, y, z) > -2xyz -2xz +4xy +1-2y = y(-2xz +4x -2) + 1 -2xz.

Denote f x,z (y)=y(-2xz +4x -2) + 1 -2xz.T h e nf x,z (0) = 1 -2xz > 0 and f x,z (z)=(1-2z)+2xz(1 -z) > 0.
In particular, the right hand side is positive on Ω 5 .

P r oof of P r op osi t ion 2

We Þrst present a sketch of the proof. The proof goes by contradiction. Let x =( x n ) be an ε-equilibrium such that kx n -ck < ε for each n.S i n c ee a c h player gets 1 by quitting alone, the probability that no player ever quits is close to zero. Moreover, since x n is close to c, the quitting coalition is a singleton with high probability. In particular, the sum of the payoffs all four players receive in the ε-equilibrium is close to Þve. Hence, at least one player gets a payoff strictly higher than while no player receives a payoff that is much below one. We then deduce that for every player i, the probability that i belongs to the quitting coalition is bounded away from zero.

Next, we claim that there is no such ε-equilibrium that gives to players 1 a n d2( o r3a n d4 )ap a y o ff higher than one. Indeed, assume such an equilibrium were to exist. In the Þrst stage of the game, both players 1 and 2 would choose to continue with very high probability, since the payoff obtained by quitting is approximately 1. Moreover, they must do so in every stage n such that their expected payoff, starting from stage n,ishig he rt h a n one, unless the probability that the game reaches stage n is close to zero. Therefore, as long as their continuation payoff exceeds 1 and the probability of surviving is not too small, players 1 and 2 will not contribute to the quitting coalition. However, as long as players 1 and 2 do not contribute, their continuation payoffs increases. Indeed, the expected payoff starting from today is a weighted average of the payoff received if someone quits today and of the expected payoff starting from tomorrow, and the payoff to players 1 and 2 is less than one only if players 3 and 4 quit.

Assume now that player 1 (but not player 2) gets a payoff higher than 1,a n dl e tn 1 be the Þrst stage such that the continuation payoff of player 1 is close to one. Since the continuation payoff of player 1 decreases between stages 1 and n 1 , the probability that player 2 quits before stage n 1 is nonnegligible. Since player 1 hardly contributes to the probability of quitting before stage n 1 , the continuation payoffs of player 2 do not decrease over time before stage n 1 . Since player 2 quits with non-negligible probability, his continuation payoffs must remain close to one for a while. In particular, players 3 and 4 should not quit in those stages. This implies that the continuation payoffs of player 3 and 4 increase in these stages. After a while (stage n 1 at the latest), both continuation payoffso fp l a y e r s3a n d4a r eh i g h e rt h a n one-a situation that has been ruled out above.

To facilitate reading, we let ρ =8be twice the maximal payoff in absolute value, N = {1, 2, 3, 4} be the set of players, and N =4be the number of players.

It is convenient to assume that, in any given stage, at most one player quits with positive probability. This assumption entails no loss of generality, as shown by the next lemma.

L em m a 6 Let ε < 1/8 and let x be an ε-equilibrium such that kx n -ck < ε for each n. Then there exists a 11N ρε-equilibrium y such that, for every n, ky n -ck < ε and |{i ∈ N ,y j n > 0}| ≤ 1.

P r oof. We construct y from x by dividing each stage into four substages, and by letting each player quit in turn with the probability speciÞed by x.

Formally, for n ∈ N and j ∈ C,w es e t

y i (n-1)N+j = ½ x i n if i = j 0 if i 6 = j .
By construction,

P y (t>nN|t>(n -1)N )=P x (t>n|t>n-1) = n Y i=1 (1 -x i n ) for each n ∈ N .
Observe next that, for each j ∈ N ,

