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Geometry, Correlated Equilibria and Zero-Sum Games
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Résumé: Ce papier porte a la fois sur la géométrie des équilibres de Nash et des
équilibres corrélés et sur une généralisation des jeux a sommes nulles fondée
sur les équilibres corrélés. L'ensemble des distributions d'équilibres corrélés
de n'importe quel jeu fini est un polytope, qui contient les équilibres de Nash.
Je caractérise la classe des jeux tels que ce polytope (s'il ne se réduit pas a un
singleton) contienne un équilibre de Nash dans son intérieur relatif. Bien que
cette classe de jeux ne soit pas définie par une propriété d'antagonisme entre
les joueurs, je montre qu'elle inclut et qu'elle généralise la classe des jeux a
deux joueurs et a somme nulle.

Abstract: This paper is concerned both with the comparative geometry of Nash and
correlated equilibria, and with a generalization of zero-sum games based on
correlated equilibria. The set of correlated equilibrium distributions of any
finite game in strategic form is a polytope, which contains the Nash equilibria.
I characterize the class of games such that this polytope (if not a singleton)
contains a Nash equilibrium in its relative interior. This class of games,
though not defined by some antagonistic property, is shown to include and
generalize two-player zero-sum games.
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1 Introduction

The correlated equilibrium concept (Aumann, [2]) generalizes the Nash equilibrium
concept to situations where players may condition their behavior on payoff-irrelevant
observations made before ptayAumann showed that correlated equilibria are some-
times more efficient or more reasonable than Nash equilibria [2], and that playing a
correlated equilibrium is the natural expression of Bayesian rationality [3]. The cor-
related equilibrium concept is also well suited to the study of biological conflicts in
which the agents may have different “roles” [6] and has been implicitly used in theo-
retical biology ever since Maynard Smith and Parker [16].

The geometry of correlated equilibria is relatively simple. Indeed, the set of cor-
related equilibrium distributions of any finite game is a polytope and existence of cor-
related equilibria can actually be proved by linear programming [14]. It follows that,
when the entries of the payoff matrices are rational, a correlated equilibrium with, say,
maximum payoff-sum may be computed in polynomial time [10]. In sharp contrast, the
set of Nash equilibria of a finite game may be disconnected, its connected components
need not be convex, and computing a Nash equilibrium with maximum payoff-sum is
NP hard, even in two-player games [10].

In the last decade, the comparative geometry of Nash and correlated equilibria has
been further investigated. It has been found that, in two-player games, extreme Nash
equilibria are extreme points of the polytope of correlated equilibrium distributions
([7], [11]), which we denote by’. More recently, Nau et al [19] showed that in any
n-playergamed, all Nash equilibria belong to the relative boundary(gfunlessG
satisfies a rather restrictive condition. More precisely, let us say that a pure strategy is
coherentf it has positive probability in some correlated equilibrium distribution. Nau
et al [19] showed that if a Nash equilibrium lies in the relative interioCothenG
satisfies the following conditiorin any correlated equilibrium distribution, all the in-
centive constraints stipulating that a player has no incentive to “deviate” to a coherent
strategy are bindin§(condition A).

This shows that the class of games with a Nash equilibrium in the relative interior
of C is “small” but do not provide a precise characterization of this class of games.
My first result is such a characterization. More precisely, let us call “prebinding” the
games that satisfy the above condition A. | show thaontains a Nash equilibrium in
its relative interior if and only if7 is prebinding and’ is not a singleton.

My second result is that, though they are not defined by requiring antagonism
between the players, prebinding games include and generalize two-player zero-sum
games. For instance, in two-player prebinding games, Nash equilibria are exchange-
able and any correlated equilibrium payoff is a Nash equilibrium payoff. Prebind-
ing games actually appear to be the first generalization of two-player zero-sum games
whose definition is entirely based on correlated equilibria.

This paper is thus at the intersection of two literatures: the literature that studies
the geometry of Nash and correlated equilibria and the literature that studies classes
of two-player games which, in some sense, generalize zero-sum games (e.g. [1], [9],

1A formal definition of correlated equilibrium distributions will be given in the next section.
2A more formal statement and a proof of this result will be given in section 3.



[15], [17], [21]). Moreover, many proofs are based on dual reduction ([18], [23]): a
technigue which, to my knowledge, has never been applied. This paper thus also shows
how dual reduction may be used to investigate the geometry of correlated equilibria.

The remaining of the paper is organized as follow: the next section is devoted to
basic notations and definitions. In section 3, we define two classes of games: “bind-
ing” and “prebinding” games. The link between these two classes of games is studied
in section 4. The class of games with a Nash equilibrium in the relative interior of the
correlated equilibrium polytope is characterized in section 5. The last section shows
that two-player prebinding games generalize two-player zero-sum games. Finally, ele-
ments of dual reduction are recalled in appendix A.

