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Résumé: Nous étudions des questions d'incitation dans le cadre des problèmes de marriage, en 
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pire option pour chaque agent. Dans ce cas, si les probabilités a priori sont uniformes, les 
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lois a priori génériques, il n'existe pas de procédures stables et OBIC, même pour des 
préférences restreintes. 
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Abstract

We study incentive issues related to two-sided one-to-one stable match-

ing problem after weakening the notion of strategy-proofness to Ordinal

Bayesian Incentive Compatibility (OBIC). Under OBIC, truthtelling is re-

quired to maximize the expected utility of every agent, expected utility being

computed with respect to the agent’s prior beliefs and under the assumption

that everybody else is also telling the truth. We show that when preferences

are unrestricted there exists no matching procedure that is both stable and

OBIC. Next preferences are restricted to the case where remaining single is

the worst alternative for every agent. We show that in this case, if agents

have uniform priors then the stable matchings generated by “deferred ac-

ceptance algorithms” are OBIC. However, for generic priors there are no

matching procedures that are both stable and OBIC even with restricted

preferences.
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1 Introduction

The objective of this paper is to explore issues in incentives related to matching

problems and design of matching procedures.

Matching problems refer to problems which involve matching members of one set

of agents to members of a second, disjoint set of agents all of whom have preferences

over the possible resulting matches. We focus attention on two-sided, one-to-one

matching where each agent is matched to at most one mate. A fundamental notion

in this context is a stable matching which can be defined as a matching such

that there does not exist a pair of agents who would prefer to be matched to

each other than to their current partners. Such a matching is in the core of the

corresponding cooperative game which would result if individual agents were able

to freely negotiate their own matches. Gale and Shapley (1962) show that the set

of stable matchings is non-empty.

In the strategic version of the model the preferences of the agents are private in-

formation. Therefore any stable matching is computed on the basis of the reported

preferences. The agents know that by reporting different preferences they can al-

ter the stable matching that is selected and hence change their mate. A natural

question which arises is whether matching procedures can be designed which give

the agents incentive to truthfully reveal their preferences in equilibrium, and which

produce stable matchings. The truth-telling concept preponderant in the literature

is strategy-proofness. Under strategy-proofness it is a dominant strategy for all the

agents to truthfully reveal their preferences. The question is does there exist a

stable matching procedure that is strategy-proof. Roth (1982) demonstrates that

there does not exist any matching procedure which is strategy-proof and which

also generates stable matching at every profile of preferences. This result is similar

in spirit to a number of impossibility results present in the social choice literature,

in the context of designing non-dictatorial social choice procedures which operate
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in fairly unrestricted domains (Gibbard (1973), Satterthwaite(1975)).

In this paper we weaken the truth-telling requirement from strategy-proofness

to ordinal Bayesian incentive compatibility (OBIC). This notion was introduced in

d’Aspremont and Peleg (1988) in the context of a different problem, that of repre-

sentation of committees. It has also been analysed in standard voting environments

in Majumdar and Sen (2003). Truth-telling is required to maximize the expected

utility of each individual where expected utility is computed with reference to the

individual’s prior beliefs about the (possible) preferences of other individuals and

based on the assumption that other individuals follow the truth-telling strategy.

However, this truth-telling notion has one important difference with the standard

notion of Bayesian incentive compatibility used widely in incentive theory (for ex-

ample auction theory). Under OBIC truth-telling is required to maximize expected

utility for every representation of an individual’s true preference ordering. Roth

(1989) applies the notion of Bayesian incentive compatibility to the stable match-

ing problem. He generalizes the Roth (1982) result to the case where truth-telling

is a Bayes-Nash equilibrium of the revelation game. However, he assumes particu-

lar cardinalization of utilities and makes specific assumptions about priors. Since

stable matchings only considers preferences and since individual preferences are or-

dinal, a more appropriate equilibrium notion would be ordinal Bayesian incentive

compatibility.

Even though ordinal Bayesian Incentive Compatibility is a significant weakening

of the truth-telling requirement, our first result is that there does not exist any

prior such that there exists a stable matching procedure that is ordinally Bayesian

incentive compatible with respect to it.

Our next step is to look for possibility results by putting restrictions on the

set of allowable preferences of the agents. Alcalde and Barberá (1994) look at

possibility results by restricting the set of allowable preferences but maintaining

strategy-proofness as the notion of truth-telling. We restrict attention to the class
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of preferences where each agent prefers to be matched than to remain single and

show that when each individual’s belief about the preferences of others is uniformly

and independently distributed then there exist stable matching procedures that are

ordinally Bayesian incentive compatible. In a recent paper, Roth and Rothblum

(1999) consider stable matching in an incomplete information environment where

agents have what they call “symmetric beliefs”. If beliefs are uniform then they

are symmetric. Roth and Rothblum discuss stochastic dominance of one strategy

over others in such an environment. They show that if the stable matching proce-

dure is the man proposing deferred acceptance algorithm then for any woman with

symmetric beliefs any strategy that changes her true preference ordering of men is

stochastically dominated by a strategy that states the same number of acceptable

men in their correct order. This latter strategy is called a Truncation strategy.