P y (S t = {i}|(n -1)N<t≤ nN)= x i n Q j<i (1-x j n ) 1- Q j∈N (1-x j n ) P x (S t = {i}|t = n)= x i n Q j6 = i (1-x j n ) 1- Q j∈N (1-x j n )
The denominator is at least 1 -4ε ≥ 1/2,h e n cet h edi fference between these two probabilities is at most 2ε.S i n c e P i∈N P y (S t = {i}|(n -1)N<t≤ nN ) =1, one has in particular P

x (|S t | > 1|t = n) ≤ 2Nε.
By summation over n, this yields kγ(x)-γ(y )k ≤ (9)

Next, we prove that player i has no pure proÞtable deviation from y i . Consider Þrst the strategy c i . By repeating the above argument, one has |γ i (x -i , c i ) -γ i (y -i , c i )| ≤ 4Nρε.S i n c ex is an ε-equilibrium, this yields, by (9), γ i (y -i , c i ) ≤ γ i (y )+ε +8N ρε.

Consider next the strategy q i

(n-1)N+k that quits in stage (n -1)N + k and continues in the former stages. We compare the payoffstopla y eri under the two proÞles (y -i , q i (n-1)N+k ) and (x -i , q i n ). By repeating the above argument, one has

P y -i ,q i ( n-1) N+ k (t ≤ (n -1)N)=P x -i ,q i n (t ≤ n -1) ¯Ey -i ,q i ( n-1) N + k £ r i S t |t ≤ (n -1)N ¤ -E x -i ,q i n £ r i S t |t ≤ (n -1) ¤ ¯≤ 4N ρε. Next, E y -i ,q i ( n-1) N + k £ r i St |t>(n -1)N ¤ ≤ 1+(N -1
)ρε +ρε,where(N -1)ρε accounts for the probability that someone may quit in the Þrst k-1 substages of stage n,a n dρε accounts for the probability that some player other than i may quit in substage k.Also,E

x -i ,q i n £ r i St |t>(n -1) ¤ ≤ 1 -ρN ε. Collecting these inequalities yields γ i (y -i , q i (n-1)N+k ) ≤ γ i (x -i , q i n )+6Nρε ≤ γ i (y )+ε+10Nρε.
This concludes the proof.

We henceforth assume that x is an ε-equilibrium such that |{i ∈ N ,x n > 0}| ≤ 1 and kx n -ck < ε for each n.W ea l s ot a k eε > 0 sufficiently small to allow various inequalities to hold.

L em m a 7 One has

1. P x (t<+∞) ≥ 1 -ε. 2. γ i (x ) ≥1 -ρε -ε for each i ∈ N ,a n d γ i (x) ≥ 5 4 -2ε for some i ∈ N . 3. P x (S t = {i}) ≥ 2
15 -ρε for each i.

P r oof. Let y i,n the strategy of player i that coincides with x i in the Þrst n stage and plays q i at stage n +1. The payoffs γ i (x -i , y i,n ) converge to γ i (x)+P x (t =+∞),a sn goes to inÞnity. Since γ i (x -i , y i,n ) ≤ γ i (x)+ε, claim 1 follows.

By quitting in the Þrst stage, player i obtains at least 1 -ρε.T h eÞrst part of claim 2 follows. Next, whenever the quitting set is a singleton, the payoffs to the players sum up to 5. Therefore, X i∈N γ i (x)=5P x (t<+∞) ≥ 5 -5ε.

In particular, there exists i such that γ i (x) ≥ 5 4 -5 4 ε. The second part of claim 2 follows.

We turn to the proof of 3. For notational convenience, set p i := P x (S t = {i}).N o t et h a t γ 1 (x)=p 1 +4p 2 and that analogous identities hold for players 2, 3 and 4. In particular, by 2, one has p 1 +4p 2 ≥ 1 -2ρε and 4p 1 + p 2 ≥ 1 -2ρε, which implies p 1 + p 2 ≥ 2 5 -4 5 ρε. By exchanging the roles of the players, one gets p 3 + p 4 ≥ 2 5 -ρε. Therefore, p 1 + p 2 ≤ 3 5 + ρε.T h u s ,(p 1 ,p 2 ) satisfy

p 1 +4p 2 ≥ 1 -2ρε, 4p 1 + p 2 ≥ 1 -2ρε,a n dp 1 + p 2 ≤ 3 5 + ρε. (10) 
Any solution to the system (10) satisÞes p 1 ,p 2 ≥ 2 15 -ρε. Given i ∈ N ,a n dn ∈ N ,l e t x i (n) be the strategy which plays c i up to stage n, and coincides with x i after stage n.L e ta l s op i n :=P x (t<n ,S t = {i}).T h e np i = lim n→∞ p i n .

