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Introduction

Stopping games have been introduced by Dynkin [START_REF] Dynkin | Game variant of a problem on optimal stopping[END_REF] as a generalization of optimal stopping problems, and later used in several models in economics and management science, such as optimal equipment replacement, job search, consumer purchase behavior, research and development (see Mamer [START_REF] Mamer | Monotone stopping games[END_REF] and the references therein), and the analysis of strategic exit (see Ghemawat and Nalebuff [6] or Li [START_REF] Li | Equilibrium exit in stochastically declining industries[END_REF]).

The basic setting is as follows. The game is defined by two processes a and b, defined on a probability space (Ω, A, P), endowed with a filtration F. Two players are allowed to stop at any time. The payoff to player 1 is given by one of the two processes depending on who stopped first. Formally, the two players choose stopping times σ and τ and player 1 receives from player 2 the amount E [a σ 1 σ<τ + b τ 1 τ ≤σ,τ <+∞ ] . Much work has been devoted to the study of this zero-sum game, both in a discrete time and in a continuous time framework. In discrete time, Dynkin [START_REF] Dynkin | Game variant of a problem on optimal stopping[END_REF] proved the existence of the value under an assumption that at any stage only one of the two players is allowed to stop, and Neveu [START_REF] Neveu | Discrete-Parameter Martingales[END_REF] proved the existence of the value under the assumption a ≤ b. After those seminal contributions, most of the literature focused on continuous-time games, in the context of the general theory of stochastic processes. Bismut [START_REF] Bismut | Sur un problème de Dynkin[END_REF] proved the existence of the value under the assumption a ≤ b and an assumption known as Mokobodsky's hypothesis (in addition, several regularity assumptions are needed). The latter assumption was later removed, see e.g. Lepeltier and Maingueneau [START_REF] Lepeltier | Le jeu de Dynkin en théorie générale sans l'hypothèse de Mokobodsky[END_REF]. Some authors also worked in the diffusion case, see e.g. Cvitanić and Karatzas [START_REF] Cvitanić | Backward stochastic differential equations with reflection and Dynkin games[END_REF]. Finally, most work involves a symmetrized payoff function

γ(σ, τ ) = E [a σ 1 σ<τ + b τ 1 τ <σ + c σ 1 σ=τ <+∞ ] ,
where c is a third given process, under the assumption a ≤ c ≤ b. This list of references is by no means exhaustive.

Comparatively few studies deal with non-zero-sum (two-player) stopping games. For such games, a, b, c are R 2 -valued processes, and the i-th coordinate is the payoff to player i, see e.g. Mamer [START_REF] Mamer | Monotone stopping games[END_REF], Morimoto [START_REF] Morimoto | Non zero-sum discrete parameter stochastic games with stopping times[END_REF], Hideo [START_REF] Hideo | Non-zero-sum stopping games of symmetric Markov processes[END_REF], and Ohtsubo [START_REF] Ohtsubo | A non zero-sum extension of Dynkin's stopping problem[END_REF], [START_REF] Ohtsubo | On a discrete-time non-zero-sum Dynkin problem with monotonicity[END_REF].

When the players are restricted to stopping times, the value needs not exist in general, even if the processes are nonrandom and constant. For instance, for the stopping game in discrete time defined by a n = b n = 1 and c n = 0, one has

sup σ inf τ γ(σ, τ ) = 0 while inf τ sup σ γ(σ, τ ) = 1.
The purpose of this paper is to survey recent work on stopping games that aim at obtaining the existence of the value under no order conditions on the processes a, b and c, by suitably convexifying the set of strategies of the players.

The paper is organized as follows. Section 2 contains a brief discussion of the appropriate convexification. Sections 3 and 4 present results on zerosum games, respectively for discrete time and continuous time models. In both cases, the proof is sketched in the simple case of deterministic payoff functions. Finally, Section 5 discusses a result on two-player non-zero-sum stoping games with deterministic payoff functions.

Randomized stopping times

This section contains a brief discussion of the proper way of convexifying the set of stopping times. A more extensive treatment can be found in Rosenberg et al. [START_REF] Rosenberg | Stopping games with randomized strategies[END_REF], or Touzi and Vieille [START_REF] Touzi | Continuous-time Dynkin games with mixed strategies[END_REF]. We follow the logic of behavior strategies and enlarge the set of strategies by allowing a player to stop, at any stage, with positive probability.