2 Notations

The analysis in this paper is restricted to finite games in strategic forms(G Let
{I, (S:)ier, (u;)icr } denote afinite game in strategic forthis the nonempty finite set
of players,S; the nonempty finite set of pure strategies of playandu,; : x;c;S; — R
the utility function of playeri. The set of (pure) strategy profiles§s= x;c1.5;; the
set of strategy profiles for the players other thanS_; = x;c;—_;S;. Pure strategies
of playeri (resp. strategy profiles; strategy profiles of the players other ¢hare
denoteds; or t; (resp. s; s—;). Similarly, mixed strategy of player (resp. mixed
strategy profiles, mixed strategy profiles of the players other thare denoted; or
7; (resp.o; o_;). Thus, we may writét;, s_;) (resp.(7;,o—_;)) to denote the strategy
(resp. mixed strategy) profile that differs franfresp.o) only in that itsi—component
ist; (resp.7;). For any finite sek, A(X) denotes the set of probability distributions
overX.. Finally, N denotes the cardinal ¢f.

2.1 Correlated equilibrium distribution

The setA(S) of probability distributions ovefS is an N — 1 dimensional simplex,
henceforth calledhe simplex A correlated strategyf the players in/ is an element
of the simplex. Thug = (u(s))ses is a correlated strategy if:

(nonnegativity constraints) u(s) >0 VseS @)
(normalization constraint) Z u(s) =1 (2
sES

For (i,s;,t;) € I x S; x S;, let hy, ¢, denote the linear form ofR® which maps
x = (2(s))ses tO

hoa (@)= > (s)uils) — wi(ti, s_;)]

S_;ES_;

A correlated strategy is acorrelated equilibrium distributiori2] (abbreviated occa-
sionally in c.e.d.) if:

(incentive constraints) hg, 4, (1) >0 Vie I, Vs, € S;,Vt, €5, 3)



Letu € A(S),i € T ands; € S;. If s; has positive probability inu, let u(.|s;) €
A(S_;) be the correlated strategy givenof the players other than

11(s)

Vs —is P(8—i|8i) = —/——5—
s_; € S_i, mu(s—i|si) )

wherep(s; x S_;) = Y pu(s)

s_;€S_;

The incentive constraints (3) mean that, for any playand any pure strategy; of
playeri, eithers; has zero probability ip (in which caséh, ;, (1) = 0 for all ¢; in \S;)
or s; is a best response {q.|s;). A possible interpretation is as follow: assume that
before play a mediator (“Nature”, some device,...) chooses a strategy profit&
probability ;:(s) and privately “recommendss; to player:. In this framework, the
incentive constraints (3) stipulate that if all the players bigilow the recommenda-
tions of the mediator, then playéhas no incentives to deviate frospto some other
strategyt;.

Since conditions (1), (2) and (3) are all linear, the set of correlated equilibrium
distributions is a polytope, which we denote @y

Notations and vocabulary. Lets;, € S;, s € Sandu € A(S). The strategy;
(resp. strategy profilg) is playedin the correlated strategyif w(s; x S—;) > 0 (resp.
wu(s) > 0). Furthermore, the average payoff of playén n is

wi() = 3 pls)ui(s)

3 Definitions and remarks

3.1 Binding Games

Definition 3.1 A game is binding if in any correlated equilibrium distribution all the
incentive constraints are binding. Formally,

Vu e C\Viel,Vs; € 5;,Vt; € Si,hsi,ti(u) =0 (4)

Leti be inl ands;,t; in S;. Following Myerson [18], let us say that jeopardizes

s if hg, 4;(1) = 0 forall pin C. Thatis, if wheneves; is played in a correlated
equilibrium distributionu, ¢; is an alternative best responsep|s;). The concept of
jeopardization is at the heart of the theory of dual reduction [18], [23]. Dual reduction,
in turn, will be a key-tool to prove some of the main results of this article. It is thus
useful to rephrase definition 3.1 in terms of jeopardization:

Alternate definition 3.2 A game is binding if for alt in I any pure strategy of player
i jeopardizes all his pure strategies.

(Indeed the above condition is exactly:
Vi € I,th € Si,Vsi € SZ,V,M S C, hsi,ti(:u’) =0

which is equivalent to (4))



Example 3.3

1,-1 0,0 1,-1 0,0 0,—-1
Gl_(o,o 1,1) Gz‘(o,o 1,-1 0,1)
The game; (i.e. Matching Pennies) is binding. Indeed; has a unique correlated
equilibrium distribution: the Nash equilibriumin which both players playl/2,1/2).
Therefore, definition 3.1 boils down t6:, is binding if, ino, all incentive constraints
are binding. But is a completely mixed Nash equilibrium. Thereforegirall incen-
tive constraints are indeed binding and definition 3.1 is checked.