L em m a 8 Assume that γ i (x n ) ≥ 1+ √ ε for some player i and every n ≤ n 0 . Then

γ i (x -i , x i (n)) ≥ γ i (x)+ √ εp i n , for every n ≤ n 0 .
P r oof. We proced by induction. Assume n =1.I fx i 1 =0,t h e nx i (1) = x i and p i 1 =0, and the result holds. Otherwise,

p i 1 =1-x i 1 , hence γ i (x)=p i 1 +(1-p i 1 )γ i (x -i , x i (1)). 
Then

γ i (x -i , x i (1)) = γ i (x)+ p i 1 1 -p i 1 (γ i (x) -1) ≥ γ i (x)+ √ εp i 1 .
Assume now that 1 <n≤ n 0 .I f x i n =0 ,t h e nx i (n)=x i (n -1) and p i n = p i n-1 . In particular, by the induction hypothesis,

γ i (x -i , x i (n)) = γ i (x -i , x i (n -1)) ≥ γ i (x)+ √ εp i n-1 = γ i (x)+ √ εp i n ,
and the result holds. If x i n > 0 then, applying the case n =1to the proÞle x n-1 we get

γ i (x -i n-1 , x i (n) n-1 ) ≥ γ i (x -i n-1 , x i (n -1) n-1 )+ √ ε(1 -x i n ).
Using the induction hypothesis we get:

γ (x -i , x i (n)) ≥ γ i (x -i , x i (n -1)) + P x -i ,c i (t ≥ n -1) √ ε(1 -x i n ) ≥ γ i (x)+ √ ε(p i n-1 + P x -i ,c i (t ≥ n -1)(1 -x i n )) ≥ γ i (x)+ √ εp i n .
We s ay that pl ayers 1 and 2 (resp. 3 and 4) are partners. The partner of player i is denoted by e i.

L em m a 9 Let a, b > 0 and let ε > 0 be sufficiently small. Let y be a bεequilibrium such that ||y n -c|| < ε for each n.L e ti ∈ N , and assume that γ i (y ) ≥ 1+a. Then there exists n 1 such that (i)

γ i (y n 1 ) < 1+ √ ε,( i i ) p i n 1 ≤ (b +1) √ ε, and (iii) a ≤ 3p õ n 1 + √ ε.
P r oof. For convenience, assume i =1 . Since p 1 ≥ 2/15 -3ε, Lemma 8 implies that there exists a stage n such that γ 1 (y n ) < 1+ √ ε.L e tn 1 be the Þrst such stage. In particular, (i) holds. Observe that γ 1 (y n 1 -1 ) ≥ 1+ √ ε, hence by Lemma 8 bε ≥ √ εp i n 1 -1 . Since the probability that player 1 quits in stage n 1 -1 is at most ε, (ii) follows.

We now prove (iii). Since γ 1 (y n 1 ) < 1+ √ ε one has 1+a ≤ γ 1 (y )=p End of pr oof of P r op osi t i on 2:

We assume w.l.o.g. that γ 1 (x) ≥ 5/4 -2ε. We will exhibit a stage n 2 such that x n 2 is a 8ε-equilibrium, and γ 3 (x n 2 ), γ 4 (x n 2 ) ≥ 1+1/12.B yC o r o l l a r y10, we get a contradiction.