Basically, a truncation strategy for a man or a woman is a preference ordering

which is order-consistent with his or her true preference but has fewer acceptable

men or women. Detailed analysis of truncation strategies can be found in Roth

and Vande Vate (1991), Roth and Rothblum (1991), Ma (2002) among others.

Roth and Peranson (1991) contains an empirical study using truncation strategies.

Ehlers (2001) gives an alternative condition to the symmetry condition on beliefs

that leads to the same result. However, neither Roth and Rothblum paper nor

the Ehlers paper analyse equilibrium behaviour of agents. Our possibility result

with uniform priors follows immediately from and can be seen to be an equilibrium

interpretation of the Roth and Rothblum (1999) and the Ehlers (2001) results.

One remark needs to be made here. Our result with uniform priors is an existence

result. There are a number of distributions that satisfy the criterion of symmetric

beliefs. Uniform beliefs is just one of them.

Our main result in this paper is to show that this possibility result is non-

generic. We assume common independently distributed prior for all individuals

and show that for each individual i there exists a set of conditional beliefs Ci which
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is open and dense in the set of all conditional beliefs and whose complement set

is of Lebesgue measure zero, such that no stable matching procedure exists that is

ordinally Bayesian incentive compatible with respect to a prior belief µ such that

the conditionals generated by µ lie in Ci.

The paper is organized as follows. In section 2 we set out the basic notation and

definitions. Section 3 deals with the case of unrestricted preferences. In section 4 we

consider restricted preferences. In subsection 4.1 we deal with uniform priors while

subsection 4.2 considers generic priors. Section 5 concludes. Appendix A contains

the deferred acceptance algorithm while Appendix B briefly discusses symmetric

beliefs.

2 Preliminaries

We assume that there are two disjoint sets of individuals which we refer to as the

set of men and women. These sets are denoted by M and W respectively. Elements

in M are denoted by m, m′ etc and elements is W are denoted by w, w′ etc. Let

I ≡ M ∪W denote the entire set of agents. Each man m ∈ M has a preference

ordering Pm over the set W ∪ {m}. Let Pm be the set of all possible preference

orderings for man m. Each woman w has a preference ordering Pw over the set

M ∪ {w}. Let Pw denote the set of all possible preference orderings for woman w.

We denote by P = ((Pm)m∈M , (Pw)w∈W ), a preference profile for all the agents. Let

P = ×i∈IPi denote the set of all such preference profiles. We assume that these

orderings are strict. We denote by P−i the collection of preferences for all agents

other than i. The set of all such P−i’s is denoted by P−i = ×j 6=iPj.

We will usually describe an agent’s preferences by writing only the ordered set

of people that the agent weakly prefers to remaining single. Thus the preference

Pm described below,

Pm := w1Pmw2PmmPm, · · · , Pmwk
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will be abbreviated to,

Pm := w1Pmw2Pmm

For reasons that will be obvious shortly, it will suffice only to consider these ab-

breviated preferences.

Definition 2.1 A matching is a function ν : I → I satisfying the following

properties:

• ν(m) ∈ W ∪ {m}

• ν(w) ∈ M ∪ {w}

• ν(ν(i)) = i ∀i ∈ I

We now define a stable matching. Let A(Pi) = {j ∈ I|jPii} denote the set of

acceptable mates for agent i. Obviously for a man m with preference ordering Pm,

A(Pm) ⊆ W and similarly for a woman w with preference Pw, A(Pw) ⊆ M .

Definition 2.2 A matching ν is stable if the following two conditions are satisfied

• for all i ∈ I, ν(i) ∈ A(Pi) ∪ {i}

• there does not exist (m, w) ∈ M ×W such that wPmν(m) and mPwν(w)

Let S(P ) denote the set of stable matches under P . Gale and Shapley (1962)

shows that S(P ) is always non-empty for all P ∈ P .

Let M denote the set of all possible matchings. A matching procedure is a

mapping that associates a matching with every preference profile P .

Definition 2.3 A matching procedure is a function f : P →M
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If f is a matching procedure and P is a profile, then fi(P ) denotes the match

for i selected by f under P .

A stable matching procedure f selects an element from the set S(P ) for every

P ∈ P . The rest of the essay is concerned only with stable matching procedures.

We now look at strategic issues in the model. In the strategic version of this

problem each agent’s preference over his/her possible mates is private information.

A question of fundamental interest is the following: does there exist a stable,

strategy-proof matching procedure? The answer is negative.

Definition 2.4 A matching procedure f is strategy-proof if there does not exist

i ∈ I, Pi, P
′
i ∈ Pi, and P−i ∈ ×j 6=iPj such that

fi(P
′
i , P−i)Pifi(Pi, P−i)

Theorem 2.1 Roth (1982)

A stable and strategy-proof matching procedure does not exist.

In this paper, we explore the consequences of weakening the incentive require-

ment for stable matching procedures from strategy-proofness to ordinal Bayesian

incentive compatibility. This concept originally appeared in d’Aspremont and Peleg

(1988) and we describe it formally below.