In contrast 5 is not binding. Indeed, there is still a unique correlated equilibrium
distribution: the Nash equilibriura in which the row player playsﬁ%, %) and the
column player(%, %, 0). But againstr, player2 has a strict incentive not to play her
third strategy.

3.2 Prebinding Games

Following Nau et al [19], let us define a strategy to be coherent if it is played in some
correlated equilibrium. Formally,

Definition 3.4 Leti be inI ands; in S;. The strateg; is coherent if there exists a
correlated equilibrium distribution:. such thatu(s; x S_;) is positive.

We denote by5¢ the set of coherent strategies of playewWe can now define prebind-
ing games:

Definition 3.5 A game isprebindingif in any correlated equilibrium distribution all
the incentive constraints stipulating not to “deviate” to a coherent strategy are binding.
That is,

Y e C,Vie I, Vs; € 8;,Vt; € S, hs, +,(0) =0

Alternate definition 3.6 A game is prebinding if every coherent strategy of every player
jeopardizes all his other pure strategies.

(Definitions 3.5 and 3.6 are equivalent, just as definitions 3.1 and 3.2). Note that if
is not coherent, theh,, ;. (x) = 0 for all i in C and all¢; in S;. Therefore, definition
3.5 boils down to:

Alternate definition 3.7 A game isprebindingif:
Yu e C,Vi e I,Vs; € S7,Vt; € S5, hs, ¢, (n) =0

Example 3.8 Any game with a unique correlated equilibrium distribution is prebind-
ing. For instance, the gam&s, and G- of example 3.3 are prebinding.

Indeed, ifG has a unique correlated equilibrium distributiontheno is necessarily a
Nash equilibrium. Furthermore, the set of coherent strategies of playsimply the

support ofg;. Therefore, definition 3.7 boils down to: for any playen I and any

pure strategies; andt; in the support ob;, u;(s;,0—;) = u;(t;, o—;). This condition

is satisfied since is a Nash equilibrium. Therefoi& is prebinding.



Example 3.9 Any two-player zero-sum game is prebinding (see section 6 for a proof).

For an example of a three-player binding and prebinding game, in which, moreover,
extreme Nash equilibria are not extreme correlated equilibria, see Nau et al [19].

3.3 Remarks

First, in the definitions of binding and prebinding games, the utility functions only
intervene via the best-response correspondences, so that:

Remark 3.10 If G is binding (resp. prebinding) then any game that is best-response
equivalenf[21] to G is binding (resp. prebinding).

Second, there is a difference betweemerelated equilibriummand acorrelated equilib-

rium distribution*->. We chose to phrase definitions 3.1 and 3.5 in terms of correlated
equilibrium distributions. Equivalently, we could have defined binding and prebinding
games in terms of correlated equilibria. For instance, the reader may check that: a
game is binding if and only if in all correlated equilibria, all incentive constraints are
binding.

4 Links between binding and prebinding games

In this section we study the link between binding and prebinding games. In so doing,
we establish a lemma which will prove crucial to the next section. We first need to
introduce the gamé&:“ obtained fromG by restricting the players to their coherent
strategies:

G® = {1,(SF)ier, (wi)ier}'

For instance, in example 3.8;5 = G; andG$ = G;. We denote by5¢ = X;¢;S¢
the set of strategy profiles 6f¢ and byC* C A(S¢) the set of correlated equilibrium
distributions ofG¢. Since any correlated equilibrium distribution 6f has support
in S¢, the set of correlated equilibrium distributions@fmay be seen as a subset of
A(S€). We then have:

3Two games with the same sets of players and strategidsestaesponse equivalefatl] if they have
the same best-response correspondences.

4Foralliin I, let M; be afinite set, and 16/ = x ;<7 M;. Letv € A(M). Consider the extended game
in which: first, a pointn = (m;);c is drawn at random according to the probabilitandm, is privately
announced to player for all z; second,G is played (In this extended game, players can condition their
behavior inG on their private information. A pure strategy of playes thus a mapping from/; to .S;.).
A correlated equilibrium of7 is a Nash equilibrium of such an extended game. A correlated equilibrium
distribution is a probability distribution induced shby some correlated equilibrium (this definition of c.e.d.
may be shown to be equivalent to the one of section 2).

SFollowing Nau et al [19], | callC' the correlated equilibrium polytope This is abusive, sinc€' is
actually the polytope of correlated equilibriwsiistributions

6In the sense that in all correlated equilibria, for any messagaeceived by playei with positive
probability, any strategy of playeris a best response to the conditional strategy of the other players given
mj.

"To be precise, the utility functions i are the utility functionsnducedon S¢ = X155 by the
utility functionsw; of the original game.



Remark 4.1 Any correlated equilibrium distribution aF is a correlated equilibrium
distribution of G¢. That is,C' C C°. Furthermore, the inclusion may be strict.