Apply Lemma 9 to x and i =1, and denote n 1 the corresponding stage. Thus, p 
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 10 Let b>0 and a>3(b +2) √ ε.T h e r ei sn obε-equilibrium y such that :•| | y n -c|| < ε for each n• γ i (y ), γ õ(y )≥1+a for some i ∈ N . P r oof. Let y be such a bε-equilibrium, and assume w.l.o.g. i =1 . A p p l yL e m m a9t w i c e ,t op l a y e r s1 and 2.C a l ln 1 and n 2 the corresponding two stages, and assume w.l.o.g thatn 1 ≤ n 2 .T h u s ,o n e h a s b o t h p 2 n 1 ≥ a/3 -√ ε/3,a n dp 2 n 2 ≤ (b +1) √ ε.S i n c en 1 ≤ n 2 p 2 n 1 ≤ p 2 n 2 .T h u sa -√ ε ≤ 3(b +1) √ ε -a contradiction.

  

  1 n 1 +4p 2 n 1 +(1-p 1 n 1 -p 2 n 1 -p 3 n 1 -p 4 n 1 )γ 1 (y n 1 )

	≤ p 1 n 1 +4p 2 n 1 +(1-p 1 n 1 -p 2 n 1 )+ ≤ 1+3p 2 n 1 + √ ε,	√ ε
	and (iii) follows.	

  By Lemma 8, there exists a stageN 2 <n 1 with γ 2 (x N 2 ) < 1+ √ ε (otherwise, γ 2 (x n 1 ≥ γ 2 (x)+ 2 3 √ εε/3, contradicting the fact that x is an ε-equilibrium). We set n 2 =max{n ≤ n 1 , γ 2 (x n ) ≤ 1+ √ ε}.Since x is an ε-equilibrium, x n 2 is a 8ε-equilibrium.Our next goal is to prove that p 2 n 2 ≥ 1 12 -17 √ ε.I f n 2 = n 1 there is n o t h i n gt op r o v e . A s s u m en 2 <n 1 . This means that γ 2 (x n 1 ) > 1+ √ ε. By the deÞnition of n 2 , γ 2 (x k ) > 1+√ ε for every n 2 <k≤ n 1 .A p p l y Lemma 8 with y = x n 2 (thus y k = x n 2 +k ,f o re a c hk)a n dn = n 1 -n 2 . Since x n 2 is a 8ε-equilibrium, the conclusion, rephrased in terms of x,ist ha tP x (t<n 1 ,S t = {2}|t ≥ n 2 ) ≤ 8ε/We use this result to prove that γ 3 (x n 2 ), γ 4 (x n 2 ) ≥ 1+1/12. As previously, one has1 -2ρε ≤ γ 2 (x)=4p 1 n 2 + p 2 n 2 + By deÞnition of n 2 , γ 2 (x n 2 ) ≤ 1+ √ ε.S i n c ep 1 n 2 ≤ p 1 n 12) yields γ 3 (x n 2 ) ≥ 1+ 1 11 -ε 1/4 ≥ 1+ 1/12. Similarly, γ 4 (x n 2 ) ≥ 1+ 112 .S i n c ex n 2 is a 8ε-equilibrium, we get a contradiction to Lemma 10.

	and therefore p 2 n 2 ≥ 1 12 -9 √ ε.	√ ε =8	√ ε.I np a r t i c u l a rp 2 n 1 -p 2 n 2 ≤ 8 √ ε,
					Ã	1 -	i∈N X	p i n 2	!	γ 2 (x n 2 ).	(11)
	from (11)t h a tp 3 n 2 + p 4 n 2 ≤ (7 + 2ρε) √ ε +4ρε ≤ 8 On the other hand,	√ ε.	1 ≤ 2	√ ε, one deduces
	1 -2ρε ≤ γ 3 (x)=4p 4 n 2 + p 3 n 2 +	Ã	1 -	i X	p i n 2	!	γ 3 (x n 2 ).	(12)
	Since p 2 n 2 ≥ 1/12 -17	√ ε,(						
	1 n 1 ≤ 2 √ ε and p 2 n 1 ≥ 1 3 × 1 4 -ε. Since p 1 √ n 2 ≤ p 1 n 1 ≤ 2 √ ε,a n dp 1 ≥ 2 15 -ρε, one has	
	P 13 15	+ ρε +2 √ ε ≤	7 8	.

x (t<n 2 ) ≤ 1 -P (t ≥ n 2 and S t = {1}) ≤