Definition 2.5 A belief for an individual i is a probability distribution on the set

P, i.e. it is a map µi : P → [0, 1] such that
∑

P∈P
µi(P ) = 1.

We assume that all individuals have a common prior belief µ. For all µ, for all

P−i and Pi, we shall let µ(P−i|Pi) denote the conditional probability of P−i given

Pi.

Consider a man m. The utility function um : W∪{m} → < represents Pm ∈ Pm,

if and only if for all i, j ∈ W ∪ {m},
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iPmj ⇔ um(i) > u(j)

The utility function uw for a woman w is similarly defined.

For any agent i ∈ I we will denote the set of utility functions representing Pi

by Ui(Pi).

We can now define the notion of incentive compatibility that we use in the

essay.

Definition 2.6 A matching procedure f is ordinally Bayesian Incentive Compat-

ible (OBIC) with respect to the belief µ if for all i ∈ I, for all Pi , P
′
i ∈ Pi, for all

ui ∈ U(Pi), we have

∑
P−i∈P−i

ui (fi(Pi, P−i)) µ(P−i|Pi) ≥
∑

P−i∈P−i

ui (fi(P
′
i , P−i)) µ(P−i|Pi) (1)

Let f be a matching procedure and consider the following game of incomplete

information as formulated in Harsanyi (1967). The set of types for a player i is Pi

which is also the set from which i chooses an action. If player i’s type is Pi, and

if the action tuple chosen by the players is P ′, then player i’s payoff is u(f(P ′))

where u is a utility function which represents Pi. Player i’s beliefs are given by the

probability distribution µ. The matching procedure is OBIC if truth-telling is a

Bayes-Nash equilibrium of this game. Since matching procedures under consider-

ation are ordinal by assumption there is no “natural” utility function for expected

utility calculations. Under these circumstances OBIC requires that a player cannot

gain in expected utility (conditional on type) by unilaterally misrepresenting his

preferences no matter what utility function is used to represent his true preferences.

It is possible to give an alternative definition of OBIC in terms of stochastic

dominance. Let f be a matching procedure and pick an individual i and a pref-

erence ordering Pi. Suppose that j is the first-ranked mate for i under Pi. Let α
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denote the probability conditional on Pi that i is matched with j when i announces

Pi assuming that other agents are truthful as well. Thus α is the sum of µ(P−i|Pi)

over all P−i such that fi(Pi, P−i) = j (that is, i is matched to j). Similarly, let β

be the probability that i is matched to j when i announces P ′
i , i.e., β is the sum

of µ(P−i|Pi) over all P−i such that fi(P
′
i , P−i) = j. If f is OBIC with respect to µ

we must have α ≥ β. Suppose this is false. Consider now a utility function that

gives a utility of one to j (i’s top-ranked mate under Pi) and virtually zero to all

other possible mates for i. This utility function will represent Pi and the expected

utility from announcing the truth for agent i with preferences Pi is strictly lower

than from announcing P ′
i . Using a similar argument, it follows that the probability

of obtaining the first k ranked mates according to Pi under truth-telling must be

at least as great as under misreporting via P ′
i . We make these ideas precise below.

For any agent i ∈ I, let Ii be the set of possible mates for i. Thus if i ≡ m ∈ M ,

then Ii = W ∪ {m} and if i ≡ w then Ii = M ∪ {w}. For all Pi ∈ Pi and

k = 1, · · · , |Ii|, let rk(Pi) denote the k th ranked mate in Pi, i.e., rk(Pi) = j implies

that |{l 6= j|lPij}| = k − 1. For all i ∈ I, for any Pi ∈ Pi and for any j ∈ Ii, let

B(j, Pi) = {l ∈ Ii|lPij} ∪ {j}. Thus B(j, Pi) is the set of mates that are weakly

preferred to j under Pi.

The stable matching procedure f is OBIC with respect to the belief µ if for all

i ∈ I, for all integers k = 1, · · · , |Ii| and for all Pi and P ′
i ,

µ({P−i|fi(Pi, P−i) ∈ B(rk(Pi), Pi)}|Pi) ≥ µ({P−i|fi(P
′
i , P−i) ∈ B(rk(Pi), Pi)}|Pi)

(2)

A similar definition of OBIC appears in Majumdar and Sen (2003). We omit

the proof of the equivalence of the two definitions of OBIC. The proof is easy and

we refer the interested reader to Theorem 3.11 in d’Aspremont and Peleg (1988).
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3 The Case of Unrestricted Preferences

The main result of this section is to show that there does not exist any stable mar-

riage procedure that is OBIC with respect to any prior belief µ1. In an earlier paper,

Roth (1989) extends the analysis of Roth (1982) by weakening the truth-telling re-

quirement to Bayesian incentive compatibility. However, he assumes particular

cardinalization of utilities. The paper shows that there exists specific utility values

and probability distributions for which no stable matching procedure is Bayesian

incentive compatible. The paper therefore, does not rule out the possibility that

there may exist utility profiles and probability distributions for which there exist

Bayesian incentive compatible stable procedures. However, since stable matchings

are based only on ordinal preferences, it is possible to argue that OBIC is a more

appropriate equilibrium notion. We have the following strong negative result.