The first assertion is straightforward : ifis in C, thenh, ;,(x) > 0, forall i in I

and all pure strategies andt¢; of playeri. Therefore, a fortiorij, ¢, (1) > 0 for

all 7 in I and allcoherentpure strategies of player that is, p is in C¢. The fact

that the inclusion may be strict is less intuitive. Indeed, at first glance, it seems that
eliminating strategies that are never played in correlated equilibria should not affect the
set of correlated equilibrium distributions. But in the following example this intuition
fails:

Example 4.2
S22t
S92 tg
st 1,1 0,1
fo01 1.0 s 1,1 0,1

Let G denote the left game. Théif is the game on the right In both games Nash
equilibrium and correlated equilibrium distributions coincide. @Gf any correlated
strategy is, trivially, a Nash equilibrium distribution; in contrast, a mixed strategy
profile o is a Nash equilibrium if and only #;(¢;) = 0 andoy(t2) < 1/2. Thus,

C={peA(S): p(ty x S2) =0andpu(s) = pu(s1,t2)} & C°

Finally note thatG is prebinding. Therefore the inclusiart C C¢ may be strict even
if we restrict our attention to prebinding games.

We now link binding and prebinding games:

Proposition 4.3 (a) A gameG is prebinding if and only if=¢ is binding; (b) a game
is binding if and only if it is prebinding and every pure strategy of every player is
coherent.

We first need a lemma:

Lemma 4.4 (a) If G is binding, thenG has a completely mixed Nash equilibrium. (b)
If G is prebinding, thertz has a Nash equilibriure such that:o has supportS¢; in o,
all players have a strict incentive not to deviate from coherent to incoherent strategies.
Formally,
Vs € S%a(s) >0 (5)

Vi e I,Vs; € S;,Vt; € S, — S5, hs, 1,(0) >0 (6)

(For prebinding games, condition (6) may be rephrased as follow: for every player
and every pure strategy of playeri, s; is a best response ta_; if and only if s; is
coherent.)

8The strategyt; cannot be played in a c.e.d. for the following reasonu(if1, t2) > 0 thenua(u) is
less than, i.e. less than whatz guarantees, hengecannot be an equilibrium. But ji(¢1,t2) = 0 then
player1 cannot be incited to plag .



Proof. We only prove the second assertion. The proof of the first assertion is similar
and simpler. The proof is based on dual reduction. The reader unfamiliar with dual
reduction is advised to first go through appendix A.

(i) Defineg(a, s) as in equation (12) of appendix A. By [20, proposition 2] and by
convexity of the set of dual vectors there exists a dual vectauch that:

Vs e S, [u(s) =0forall pin C = g(a,s) > 0] 7)

We may assume: full (otherwise, take a strictly convex combination®fand some
full dual vector).

(ii) In the full dual reduction induced by, as in all full dual reductions, all strate-
gies ofS; — S¢ are eliminated [23, proposition 5.13]; furthermore, since the coherent
strategies of playerjeopardize each other, they must either all be eliminated or all be
grouped together (see [23, section 4]); since some strategies of playest remain
in the reduced game, the first possibility is ruled out; therefore, all coherent strategies
of player: are grouped in a single mixed strategly with supportSy. In the reduced
game, the resulting strategy profile = (0;);cr is the only strategy profile, hence
trivially a Nash equilibrium. By [23, proposition 5.7], this implies thais a Nash
equilibrium of G. Moreover,o has supporf©.

(i) Let 7 € I and lets; (resp.t;) be a coherent (resp. incoherent) pure strategy of
playeri. LetT = (t;,0_;) € A(S). Sincet; is incoherentu(t) = 0 for all  in C and
allt_; in S_;. Therefore, by (7),

z o_i(t—i)g(a,t) >0

t_,€S8_;
Sinceo; is a-invariant for allj # 4, the above boils down to:
ui(ay xti,0-;) —ui(ti,0-;) >0

Thereforet; is not a best response da ;. Sinceo is a Nash equilibrium and;(s;) >
0, s; is a strictly better response thanto o_;. As o;(s;) > 0 this impliesh, ;, (o) >
0. m

By lemma 4.4, binding games have a completely mixed Nash equilibrium, hence:

Corollary 4.5 If G is binding, then every pure strategy of every player is coherent.
Thatis,G = G°.

We can now prove proposition 4.3:
Proof of (a) The game&Z° is binding if and only if

Vu € Chg, 1, (p) =0 Viel, Vs, € S7,Vt; € S (8)
Similarly, by definition 3.7 is prebinding if and only if

Vu € Cohs, 1, (n) =0 VielVs; €57Vt € 57 9)



SinceC c C° (remark 4.1), (8) implies (9).° We show that (9) implies (8) by
contraposition. Assume that (8) does not hold. Then:

peCFiel Is; € 57,3t € S7, hs, v, (u) >0

By lemma 4.4, there exisjs" checking (6). Foe > 0 small enoughje = epx + (1 —
e)p* isinC. Buths, +,(1e) > 0. This contradicts (9).