In discrete time, this leads to the following notion. A strategy (of player 1) is a F-adapted process x = (x n ) with values in [0, 1]. x n is to be interpreted as the probability that player 1 stops the game at stage n, conditional on the game being still alive at that stage. In computing the payoff induced by a pair of strategies (x, y), one assumes that the randomizations performed by the players in the various stages are mutually independent, and independent from the payoff processes. Thus, a strategy x that corresponds to the stopping time σ is

x n = 0 on σ > n 1 on σ ≤ n
In continuous time, this leads to the following notion. A strategy (of player 1) is a right-continuous, non-decreasing adapted process (F t ) with F t ∈ [0, 1] for each t. Here, F t may be interpreted as the probability that player 1 will have stopped before time t (including t). Thus, the strategy that corresponds to a stopping time σ is the process (F t ) defined as F t = 1 σ≤t . The payoff associated with the two strategies (F t ) and (G t ) can be written as

γ(F, G) = E [0,∞) a(1 -G)dF + [0,∞) b(1 -F )dG + 0≤t<∞ c t ∆F t ∆G t ,
where ∆F t = F t -F t-is the jump of F at time t.

The alternative standard way of convexifying the set of stopping times is to follow the logic of mixed strategies and to define a strategy as, loosely speaking, a probability distribution over stopping times. The equivalence between mixed strategies and behavior strategies holds under fairly general assumptions, see Kuhn [START_REF] Kuhn | Extensive games and the problem of information[END_REF]. For a discussion specific to the case of stopping games and to the above notions, see Touzi and Vieille [START_REF] Touzi | Continuous-time Dynkin games with mixed strategies[END_REF].

Zero-Sum Games in Discrete Time

We here deal with zero-sum stopping games in discrete time. We first describe the setup and the result in a precise way, then give an overview of the proof.

Let (Ω, A, P) be a probability space, and (F n ) be a filtration over (Ω, A, P) (the information available at stage n). Let (a n ), (b n ), (c n ) be adapted processes, defined over (Ω, A, P). We assume

sup n |a n |, sup n |b n |, sup n |c n | ∈ L 1 (P). (1) 
By properly enlarging the probability space (Ω, A, P), one can assume w.l.o.g. that it supports a double sequence

(X n , Y n ) ∞ n=0 of iid variables, uniformly distributed over [0, 1], such that, for each n: (i) (X n , Y n ) is independent of the process (a k , b k , c k ) k ; (ii) (X n , Y n ) is F n+1 -measurable,
and independent of F n . X n and Y n are used by the players in their randomizations.

Define the stopping game as follows. A strategy for player 1 (resp. player 2) is a [0, 1]-valued adapted process x = (x n ) (resp. y = (y n )). Given strategies (x, y), define the stopping stages of players 1 and 2 by

θ 1 = inf{n ≥ 0, X n ≤ x n }, θ 2 = inf{n ≥ 0, Y n ≤ y n }, and set θ = min(θ 1 , θ 2 ). (2) 
Thus, θ is the stage at which the game stops. We set

r(x, y) = a θ 1 1 θ 1 <θ 2 + b θ 2 1 θ 2 <θ 1 + c θ 1 1 θ 1 =θ 2 <+∞ .
The payoff of the game is γ(x, y) = E(r(x, y)).

The game has a value

v ∈ R if v = sup x inf y γ(x, y) = inf y sup x γ(x, y).
It is convenient to introduce discounted payoffs, as in Yasuda [START_REF] Yasuda | On a randomized strategy in Neveu's stopping problem[END_REF]. For λ ∈ (0, 1], the λ-discounted evaluation is given by

γ λ (x, y) = λE (1 -λ) θ+1 r(x, y) . (3) 
The game has a λ-discounted value v λ ∈ R if

v λ = sup x inf y γ λ (x, y) = inf y sup x γ λ (x, y).
Yasuda [START_REF] Yasuda | On a randomized strategy in Neveu's stopping problem[END_REF] proved the existence of the discounted value v λ , by adapting Shapley's [START_REF] Shapley | Stochastic games[END_REF] argument.