Theorem 3.1 Let |M |, |W | ≥ 2 and assume that there are no restrictions on the

preferences of individuals. Then for any prior belief µ, there does not exist a stable

matching procedure f such that f is OBIC with respect to µ.

Let f be a stable matching procedure. We first establish a lemma which says the

following: consider an agent i ∈ I and two preference orderings Pi and P ′
i such

that r1(Pi) = r1(P
′
i ) = j. However under preference ordering P ′

i agent i prefers to

remain single than to be matched to any agent other than j. Lemma 3.1 shows

that if for some combination of others preferences P−i, f picks j to be i’s mate

when i reports Pi, then f should pick j as i’s mate when i reports P ′
i . Formally

we show the following:

Lemma 3.1 Consider an agent i ∈ I and two preferences Pi and P ′
i such that

r1(Pi) = r1(P
′
i ) = j and r2(P

′
i ) = i. Then for any P−i ∈ P−i,

1The result holds even if we do away with the assumption of common priors
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[fi(Pi, P−i) = j] ⇒ [fi(P
′
i , P−i) = j]

PROOF: It follows from the definition of stable matching that fi(P
′
i , P−i) ∈

{j, i}. Suppose that fi(P
′
i , P−i) = i. Observe that for agent j, i ∈ A(Pj) ∪ {j}.

Also since the preferences for all the agents other than i have not changed, we

claim that any k such that kPji will not be matched to j under the preference

profile (P ′
i , P−i). Suppose that the claim is not true and suppose that there exists

a k with kPji such that, k = fj(P
′
i , P−i). Since f is a stable matching proce-

dure it follows that fk(P )Pkj, otherwise (k, j) would have blocked the matching

selected by f under the profile P . Let l = fk(P ). Replicating the arguments

above one can show that fl(P
′
i , P−i)Plfl(P ) = k. Otherwise k and l would block

the matching f(P ′
i , P−i). Let fl(P

′
i , P−i) = k′ 6= k. Observe that k′ 6= i for in

the matching f(P ′
i , P−i), i is remaining single. Again by analogous arguments

it follows that fk′(P )Pk′fk′(P
′
i , P−i) = l. Thus there exists a sequence of pairs

{(kn, ln)|n = 1, 2, 3, · · ·} where any two pairs are distinct (i.e., for any n1 and n2,

kn1 6= kn2 and ln1 6= ln2) such that k1 = i, l1 = j and

ln = fkn(P )Pknfkn(P ′
i , P−i) = ln+1 and

kn+1 = fln(P ′
i , P−i)Plnfln(P ) = kn

Since I is finite there exists a n? such that,

ln? = fkn? (P )Pkn? fkn? (P
′
i , P−i) and,

there does not exist a k̂ ∈ I \ {kn}n?

n=1 such that k̂Pln? fln? (P ). Then (kn? , ln?)

will block the matching f(P ′
i , P−i). Therefore it follows that any k such that kPji

will not be matched to j under (P ′
i , P−i). This proves the claim. Therefore if

fi(P
′
i , P−i) = i it implies that for agents i and j,

jP ′
ifi(P

′
i , P−i) = i and

iPjfj(P
′
i , P−i)
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Then f is not a stable matching procedure. We thus have a contradiction. There-

fore fi(P
′
i , P−i) = j.

Proof of Theorem 3.3.1 Let f be OBIC with respect to µ. Pick i ∈ I and

preferences Pi and P ′
i . From (3.2) we get,

µ({P−i|fi(Pi, P−i) = r1(Pi)}|Pi) ≥ µ({P−i|fi(P
′
i , P−i) = r1(Pi)}|Pi) (3)

Consider a preference profile P such that, Pm1 := w1Pm1w2Pm1m1; Pm2 :=

w2Pm2w1Pm2m2; Pw1 := m2Pw1m1Pw1w1; Pw2 := m1Pw2m2Pw2w2; also let Pj :=

j for all j ∈ I \ {m1, m2, w1, w2}. It is easy to check that S(P ) consists of

two matchings ν1 and ν2 where ν1(m1) = w1, ν1(m2) = w2, ν1(j) = j for all

j ∈ I \ {m1, m2, w1, w2}, ν2(m1) = w2, ν2(m2) = w1 and ν2(j) = j for all

j ∈ I\{m1, m2, w1, w2}. Suppose f(P ) = ν1. Now consider P ′
w2

:= m1P
′
w2

w2. Then

we claim that the only stable matching in the profile (P ′
w2

, P−w2) is ν2. Suppose

f(P ′
w2

, P−w2) = ν. Note that ν(w2) is either m1 or w2. Suppose ν(w2) = w2. Then

either ν(m1) = m1 or ν(m2) = m2. If ν(m1) = m1, then (m1, w2) blocks ν. There-

fore ν(m1) = w1 and ν(m2) = m2. Then (m2, w1) blocks ν. Therefore ν(w2) = m1

and ν(w1) = m2. But then ν = ν2. Since fw2(P ) = m2, fw2(P
′
w2

, P−w2) = m1 and

r1(Pw2) = m1, it must be the case in order for (3.3) to hold that there exists P̃−w2

such that fw2(Pw2 , P̃−w2) = m1 and fw2(P
′
w2

, P̃−w2) 6= m1. But from Lemma 3.3.1

this will never be the case. Thus f(P ) 6= ν1. Therefore f(P ) = ν2. Now consider