Proof of (b} AssumeG binding. By corollary 4.5(G = G¢. ThereforeG¢ is bind-
ing. Therefore, by proposition 4.3 (&), is prebinding. Grouping these observations:
G = G° andG is prebinding. Conversely, assume that(i)= G° and (ii) G is pre-
binding. By (ii) and proposition 4.3 (aJ7¢ is binding. Therefore, by (i) is binding.
|

5 The Geometry of Nash and Correlated Equilibria

Nau et al [19] proved the following:
Proposition 5.1 If G has a Nash equilibriura in the relative interior ofC, then®

(a) The Nash equilibriuna assigns positive probability to every coherent strategy
of every player; that isg has supports©.

(b) G is prebindingtt

Proof. If (a) is not checked, them satisfies with equality some nonnegativity constraint
which is not satisfied with equality by all correlated equilibrium distributions, hence
belongs to the relative boundary 6f Assuming now that condition (a) is checked,
renders indifferent every player among its coherent strategies; thevesatesfies with
equality all incentive constraints of tyge, ;, (.) > 0, wheres; andt; are coherent. If

G is not prebinding, at least one of these constraints is not satisfied with equality by all
correlated equilibrium distributions, heneéelongs to the relative boundary 6f =

The aim of this section is to prove a converse of this result. Namely,

Proposition 5.2 If a game is prebinding, then eithér is a singleton orC' contains a
Nash equilibrium in its relative interior.

Proposition 5.2, together with example 3.8 and proposition 5.1, allows to charac-
terize prebinding games:

Theorem 5.3 A gameG is prebinding if and only if”' is a singleton otC' contains a
Nash equilibrium in its relative interior. Thug, contains a Nash equilibrium in its
relative interior if and only ifG is prebinding and”' is not a singleton.

9Example 4.2 shows that the implicati¢®) = (8) is not as trivial.

10we abusively identify here and in what follows a Nash equilibrium and the independent distribution it
induces omA(S).

11The term “prebinding” is mine: Nau et al write th@tsatisfies the property of definition 3.5.



Note thatC is a singleton if and only if its relative interior is empty. So theorem 5.3
could be rephrased as follow: a game is prebinding if and only if the relative interior
of C'is empty or contains a Nash equilibrium.

Proofs Theorem 5.3 is straightforward, so we only need to prove proposition 5.2. We
first need a lemma:

Lemma 5.4 Let G be prebinding and assume th@tis not a singleton. A Nash equi-
librium of G belongs to the relative interior af if and only if it checks conditions (5)
and (6) of lemma 4.4.

Proof. Let o be a Nash equilibrium ofz. By lemma 4.4,G has a Nash equilib-
rium - hence a correlated equilibrium distribution - checking (5) and (6). Therefore,
if o does not check (5) or (6), there exists a nonnegativity or an incentive constraint
which is binding ino but not in all correlated equilibrium distributions; hengde-
longs to a strict face of’. Conversely, assume thatchecks (5) and (6). Note that
there exists an neighborhodd of & in R® in which (5) and (6) are checked. Let

E denote the set of points = (z(s))ses of R® such that:> _sz(s) = 1 and

Vi e 1,Vs; € S;,Vt; € S¢, hs, +,(x) = 0. SinceG is prebinding, the affine span 6f

is a subset of’. Furthermore2N E' C C'. Finally, sinceC'is not a singletonF is not

a singleton either. Therefore,belongs to the relative interior ¢f. m

We can now prove proposition 5.2: assume tHas prebinding. By lemma 4.4(b),
there exists a Nash equilibriumchecking (5) and (6). If furthermor€ is not a sin-
gleton, lemma 5.4 implies thatbelongs to the relative interior ¢f. m

We end this section with two remarks on lemma 5.4: first, in binding games, con-
dition (6) is void. Thus, the analogous of lemma 5.4 for binding games is: a Nash
equilibrium of a binding gamé& belongs to the relative interior @' if and only if
it is completely mixed and” is not a singleton; second, we might wonder whether,
for prebinding games, condition (6) is really needed. That i§; i6 prebinding, do
all Nash equilibria with suppot“ check condition (6) and thus belong to the relative
interior of C' ? The following example shows that this is not so.

Example 5.5 Reconsider the gam@& of example 4.2. Let denote the Nash equilib-
rium of G given byoy (s1) = 1 andos(s2) = 1/2; o has supports© (and thus belongs
to the relative interior ofC<) but lies on the relative boundary 6f.

6 Two-player prebinding games

In this section we first show that two-player zero-sum games are prebinding but that a
prebinding game need not be best-response equivalent to a zero-sum game. We then
show that, nevertheless, some of the properties of the equilibria and equilibrium pay-
offs of zero-sum games extend to prebinding games. We then discuss the interest and
implications of these findings.