Theorem 1 (Rosenberg, Solan and Vieille, [START_REF] Rosenberg | Stopping games with randomized strategies[END_REF]) Every stopping game such that (1) holds has a value v. Moreover, v = lim λ→0 v λ .

We sketch below the proof in the deterministic case; that is, the payoff at each stage n depends only on n. Thus, a n , b n , c n are real numbers. The proof for the general case builds upon the ideas described below.

We denote by G n the game that starts at stage n. G n is similar to the original game, but players are restricted to use strategies that stop before stage n with probability 0. In particular, G 0 coincides with G.

We denote by v n (λ) the λ-discounted value of G n , for each n ∈ N and λ ∈ (0, 1]. Define v n (0) = lim sup λ→0 v n (λ). We shall prove that sup x inf y γ(x, y) ≥ v 0 (0). By exchanging the roles of the two players, one immediately deduces

inf y sup x γ(x, y) ≤ lim inf λ→0 v 0 (λ),
which implies both conclusions of the Theorem, since sup x inf y γ(x, y) ≤ inf y sup x γ(x, y).

As usual, v n (λ) satisfies a recursive equation (dynamic programming principle), that here takes the form

v n (λ) = (1-λ) sup x∈[0,1] inf y∈[0,1] {(1 -x)(1 -y) v n+1 (λ) + x(1 -y) a n + y(1 -x) b n + xy c n } (4)
By possibly taking a subsequence (λ p ) that converges to zero, we may assume that v n (0) = lim λ→0 v n (λ). We let x n (λ) achieve the supremum in (4), and let x n (0) denote any limit point of (x n (λ)) as λ goes to zero. Thus, one has for each y ∈ [0, 1] and every λ ≥ 0,

(1 -λ)(x n (λ)y v n+1 (λ) + x n (λ)(1 -y) a n + (1 -y)x n (λ) b n +(1 -x n (λ))(1 -y) c n ) ≥ v n (λ). ( 5 
)
This can be rephrased by introducing the process ( v n (λ)) n defined, for λ ≥ 0, by

v n (λ) = v n (λ) n ≤ θ r θ n > θ,
where r θ is equal to a θ , b θ or c θ depending on whether θ 1 < θ 2 , θ 1 > θ 2 or θ 1 = θ 2 < +∞. Note that v n (λ) depends on (x, y), through the value of θ. Though (v n (λ)) is a sequence of numbers, ( v n (λ)) is a process, the randomness being caused by the random choices of the players. Whenever useful, we shall write v x,y n (λ) to emphasize which strategies are used. Inequality (5) can be rephrased as follows: for every choice of strategy y, and for each λ ≥ 0, the process ((1 -λ) min(n,θ) v n (λ)) is a submartingale, provided that player 1 uses the strategy x λ := (x n (λ)).

In particular, the process ( v n (0)) is a submartingale under the pair of strategies (x 0 , 0), where 0 is the strategy of player 2 that never stops. Thus, it converges, P-a.s., to some random variable v ∞ .

We now split the discussion in two parts. Assume first that, under the pair (x 0 , 0), θ is P-a.s. finite. In that case, θ is also P-a.s. finite for (x 0 , y), whatever be y. Thus, for each y, the limit v ∞ coincides with r θ . The submartingale property of v n (0) then implies that γ(x

0 , y) = E [ v x 0 ,y ∞ ] ≥ v 0 (0). Since y is arbitrary, inf y γ(x 0 , y) ≥ v 0 (0).
Assume now that θ = +∞ with positive probability, and let ε > 0 be given. On the event {θ = +∞},

v n (0) = v n (0) for each n ∈ N. Therefore, the sequence of numbers v n (0) is convergent, say to v ∞ . If v ∞ ≤ 2ε, γ(x 0 , y) = E [r θ 1 θ<+∞ ] ≥ E [ v x 0 ,y ∞ ] -ε ≥ v 0 (0) -2ε, hence inf y γ(x 0 , y) ≥ v 0 (0) -2ε.
The tricky case is when v ∞ > 2ε. We choose N ∈ N such that |v n (0) -v ∞ | ≤ ε for each n ≥ N . We define a strategy of player 1 as follows. We first construct two sequences (λ p , s p ) (possibly of finite length) by the following recursive device:

• Choose λ 1 ∈ (0, 1] such that v N (λ 1 ) > v N (0) -ε 2 ; set s 1 = inf n ≥ N, v n (λ 1 ) ≤ ε 2 . • For p ≥ 1, choose λ p+1 ∈ (0, 1] such that v sp (λ p+1 ) ≥ v sp (0) -ε 2 and set s p+1 = inf {n ≥ s p , v n (λ p+1 ) ≤ ε 2 }.
We let x be the strategy that coincides with x 0 up to stage s 0 = N , and with x λ p+1 from stage s p up to stage s p+1 . Consider what may happen between the two stages s p and s p+1 , assuming that the game was not stopped before stage s p . Whatever be the strategy y used by player 2, the process (1 -λ p+1 ) min(n,θ) v n (λ p+1 ) is a submartingale between s p and s p+1 . Thus, v n (λ p+1 ) increases on average by a factor of following, prior to min(θ, s p+1 ). Since v n (λ p+1 ) ≥ ε -ε 2 for n ≤ min(θ, s p+1 ) and all quantities are bounded, it must be that min(θ, s p+1 ) is finite.

Since v s p+1 (λ p+1 ) ≤ ε 2 , the probability that θ < s p+1 (conditioned on θ ≥ s p ) is bounded away from zero, and the payoff to player 1, conditioned on θ ≤ s p+1 , is at least

v sp (λ p+1 ) ≥ v ∞ -ε -ε 2 .
These observations imply that θ < +∞ P-a.s. under (x, y), for each y, and γ(x, y) ≥ v ∞ -2ε ≥ v N -2ε. Since v n (0) is a submartingale under (x 0 , y), this implies that γ(x, y) ≥ v 0 (0) -2ε.

Zero-Sum Games in Continuous Time

We deal here with zero-sum stopping games in continuous time and with finite horizon. Let (Ω, F, P) be a complete probability space, and T > 0 a fixed terminal time. Let a = {a t , 0 ≤ t ≤ T }, b = {b t , 0 ≤ t ≤ T } and c = {c t , 0 ≤ t ≤ T } be real-valued processes, satisfying the integrability condition

E sup t |a t | + sup t |b t | + sup t |c t | < +∞ , (6) 
and we denote by F the P-augmentation of the filtration generated by the processes a, b and c. We denote by V + the set of adapted, right-continuous, non-decreasing processes, with values in [0, 1]. For F, G ∈ V + , we set

γ(F, G) = E [0,∞) a(1 -G)dF + [0,∞) b(1 -F )dG + 0≤t<∞ c t ∆F t ∆G t .
Theorem 2 (Touzi-Vieille [START_REF] Touzi | Continuous-time Dynkin games with mixed strategies[END_REF]) Assume that: (i) (a, b, c) satisfy the integrability condition ( 6), (ii) the game has a finite horizon T , (iii) a and b are (càdlàg) semimartingales with trajectories continuous at T, (iv) c ≤ b. Then sup

F ∈V + inf G∈V + γ(F, G) = inf G∈V + sup F ∈V + γ(F, G),
i.e., the stopping game has a value .

The basic idea is to apply Sion [START_REF] Sion | On general minimax theorems[END_REF] minmax Theorem to the payoff function γ :

V + × V + → R. Define S = (F t ), E T 0 F 2 t dt < +∞ .
The set S is a Hilbert space when endowed with the scalar product E T 0 F t G t dt , and V + is a subset of S, compact for the weak topology σ(S, S). However, Sion Theorem does not apply directly since the payoff function γ does not have enough continuity properties.