P ′
m1

:= w1P
′
m1

m1. The only stable matching under the profile (P ′
m1

, P−m1) is ν1.

By replicating the earlier argument it follows that if f(P ′
m1

, P−m1) = ν1 then f(P )

can never be ν2. But this is a contradiction. This completes the proof of the

theorem.

The result in this section assumes unrestricted preferences, i.e., each man m is

allowed to have any ordering over the set W ∪{m} and similarly each woman w is
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allowed to have any ordering over the set M ∪ {w}. Alcalde and Barberà (1994)

put restrictions on preferences to obtain strategy-proof stable matchings. In the

next section we put weaker restrictions on preferences to see whether possibility

results with OBIC can be obtained.

4 Restricted Preferences

In this section we examine the stable matching problem for a special class of prefer-

ences. We restrict our attention to the class of preferences where remaining single

is the worst alternative for every agent. That is, each agent prefers to be matched

to some other agent than to remain single.

Formally, the domain D consists of all preferences (Pm, Pw) satisfying the fol-

lowing conditions:

• for all wi ∈ W , wiPmm

• for all mi ∈ M , miPww

In this environment a stable matching procedure is a function f : D →M with

the restriction that f(P ) ∈ S(P ) for all P ∈ D. We denote by D−i the set of all

P−i’s, where P−i is the collection of preferences of all agents other than i.

The man proposing and the woman proposing deferred acceptance algorithms

are ways to obtain a stable matching given the preference reports of men and

women. Both algorithms are discussed in Appendix A.

Let fDA(m) denote the stable matching procedure that uses the man proposing

deferred acceptance algorithm and let fDA(w) denote the woman proposing deferred

acceptance algorithm. Roth (1982) demonstrates that with the man proposing

deferred acceptance algorithm it is a dominant strategy for men to truthfully reveal

their preferences i.e., it is strategy-proof for men. Since men and women are
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symmetric in this model, the woman proposing deferred acceptance algorithm is

strategy-proof for women.

Theorem 4.1 Roth (1982)

The stable matching procedure fDA(m), is strategy-proof for men. Similarly,

fDA(w) is strategy-proof for women.

4.1 Uniformly and Independently Distributed Priors

In this section, we assume that the beliefs are independently and uniformly dis-

tributed.

Definition 4.1 Individual i’s beliefs are independent if for all k = 1, · · · , |I| there

exist probability distributions µk : Pk → [0, 1] such that, for all P−i and Pi,

µ(P−i|Pi) = ×k 6=iµk(Pk)

An individual’s belief is independent if his conditional belief about the types of

the other individuals is a product measure of the marginals over the types of the

other individuals. We also assume that the beliefs are uniform.

Definition 4.2 For all profiles P, P ′ ∈ P, we have

µ(P ) = µ(P ′)

We denote these independent, uniform priors by µ̄. Restating Definition 3.6 in

the present context, we have

Proposition 4.1 The matching procedure f is OBIC with respect to the belief µ̄

if, for all i, for all integers k = 1, · · · , |Ii|, for all Pi and P ′
i , we have

|{P−i|fi(Pi, P−i) ∈ B(rk(Pi), Pi)}| ≥ |{P−i|fi(P
′
i , P−i) ∈ B(rk(Pi), Pi)}| (4)
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We omit the trivial proof of this Proposition.

Roth and Rothblum (1999) define a particular type of belief for agents which

they call “symmetric” beliefs. Symmetric beliefs are discussed in Appendix B. We

note that independent, uniform beliefs are symmetric. They show that if the stable

matching procedure is fDA(m) then for a woman with symmetric beliefs, a strategy

that changes her true preference ordering of men is stochastically dominated by

a strategy that states the same number of acceptable men in their correct order,

i.e., in the order of the true preference ordering. The same is true for men when

the matching procedure is fDA(w). The following theorem can be treated as an

equilibrium interpretation of the Roth and Rothblum results.

Theorem 4.2 The stable marriage procedures fDA(m) : D → M and fDA(w) :

D →M are OBIC with respect to the uniform prior.

PROOF: We give the proof for fDA(m). The proof for fDA(w) is analogous.

From Theorem 4.1 we know that fDA(m) is strategy-proof for men. So we only need

to check whether fDA(m) is OBIC with respect to the uniform prior for women.