6.1 Prebinding games and zero-sum games

Proposition 6.1 A two-player game which is best-response equivalent to a zero-sum
game is prebinding.

Proof. In view of proposition 3.10 we only need to prove the result for two-player
zero-sum games. So lét be a two-player zero-sum game andts value. Note in
succession that:

() In any c.e.d. the payoff for player 1 given a move is at least the value of the
game. Formally,

Vi€ C,Vs1 € Si,p(s1 x Sa) > 0= > psals)ui(s) > v
EPISD

(indeed,s; is a best-response 1q_.|s;) and player 1 can guaranteg
(i) In any c.e.d. the average payoff for player 1 is the value of the game:

V€ Cur(p) =v

(indeedu; (1) > v by (1) and symmetricallyio (1) > —v; butus(p) = —uq (1))
(iii) In any c.e.d., the payoff of player 1 given a move is the value of the game.
Formally,

Yu € C,Vsy € S, u(s1 x S2) > 0= Z w(sals1)ui(s) =wv

52€852

(use (i) and (i)

(iv) For all x in C and allsy in Sy, if pu(s1 x S2) > 0thenoy = u(.|s1) is an
optimal strategy of player 2.
(Otherwiseuy (s1,02) =Y
This contradicts (jii).)

(v) If a pure strategy; of player1 is coherent, then it is a best response to any
optimal strategy of player 2.
(If ¢1 is coherent there existsin C ands; in S5 such thaju(¢; |s2) is positive. Assume
that there exists an optimal strategy of player2 to whicht¢; is not a best response.
By playing oo againstu(.|s2), player 2 would get strictly more thanv. Therefore
u(.|s2) is not an optimal strategy of player 1. This contradicts the analogous of (iv) for
player 2.)'2

(vi) Let sy € S1,t1 € S¢. Then, forallpin C, hg, +, () =0
(if u(s1 x Sz) = 0, this holds trivially; otherwiseu(.|s1) is optimal by (v); so by (iv),
t1 is an alternative best responseuQ|s; )).

It follows from (vi) and from the symmetric of (vi) for player 2 thatis prebind-
ing. m

5255 p(s2|s1)u1(s) > v, sinces; is a best response to.

The following example shows that the converse of proposition 6.1 is false. That
is, a two-player prebinding game need not be best-response equivalent to a zero-sum
game.

12(v) can also be proved directly by writing the maximization programm of player 1 and its dual. (v) then
appears as a complementary slackness property.
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Example 6.2 (Bernheim [5])

) b )

7 2,5 7,0
2 3,3 52
0 2,5 0,7

)

0
G=|5
7

) )

This game is not best-response equivalent to a zero-sum Hak@wever,GG has
a unigue correlated equilibrium distribution (see [20, p.439] for a proof); hence, as a
particular case of example 3.8; is prebinding.

We now show that, nevertheless, some of the main properties of two-player zero-
sum games extend to prebinding games. Noticeably, in two-player prebinding games,
the Nash equilibria are exchangeable and any correlated equilibrium payoff is a Nash
equilibrium payoff.

6.2 Equilibria of prebinding games

Let us first introduce some notations: we denoteN\bl the set of Nash equilibria of
G and by N E; the set of Nash equilibrium strategies of playerhat is,

NE; = {0, € A(S;),30_; € Xjer—iA(S;), (0i,0-;) € NE}
Our first result is that:
Proposition 6.3 In a two-player prebinding game:
(a) NE; and N E, are convex polytopes.
(b) NE = NFE; x NE,. Thatis, the Nash equilibria are exchangeable.
We first need a lemma

Lemma 6.4 Let G be a two-player prebinding game and let € A(S;) be a mixed
strategy of playeil. The following assertions are equivalent:

(i) o1 is a Nash equilibrium strategy. Thatis; € NE;.

(i) For some pure strategys of player2, o, is the conditional strategy of player 1
givensy in some correlated equilibrium distribution. Formallyy € C, s, €
SQ,/J(SQ X Sl) > 0ando; = /J(|SQ)

BIndeed, assume by contradiction titais best-response equivalent to a zero-sum game. Exploiting the
symmetries of the game, it is possible to show thas also best-response equivalent to a zero-sum game

G’ with payoffs for playerl:
—a -0 «
B 0 p
« -8 -«

for some real numbers and3. Furthermore, ir7, the two first strategies of play&rare both best responses
to(1/5,1/5,3/5) and to(0,2/3,1/3). SinceG andG’ are best-response equivalent, this must also be the
case inG’. This impliesa. = 8 = 0. Therefore, inG’, any strategy of player is a best-response to the first
strategy of playe®. But this is not the case i&": a contradiction.
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(iii) Every pure strategy played ift; is coherent and all coherent strategies of player
2 are best responses tq.