This difficulty is circumvented by applying Sion Theorem to restricted strategy spaces. Define V 1 = (F t ) ∈ V + , (F t ) has continuous trajectories, P-a.s. and

V 2 = (G t ) ∈ V + , G T = 1 on {b T < 0 < a T } and ∆G T = 0 on {b T > 0} . and let S = (F t ), E T 0 F 2 t dt + F 2 T < +∞ .
The space S is a Hilbert space when endowed with the scalar product E T 0 F t G t dt + F T G T . One can check that V 2 is compact for the weak topology σ(S, S). Moreover, γ is separately continuous on V 1 × V 2 for the strong topology. Hence, by Sion's Theorem sup

V 1 inf V 2 γ(F, G) = inf V 2 sup V 1 γ(F, G).
The restriction on player 1's strategies is imposed in order to have continuity of γ. The restriction on player 2's strategies is imposed in such a way that restricting the strategy spaces to V 1 and V 2 respectively entail no loss for the players:

sup V 1 inf V 2 γ(F, G) = sup V 1 inf V + γ(F, G), and inf V 2 sup V 1 γ(F, G) = inf V 2 sup V + γ(F, G). (7) 
Let us discuss these two equalities in the non-random case. Thus, a, b and c are right-continuous functions defined on [0, T ], and continuous at T . The proof in the general case is obtained by elaborating upon the ideas that follow.

The first equality is immediate: let

(F t ) ∈ V 1 , and (G t ) ∈ V + be given. Thus, F : [0, T ] → [0, 1] is a continuous, non-decreasing function, while G : [0, T ] → [0, 1] is a right-continuous, non-decreasing function. Let G : [0, T ] → [0, 1]
be the function that agrees with G on [0, T ), and where G T is equal to G T -or to 1 depending whether b T > 0 or b T ≤ 0. Plainly, G belongs to V 2 . On the other hand,

γ(F, G) -γ(F, G) = (1 -F T )b T (1 -G T ) if Y T ≤ 0 -(1 -F T )b T ∆G T if Y T > 0
In both cases, it is non-positive, which establishes the first equality.

As for the second equality in [START_REF] Hideo | Non-zero-sum stopping games of symmetric Markov processes[END_REF], let G ∈ V 2 and F ∈ V + be given. By using an argument similar to the one of the previous paragraph, we may assume that F is continuous at T in case a T > 0, b T ≥ 0. Let (F n ) be a sequence of continuous non-decreasing functions such that F n t → F t-for each t ∈ [0, T ]. Using the assumption c ≤ b, one can check that lim sup γ(F n , G) ≥ γ(F, G), which yields the second equality.

Non Zero-Sum Games in Discrete Time

We conclude by presenting a result on two-player non zero-sum stopping games in discrete time. We show how a simple application of Ramsey Theorem, combined with a result of Flesch et al [START_REF] Flesch | Recursive repeated games with absorbing states[END_REF], imply the existence of an ε-equilibrium in the deterministic case.

We let here (a n ), (b n ) and (c n ) be three bounded sequences in R 2 , and let ρ be a uniform bound on the payoffs. The setup of Section 3 then reduces to the following. A strategy of player 1 is a sequence x = (x n ) in [0, 1], where x n is the probability that player 1 will choose to stop in stage n, if the game was not stopped before.

The payoff of the game is defined to be γ(x, y) = E [r(x, y)] ,

as in Section 3, except that here γ(x, y) ∈ R 2 .

Theorem 3 (Shmaya, Solan and Vieille, [START_REF] Shmaya | An application of Ramsey theorem to stopping games[END_REF]) For each ε > 0, the stopping game has an ε-equilibrium (x * , y * ); that is, a pair of strategies that satisfies: γ 1 (x, y * ) ≤ γ 1 (x * , y * ) + ε and γ 2 (x * , y) ≤ γ 2 (x * , y * ) + ε for each x, y.

Note that if payoffs are not uniformly bounded, an ε-equilibrium needs not exist. (as a counter example, take the game defined by a i n = b i n = n -1, c i n = n -2 for every i = 1, 2, and every n ∈ N). Moreover, even when payoffs are bounded a 0-equilibrium needs not exist (e.g. a i n = b i n = n/(n+1), c i n = (n -1)/n for every i = 1, 2, and every n ∈ N).

Fix ε > 0 once and for all, and an ε-discretization Z of the set [-ρ, ρ] 2 ; that is, Z is a finite set such that for every u ∈ [-ρ, ρ] 2 there is z ∈ Z with z -u < ε.