Observe that if any w ∈ W has uniformly and independently distributed prior

belief then her conditional belief is {M}-symmetric (the concept of {M}-symmetry

is discussed in Appendix B ). So Proposition 7.1 (again we refer the reader to

Appendix B) applies and hence any strategy that changes her true preference

ordering of men is stochastically dominated by a strategy that states the same

number of acceptable men in their correct order. However, when preference profiles

are in D, for any w ∈ W with preference order Pw, the only strategy that states

w’s set of acceptable men in their correct order is Pw. Since OBIC is equivalent to

the stochastic domination of truth-telling this proves the theorem.
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4.2 Generic Priors

The main result in this section is to show that the possibility result of the previous

section vanish if the beliefs are slightly perturbed. We continue to assume first

that the beliefs are independent.

For each agent i, we let ∆(i) denote the set of all beliefs over the possible types

of i. If i is a man, ∆(i) is a unit simplex of dimension (|W |+1)!−1. If i is a woman,

∆(i) is a unit simplex of dimension (|M |+1)!−1. The set of all independent priors

∆I = ×i∈I∆(i). For an agent i and belief µ ∈ ∆I , we shall let µ−i i’s conditional

belief over the types of agents other than i. For instance µ−i(P−i) will denote the

probability under µ that the preferences of agents other than i, is P−i. The set of

all such conditional beliefs will be denoted by ∆CI . Clearly, ∆CI = ×k 6=i∆(k).

We now state the main result of this section.

Theorem 4.3 Let |M | = |W | ≥ 3 and assume that all individuals have indepen-

dent beliefs. Then for all i ∈ I, there exists a subset Ci of ∆CI(i) such that

• Ci is open and dense in ∆CI(i)

• ∆CI(i)− Ci has Lebesgue measure zero

• there does not exist a stable marriage procedure f : D → M that is OBIC

w.r.t the belief µ where µ−i ∈ Ci for all i ∈ I.

PROOF: The proof proceeds in three steps. In Step 1 we define the sets Ci and

show that they are open and dense subsets of ∆CI(i) and the Lebesgue measure of

their complement sets are zero. In Step 2 we show that if a matching procedure

f is OBIC with respect to µ with µ−i ∈ Ci for all i, then f must satisfy a certain

property which we call Top Monotonicity(TM). In Step 3 we complete the proof

by showing that stable matching procedure violates TM.
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STEP1:

Pick an individual i. We define the set Ci below.

For any Q ⊆ D−i, let µ−i(Q) =
∑

P−i∈Q
µ−i(P−i). The set Ci is defined as the set

of conditional beliefs µ−i satisfying the following property:For all Q, T ⊆ D−i

[µ−i(Q) = µ−i(T )] ⇒ [Q = T ]

For any belief µ and agent i the conditional belief µ−i belongs to Ci if it assigns

equal probabilities to two “events” Q and T only if Q = T . Obviously the events

O and T are defined over preference orderings of individuals other than i. In this

step we show that Ci is open and dense in ∆CI(i) and that its complement set

has Lebesgue measure zero. Observe that Ci is generic in the space of conditional

probabilities generated by an independent prior. It is not generic in the space of all

probability distributions.

We first show that Ci is open in ∆CI(i). Consider any µ such that for all i ∈ I,

µ−i ∈ Ci. Let,

φ(µ) = minS,T⊂×k 6=iPk, S 6=T |µ−i(S)− µ−i(T )|

Observe that φ(µ) > 0. Since φ is a continuous function of µ, there exists ε > 0

such that for all product measures µ̂ ∈ δI with d(µ̂, µ)w < ε,2 we have φ(µ̂) > 0.

But this implies µ̂−i ∈ Ci. Therefore Ci is open in ∆CI(i).

We now show that, ∆CI(i)− Ci has Lebesgue measure zero. we begin with the

observation that ∆CI(i) = ×k 6=i∆(k). That is, ∆CI(i) is the cartesian product of

unit simplices ∆(k)s, and each ∆(k) is of dimension (|M |+1)!−1 = (|W |+1)!−1.

On the other hand,

∆CI(i)− Ci =
⋃

Q,T⊂×k 6=iPk
{µ ∈ ∆CI |µ−i(Q) = µ−i(T )}

2d(., .) here signifies Euclidean distance
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Therefore the set ∆CI(i)− Ci is the union of a finite number of hyper-surfaces

intersected with ∆CI(i). It follows immediately that it is a set of lower dimension

and hence has zero Lebesgue measure.

Pick a product measure µ such that for some i, µ−i ∈ ∆CI(i)−Ci and consider

an open neighborhood of radius ε > 0 with center µ−i. Since this neighborhood

has strictly positive measure and since ∆CI(i)−Ci has measure zero, it must be the

case that the neighborhood has non-empty intersection with Ci. This establishes

that Ci is dense in ∆CI(i).

This completes Step 1.