(The symmetric results faer, in A(S2) hold obviously just as well.)

Proof. (i) trivially implies (ii) and (ii) implies (iii) by definition 3.5. So we only need
to prove that (iii) implies (i). Letr; check (iii) and letr, € N E,. Necessarily, any
pure strategy played in, is coherent. Since any coherent strategy of pl&yisra best
response t@, 72 is a best response tg. Similarly, by the analogous df) = (éi)
for player2, any coherent strategy of player 1 is a best response. t8ince all pure
strategies played it; are coherentr; is a best response t9. Grouping these results,
we get thafoq, 72) is a Nash equilibrium, hence, € NE;. m

We now prove proposition 6.3: it follows from the proof of lemma 6.4 that if
o1 € NEjy, then for anyrs € NEs, (01, 72) is a Nash equilibrium. This implies
that Nash equilibria are exchangeable (point (b)). Furthermore, from the equivalence
of (i) and (iii) it follows that NV E/y can be defined by a finite number of linear inequali-
ties. Therefore]NE; is a polytope, and so i& E5; by symmetry (point (a))m

Our second result is that jif is a correlated equilibrium distribution, then the prod-
uct of its marginals is a Nash equilibrium. More precisely:

Proposition 6.5 Let ;1 be a correlated equilibrium distribution of a two-player pre-
binding game. Let; € A(S1) (resp. o2 € A(S2)) denote the marginal probability
distribution of x on Sy (resp. Ss). Thatis,Vs; € Si,01(s1) = u(s; x S3). Let

o = (o1, 02) so thato is the product of the marginals pf We have:

(a) o is a Nash equilibrium
(b) The average payoff of the players is the same &nd inp. That is,
Proof. First note that, may be written:

oy = > p(s1 x S2)p(-|s1) (10)

$1€S1:u(s1xS2)>0

Proof of (a): assumg(s; x S2) > 0; then by lemma 6.4:(.|s;) € NE,. There-
fore, by (10) and convexity oN Es, o5 € N FE,. Similarly, 0y € NFE;, so that, by
proposition 6.3g € NE.

Proof of (b): assume(s; x S) > 0; thens; is coherent and, by the analogous
for player2 of (i) = (uiz) in lemma 6.4, any coherent strategy of player 1 is a best
response teu(.|s1). Sinceo; € N E1, o1 has support irt§, so that

ur (o, pu(-]s1)) = ur(s1, p(-[s1)) (11)

Using successively (10), (11) and a straightforward computation, we get

(o) = X, €8 pu(s1x8)>0 ST X S2)ur(o, p(.[s1))
= DsieSiu(si x8a)>0 K51 X S2)ur(sy, p[s1)) = wi(p)
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Similarly, us (o) = us(p), completing the proofm

As mentioned in [8], if a two-player zero-sum game has a unique Nash equilibrium
o thenC = {o}. Similarly:

Corollary 6.6 A two-player prebinding game has a unique Nash equilibrium if and
only if it has a unique correlated equilibrium distribution.

Proof. Let G be a two-player prebinding game. Assume tahas a unique Nash
equilibriumo. Necessarilyg is an extreme Nash equilibrium (in the sense of [7]). But
in two-player games, an extreme Nash equilibrium is an extreme poin{of There-
fore o does not belong to the relative interior @f Therefore, by theorem 5.8; is a
singleton. Conversely, if’ is a singleton has trivially a unique Nash equilibriunm

6.3 Equilibrium payoffs of prebinding games

Let NEP (resp.N EP;, CEP) denote the set of Nash equilibrium payoffs (resp. Nash
equilibrium payoffs of playet, correlated equilibrium payoffs). That s,
NEP ={g = (gi)ie; €R! /30 € NE,Vi € I,u;(0) = g;}

NEP,={g; € R/30 € NE,u;(0) = g;}
CEP ={g = (g9:)ic1 €R" /3u € C,Vi e Iui(p) = g:}
Two-player games which are best-response equivalent to zero-sum games may have
an infinity of Nash equilibrium payoffs (for instance, see [23, example 5.20]). So pre-
binding games do not generally have a unique Nash equilibrium payoff. Nonetheless

some of the properties of equilibrium payoffs of zero-sum games are preserved. In
particular, proposition 6.3 and proposition 6.5 imply respectively that:

Corollary 6.7 In a two-player prebinding gamey E P, and N E P, are convex and
NEP =NEP, x NEP,

Corollary 6.8 In a two-player prebinding gamé&EP = NEP

Thus, allowing for correlation is useless in two-player prebinding games, in the sense
that it cannot improve the payoffs of the players in equilibria. Furthermore:

Corollary 6.9 In a two-player prebinding game, any correlated equilibrium distribu-
tion payoff of playet given his move is a Nash equilibrium payoff of player