For every two positive integers k < l we define a periodic stopping game G(k, l) as follows:

a n (k, l) = a k+(n mod l) , b n (k, l) = b k+(n mod l) and c n (k, l) = c k+(n mod l)
This is "the game that starts at stage k and restarts at stage l." We denote by γ k,l (x, y) the payoff function in the game G(k, l).

The game G(k, l) may be analyzed as a particular stochastic game Γ(k, l) with absorbing states. To see this, assume for example k = 0 and l = 2, and consider the stochastic game Γ(0, 2) described by the matrix

b 0 * b 1 * a 0 * c 0 * a 0 * a 1 * b 0 * c 1 *
In this game player 1 chooses a row and player 2 chooses a column. The first line corresponds to the pure strategy never stop, the second and third ones to the pure strategies stop in stage 0 and stop in stage 1. The columns are to be interpreted symmetrically for player 2. The meaning of an asterisked entry is that the game moves to an absorbing state (i.e., ends) as soon as such an entry is played.

Thus, each stage of Γ(0, 2) corresponds to two stages (a period) of G(0, 2). Using Flesch et al. [START_REF] Flesch | Recursive repeated games with absorbing states[END_REF], the game Γ(k, l) has a stationary ε-equilibrium, or equivalently, for each ε > 0, the game G(k, l) has a periodic ε-equilibrium (x(k, l), y(k, l)), with period l -k.

For each k < l, we choose z(k, l) ∈ Z such that γ(x(k, l), y(k, l)) -z(k, l) < ε.

For every pair of non-negative integers we attached an element in Z -a color. By Ramsey Theorem (see, e.g., Bollobás [START_REF] Bollobás | Modern graph theory[END_REF]) there is an infinite set K ⊆ N ∪ {0} and z ∈ Z such that z(k, l) = z for every k, l ∈ K, k < l.

In particular, there exists an increasing sequence of non-negative integers

k 1 < k 2 < • • • such that for every j ∈ N, z(k j , k j+1 ) = z.
We define a profile (x, y) from stage k 1 on by concatenating the profiles (x(k i , k i+1 ), y(k i , k i+1 )): (x, y) coincides with (x(k i , k i+1 ), y(k i , k i+1 )) from stage k i up to stage k i+1 -1. To complete the construction before stage k 1 , we recall that every finite-stage game has an equilibrium. The profile (x, y) coincides between stages 0 and k 1 -1 with an equilibrium in the k 1 -stage game, whose payoffs are (a n , b n , c n ) n<k 1 if the play is stopped prior to stage k 1 , and is z otherwise. There is no difficulty in proving that (x, y) is an ε-equilibrium of the stopping game, starting from stage k 1 .1 Moreover, the expected payoff, conditioned that the game was not stopped before stage k 1 , is, up to ε, z. It follows that (x, y) is an ε-equilibrium of the stopping game.

Extensions to more than two players are limited. We actually proved that if every periodic deterministic game admits an ε-equilibrium, then every nonperiodic deterministic game admits an ε-equilibrium. Using the technique of Solan [START_REF] Solan | Three-player absorbing games[END_REF] instead of that of Flesch et al [START_REF] Flesch | Recursive repeated games with absorbing states[END_REF], one can prove that every threeplayer periodic deterministic game admits an ε-equilibrium (though it needs not be periodic). One can then prove that every three-player deterministic stopping game admits an ε-equilibrium.

Unfortunately, it is currently not known whether every n-player periodic deterministic stopping game admits an ε-equilibrium, for n ≥ 4. For more details, see Solan and Vieille [START_REF] Solan | Quitting games[END_REF].

To generalize this proof to general two-player stopping games, one needs to generalize Ramsey Theorem to a stochastic setup, and to show that a concatenation of ε-equilibria in periodic non deterministic games yields an ε ′ -equilibrium, for some ε ′ > 0 that goes to 0 as ε goes to 0. Whereas Ramsey Theorem can be generalized to a stochastic setup, it is not clear yet how to achieve the second goal.

1-λ p+1 from one stage to the

This is true, provided the periodic profiles in Γ(k, l) are chosen to satisfy an additionnal property: the probability of absorption in each period is bounded away from 0. We do not elaborate here on this point.