STEP 2:

Let f be a matching procedure that is OBIC with respect to the belief µ where

µ−i ∈ Ci for all i. In this step we show that f must satisfy Property TM. Let P be

a preference profile, let i be an individual and let P ′
i be an ordering such that the

top-ranked mate in Pi is the same as the top-ranked element in P ′
i . Let us denote

this top-ranked mate for i by j. Then property TM requires that if i is matched to

j when the reported preference profile is P i.e., fi(P ) = j, then i must be matched

to j when the reported preference profile is (P ′
i , P−i) i.e., fi(P

′
i , P−i) = j. We

give the formal definition below.

Definition 4.3 The marriage procedure f satisfies TM, if for all individuals i,

for all P−i and for all Pi, P
′
i such that r1(Pi) = r1(P

′
i ), we have

fi(Pi, P−i) = r1(Pi) ⇒ fi(P
′
i , P−i) = r1(P

′
i )

Let i be an individual and let Pi and P ′
i be such that r1(Pi) = r1(P

′
i ). Suppose

i’s “true” preference is Pi. Since f is OBIC with respect to µ, we have, by using

equation (3.2)

µ({P−i|fi(Pi, P−i) = r1(Pi)}) ≥ µ({P−i|fi(P
′
i , P−i) = r1(P

′
i )}) (5)
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Suppose i’s true preference is P ′
i . Applying equation (3.2) we have

µ({P−i|fi(P
′
i , P−i) = r1(P

′
i )}) ≥ µ({P−i|fi(Pi, P−i) = r1(Pi)}) (6)

Combining (3.5) and (3.6) and using the fact that r1(Pi) = r1(P
′
i ) we get,

µ({P−i|fi(Pi, P−i) = r1(Pi)}) = µ({P−i|fi(P
′
i , P−i) = r1(P

′
i )}) (7)

Since µ(P−i) ∈ Ci it follows from (3.7) that,

{P−i|fi(Pi, P−i) = r1(Pi)} = {P−i|fi(P
′
i , P−i) = r1(P

′
i )} (8)

Thus, if for some Pi fi(Pi, P−i) = r1(Pi), then (3.8) implies that fi(P
′
i , P−i) =

r1(P
′
i ). Therefore f satisfies TM.

STEP 3: In this step we complete the proof of the theorem by showing that a

stable matching procedure does not satisfy TM.

Let |M | = |W | ≥ 3 and let f : D → M be a stable matching procedure, i.e.,

for all P ∈ D, f(P ) ∈ S(P ). Consider a preference profile P defined as follows:

Pm1 := w2Pm1w1Pm1w3Pm1 , · · · , Pm1m1

Pm2 := w1Pm2w2Pm2w3Pm2 , · · · , Pm2m2

Pm3 := w1Pm3w2Pm3w3Pm3 , · · · , Pm3m3

Pw1 := m1Pw1m3Pw1m2Pw1 , · · · , Pw1w1

Pw2 := m3Pw2m1Pw2m2Pw2 , · · · , Pw2w2

Pw3 := m1Pw3m2Pw3m3Pw3 , · · · , Pw3w3

For all k 6= 1, 2, 3, Pmk
:= wkPmk

, · · · , Pmk
mk and Pwk

:= mkPwk
, · · · , Pwk

wk.

We claim that S(P ) = {ν1, ν2} where,

ν1 = [(m1, w2), (m2, w3), (m3, w1), (mk, wk), k 6= 1, 2, 3]

ν2 = [(m1, w1), (m2, w3), (m3, w2), (mk, wk), k 6= 1, 2, 3]
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Observe that , in any stable matching m2 must be matched with w3; otherwise

either (m1, w2) or (m3, w1) will block. Given that, there are only two other possible

combinations: one where m1 is matched with w1 and the other where m1 is matched

to w2. Both give rise to stable outcomes since there is no pair that will block the

matching. Let f(P ) = ν1. Then fw1(P ) = m3. Now consider the preference

ordering P̂w1 given by

P̂w1 := m1P̂w1m2P̂w1m3P̂w1 , · · · , w1

We claim that S(P̂w1 , P−w1) = ν2. Observe that in any stable matching in

the profile (P̂w1 , P−w1), m3 must be matched to w2; otherwise, either (m1, w1) or

(m3, w2) will block. Also, m2 has to be matched to w3; otherwise, m1 and w1 would

block the matching. Hence the only stable matching is ν2. Then fw1(P̂w1 , P−w1) =

m1. But if fw1(P̂w1 , P−w1) = m1 it follows from TM that, fw1(P ) should also be

m1. Hence f(P ) 6= ν1. Therefore, f(P ) = ν2. Now consider a preference ordering

for m1, P̂m1 given by,

P̂m1 := w2P̂m1w3P̂m1w1P̂m1 , · · · , P̂m1m1

Replicating the earlier arguments we conclude that S(P̂m1 , P−m1) = ν1. Then

fm1(P̂m1 , P−m1) = w2. But then TM implies that fm1(P ) should also be w2 i.e.,

f(P ) = ν1. But this is a contradiction for we have shown above that f(P ) 6= ν1.

This completes the proof of the theorem.

REMARK 3.4.1: The result in Theorem 3.4.3 is valid even when |M | 6= |W |.