VM e C,\Vie {1,2},V8i € Si,,U,(Si X S—z) >0= Z ,u(s_l|sl)uz(5) € NEP;
5_;€S5_;

Proof. For clarity we takei = 1. In (11), (o1, u(.|s1)) is a Nash equilibrium (by
lemma 6.4, proposition 6.5(a) and proposition 6.3). Therefaiés,, u(.|s1)) =
252652 w(szls1)ui(s) € NEP;. m
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6.4 Discussion

(a) Several classes of non-zero sum games in which some of the properties of two-
player zero-sum games are still satisfied have been studied. Most are defined in either
of these three ways:

(i) by requiring some conflict in the preferences of the players over strategy profiles
(“Strictly competitive games” [1], [9], “Unilaterally competitive games” [15]);

(ii) by comparing the payoff structure i@ and in some zero-sum game (“Strategi-
cally zero-sum games” [17], games “best-response equivalent” [21] or “order-equivalent
[22] to a zero-sum game);

(iii) by comparing the Nash equilibria or Nash equilibrium payoffs(éfand of
some auxiliary game (“Almost strictly competitive games” [1] and several other classes
of games studied in [4]).

The definition of binding and prebinding games do not fall in these categories;
binding games however may be defined by comparing:threelated equilibriaof G
and of some auxiliary game. Indeed, {et7 be the game with the same sets of players
and strategies tha@ but in which all the payoffs are reversed:

—G ={1,(S)ier, (—ui)ier}

We let the reader check thét is binding if and only ifG and —G have the same
correlated equilibria.

(b) Lemma 6.4 implies that in two-player binding games, as in two-player zero-sum
games, the Nash equilibrium strategies of the players can be computed independently,
as solutions of linear programs that depend only on the payoffs obttier player.

In two-player prebinding games, the additional knowledge of the sets of individually
coherent strategies is requitéd

(c) A wide range of dynamic procedures converge towards correlated equilibrium
distributions in all games (for instance generalized no-regret procedures [12], [13]). By
proposition 6.5, suitably modified versions of these dynamics converge towards Nash
equilibria in all two-player prebinding games.

(d) In 3-player binding games, Nash equilibria are not exchangeable (see [19, sec-
tion 6]). To my knowledge, whether the other properties of section 6 extend to n-player
games is open.

A Elements of Dual Reduction

We recall here some basic elements of dual reductions that are useful in the proofs (for
more details, see [18] and [23]).
(a) Leti € I. Consider a mapping

a;: S —  A(S)

S; — Oy *8;

4Indeed thel x 2gameg 0,1 0,0 )and( 0,0 0,1 ) are both prebinding and in both games the
payoffs of playerl are the same. However, the Nash equilibrium strategies of pagez not the same in
both games.
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That is, «; associates to every element.8f a probability distribution ovess;. This
mapping induces a Markov chain ¢f. We denote bys;/«; a basis of the invariant
measures of; for this Markov chain. A mixed strategy;, € A(.S;) is ai-invariant [in
the sense that
Vti € Si, Y o(si) i x silts) = oi(ti) |
5;€8;
if and Only ifo; € A(SZ/OQ)

(b) Letar = («;)ser be a a vector of mappings; : S; — A(S;). Thea-reduced
gameG/« is the game obtained froi by restricting the players to their-invariant
strategies. That is,

Gla={I,(Si/ai)ier, (ui)icr }

Lets € S. Define:

glans) =Y uilai * siys—;) = ui(s)] (12)

iel

Myerson [18] defines: to be adual vectorif g(«, s) > 0 for all s in S. A dual vector
is full if, for all (i, s;,¢;)in1I x S; x S;, a; * s;(t;) is positive whenevet; jeopardizes
s;. There exist full dual vectors. The set of dual vectors is convex and any positive
convex combination of a dual vector with a full dual vector is a full dual ve&dfull)
dual reduction ofG is an a-reduced gamé:/« wherea is a (full) dual vector.(The
terminology is somewhat ambiguous as “dual reduction” may refer either to a reduced
game or to the reduction technique.)

(c) Let (4, s;,t;) € I xS; xS;. Generally (that is, whether is a dual vector or
not), if a; * s;(t;) is positive then, inG/a, s; is either eliminated or grouped with.
So, if « is a full dual vector: ifs; jeopardizeg;, then inG/«, s; is either eliminated
or grouped witht;; if s; andt,; jeopardize each other then@/«, s, andt; are either
both eliminated or grouped together. Moreover, in full dual reductions, all incoherent
strategies are eliminated.

(d) Let « be a dual vector. A probability distributiom over S/a = x;c1S;/a;
induces a probability distributiof over S

oES/a

If uis a correlated (resp. Nash) equilibrium distributiontfa thenji is a correlated
(resp. Nash) equilibrium distribution @f.
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