Let M = {m1, · · · , mn} and W = {w1, · · · , wm}. Without loss of generality assume

that m < n. Consider the preference profile P defined in the following way:

for all k ≤ m, Pik is defined in the same way as above; for k > m, Pmk
:=

w3Pmk
, · · · , Pmk

mk. Observe that under the preference profile P any selection

from the set of stable marriages divides the set of agents into three groups: men
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m1, m2 and m3 and women w1, w2 and w3 form matchings among themselves; wk

is matched to mk for all 3 < k ≤ m and the remaining set of men are forced

to remain single. Now replicating the arguments above we obtain the result in

Theorem 3.4.3.

REMARK 3.4.2: When there are only two agents on each side of the market

and preferences are restricted to the set D, Alcalde and Barberà (1994) show

that the stable matching selections obtained by the man-proposing and woman-

proposing deferred acceptance algorithms are both strategy-proof.

5 Conclusion

We have examined the implications of weakening the incentive requirement in

the theory of two-sided one-to-one matching from dominant strategies to ordinal

Bayesian incentive compatibility. Truth-telling is no longer assumed to be optimal

for every conceivable strategy-tuple of the other players. It is only required to

maximize expected utility given an agents’ prior beliefs about the types of other

players and the assumption that these players are following truth-telling strategies.

The set of ordinal Bayesian incentive compatible stable matching procedures clearly

depends on the beliefs of each agent. However, we show that when preferences

are unrestricted, there is no stable matching procedure that is ordinally Bayesian

incentive compatible with respect to any prior. When we put restrictions on the set

of allowable preferences, by requiring that every agent prefers to be matched than

to remain single, one obtains possibility results with independently and uniformly

distributed priors. However the possibility result is non-generic. If we perturb

beliefs we get back the impossibility result.
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6 Appendix A: Deferred Acceptance Algorithm

Man Proposing Deferred Acceptance Algorithm

Step 1: Each man makes an offer to the first woman on his preference list of

acceptable women. Each woman rejects the offer of any firm that is unacceptable

to her, and each woman who receives more than one acceptable offer rejects all but

her most preferred of these which she “holds”.

Step k: Any man whose offer was rejected at the previous step makes an offer

to his next choice (i.e., to his most preferred woman among those who have not

yet rejected it), so long as there remains an acceptable woman to whom he has not

yet made an offer. If a man has already made an offer to all the women he finds

acceptable and has been rejected by all of them, then he makes no further offers.

Each woman receiving offers rejects any from unacceptable men, and also rejects

all but her most preferred among the set consisting of the new offers together with

an offer she may have held from the previous step.

Stop: The algorithm stops after any step in which no man’s offer has been

rejected. At this point, every man is either being matched to some woman or

his offer has been rejected by every woman in his list of acceptable women. The

output of the algorithm is the matching at which each woman is matched to the

man whose offer she is holding at the time the algorithm stops. Women who do

not receive any acceptable offer or men who were rejected by all women acceptable

to them remain unmatched.

7 Appendix B: Symmetric beliefs

In this section, we briefly discuss symmetric beliefs. For the ensuing analysis some

definitions are in order. For a given preference profile, denote by PS the preference

orders of the agents in the subset S ⊆ I. Denote by Pm↔m′
S the preference orders
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of the agents in S obtained from P by switching m and m′, i.e., each woman

in S exchanges the places of m and m′ in her preference list and if m is in S his

preference is Pm′ and if m′ is in S its preference is Pm. Note that if woman w’s true

preferences are given by Pw, then Pm↔m′
w is the preference in which she reverses

the order of m and m′ (but otherwise states her true preferences). Similarly, P−w

and Pm↔m′
−w are assessments by agent w of the preferences of all other agents that

are identical except that the roles of m and m′ are everywhere reversed.

We model agent w’s uncertainty about the about the differences in the prefer-

ences of men m and m′, and about the other women’s preferences for the two men

as follows:

Definition 7.1 Given distinct men m and m′ we say woman w’s conditional

belief µ(.|Pw) is {m,m′} -symmetric if µ(P−w|Pw) = µ(Pm↔m′
−w |Pw).

Observe that w may know a great deal about m and m′ ( for example w may

know that both men prefer w′ to some w′′). What w does not know about m and

m′, if her conditional beliefs are {m,m′}-symmetric are any differences in their

preferences, or in other women’s preferences between them.

Definition 7.2 For a woman w ∈ W and a set of men U ⊆ M , we say that w’s

conditional belief µ(.|Pw) is {U}-symmetric if it is {m, m′}-symmetric for every

pair (m,m′) of distinct members of U .

If U = M then woman w’s belief is {M}-symmetric. We can similarly define

{W}-symmetric beliefs for a man m ∈ M .

Proposition 7.1 ( Corollary 1 in Roth and Rothblum (1999))

For a woman with {M}-symmetric conditional belief, any strategy that changes

the true preference ordering of men is stochastically dominated by a strategy that

states the same number of acceptable men in their correct order.
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Observe that the uniform prior µ̄ is {M}-symmetric for the women and {W}-

symmetric for men.
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